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Abstract 
 

 

Sfruttando le metodologie di indagine tipiche della fisica delle superfici e della scienza 

dei materiali, è stato possibile caratterizzare in dettaglio alcuni dei materiali utilizzati nel settore 

automotive. In particolare, l’attenzione è stata focalizzata sullo studio delle proprietà ottiche e 

strutturali di vari materiali, superfici ed interfacce di componenti polimeriche e metalliche da 

utilizzare per la produzione di fanaleria.  
Durante il percorso di dottorato è stata realizzata e validata una macchina prototipale 

per la scansione automatica di trasparenti con difettosità, basata su un sistema di computer 

vision. Gli algoritmi del sistema d’indagine, sviluppati in modo tale da evitare il controllo 

umano e tutte le problematiche ad esso correlate, sono stati tarati con precisione al fine di 

aumentare le prestazioni e l’affidabilità del prototipo. Differenti modalità di detezione sono 

state sfruttate al fine di riconoscere e classificare una grande varietà di difetti superficiali e dei 

materiali stessi. 

Oltre ai trasparenti, l’attenzione è stata focalizzata anche sui riflettori. L’obiettivo di un 

riflettore è quello di riflettere la luce generata da una sorgente e fornire al fanale l’aspetto 

estetico desiderato. Un generico riflettore è composto da un substrato plastico sopra il quale 

vengono depositati un layer metallico e uno protettivo: in questa tesi di dottorato ne sono state 

studiate dettagliatamente sia le proprietà strutturali (spessore dei film sottili, rugosità 

superficiali, …) che quelle ottiche (riflettanza speculare e totale, dipendenza spettrale del fascio 

riflesso, …). Substrati plastici planari (realizzati in policarbonato -PC- e acrilonitrile butadiene 

stirene -ABS-) sono stati metallizzati tramite un processo, del tutto identico a quello utilizzato 

per la produzione dei riflettori, consistente in una deposizione fisica da vapore (PVD) di 

alluminio (Al) in vuoto (10-4 mbar) con la successiva deposizione di un protettivo a base di 

esametildisilossano (HMDSO) per prevenire danni chimici e fisici al film metallico. Le 

proprietà strutturali di questi multistrati metallo-polimero sono state caratterizzate tramite 

microscopio a forza atomica (AFM), determinando la rugosità superficiale e lo spessore dei 

diversi layer. Le proprietà ottiche di campioni preparati utilizzando differenti trattamenti di 

metallizzazione sono state confrontate tramite funzione di distribuzione bidirezionale di 

riflettanza (BRDF). Sfruttando poi il sistema di riferimento di Harvey Shack e rappresentando 

i dati per mezzo del modello ABg, è stato possibile estrarre dei parametri fondamentali per 

meglio rappresentare i diversi trattamenti tramite i software di simulazione dedicati. I dati ottici, 

supportati da misure di profilometria, hanno evidenziato un contributo importante dovuto alla 

deformazione superficiale del substrato generata dal processo di stampaggio.  

Sono state inoltre trovate le tecniche più adatte per investigare i difetti che si formano 

sulla superficie metallizzata e all’interfaccia metallo-polimero dei riflettori. Il microscopio 

elettronico e la tomografia a raggi X con luce di sincrotrone sono stati utilizzati con un 

approccio combinato, ottenendo dei risultati interessanti che chiarificano la natura e l’origine 

dei difetti. Sono stati osservati, infatti, problemi di adesione, problemi relativi allo stampaggio, 

contaminazioni cristalline e difetti strutturali. 

Infine, è stata progettata e realizzata una macchina prototipale unica e innovativa. Essa 

ha un doppio scopo: identificare e classificare autonomamente i difetti presenti sulle superfici 

dei riflettori tramite riconoscimento visivo e verificare che il layer di alluminio abbia una 

riflettanza adeguata. Sfruttando il modello di apprendimento supervisionato delle macchine di 

supporto vettoriale (SVM), in seguito ad un preciso periodo di training, il prototipo è in grado 
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di riconoscere autonomamente i difetti e classificarli. Il ruolo del modello SVM è fondamentale 

perché permette di incrementare la qualità del riconoscimento all’aumentare dei componenti 

scansionati.  

Durante questo percorso della durata di tre anni, è stato possibile ottenere maggiori 

informazioni sulla natura e sull’origine dei difetti presenti sui riflettori. Lo studio riguardante 

la caratterizzazione delle proprietà ottico-strutturali del multistrato eterogeneo metallo-

polimero ha condotto ad una più precisa e maggiormente realistica rappresentazione delle 

superfici dei riflettori negli ambienti di simulazione. Le due macchine prototipali permettono, 

infine, una più economica, precisa ed affidabile alternativa per l’ispezione dei componenti, 

garantendo un’informazione in tempo reale essenziale al fine di monitorare la produzione e 

scovare potenziali problemi. 
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Abstract 
 

 

The main target of the project consisted in applying the thorough experimental 

methodology typical of surface physics and materials science to the characterization of 

materials to be exploited in the automotive lighting sector. Several aspects were considered, 

thus covering a variety of surface, materials, optical, and physical properties of polymer and 

metal-polymer reflectors and lenses. 

The development of a concept machine with the aim of automatically scanning defective 

outer lenses based on a computer vision system has also been validated. The algorithms of the 

inspection system, developed in order to avoid the human-eye control, have been fine-tuned to 

increase the performance and the reliability of the prototype machine. Different detection 

methods have been investigated and exploited, in order to recognize and classify a wide variety 

of surface and materials defects.  

Following the experience on the lenses’ inspection, the attention has been focused on 

reflecting elements. A reflector is one of the many components of rear automotive lamps. Its 

purpose is both to reflect light generated by a source and to provide a selected aesthetic aspect. 

It is composed by metallic and protective thin films deposited over plastic substrates: in 

particular, the structural (thickness of the metal layer, surface roughness, composition…) and 

optical (specular and total reflectance, spectral dependency of the scattered beam …) properties 

have been accurately studied. Flat plastic substrates (made of polycarbonate -PC- and 

acrylonitrile butadiene styrene -ABS-) have been metallized in vacuo (10-4 mbar) through 

Physical Vapor Deposition (PVD) of aluminum with the subsequent deposition of a protector 

made of hexamethyldisiloxane (HMDSO) to prevent both chemical and mechanical damaging. 

The preparation recipe of the samples was the same of the actual automotive reflector surfaces. 

The structural properties of metal-polymer heterostacks have been characterized by means of 

Atomic Force Microscopy (AFM), determining the surface roughness and the thickness of the 

diverse layers. Different metallization treatments were compared in a thorough characterization 

of the optical properties by measuring the spectral Bidirectional Reflectance Distribution 

Function (BRDF). Switching to the Harvey Shack reference system and fitting the BRDF data 

with the ABg model, it has been possible to extract important quantitative parameters that can 

be inserted in a simulation software to predict and model the reflector’s properties and behavior. 

The optical data, corroborated with profilometry measurements, evidenced an important 

contribution from the surface deformations induced by the mold production process.  

The most proper techniques to investigate defects forming at the metallized surfaces and 

interfaces of reflectors have been identified. By means of a combined approach exploiting 

Scanning Electron Microscopy (SEM) and synchrotron radiation based X-ray computed 

tomography (SR-CT) interesting results were obtained, yielding insight into the nature of the 

defects both at the surface and at the metal-polymer buried interfaces. Adhesion issues, press 

printing process-related problems, crystalline contaminations, and 3D structural defects have 

been revealed.  

Finally, an innovative and unique prototype machine has been designed and 

commissioned. The machine has a double aim: on one side, it automatically recognizes the 

defects arising on the reflectors’ surfaces by visual scanning, while on the other side it checks 

the reflectance of the metallized layer exploiting optical processes. In fact, by means of 

specifically designed algorithms, a standard camera is able to determine if the aluminum thin 
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film has the correct reflectance properties, i.e. if the reflector can be considered compliant or 

not. Furthermore, exploiting Support Vector Machines (SVM) supervised learning models the 

system, after a deep and precise training, can recognize autonomously the defects arising on the 

reflectors and classify them. The role of the SVM models is crucial, because the more scans are 

performed, the better the recognition of defects. Indeed, while scanning the machine learns how 

to better interpret the defects and therefore automatically increases its accuracy.  

During this three-years-long project, detailed information regarding the nature and 

origin of materials defects has been obtained. Moreover, the thorough studies involving the 

structural and optical properties of metal-polymer heterostacks led to a more precise and 

realistic representation of the reflectors’ surfaces in simulation environments. Finally, the two 

prototype machines allow for a faster, cheaper, more objective and reliable inspection of the 

components, providing real time information essential to monitor the production chain and 

detect potential problems. 
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1. Introduction 
 

1.1 Marelli Automotive Lighting Italy – University of Trieste: 

purpose of the collaboration  
 

The PhD project presented in this thesis has been developed within the framework of an 

extensive, dedicated scientific collaboration between a company (Marelli Automotive Lighting 

Italy) and a university (Università degli Studi di Trieste). Marelli is one of the world’s leading 

global independent suppliers to the automotive sector. It was born in 2019 as a unification of 

the two well-known international players “Magneti Marelli” and “Calsonic Kansei”. Marelli 

Automotive Lighting is one of Marelli’s divisions and is fully committed to the design, 

production, and distribution of automotive lamps for the most important original equipment 

manufacturers (OEMs) all over the world. This thesis work has been performed in collaboration 

with Marelli Automotive Lighting Italy, plant of Tolmezzo (UD), which is the competence 

center for the design and manufacturing of rear lamps (examples represented in Fig. 1.1.1). The 

Tolmezzo plant also gives support to other rear lamps productive plants all over the world. 

 

 
Fig. 1.1.1: examples of rear lamps designed and manufactured in the Marelli Automotive 

Lighting Italy plant of Tolmezzo (Udine).  

 

The aim of this doctoral project was to provide solutions to typical industrial problems that 

are material-related, thus exploiting material science and surface physics approaches, based on 

thorough experimental methodologies. Particularly, during the three-year-itinerary, I have 

focused my attention in four main topics:  

 

• the design and validation of a prototype machine to perform a real time automated 

quality control of outer lenses; 

• the characterization of the optical and morphological properties of the highly reflective 

surfaces of reflectors; 

• the study to determine the origin and nature of defects at the metal polymer heterostacks 

associated with the reflectors’ manufacturing procedure; 

• the design and validation of a unique and innovative prototype machine devoted to the 

quality and functional check of the reflectors. 
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An outer lens is the most external component of a lamp. Its function, as will be discussed 

in detail in Section 1.2, is to protect all the fragile components contained inside a rear lamp and 

to provide the vehicle the aesthetic aspect desired by the customer: for these reasons, its 

manufacturing quality must be guaranteed. The prototype machine to detect defects arising on 

the outer lenses has a fundamental role to prevent human errors during the quality check 

process. In fact, these defects are recognizable by human eye, but some issues can be tough 

obstacles in obtaining the right selection of the uncompliant pieces. The surface of an outer lens 

needs an extreme precision manufacturing procedure and the absence of defects is essential for 

the quality of the final product. The aim of the work involves the design and commissioning of 

a setup to extract and analyze information about the flaws present in an outer lens, exploiting 

different image processing techniques depending on the nature of the defects and, therefore, to 

support the production teams by providing a reliable tool to check the quality of the products. 

As benchmark samples to test this prototype we adopted the outer lenses of the Mercedes E-

class car. 

Reflectors are the other category of lamps’ components investigated during the PhD project. 

Their primarily aim is to supply the light and optical properties required by the regulations and, 

secondarily, to contribute to the aesthetic aspect of the lamp, as it will be described in detail 

later in this chapter. A thorough optical and structural characterization of reflector surface 

materials has been performed to unravel the influence of substrate chemistry and thickness, 

aluminum and protective layer thickness, and surface roughness on the effective optical 

reflectance properties. Bidirectional Reflectance Distribution Function measurements, 

corroborated by surface morphological information obtained by Atomic Force Microscopy, 

correlate reflectance characteristics with the root mean square surface roughness, putting in 

evidence the role of the substrate and of the thin films’ morphology.  

Moreover, to have an insight on the origin and nature of the defects arising during the 

manufacturing process, a combined microscopy-, spectroscopy-, and tomography-based 

approach has been exploited to investigate morphological and compositional properties of both 

surfaces and buried interfaces. Synchrotron radiation X-ray Computed Tomography and 

Scanning Electron Microscopy, coupled with Energy Dispersive X-ray Spectroscopy indicate 

that both chemical contaminations, introduced in the fabrication process, and growth conditions 

strongly affect the presence of defects.  

The design and validation of a prototype machine to check the aesthetic aspect and the 

functional optical properties of the reflectors follows directly from all the other three topics 

described above. The knowledge acquired during the validation of the prototype to scan the 

outer lenses, together to the information gained through the measurements performed to 

determine the optical and structural properties of the thin films deposited over the polymer-

based substrates, played an important role in designing the machine. The prototype can 

efficiently detect defects arising at reflectors’ surfaces ascribable to both the manufacturing and 

metallization process. Moreover, this novel machine gives the capability to perform a real time 

check of the optical properties of the scanned reflectors, leading the possibility to provide a 

quality feedback and to tune the metallization process parameters in case of insufficient 

performances. 

 

The research topics previously introduced play a fundamental role in the innovative, 

trailblazing, and state-of-the-art route denominated Industry 4.0.1,2 This defines an industrial 

automation trend consisting in a large-scale machine-to-machine communication (M2M) and 

Internet of Things (IoT) deployments to provide a real-time response to changings imposed by 
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shifting demands, unexpected faults or stock levels, improving the communication and 

increasing the automation of the production machines.3–5 Machines are now able to perform 

self-monitoring and autonomous maintenance, giving the possibility to execute a real time data 

analysis and production parameters’ tuning to satisfy the market requests without the need of 

human operators.6–8 Smart factories are connected entities, able to interact with one another and 

adjust their performance, being every aspect of every process logged, assessable, and 

analyzable at any place and time.9 These features are crucial to increase the efficiency and give 

the possibility to satisfy the more complex and detailed customers’ needs.10–12 From the 

production point of view, machine vision and machine learning are fundamental technologies 

to guide the transition from Industry 3.0 to Industry 4.0.13 Machine vision consists of a set of 

technologies and methods to extract precise information from an image on an automated basis, 

while machine learning represents a set of algorithms which improve the automatically thought 

experience of the computer.14–16 The technological improvement is underlined, for example, by 

the different quality inspection methods raised in the last years. In the past, in fact, monitoring 

the quality of products was a human task. The operator had to examine thoroughly each piece 

and decide if it was compliant or not. The agent, even if well trained and performing his/her 

work with excellent results, as a human being suffers from fatigue and illnesses, which can 

influence the judgment. Moreover, non-constant ambient lighting and environmental conditions 

could have led to a quality check failure, yielding both false positive and false negative results. 

In addition, depending on the typology and dimensions of the component, the analysis could 

have taken a considerable amount of time, thus slowing all the production chain. The automatic 

testing of components and processes is born to avoid the abovementioned fatalities. Machine-

based inspection permits to isolate the analysis from possible human interferences. Computer 

vision and machine learning systems can provide a fast and reliable analysis, and nowadays 

they are exploited in multiple and various branches: in fact, medical,17,18 agricultural,19–21 

manufacturing,22 safety,23 social,24 and industrial fields are just some example of 

implementation of these powerful techniques.25–27 The automotive lighting industry is not an 

exception in this constant upgrading movement: new technologies are exploited, and novel 

inspection methods are required to monitor different steps of the production chain. Particularly 

in this field, in order to fulfill the market requests asking for progressively new and more 

performing components, the need of an automated analysis is strongly rising, to maintain high 

productive standards and lowering the inspection time.28,29 

The new tools provided by the Industry 4.0 technological development offer a faster and 

more precise way to design novel products. In order to decrease the time and raw material 

wastes, computer-based simulation has become the most exploited way to conceive new 

solutions to satisfy the market request.30–32 In fact, concerning the automotive lighting sector, 

before prototyping a new lamp, several studies consisting on different kinds of simulations are 

performed: optical, electronic, and validation simulations are just some examples of the high 

amount of examinations that must be considered before validating the first prototype of a rear 

lamp. In addition, process-related simulations are also performed, thus determining the most 

proper process parameters in the molding, film deposition, and welding processes. This PhD 

project has been carried out working in close contact with the optical engineers, which perform 

optical simulations to design new prototype lamps. For the optical engineers, the difficulties lay 

in correctly modelling the components to successfully simulate the path of the light beam from 

the source to the final target. In the past, the desire of predicting the propagation of 

electromagnetic (e.m.) waves traveling in space has motivated the research of theoretical 

techniques to model such phenomena.33 In the specific case, in this thesis only the e.m. waves 
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with energies mainly in the infrared and visible ranges of the e.m. spectrum will be treated. 

These techniques must consider the kinematics of e.m. waves along with their associated 

propagation and reflection properties.34 Correct light simulations, together with realistic surface 

texture representations, add a lot more of information to a picture. In fact, most applications of 

computer graphics strongly depend on the attainable degree of realism.35,36 The correct 

simulation of various lighting effects is the most important aspect of true photographic realism, 

especially for the design of a new lamp, which has to comply with some important optical 

requirements imposed by severe regulations. A simulation technique that satisfies these 

requirements is the ray-tracing. In its primordial form, a ray is traced for each pixel of the image 

from the viewpoint into the 3D scene to calculate its first intersection with an object. If the 

object is reflecting or refracting, an appropriate ray is determined by the physical laws of 

reflection or refraction. These new rays are treated analogously to the previous ones, following 

their propagation in space and modelling their interaction with reflective or refractive surfaces 

and interfaces. The ray-tracing simulation approximates closely the human vision perception 

process and therefore can produce highly realistic outputs. Moreover, it can easily handle 

complicated lighting effects, shading, and shadows. In the ages, ray-tracing has been upgraded 

in a wide variety of different methods as stochastic (a Monte-Carlo or Metropolis-based)37–40 

and deterministic ray-tracing.41 Also, it is possible to define a backward ray-tracing (usually 

called back-tracing), when rays are emitted from the detector, and a forward ray-tracing, when 

rays are emitted from a light source and then reach the detector following the correct path. 

Although in nature the eyes do not emit rays to sense the environment, it does not mean that 

only forward ray-tracing is physically correct. In fact, all kinds of ray-tracing are only 

mathematical means to solve the self-consistent “global illumination problem", and are in a 

sense similar to integral equations with stochastic trajectories. In order to perform a correct ray-

tracing simulation, all the optical and structural properties of the different materials employed 

must be well defined, in order to better describe the diverse light scattering properties. As a 

matter of fact, if the totality of the attributes is not correctly classified, the simulation could lead 

to a wrong representation of the desired object. Before starting with the lamp’s chain 

production, each component is designed exploiting a CAD environment and the lighting process 

is simulated by means of ray-tracing. It is therefore fundamental to thoroughly classify all the 

optical and structural properties of each component, in order to perform a correct and reliable 

simulation. 

 

In this chapter (Chapter 1) the general information regarding the rear lamps are highlighted, 

presenting their main components. Moreover, the optical quantities and parameter involved in 

the design and validation of a rear lamp will be presented.  

In Chapter 2 the injection molding and the metallization processes will be described. In 

addition, the photolithography (fundamental to perform thickness measurements) will be 

introduced.  

In Chapter 3 the experimental technique and the methods exploited to study the samples 

will be revealed, while in Chapter 4 the basic tools to understand computer vision and machine 

learning will be supplied. 

Chapters 5 and 6 are the heart of the thesis and inside them the experimental results obtained 

during the PhD project are contained. Chapter 5 will be focused on the commissioning of a 

prototype machine for the automatic scan of outer lenses, while in Chapter 6 all the 

measurements performed to characterize the optical and structural properties of the reflectors 

together to the studies on the defects arising on them will be presented. Finally, Chapter 6 will 
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illustrate the design and validation of a unique and innovative prototype machine to scan 

reflectors to detect defects and check their reflective properties.   

The conclusions will be drawn in Chapter 7. 
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1.2 Rear Lamps: general information 
 

Rear lamps are safety devices, in fact they are made to report to other drivers the 

vehicle’s location on the road and its future moves (stop, turn, etc.). Beside the functional aim, 

in the last years rear lamps have been awarded with another purpose: provide the automobile 

the aesthetical lighting signature. In fact, as it is perceivable from Fig. 1.2.1, the rear lamp 

contributes as style identifier: it can be noticed how a sport car requires an aggressive shape, 

while, for example, an economy car needs a more sober style.  

 

 
Fig. 1.2.1: example of different rear lamps’ styles. 

 

An exploded view, showing the main pieces inside a rear lamp, is represented in Fig. 

1.2.2. Clearly, high technology is needed to design, manufacture and assemble each component 

involved in the lamp.  

 
Fig. 1.2.2: exploded view of a rear lamp, showing all its internal components. 

 

From Fig. 1.2.3, a clear understanding regarding a rear lamp working principle can be 

guesses. In Fig. 1.2.3a the section of a rear lamp is represented, while a ray-tracing view of the 
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same section is depicted in Fig. 1.2.3b. In brief, the LEDs contained in the PCB shine light on 

the reflector. The reflected light then crosses the inner lens and the outer lens, being therefore 

emitted by the lamp. 

 

 
Figure 1.2.3: schematic crosscut section of rear lamp (a), and ray-tracing view of the same 

crosscut section (b). 

 

1.2.1 Light sources 
 

The most common light sources for rear lamps are filament bulbs, LEDs and, to a 

smaller fraction, OLEDs. Filament bulbs are the old, conventional light sources, which are still 

exploited for economy cars. They cost less with respect to the LEDs and OLEDs, but their 

service life is shorter and the power consumption higher. Moreover, their volume size makes it 

difficult to design complex lamp geometries and their optical properties are limited. On the 

contrary, LEDs last longer, their vibration resistance is better than bulbs’ one and their 

packaging is shallower. LEDs can be placed in many different positions on the printed circuit 

board (PCB) allowing to tune the geometry of the light source itself and creating lamps with 

diverse shapes. Unfortunately, LEDs require greater attention because the emitted luminous 

flux is extremely sensitive to heat due to the semiconductor junction temperature dependence. 

This means that more strict validation simulations (thermal and stability tests) must be 

performed to be sure the light source is working in the right condition. The OLEDs are the 

newest light sources which can guarantee a better lighting homogeneity and solve the 

temperature-related problems. However, they are more sensitive to vibrations and they are more 

expensive than the LEDs. 

  

1.2.2 Reflectors 
 

Different kinds of reflectors can be exploited to design a lamp. The typical reflector is 

the so-called “parabolic metallized reflector”, consisting of a plastic (PC or ABS) substrate 

metallized with aluminum (Fig. 1.2.4). “Parabolic” means that the reflecting surface has a 

paraboloid shape and the light source is positioned in its focus to better shine light. Sometimes 

it is not possible, due to volume constrains imposed by the design, to exploit parabolic 

reflectors, but in these cases a “freeform surface reflector” can be used. This type of reflector 

is a compromise to collect most of the light emitted by the source without the obstacle of the 

paraboloid volume. Even those reflectors are metallized in order to increase the reflectivity of 

the plastics. Usually, to better control and focus light in specific directions, optics with precise 
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geometric shape (pillow, cylindric, prims) are engraved/molded on the reflectors. The 

metallization process will be explained in detail in Chapter 2. Last types of reflectors are the 

“white reflectors”, characterized by white non-metallized plastic. In this case, the white surface 

helps spreading light following a Lambertian distribution. They are mainly used when the goal 

is to produce a high luminance homogeneity level from a large viewing angle field, despite a 

lower efficiency with respect to the metallized ones.  

 

 
Fig. 1.2.4: example of reflector. 

 

1.2.3 Inner Lenses 
 

There can be multiple typologies of inner lenses: Fresnel lenses (Fig. 1.2.5a), lenses 

with standard optics, and lenses with micro optics (Fig. 1.2.5b). They are all produced using 

semi-transparent PC or PMMA, leaving the possibility for the light to pass through the medium. 

Fresnel lens is a semi-transparent planar element with prisms to redirect the light emitted by the 

source to the normal direction of the lens. Principles of refraction and total reflection are used 

to design these lenses. Lenses with standard and micro-optics are semi-transparent elements 

with an array of local calculated deviation from the original basic surfaces, which is used to 

spread the incident light within a desired angle, based on the refraction principle. When the size 

of the array is greater than 1 mm the optics are called “standard”, while for lower size they are 

named “micro” optics. Particular typologies of inner lenses are the diffusive elements, which 

are intended for spreading the light by means of controlled roughness pattern on the component 

surface or volume scattering, obtaining satisfactory luminance homogeneity, but reducing the 

intensity efficiency.  

 

 
Fig. 1.2.5: ray-tracing simulations to demonstrate the working principle of Fresnel lens (a) and 

micro optics (b). 
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1.2.4 Light guides 
 

Light guides (example shown in Fig. 1.2.6) are tubular semi-transparent elements, made 

by PC or PMMA, whose operating principle is based on Total Internal Reflection (TIR).  

 
Fig. 1.2.6: example of light guide. 

 

Their function is to distribute light coming from a punctual source in such a way that it 

can be emitted by an extended wide area (even greater than 500 cm2) exploiting TIR 

phenomenon arising between the plastic of the component and the air. In order to emit light in 

the desired direction, a special set of prisms is inserted in the light-guide to generate a deviation 

from the TIR condition, changing the ray-path and spreading light from the surface to the 

defined directions. In Fig. 1.2.7 a ray-tracing simulation has been performed to demonstrate 

graphically the working principle of a light guide.  

 

 
Figure 1.2.7: ray-tracing simulation to demonstrate the functionality of a light guide: in the red 

circle, the TIR is exploited. In the pink circle, by means of tailored prisms the propagation 

direction of light is modified.  
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In the first part of the light guide, highlighted by the red circle, the TIR is exploited in 

order to propagate the light only inside the plastic component. In fact, all the rays (in green) 

remain trapped in the light guide. To bring out the light in the chosen directions, prisms are 

used (pink circle).  

 

1.2.5 Outer lenses 
 

The outer lens is fundamental to protect the internal components of the lamp from 

damages, water leakage and every ambient impurity which could damage the interior of the 

lamp itself (example of outer lens represented in Fig. 1.2.8). In addition, the outer lens plays a 

key role in reaching the correct colorimetry imposed by the regulations and it defines the 

aesthetic aspect of the entire lamp, contributing to the appearance of the vehicle. It is welded 

together with the back housing and it must also resist to all the mechanical stress of the moving 

vehicle and to the heat produced by the light source during operation condition. Outer lenses 

are made of PMMA, which is subjected to severe chemical proofs to resist oil, fuel, wax and, 

moreover, to comply with a broad temperature ranges spanning from -40°C to 95°C, simulating 

the different environmental conditions that can be found in the entire world. The outer lens can 

be assembled to the housing (containing all the components described above) with several 

technique as vibration welding, hot plate welding and laser welding depending on the geometry 

of the lens itself. 

 
Fig. 1.2.8: example of outer lens. 

 

1.2.6 Materials  
 

Polycarbonate (PC), Acrylonitrile butadiene styrene (ABS) and 

Polymethylmethacrylate (PMMA) are the three main thermoplastic materials employed in the 

manufacture of the rear lamp components. 

PC is a strong and durable material that can be easily worked and molded. Its glass 

transition temperature is 147°C and it has a high impact resistance, while its scratch resistance 

is quite low. Its colorless version is highly transparent to visible light, with better light 

transmission than many kinds of glass. It is stronger than PMMA and it holds up longer to 

extreme temperatures typical of LED light sources, making it the ideal material to manufacture 

internal components of the lamp.42,43 
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ABS’s properties are very similar to the PC ones, making it a strong material which can 

be easily worked and molded. Its glass transition temperature is 105°C while its melting point 

can be located around 110°C (cannot be precise because ABS has an amorphous nature). The 

major differences regard the optical properties, because the ABS is more matte and opaquer 

with respect to the PC, which is brighter and shinier, as will be stressed in Chapter 6, and the 

price, because ABS is cheaper than PC.44,45  

PMMA is characterized by a good tensile and flexural strength, solid abrasion resistance 

and outstanding UV tolerance. On the other side, impact strength and heat resistance are less 

developed than PC and ABS. The PMMA glass transition temperature ranges from 85 to 165°C 

depending on the precise composition of the plastic. It can transmit up to 92% of visible light 

and the reflection contribute from each of its surfaces is about 4% (depending on its refractive 

index which depends on the precise chemical composition). It filters light having wavelengths 

below 300 nm, preventing damages from UV radiations while passes infrared light up to 2800. 

Its high scratch resistance makes it the best material to be exploited for the outer lenses 

manufacture.46,47  

The above presented materials are shaped, by means of injection molding process 

(presented in Chapter 2), to form the different components. 
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1.3 The physics and the optical design of rear lamps: photometry, 

colorimetry and luminance requirements 
 

Photometry is the science concerning measurement of light and perception of brightness 

by the human eye; it refers to the electromagnetic radiation, restricted to the visible range (360-

830 nm).48  

 
Fig. 1.3.1: representation of the photopic spectral luminous efficiency function (white).49  

 

Before going into the details regarding the photometric quantities, it is important to 

introduce the photopic spectral luminous efficiency function 𝑉(𝜆).50 This function, represented 

by the white profile in Fig. 1.3.1, maps the specific sensitivity of the human eye to the 

electromagnetic radiation wavelengths and it has been determined experimentally by the CIE 

(Commission Internationale de l'Eclairage) in 1924.51 Spectral radiant flux 𝛷𝜆 (energy emitted 

by a source per unit time), spectral irradiance 𝐸𝜆 (flux received by a surface per unit area), 

spectral radiance 𝐿𝜆 (flux emitted by a surface per unit solid angle per unit projected area), and 

spectral intensity 𝐼𝜆 (power emitted by a light source per unit solid angle) can be therefore 

convolved with the abovementioned 𝑉(𝜆) to obtain the corresponding photometric quantities 

 

 
𝛷𝜈 = 𝐾𝑚 ∫ 𝛷𝜆

830

360

𝑉(𝜆)𝑑𝜆 (1.3.1) 

 

 
𝐸𝜈 = 𝐾𝑚 ∫ 𝐸𝜆

830

360

𝑉(𝜆)𝑑𝜆 (1.3.2) 

 

 
𝐿𝜈 = 𝐾𝑚 ∫ 𝐿𝜆

830

360

𝑉(𝜆)𝑑𝜆 (1.3.3) 

 

 
𝐼𝜈 = 𝐾𝑚 ∫ 𝐼𝜆

830

360

𝑉(𝜆)𝑑𝜆 (1.3.4) 

 

that are all weighted by the human eye response. 𝐾𝑚 is the maximum value of the luminous 

efficacy of radiation and has a value of 𝐾𝑚 = 683 
𝑙𝑚

𝑊
 . The luminous flux (or luminous power) 
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represents the measure of the total perceived power of light in every direction and is measured 

in lumen (lm). However, the lamp performance is measured through the luminous intensity, in 

candela (cd) units, which takes into account, on the opposite of the luminous flux, the direction 

of the observer. The legislative constraints involving rear lamp evaluate the luminous intensity 

emitted by the lamp itself in different direction. Fig. 1.3.2 shows the so called “photometrical 

grid” which represents the requirements a lamp must fulfill to be considered compliant. The 

luminous emission must accommodate precise intensity values in specific directions, 

considering several evaluation angles. Five numbers are shown inside each box: the blue and 

red (top and bottom right corners) represent the maximum and minimum intensities imposed 

by the regulations, the sky-blue and pink (top and bottom left corners) describe the maximum 

and minimum intensities accepted by the customer, while the black number in the middle of 

each box shows the measured luminous intensity. 

 

 

 
Fig. 1.3.2: example of photometrical grid. 

 

Even if the legislative requirements are only related to the luminous intensity, 

sometimes it is possible that customers ask for a luminance and color evaluation too. Luminance 

is a measure of the luminous intensity per unit area of light travelling in a given direction. It 

describes the amount of light that passes through, is emitted or reflected from a particular area, 

and falls within a given solid angle as perceived by the human eye. The SI unit for luminance 

is the candela per square meter (cd/m2) unit, which is denominated Nit. This quantity gives an 

idea of the "dazzling" produced by the source. In contrast to intensity, luminance is more related 

to the perception of light and better described the feeling drivers have while looking at a rear 

lamp, because it indicates the amount of luminous power that can be detected by the human eye 

while looking at a particular surface from a specific angle of view. Luminance can be thought 

as a way to physically describe the subjective perception of “brightness”.  

Finally, color is a characteristic of light which is related to the stimulation of different 

photoreceptors cells in the eye by photons having different energy. The high subjectivity of 

human color perception lead to the definition of conventions establishing a quantitative link 
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between the physical pure colors and the physiological perceived colors in human vision. The 

automotive sector adopts the 1931 CIE convention.52 CIE's color matching functions are the 

numerical description of the chromatic response of the observer, as depicted in Fig. 1.3.3: in 

colorimetry, the light reaching the eye is called color stimulus, and this explains why the three 

signals represented in Fig. 1.3.3 are called stimuli. 

 

 
Figure 1.3.3: graphic representation of the standard observer �̅�(𝜆), �̅�(𝜆), 𝑧̅(𝜆) monochromatic 

test stimuli. 

 

Collectively, these three functions are known as the CIE standard observer. The CIE 

XYZ color space was designed to give a simple, scientific, and reliable representation of color. 

In this description, the X, Y, and Z tristimulus values are defined as 

 

 
𝑋 = 𝑘 ∫ 𝛷𝜆(𝜆)

830

360

�̅�(𝜆)𝑑𝜆 (1.3.5a) 

 

 
𝑌 = 𝑘 ∫ 𝛷𝜆(𝜆)

830

360

�̅�(𝜆)𝑑𝜆 (1.3.5b) 

 

 
𝑍 = 𝑘 ∫ 𝛷𝜆(𝜆)

830

360

𝑧̅(𝜆)𝑑𝜆 (1.3.5c) 

 

where 𝛷𝜆(𝜆) is the color stimulus function of the light seen by the observer, 𝑘 is a constant and 

�̅�(𝜆), �̅�(𝜆), 𝑧̅(𝜆) are the monochromatic test stimuli represented in Fig. 1.3.3. The chromaticity 

coordinates (𝑥, 𝑦) can be introduced as  

 

 
𝑥 =  

𝑋

𝑋 + 𝑌 + 𝑍
 (1.3.6a) 

 

 
𝑦 =  

𝑌

𝑋 + 𝑌 + 𝑍
 (1.3.6b) 
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and they are fundamental to describe the chromaticity with only two numbers. However, even 

if chromaticity can be expressed by means of two numbers, it is important to underline that the 

color stimulus can be correctly described only with 3 parameters (not 2). The usual CIE 𝑥𝑦𝑌 

chromaticity diagram, widely used to specify colors in practice, is a function of three variables 

(𝑥, 𝑦, 𝑌) is depicted in Fig. 1.3.4a.  

 

 
Fig. 1.3.4: CIE xyY chromaticity diagram (a);53 CIE xyY chromaticity diagram representing 

only the colors legislatively accepted on a rear lamp (b).  

 

This chart is a tool to specify how the human eye will experience light with a given 

spectrum: it cannot specify colors of objects, since the chromaticity observed while looking at 

an object depends on the light source as well. The regulation laws impose limits to the color 

owned by a rear lamp: it can be red, white or yellow, depending on the function considered and 

for each of those color different constraints must be fulfilled, as represented by the highlighted 

areas in Fig. 1.3.4b. 

The final output of an optical simulation for a rear lamp consists of a report which 

contains all the information needed to describe the colorimetry and the photometry analysis. 

One fundamental tool exploited to evaluate the optical efficiency of a lamp is the isocandela 

map (Fig. 1.3.5): in this map regions having the same luminous intensity are represented with 

the same color. This can help visualizing the overall emitting properties of the lamp.  
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Fig. 1.3.5: example of isocandela map, which can supply an easy visualization of the luminous 

intensity of the portion of the lamp considered. 

  

The aim of the optical and structural characterization of materials to be exploited in the 

rear lamps’ manufacturing process, performed during this PhD project, is to provide more 

reliable tools to better simulate the different materials in the simulation environments. In fact, 

the correct classification of the diverse surfaces and interfaces of a rear lamp can return more 

precise simulations and therefore, a fast and reliable tool to check if the lamp is compliant to 

the photometry and colorimetry regulations. 
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2. Production of lamp optics: technical aspects and 

issues 
 

2.1 Injection molding 
 

Injection molding is a manufacturing process that produces components by injecting 

molten materials into a mold. The materials exploited during the process can be of different 

nature, from thermoplastic and thermosetting polymers to glasses and metals. In this thesis 

project I have concentrated my efforts on thermoplastic materials only. Injection molding will 

be synthetically described, but the attention will be mainly focused on the process-related 

parameters affecting the printing results.  

The plastic granules, contained in a hopper, are inserted into a heated cylinder 

terminated with a nozzle extruder. An endless screw rotates within the cylinder and brings the 

granules inside the cavity, which is generated by the closure of the two steel mold halves. Here, 

pressure is increased allowing the plastic to take the mold shape without voids or gaps. Once 

the cavity is completely filled with fluid plastic, the mold is kept closed, so that the plastic can 

solidify by thermalization and maintaining the correct shape. After a couple of seconds, the 

mold halves open again and the component is ejected.54 An example of injection molding 

structure is represented in Fig. 2.1.1a, while the visual description of the cylinder is displayed 

in Fig. 2.1.1b. 

 

 
Fig. 2.1.1: (a), visual representation of the main components of an injection molding apparatus; 

(b), graphical description of the cylinder. Figure adapted from the literature.55 

 

The above description is oversimplified, in fact the actual procedure is ruled by more 

than 100 parameters (i.e. temperature of the injected material, temperature of the mold, injection 

pressure, etc.) that must be fine-tuned to ensure production of a high-quality component.56 

However, in the next pages the three main parameters affecting the process will be introduced: 

temperature, pressure and time.57  
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2.1.1 Parameters 
 

Temperature 

 

Two different temperature values can be distinctly tuned in a standard injection molding 

process: temperature of the plastic material and temperature of the mold.58  

 

Temperature of the material 

 

All plastics have a most efficient injection temperature range. For amorphous phases, 

this range is rather broad, while for crystalline plastics it is much narrower (for the ABS the 

temperatures for a correct molding process range in the 210-270°C interval, while for PMMA 

the appropriate plastic temperature is in the range 210-230 °C). However, for both types of 

materials there is a specific temperature for which the plastic flows at best while maintaining 

its peculiar physical properties. Generally, the higher the temperature, the lower the viscosity.59 

This is true below a determined temperature limit, beyond which the plastic material degrades 

and its physical properties abruptly change (viscosity and phase diagrams can be found in the 

literature).60–63 The cylinder containing the plastic granules is heated by electrical heater bands 

wrapped around it. Additional heat is generated by the turning action of the feed screw located 

within the cylinder: its main goal is to move fresh material into the cylinder from the hopper, 

but the turning action is also utilized to squeeze the plastic, thus creating friction.  

 

Temperature of the mold  

 

It is fundamental to cool the plastic at a rate that is slow enough to allow the material to 

reach proper physical strength and have the less thermal residual stress possible.64 This is 

mainly obtained by controlling the mold temperature. The mold temperature ranges are quite 

wide, depending upon the different plastic used (PC: 80-120°C, ABS: 40-70°C). Specially 

designed channels are drilled into the most critical parts of the mold. These holes are then 

connected by means of hoses and water is flown inside them for proper thermalization.  

 

Pressure 

  

The hydraulic oil system within the molding machine and a series of control valves and 

regulators within that system provide the needed pressure. The pressure range is quite wide, 

spanning from approximately 3 MPa for fast flowing plastic, up to 135 MPa or more, for highly 

viscous materials. The specific requirements for the various pressure applications are discussed 

in the next lines. 

 

Injection pressure 

 

Injection pressure is the primary pressure used for the process and it is required to 

produce the initial filling of the free mold cavity, which represents approximately 95% of the 

total filling. The viscosity and flow rate of the injected plastic determine the amount of pressure 

that must be used, normally lying in the 70-135 MPa range. At the beginning of this phase the 

air trapped inside the mold is ejected by specifically designed duct. 
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Holding pressure 

 

Holding pressure is applied at the very end of the primary injection stroke and it is used 

for the final 5% filling of the cavity image. It is called in this way because pressure is held 

against the cooling plastic in the mold while the material solidifies. This phase is fundamental 

to give the molded component its desired aspect and physical properties. Holding pressures are 

usually in the range of 50% of the primary injection pressure. 

 

Back pressure 

 

Back pressure is applied after the injection phases mentioned above. When the holding 

phase is completed, the machine starts turning the screw to bring in new material, in preparation 

for the next cycle. In this phase, the screw is not pulled back, but it only rotates and the fresh 

material itself begins to push the screw backward generating the so-called back pressure. Back 

pressure is small compared to the injection one, being approximately 10% of it. This parameter 

actually determines density and material appearance, minimizing (or even eliminates) voids in 

the molded product.65  

 

Time 

 

Time is the last, but not least, important parameter that will be introduced in the 

following. Two different time intervals can be distinguished: the injection time and the cooling 

time.  

 

Injection time 

 

The amount of time required for injection depends on how much material is being 

injected, the viscosity of the material, and the percentage of the machine’s barrel capacity being 

utilized. During the initial injection time, the screw does not turn but only forces the material 

into the mold by pressing it. Initial injection is performed using the highest practical pressure 

for the specific application (normally between 70-135 MPa) in the fastest practical amount of 

time. In most cases it does not exceed 4-5 seconds. On the contrary, during the hold time the 

injection screw maintains pressure against the plastic that is already into the mold and no 

additional material is pushed inside. The molten plastic enters the mold cavity image through a 

gate. After all, the required material goes through the entrance and packs the cavity image, 

therefore the molten material is allowed to cool under hold pressure until it solidifies. The gate 

is the first portion to solidify, being normally the thinnest part of the cavity image. At this point, 

pressure is not applied because the plastic in the cavity lies beyond the solidified gate and the 

pressure from the injection unit no longer has any effect on it. The injection time can be defined 

as the interval elapsed between the beginning of the casting flowing in the mold and the moment 

when the gate solidifies. A gate with a thickness of 1.5 mm would take approximately 6 seconds 

to solidify. 

  

Cooling time  

 

The cooling time is the amount of time required for the plastic material to cool and 

solidify, allowing the plastic part to be rigid enough to withstand the ejection process. Ejection 
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occurs when the finished molded product is pushed out of the mold after the entire cycle is 

completed. If the outer skin of the plastic product is solidified to a sufficient depth, the 

remaining cooling will not have an appreciable effect on the molded part. If the skin is too thin, 

the remaining cooling will cause shrinkage stress to build up and the molded part may warp, 

twist, blister, or crack. The key to minimize these problems is to keep the part in the mold for 

a sufficiently long time. On average, a 1.5 mm-thick wall should take approximately 9-12 

seconds to solidify (depending on material) to the point at which it can be ejected from the mold 

without undue distortion.  

 

2.1.2 Defects 
 

As described before, the injection molding process is controlled by a great number of 

parameters, which must be fine-tuned to produce a plastic item that is both aesthetically 

acceptable and with the correct structural properties. When the value of one single parameter is 

not correct, defects may arise on the final product. The three most common and frequent defects 

will be now introduced explaining their nature; for every defect, the possible causes ascribable 

to machine, mold, or material fault will be listed. 

 

Black Spots or Streaks  

 

If the plastic remains in the barrel longer than normal, it will begin to degrade. This 

degradation results in carbonized plastic, yielding small black clusters in the molded part, as 

shown in Fig. 2.1.2.  

 

 
Fig. 2.1.2: visual representation of black specks. Figure adapted from the literature.66  

 

These defects affect both opaque and transparent surfaces. The black spots could be also 

ascribed to sprue bushing cracked or broken. Any of these conditions will cause plastic to hang 

up in the mentioned cracks or holes where the material can overheat due to excessive residence 

time at that location, causing degradation or carbonizing.  
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Blisters or Bubbles 

 

As the material is heated and transferred through the heating cylinder, air may be trapped 

within the molten material, as displayed in Fig. 2.1.3.  

 

 
Fig. 2.1.3: example of an air bubble trapped inside the plastic (white arrow). Figure adapted 

from the literature.66 

 

One of the uses of back pressure is to force this air out before it gets injected into the 

mold cavity image: if the back pressure is too low, air can remain trapped inside. Moreover, the 

injection temperature may be too high, which can cause the molten material to be extremely 

fluid, so air and gases remain trapped in the turbulent molten stream. As the material is injected 

into the mold, it starts to cool immediately, and a skin begins to form on the surface of the part. 

If this skin forms too quickly, any air that is mixed into the material will not be allowed to 

escape through the surface as intended, causing a blister. A cold mold will cause the skin to 

form too soon hence, to reduce blisters or bubbles, the mold must be heated. 

 

Flow Lines  

 

If the injection pressure is too low, the material entering the cavity is not packed together 

to form smooth layers against the molding surface, but it actually starts to wrinkle as one layer 

tries to crawl over the already cooling layer outside of it (Fig. 2.1.4). The cold mold could be 

another possible cause of flow lines: generally, a hot mold will allow the molten plastic to flow 

farther before cooling off and solidifying, minimizing the formation of flow lines. Eventually, 

a material that is too stiff may not flow fast enough to pack the mold before it solidifies, and 

the flow front may not be able to squeeze out the flow lines that will form.  
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Fig. 2.1.4: example of flow lines on a plastic molded component. Figure adapted from the 

literature.66 
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2.2 Coatings deposition 
 

Once the reflectors are molded, they need to be metallized in order to get their typical 

shiny and reflective aspect. The metallization process consists in the Physical Vapor Deposition 

(PVD) of aluminum (Al) on the bare reflector plastic substrate, and a following Plasma-

Enhanced Chemical Vapor Deposition (PECVD) of Hexamethyldisiloxane (HMDSO) on top 

to prevent oxidation and damage of the metal layer. HMDSO is transparent to visible light and 

affects only slightly the optical properties of the aluminum film, as confirmed by the 

spectrophotometer data reported in Fig. 2.2.1. These data are taken on a glass slab and represent 

the optical properties of a 115 nm thick Al layer with (panel a) and without (panel b) a 35 nm 

thick HMDSO protective film on top. 

 

 
Fig. 2.2.1: spectrophotometer data acquired on 115 nm-thin film of Al and 35 nm-layer of 

HMDSO on top (a) and on 115 nm of bare Al (b) both grew on glass slabs. For both the samples, 

the transmittance is absent, meaning that the light is all absorbed or reflected.  

 

With a standard Al coverage (115 nm is the standard thickness, as it will be shown in 

the next chapters) no light is transmitted through the sample. The HMDSO affects the optical 

performances of the Al as represented by Fig. 2.2.1: a decrement and modification of the 

reflectance in the 400-600 nm range is tolerated to ensure the physical protection of the metal 

layer. 

 

2.2.1 Metallization setup 
 

The metallization setup exploited in the manufacturing plant is a big cylinder (diameter 

= 190 cm, height = 180 cm) in which deposition of both Al and HMDSO are performed. 

Specifically, the ones exploited are the Tecnomet MV by Tecno Vacuum (Fig. 2.2.2). They are 

provided with two hemicylindrical doors to increase the productivity (Fig. 2.2.2a): while one 

door is closed (metallization cycle running), the other one is opened so that the operator can 

unload the metallized reflectors and load new unmetallized ones. The hemicylinder contains a 

mechanical carousel consisting in 8 support structures, which are filled with housing masks 

tailored for the specific reflector geometry (Fig. 2.2.2b). 
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Fig. 2.2.2: (a), picture of a Tecno Vacuum Tecnomet MV, the metallizing machine used to grow 

the Al and HMDSO coatings on the reflectors.67 (b), metallizing machine filled with 8 support 

structures. Every structure contains the housing masks, which are specific for each different 

reflector type. 

 

Three fundamental elements are located inside the machine: an evaporator, a cathode, 

and a mechanical carousel. The evaporator is composed by 22 tungsten heating wires, each 

designed with a two-meanders-like shape (Fig. 2.2.3a), where the solid state Al spirals must be 

inserted (Fig. 2.2.3b). The geometrical properties of the wires are highlighted in Fig. 2.2.3c. 

 

 
Fig. 2.2.3: picture of a tungsten wire (a). Al spiral inserted in one of the two meanders of the 

W wire (b). Schematic representation of the tungsten wire used for the Al evaporation (c). A = 

0.75 mm (diameter of the Y circumference = 1 mm), B = 15 mm, C = 55 mm. Each tungsten 

wire is composed by three little wire weaved together, conferring it the possibility to be used 

for a longer time. 
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The bare Al source material has a nominal purity of 99.82% (composition listed in Table 

2.2.1). 

Element Chemical composition weight (%) 

Al 99.82 

Si 0.04 

Fe 0.12 

Mn 0.01 

Zn 0.01 

Table 2.2.1: effective elemental composition of the Al spirals. The overall contamination 

concentration is less than 0.2%. 

 

The cathode is a big cylinder (diameter = 10 cm, height = 130 cm) exploited to generate 

a potential difference inside the machine (the anode is represented by the carousel containing 

the housing masks). An intense electric field is fundamental to create a plasma inside the 

chamber and thus performing plasma cleaning and depositions, as will be described in the 

following. Up to 8 support structures can be inserted inside the mechanic carousel, each one 

provided with a variable number of housing masks for the specific reflector. Each structure 

rotates around its axis, while the 8 supports rotate around the center of the metallization 

machine, yielding both rotation and revolution motions.  

   

2.2.2 Metallization process 
 

The metallization process lasts approximately 22 minutes: during this time interval, a 

set of precise and well-defined steps are performed to give the reflectors its optimal reflective 

properties, thus following a customized and tuned recipe. 

In the first part of the cycle the reflectors are loaded into the machine and the pumping 

system (composed by roots pump and scroll pumps) is turned on. When a pressure in the 8∙10-

2-1∙10-1 mbar range is reached, a potential difference of 2500 V (plasma current ~ 1 A) is applied 

for the plasma cleaning process, which lasts 300 s. This is fundamental to remove as much 

environmental contaminations as possible from the reflectors’ surfaces. Plasma cleaning uses 

the interaction of ions, electrons, and radicals with the surface offering several advantages over 

conventional chemical cleaning methods. Plasmas provide a low temperature environment 

which does not exploit heat to promote chemical reactions, thus eliminating many of the 

drawbacks associated with wet chemistry. Moreover, plasmas are environmentally friendly, 

with no chemical wastes and hence no expensive disposal procedures. Argon is the element 

used to generate the plasma and it removes contaminants by exploiting ablation by energetic 

ions.68–70  

Al is then deposited by means of PVD on the clean plastic surface.71 PVD is an atomistic 

deposition process in which the material is sublimated from a solid source in the form of atoms 

or molecules and transported in the form of a vapor through a vacuum or low-pressure gaseous 

(or plasma) environment to the substrate where it condenses.72 There are many ways for film 

depositions via PVD process, such as sputtering deposition, arc vapor deposition, and ion 

plating.73 Thanks to this technique, it is possible to deposit a thin layer of material with 

controlled deposition rates in order to obtain, for example, nanostructures with well-defined 

growth direction and thickness.74 In the present case, heating the Al spirals (physically in 

contact with the tungsten heating wires) is the method employed to evaporate aluminum and 

then grow the thin film. The PVD process starts when pressure in the chamber is in the 2.8-3.6 
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10-4 mbar range. The deposition in vacuo is mandatory to let the mean free path of the particles 

be long enough to reach the non-metallized reflectors and to avoid Al pre-oxidation by oxygen 

or water. During the deposition, the substrate is kept uniformly at room temperature. The 

uniform substrate temperature, granted by keeping a correct distance from the evaporator, is 

fundamental in order to avoid formation of agglomerates or heaps in the deposited layer. The 

evaporation process for the specific reflectors investigated in the present work lasts 45 seconds: 

high current (2000-2500 A) circulates in the W wires and heats the Al until it evaporates. The 

current ramp (300-350 A/s) is set to heat uniformly the Al spirals and not letting solid 

agglomerates reaching the substrate.  

Over the aluminum layer, an HMDSO thin film is deposited by means of PECVD, 

without breaking the vacuum. Chemical vapor deposition (CVD) belongs to the class of vapor-

transfer processes. It enables the deposition and growth of a solid phase structure at a surface 

starting from a chemical vapor phase that reacts and is catalytically converted at the solid-gas 

interface.75 The material that needs to be deposited can be mixed with other more volatile 

precursors that work as carriers. The precursors chemically interact with the source material, 

generating volatile by-products. The PECVD arises from CVD and uses electrical energy 

supplied by the cathode to produce a plasma. The plasma activates the reaction by transferring 

the energy of its species to the precursors and induces free radical formation followed by radical 

polymerization.76 The resulting chemistry of the thin films produced by PECVD is unique and 

cannot be obtained by common wet deposition techniques. Thin films grown in this way also 

demonstrate high solvent and corrosion resistance along with thermal and chemical stability, 

which makes PECVD the ideal technique to deposit HMDSO to protect the reflectors from 

external damages and oxidation. The PECVD process, characterized by a potential difference 

of 3700 V and a current of 0.5 A, lasts 300 s, allowing the growth of an adequate protective 

film onto the Al layer without strongly affecting the optical properties of the entire reflector. 

In the course of all the processes mentioned above, the mechanical carousel rotates at a 

speed of 7 rpm, allowing the Al and HMDSO to be correctly deposited on every reflector placed 

inside the machine.   
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2.3 Photolithography 
 

Photolithography (or optical lithography) is a process by which a light-sensitive 

polymer, denominated photoresist, is exposed to UV (in this case) light and developed to form 

a 3D relief pattern on the substrate. The ideal photoresist image has the exact shape of the 

designed mask exploited in the plane of the substrate, with vertical walls through the thickness 

of the resist. Thus, the final resist pattern should be binary: parts of the substrate are covered 

with resist while other parts are completely uncovered. This patterning is fundamental to obtain 

the desired geometry for the particular application. In the present case, this approach has been 

exploited to generate sharp edges in order to measure, by means of AFM, the thickness of the 

deposited films. The general steps carried out during a typical photolithographic process can be 

listed as: preparation of the substrate, spin coating application of the photoresist, post-apply 

bake, exposure to the (UV) light, post-exposure bake, and development (key-steps illustrated 

in Fig. 2.3.1). A brief discussion of each of them will be now given. 

 

 
Fig. 2.3.1: key-steps characterizing the photolithographic process. 

 

Substrate Preparation 

 

The substrate must be prepared before the lithographic process, to improve the adhesion 

of the photoresist material and to yield the growth of a clean resist film without contaminations. 

Substrate contamination can take the form of particulates or the one of a film, which can be 

either organic or inorganic. The presence of particulates will result in spot-like defects in the 

final resist pattern, whereas film contamination may be the cause of poor adhesion. Particulates 

generally come from airborne particles and a chemical/mechanical cleaning is enough to 

remove them. Organic films, such as oils or polymers, can be originated from leftover due to 

the previous processing steps, while it is possible to encounter body oils and sweat, ascribable 

to human contamination. These films can be removed by chemical, ozone, or plasma stripping. 
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Similarly, inorganic films, such as native oxides and salts, can be removed by chemical or 

plasma stripping.  

 

Photoresist Coating  

 

A thin, uniform coating of photoresist is accomplished by the spin coating process. The 

photoresist is poured onto the substrate, which is then spun on a turntable at a high speed 

producing the desired film.77 Two possible methods can be exploited: static dispense (stationary 

substrate while resist is dispensed) or dynamic dispense (spinning substrate while resist is 

dispensed), while spin speed, acceleration, and duration of the process can be tuned to fit the 

desired request. An important role in the resist thickness uniformity is played by the dispensed 

volume of the resist, its properties (such as solvent composition and viscosity) and the substrate 

characteristics (substrate material and topography). At the end of the spin-coating process, a 

thick, solvent-rich film of photoresist covers the substrate, ready for the post-apply bake. The 

centrifugal force applied by the spinning process pushes the liquid photoresist toward the edge 

of the sample, where excess resist is flung off; as the film thins, the centrifugal force 

(proportional to the resist’s mass) decreases. The frictional force, supplied by the viscosity of 

the resist, opposes to this drift. Evaporation of solvent inside the photoresist (due to drying) 

leads to an increase in its viscosity thus, in the end, the increasing viscous force exceeds the 

decreasing centrifugal force and the resist stops flowing.78 This generally occurs within the first 

seconds of the spin cycle; the remaining fraction of the spin cycle concerns the evaporation of 

the solvent without mass flow of the resist solids. The separation of the spin cycle into a very 

quick radial mass flow (coating stage) and the subsequent evaporation of solvent (drying stage) 

provides for some of the basic and important properties of spin coating. The spinning time is 

longer than the coating stage time, so the final thickness of resist is practically independent on 

the initial volume of resist poured onto the substrate above a certain threshold. For laminar flow 

of air above the spinning plate, the dried solvent thickness will be proportional to the square 

root of the angular spin speed. Since most of the thinning of the resist comes from the drying 

stage, the final thickness of the resist will be inversely proportional to the square root of the 

spin speed. The photoresist spin speed curve (Fig. 2.3.2) is an essential tool for setting the spin 

speed to obtain the desired resist thickness.  
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Fig. 2.3.2: spin speed curves for different resist viscosities. The inverse square root 

proportionality is visible from the graph. Figure adapted from the literature.79 

 

As mentioned above, the final resist thickness varies as one over the square root of the 

spin speed (𝜔) and is roughly proportional to the liquid photoresist viscosity (𝜈) to the 0.4–0.6 

power:  

  

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ~ 
𝜈0.4

𝜔0.5
 

 

(2.3.1) 

For a given desired resist thickness, the appropriate spin speed is chosen according to 

the spin curve. 

  

Post-Apply Bake 

 

After the spin coating procedure, the resist film will still contain between 20 and 40 % 

of solvent. It is fundamental to decrease the solvent percentage to obtain a more stable resist 

film. The post-apply bake (PAB) process, (sometimes denominated as prebake or softbake) 

involves drying the photoresist after spin coating by removing most of this solvent. Moreover, 

the adhesion properties are improved, and the film is less susceptible to particulate 

contamination. Typical PAB processes leave between 3 and 10 % residual solvent in the resist 

film, sufficiently small to keep the film stable during subsequent lithographic processing. 

Currently, the most popular method to bake photoresists is the hot plate. The substrate is 

brought either into intimate vacuum contact with or close proximity to a hot, high-mass metal 

plate. The photoresist is then heated to near the hot plate temperature quickly. The common 

exposure time is about 1 minute, which is the correct interval to improve uniformity of the 

photoresist. 

 

Exposure 

 

The basic principle behind the photolithography operation is the change in solubility of 

the resist in a developer upon exposure to light. The example of the diazonaphthoquinone 

positive photoresist will be presented.80 This photoactive compound, which is not soluble in the 
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aqueous base developer, is converted to a carboxylic acid on exposure to UV light in the range 

of 350–450 nm. The carboxylic acid product is very soluble in the basic developer. Thus, a 

spatial variation in light energy incident on the photoresist will cause a spatial variation in 

solubility of the resist in developer. This is the principle exploited to change the solubility of 

the photoresist. We can distinguish two typologies of resists: positive, which are characterized 

by the solubility of the regions exposed to light, and negative, defined by an insolubility of the 

portion of photoresist exposed to light. Moreover, two types of lithography can be introduced: 

contact and proximity lithography, which are the simplest methods of exposing a photoresist 

through a master pattern called a photomask. Contact lithography offers reasonably high 

resolution (down to about the wavelength of the radiation) but introduces practical problems 

such as mask damage (or equivalently, the formation of mask defects). On the contrary, 

proximity printing reduces mask damage by keeping the mask at a finite distance above the 

sample (e.g. hundreds of μm),81,82 but the resolution limit is increased significantly. Another 

important aspect of photoresist exposure is the standing wave effect. Monochromatic light, 

when projected onto a substrate, hits the photoresist surface over a range of angles, 

approximating plane waves. This light crosses the deposited material and, if the substrate is 

reflective for the exploited wavelength, is reflected up through the resist. The incoming and 

reflected light waves interfere, forming a standing wave pattern of high and low light intensity 

at different depths in the photoresist. This pattern is replicated in the material, causing ridges in 

the sidewalls. This kind of interference may cause a phenomenon denominated swing curves, 

consisting in a sinusoidal variation in the resist thickness.  

 

Post-exposure bake 

 

One method of reducing the standing wave effect is called the post-exposure bake 

(PEB). The high temperatures (100–130 °C) cause the diffusion of the photoactive compound, 

thus smoothing out the standing wave ridges. For a conventional resist, the main importance of 

the PEB is diffusion to remove standing waves.83 On the contrary, for the chemically amplified 

resists the PEB is an essential step of the chemical reactions that create a solubility differential 

between exposed and unexposed regions of the resist. For these resists, exposure generates a 

small amount of a strong acid that does not itself change the solubility of the resin. During the 

PEB, this photogenerated acid catalyzes a reaction that changes the solubility of the polymer 

resin in the resist, that’s why the control of the PEB is extremely critical for chemically 

amplified materials. 

 

Development 

 

Once exposed, the photoresist must be developed. The most used compounds employ 

aqueous bases as developers. The method of applying developer to the photoresist is important 

in controlling its uniformity and process latitude. It consists in dissolving the exposed or 

unexposed resist (depending if the resist used is positive or negative) in the developer. Several 

methods of development are available, as for example batch development, which consists in a 

boat of some 10–20 substrates developed simultaneously in a large beaker, usually with some 

form of agitation. In spin development the substrates are spun, using equipment similar to that 

used for spin coating, and developer is poured onto the rotating samples. The sample is also 

rinsed and dried while still spinning. Spray development uses a process identical to spin 

development except the developer is sprayed, rather than poured, on the substrate by a nozzle. 
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After the development, it is possible to perform a rinse in water or another bake on the hot plate 

to reduce the impurities on the surface.  

In the present work, photolithography was applied on glass slabs, which have been 

cleaned by chemical processes in an ultrasound bath. The slabs have been then dried by means 

of gaseous nitrogen. The positive photoresist S1818 G2 from “Rohm and Haas” has been 

applied on the cleaned glass surfaces by static dispense. The spin coating process lasted 40 

seconds at a speed of 3600 rpm, while the following PAB lasted 1 minute at 100°C. A 40 sec 

exposure to a 250 nm wavelength UV light was then applied, with a subsequent 1-minute PEB 

at 100°C (performed to reduce the standing wave effect). The developer bath exploited to 

develop the photoresist was composed by MF319 from “Rohm and Haas” and lasted 40 

seconds. The agitation was performed by hand. For the experiments reported in this thesis, the 

photolithography was crucial to determine the thickness of the Al layer growth on a surface. In 

fact, it was exploited to create a sharp step between the bare substrate and the resist. The samples 

were then metallized and by means of a lift-off in acetone the resist was removed, leaving a 

sample exposing bare substrate and metallized regions, as represented in Fig. 2.3.3. This 

photolithographic process was not exploited to determine the HMDSO thickness, because the 

acetone react with HMDSO removing it from the substrate. 

 

 
Fig. 2.3.3: sample produced by means of photolithographic process: the left part of the sample 

is covered with Al layer, while the right part is uncovered. By means of AFM is then possible 

to measure the thickness of the thin metal layer. 
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3. Introduction to the characterization methods 
 

In this section, I will describe the experimental techniques exploited to study the optical 

and morphological properties of reflective coatings and heterostacks. The characterization has 

been performed by combining Scanning Electron Microscopy, Atomic Force Microscopy, 

Synchrotron-radiation X-Ray Computed Tomography, and Bidirectional Reflectance 

Distribution Function measurements. For each technique, the physics and the main features will 

be presented, including a description of the specific instrumentation and setup exploited to 

perform the experiments. 

 

3.1 Scanning Electron Microscopy 
 

Scanning Electron Microscopy (SEM) is an imaging technique routinely used to provide 

topographic and morphological information of conductive surfaces down to a few nanometers 

resolution by scanning on samples a focused electron beam.84  

 

3.1.1 Electron-sample interactions 
 

When the primary electrons (PEs) beam interacts with the surface, several signals can 

be produced, as represented in Fig. 3.1.1. In this chapter, only the description of the 

backscattered electrons (BSEs), secondary electrons (SEs), and characteristic X-rays will be 

addressed, which are the signals exploited to acquire the SEM images presented in this thesis. 

 

 
Fig. 3.1.1: drawing representing all the signals generated by the impinging electron beam. 

Only the BSEs, the SEs and characteristic X-rays have been exploited to acquire the SEM 

images shown in this thesis. 
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The electron absorption or scattering phenomena take place within a drop-shaped 

volume denominated interaction volume, which can extend from 100 nm to several µm inside 

the sample. The physical size of the interaction volume depends on the electron beam energy, 

on the elemental composition of the sample (higher atomic number materials absorb or stop 

more electrons, yielding a smaller interaction volume), and on the incident angle of the beam 

with respect to the surface (the further from normal, the smaller the volume) as represented in 

Fig. 3.1.2. The direct measurement of the interaction volume is rarely possible, and for this 

reason calculations and simulations are usually exploited to evaluate the electron-material 

interaction. Another important physical quantity is the escape depth (t), which represents the 

maximum depth under a surface from which secondary, backscattered, Auger electrons, and 

radiation can escape. Clearly, every kind of electron/radiation cited above has a proper escape 

depth, which will be labeled with a subscript in the next pages of the chapter (i.e., SE escape 

depth = 𝑡𝑆𝐸  etc.). 

 

 
Fig. 3.1.2: examples of different interaction volumes. The energy of the electron beam E0 

(deriving from the accelerating potential) and atomic number (Z) dependences are highlighted, 

while the incident angle is taken always perpendicular to the surface. 

 

3.1.2 Backscattered Electrons 
 

BSEs are reflected by the sample’s surface due to elastic scattering. Reflection is caused 

by the interaction with the electrical field of the positively charged nucleus and results only in 

a trajectory change of the beam, with small or no loss of kinetic energy. This type of scattering 

can be described semi-quantitatively by the elastic scattering cross section 𝜎𝑒𝑙 , using the 

principles of the Rutherford scattering: 

 

 𝑑𝜎𝑒𝑙 = 
1

4
(

𝑍𝑒2

8𝜋𝜖0𝐸0
)

2
𝑑𝛺

𝑠𝑖𝑛4(
𝜃
2)

 (3.1.1) 

 

The equation above defines the differential scattering cross section as a function of the 

atomic number of the scatterer Z, the elementary charge e, the vacuum permittivity 𝜖0, the 

kinetic energy of the impinging electron 𝐸0, and the scattering angle θ. The scattering cross 

section is proportional to 𝑍2 and inversely proportional to 𝐸0
2, i.e., the probability for elastic 
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scattering increases with the atomic number and decreases for increasing electron energy 𝐸0.85 

By definition, the energy of BSE is in the range 50 𝑒𝑉 < 𝐸𝐵𝑆𝐸 ≤ 𝐸0 . 

 

 
Fig. 3.1.3: generation of secondary electrons (SE1 and SE2) and backscattered electrons (BSE1 

and BSE2) from a beam impinging on a sample. The escape depth for the SE and BSE are 

indicated with 𝑡𝑆𝐸  and 𝑡𝑆𝐸 , while R is the penetration depth. 

 

As shown in Fig. 3.1.3, BSEs can originate either from the small portion of the sample 

directly irradiated by the electron beam (denoted BSE1) or after multiple elastic scattering 

events from a significantly larger area around the impact point (denominated BSE2). The lateral 

distribution of BSE2 has been calculated by Monte Carlo simulations for different materials.86 

Simulations show that the BSE emitting surface area increases with electron energy 𝐸0 and 

decreases with the atomic number. The BSE1 carry local information about the small volume 

and deliver high-resolution information for a beam diameter of about 1 nm. As a consequence 

of the lateral spreading, the BSE2 carry information about a larger region, thus fine structural 

details on the scale of the beam diameter cannot be resolved.  

Fig. 3.1.3 also shows that the primary electrons (PEs) travel in a small subsurface 

volume before they return to the surface to escape as BSE2. Knowledge on the angular 

distribution of BSEs is of great importance for understanding and optimizing the BSE detection 

geometry. For normal beam incidence the angular distribution can be approximated by a cosφ 

distribution,87 where φ represents the BSE emission angle referred to the surface normal. BSEs 

move on nearly straight trajectories, therefore the angular detector position has a strong 

influence on the collection efficiency of the detector; for non-normal beam incidence, the 

distribution is asymmetric, and a reflection-like emission maximum is observed. The BSE 

coefficient η, a parameter quantifying the number of backscattered electrons, is defined as   
 

 𝜂 =  
𝑛𝐵𝑆𝐸

𝑛𝑏
 (3.1.2) 

 

where 𝑛𝑏  is the number of incident electrons and 𝑛𝐵𝑆𝐸  is the number of BSEs.88 η is 

approximately independent of the electron energy 𝐸0  in the range of about 10-30 keV. 

However, at low energies it depends in a complex manner on the atomic number.89 At a fixed 
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energy, η increases monotonically with the atomic number, as depicted in Fig. 3.1.4, so BSE 

images provide a qualitative (but not quantitative) compositional contrast information.  

 

 
Fig. 3.1.4: trend of the BSE coefficient η and SE yield (δ) with respect to the atomic number Z 

of the specimen. 𝐸0 = 30 𝑘𝑒𝑉 𝑎𝑛𝑑 𝜃 = 0°. Figure adapted from the literature.90 

 

3.1.3 Secondary Electrons 
 

The inelastic scattering of the electrons is caused by their interactions with the electrical 

field of the electrons in the solid, i.e., either with the electrons in the valence or conduction 

band and with atomic electrons of inner shells, respectively. After an inelastic scattering event, 

the electron trajectory changes direction slightly (typically the inelastic scattering angles are of 

the order of a few milliradians only). The differential inelastic electron-scattering cross section 

with a free electron (which is an approximation for an electron in the valence or conduction 

band) is given by Eq. 3.1.3 
 

 𝑑𝜎𝑖𝑛 = 
𝜋𝑒4𝑑𝑊

[(4𝜋휀0)
2𝐸0𝑊

2]
 (3.1.3) 

 

where W is the energy loss in the inelastic collision. Eq. 3.1.3 shows that the differential 

inelastic scattering cross section is inversely proportional to electron energy 𝐸0 and to 𝑊2, and 

that small energy losses occur with a larger probability.  
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Fig. 3.1.5: energy distribution of the different types of electrons emitted from a surface. 

  

SEs are electrons from within the sample which are emitted due to the inelastic 

scattering of the beam along its trajectory inside the material. Due to the low energies involved 

in the process, an electron can be extracted from the sample only if it is located close to the 

surface. This can be viewed in Fig. 3.1.3, where SEs are produced even in the bulk, but they do 

not have enough energy to escape from the sample (there is a big difference between 𝑡𝑆𝐸  and 

𝑡𝐵𝑆𝐸). The SE distribution shows a peak at low energies with a most probable energy of 5 eV, 

as it is possible to see from Fig. 3.1.5, while the maximum energy of SE amounts to 50 eV. SEs 

generated by the primary incident beam electrons are designated SE1. The SE1 carry local 

information about the small cylindrical volume that is given approximately by the cross section 

of the beam (
𝜋

4
) 𝑑𝑃𝐸

2  and the escape depth 𝑡𝑆𝐸 . For a beam diameter of about 1 nm the SE1 

deliver high lateral resolution information.87 The beam electrons which are scattered multiple 

times and emerge as BSE, also generate secondary electrons within the escape depth: the latter 

are designated as SE2. Their origin is far from the point of incidence of the beam caused by the 

spatial dispersion of BSE. Changes of the amount of SE2 correlate with corresponding changes 

of BSE, thus SE2 carry information about the volume from which the BSE originate. The size 

of the volume depends on the penetration depth (or electron range) R and is much larger than 

the excitation volume of the SE1 for electron energies 𝐸0 > 1keV (Fig. 3.1.5). Thus, SE2 deliver 

low lateral resolution information. Analogously to the BSE case, the SE yield (δ) can be 

introduced, which represents the number of SE generated by each impinging electron of the 

main beam. Fig 3.1.4 shows that there is no monotonic relation between Z and δ. Instead, δ 

increases for increasing incidence angle, according to 

  

 
𝛿(𝜃) =  

𝛿(𝜃 = 0)

𝑐𝑜𝑠𝜃
 (3.1.4) 

 

The relation presented in Eq. 3.1.4 is valid for 𝐸0 ≥ 5 keV, and 𝜃 up to a few degrees 

below 90°. The angular dependence of the SE yield on 𝜃  is therefore at the origin of the 

topographic contrast in secondary electron images. 

 

3.1.4 X-rays 
 

X-rays are generated by the deceleration of the impinging electrons (X-ray continuum 

or Bremsstrahlung) or by electron transitions from a filled higher state to a vacancy in a lower 
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electron shell (characteristic X-ray lines; a typical X-ray spectrum is represented in Fig. 3.1.6). 

The former contribution yields a continuous distribution of intensity as a function of the photon 

energy, while the latter transitions generate a series of peaks at discrete and well defined 

element-specific energies. These features can be thus exploited as elemental fingerprints for a 

chemical characterization of the sample. Concerning the continuum, maximum of the 

distribution shifts towards higher energies with the impinging electron energy. According to 

Kramers,91 the intensity of the continuous spectrum 𝐼𝐶 emitted in an energy interval with the 

width 𝑑𝐸𝑥 is given by 

 
 

𝐼𝐶(𝐸𝑥)𝑑𝐸𝑥 = 
𝑘𝑍(𝐸0 − 𝐸𝑥)

𝐸𝑥
𝑑𝐸𝑥 (3.1.5) 

 

where 𝑘 represents the Kramers constant, which slightly varies with the atomic number.92 A 

detailed treatment of the continuum X-rays emission is out of the scope of this thesis and can 

be found in the literature.93 

 

 
Fig. 3.1.6: X-ray spectrum generated by impinging electrons. The continuum (lower Ex) can be 

distinguished from the characteristic peaks (well defined Ex).  

 

The line positions are instead independent on the energy of the incident electrons, being 

defined by the internal electronic structure of the sample. The generation of characteristic X-

rays can be modeled in three different steps (Fig. 3.1.7). First, a beam electron interacts with 

an inner shell electron of an atom inducing its ejection, thus leaving the atom in an excited state. 

Second, the excited atom relaxes to the ground state through a transition of an electron from an 

outer shell to the inner shell vacancy. The characteristic energy difference ∆𝐸𝑐ℎ between the 

involved shells is specific for the atomic species. Third, the excess energy is released either by 

the emission of an electron from an outer shell (Auger electron) or by the emission of a 

characteristic X-ray photon with energy 𝐸𝑥 = ∆𝐸𝑐ℎ . The fraction of characteristic X-rays 

emitted when an electron transition occurs is given by the fluorescence yield ω. The latter 

increases with the atomic number and depends on the involved inner electron shell. The 

complementary yield, 1 - ω, defines the fraction of transitions that generate Auger electrons. 

The yields for the different shells and subshells can be calculated.94 The characteristic X-ray 

lines are classified on the basis of the involved transitions.  
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Fig. 3.1.7: example of characteristic X-ray production from peculiar electron transition. 

 

3.1.5 Instrumentation 
 

 
Fig. 3.1.8: schematic representation of a Scanning Electron Microscope. Figure adapted from 

the literature.95 

 

The main components of the Scanning Electron Microscope are the electron column, 

the sample stage, and the detectors.96 A schematic representation of a SEM is shown in Fig. 

3.1.8. The column contains the electron gun, the lenses and the scanning coils; here the PE 

beam is created and focused by thermionic or field emission. By means of field and magnetic 

lenses it is possible to control and manipulate the physical size of the electron beam: the 

diameter of the beam hitting the sample's surface defines the lateral resolution achievable during 

the measurements. SEM images are produced by rastering the electron beam on the sample: its 

sweep is obtained thanks to the scanning coils. The objective lens is the last and most important 

lens in the SEM, allowing a finer control of the electron beam and defining the final crossover 
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of the impinging electron trajectories. Moreover, it is designed to screen the magnetic field in 

the measurement chamber. Nominal operating parameters are 0.5 – 5 nm for the beam diameter 

with an electron current in the 10-12 – 10-10 A range.97 

The sample is mounted on a metallic holder, sitting on a positioning and alignment stage. 

The working distance (WD) can be modified to adjust the focus. Two pumping systems 

maintain optimal vacuum conditions in the column (UHV, 10-10 mbar) and in the experimental 

chamber (HV, 10-7 mbar).  

 

3.1.6 Experimental Setup 
 

All the images presented in this thesis were acquired using a ZEISS SUPRA 40 high 

resolution Field Emission Gun (FEG) SEM, located in the TASC laboratories of the CNR-IOM 

in Trieste (Fig. 3.1.9). The microscope can operate with a 4 pA – 10 nA probe current and 0.1 

– 30 kV Electron High Tension (EHT), with a nominal resolution of 1.3 nm at 15 kV. It is 

equipped with a Back-scattered Electrons Detector, an Everhart-Thornley Secondary Electrons 

Detector, and a High efficiency In-lens detector, the latter providing an excellent signal-to-noise 

ratio in image acquisition. The microscope is also equipped with an Oxford Aztec Energy 

Dispersive X-ray Spectroscopy (EDS) system and an X-act 10 mm Silicon Drift Detector 

(SDD) for compositional analysis.  

 

 
Fig. 3.1.9: experimental setup of the CNR-IOM ZEISS SUPRA 40 SEM used in this thesis.  
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3.2 Atomic Force Microscopy 
 

Atomic Force Microscopy (AFM) is a technique based on a mechanical probe, yielding 

information on the topography of a surface with nanometer resolution. The microscope can 

operate in different environments like air, liquid, or vacuum, and can scan materials surfaces 

irrespectively of conductivity or opaqueness issues.98 It was invented in 1986 by Binnig and his 

coworkers and it works by monitoring the force between the sample surface and a probe made 

by an elastic cantilever with a sharp tip at the end (schematic representation in Fig. 3.2.1).99  

 
Fig. 3.2.1: schematic representation of the Atomic Force Microscope. Here the laser, the 

cantilever, the tip, the photodiode, the feedback loop (or feedback system FS), and the piezo 

actuator are visible. Figure adapted from the literature.98 

 

By measuring the cantilever deflection caused by the tip-sample interaction, it is 

possible to get important information on the topography of the surface. All the details regarding 

this technique will be presented in the following subsections, starting from a description of the 

main components of the microscope and then introducing its operating modalities. 

 

3.2.1 Cantilever and tip 
 

The force between the tip and the sample surface is monitored through the small 

deflections of the microcantilever, whose typical dimensions are ∼100 μm in length, tens of μm 

in width and few μm in thickness. The cantilever is mounted on a holder (typical size ∼ mm), 

while on the opposite side a sharp tip (tip radius ∼ nm)100 is installed. Typical materials used 

for cantilever manufacturing are silicon and silicon nitride (Si3N4), with its rear side covered 

by a thin layer of a highly reflective material (for example aluminum or gold) to reflect 

efficiently the laser beam directed at it, as it will be discussed in the following. The response of 

the cantilever to the tip-sample interaction can be described assuming the linear elasticity 

regime, which holds for small deformations only. With this assumption, the stress σ depends 

linearly on the strain ε: 

 

 𝜎 = 𝐸 ∙ 𝜖 (3.2.1) 
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where E is the Young's modulus. The cantilever motion can be well approximated in terms of 

Hooke's law: 

 𝐹 =  − 𝑘𝑐 ∙ 𝑑 (3.2.2) 

 

where F is the loading force, 𝑘𝑐  is the cantilever spring constant and d is the deflection. 

Knowing the cantilever’s Young's modulus and its dimensions, 𝑘𝑐  can be obtained by the 

following expression, used to describe rectangular cantilevers: 

 

 
𝑘𝑐 = 

𝜔𝐸

4
(
𝑡

𝑙
)
3

 (3.2.3) 

 

with 𝑙, 𝜔, 𝑡 being the cantilever's length, width, and thickness, respectively. To be precise, the 

above mentioned expression gives the vertical force constant of the cantilever, i.e. 𝑘𝑣𝑒𝑟 , with 

the acting force and cantilever deformation both being in the vertical direction too; a more 

general treatment is reported in the literature.101  

Sometimes the shape of the cantilever is complex or one of the physical parameters to 

determine 𝑘𝑐 using the formula presented above is unknown. However, it is possible to obtain 

the cantilever spring constant 𝑘𝑐 from the total cantilever deflection (Δz) caused by thermal 

fluctuations.102 If the cantilever is modeled as a harmonic oscillator in thermodynamic 

equilibrium, the mean-square displacement of the cantilever tip from its neutral position is 

described by Eq. 3.2.4,103 

 

 
< ∆𝑧2 > =  

𝑘𝐵𝑇

𝑘𝑐
 (3.2.4) 

   

with 𝑘𝐵 being the Boltzmann constant and T the temperature. Due to the cantilever's geometry, 

several vibrational modes are possible and can thus be excited (Fig. 3.2.2).  

 

 
 

Fig. 3.2.2: example of the first three vibration modes for a rectangular cantilever. 

 

Therefore, to obtain the mean square deflection of one mode (indicated as < ∆𝑧2 >), a 

correction factor 𝛽𝑛 must be employed 

 

 
< ∆𝑧𝑛

2 > =  
𝑘𝐵𝑇

𝑘𝑐
𝛽𝑛. (3.2.5) 

 

The deflection is usually sensed using the optical lever technique, which is in fact a 

measure of the inclination and not of the deflection. Therefore, if we are interested in the forces 

acting at the end of the cantilever, another correction factor 𝛽𝑛
∗   (depending on the shape and on 

the material of the tip, tabulated in literature)102 should be introduced. The values of 𝑘𝑐 is finally 

given by Eq. 3.2.6 

 
𝑘𝑐 = 

𝛽𝑛
∗𝑘𝐵𝑇

< ∆𝑧𝑛
∗2 >

. (3.2.6) 
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In practice, the effective cantilever deflection when it is oscillating far from the surface 

is recorded, and the power spectral density (PSD) of the temporal signal is computed, thus 

obtaining the resonant modes of the thermally excited cantilever. Then, both the first resonant 

peak and the area under the curve (which is equivalent to < ∆𝑧𝑛
∗2 >) are fitted using a lorentzian 

function. At this point the cantilever spring constant 𝑘𝑐  can be assessed using the equation 

above, with the correction factor 𝛽𝑛
∗  corresponding to the cantilever geometry. A great number 

of different tip shapes is available (examples shown in Fig. 3.2.3), and the choice depends on 

the sample's properties and on the physical quantity to be measured. The same holds for the 

choice of the 𝑘𝑐. Tipless cantilevers are used as templates to attach desired functional probes 

(molecules, nanotubes, cells), spherical or semispherical tips are usually exploited in force 

spectroscopy studies, while tetrahedral and sharp tips are employed in topography 

measurements, force spectroscopy, and nanolithography studies.104 

 
Fig. 3.2.3: examples of different shapes for the Atomic Force Microscope tip. Figure adapted 

from the literature.105 

 

3.2.2 Laser and photodetector  
 

Two other main components of an Atomic Force Microscope are the laser and the 

photodetector. The laser is used to track and magnify the nanometric motions of the cantilever, 

exploiting the optical lever principle. The laser beam is reflected from the back side of the 

cantilever onto the four quadrants photodetector, as represented in Fig. 3.2.4.106 
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Fig. 3.2.4: scheme of the AFM working principle: the surface is scanned with the tip placed at 

the end of the cantilever rastering the selected region. The laser light is reflected by the back 

of the cantilever onto a four quadrants photodiode, capable to obtain the deflection signal and 

thus reconstruct the surface topography. 

   

When the probe interacts with the sample, the change in the light's path is detected by 

the photodetector and thus the tip-surface interaction can be indirectly measured. The 

photodetector's four quadrants allow the measurement of both the reflected beam intensity and 

position. The voltage detected in each region of the photodetector is proportional to the reflected 

intensity of the laser; the horizontal and vertical displacement of the beam due to cantilever 

deflection are obtainable as: 

 
𝑋 =  

(𝑉𝐴 + 𝑉𝐶) − (𝑉𝐵 + 𝑉𝐷)

𝑉𝐴 + 𝑉𝐵 + 𝑉𝐶 + 𝑉𝐷
 (3.2.7a) 

 

 
𝑌 = 

(𝑉𝐴 + 𝑉𝐵) − (𝑉𝐶 + 𝑉𝐷)

𝑉𝐴 + 𝑉𝐵 + 𝑉𝐶 + 𝑉𝐷
 (3.2.7b) 

 

with the sum (𝑉𝐴 + 𝑉𝐵 + 𝑉𝐶 + 𝑉𝐷) giving the voltage corresponding to the total reflected 

intensity. Before every measurement, the null condition for both horizontal and vertical motion 

detection must be set: the null condition states that left and right, and top and bottom halves of 

the photodiode must read the same voltage values, meaning the central positioning of the laser 

spot on the photodiode is reached.107 

Another key parameter associated with the optical lever sensor is its sensitivity. The 

need for such parameter comes from the fact that the photodiode's output is the voltage V, not 

the relative deflection of the cantilever d, which is of greater scientific interest. d is proportional 

to the output voltage V, with the proportionality factor s, called the optical lever sensitivity and 

measured in μm/V: 

 

 𝑑 = 𝑠 ∙ 𝑉 (3.2.8) 

 

The sensitivity calibration is obtained by performing the force curves on a clean, 

mechanically rigid substrate (e.g. glass). 
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3.2.3 Piezoelectric scanner  
 

The piezoelectric scanner is the part of the AFM allowing the nanometric controlled 

displacements of the cantilever and thus performing the topographic analysis of the surface. 

Piezoelectric materials exhibit a measurable voltage difference when applying an external force 

in a well-defined direction (direct piezoelectric effect), because the electric dipole moments in 

a crystallographic unit cell are aligned and produce a net electric polarization. The atomic dipole 

moment arises due to an asymmetric shift in the atomic positions in the unit cell of a crystal; 

thus, a symmetric load from all directions would result in no voltage. The direct piezoelectric 

effect is described by: 

 𝑃𝑖 = 𝑑𝑖𝑗𝑘𝜎𝑗𝑘 (3.2.9) 

 

where 𝑃𝑖 is the polarization vector and 𝜎𝑗𝑘 is the the stress tensor. The coefficient 𝑑𝑖𝑗𝑘 is called 

the piezoelectric coefficient. Conversely, if an external electric field 𝐸𝑘 is applied, a strain 𝜖𝑖𝑗 

is produced (indirect piezo effect):108 

 𝜖𝑖𝑗 = �̃�𝑖𝑗𝑘𝐸𝑘 (3.2.10) 

 

Typical piezo elements are made of piezoceramics containing lead barium 

titanate, 𝑃𝑑𝐵𝑑𝑇𝑖𝑂3 or lead zirconate titanate, 𝑃𝑏[𝑍𝑟𝑥𝑇𝑖1−𝑥]𝑂3, 0 < 𝑥 < 1. 

 

3.2.4 Feedback loop 
 

The feedback loop is fundamental for the data acquisition, since it permits to monitor 

and control the output of the system. The key parameter is represented by the error signal 𝐸(𝑡), 

which is the difference between the measured signal coming from the detector 𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) 

and a set-point value 𝑆𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡(𝑡) set by the operator, 

 

 𝐸(𝑡) =  𝑆𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡(𝑡) − 𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡). (3.2.11) 

 

Based on 𝐸(𝑡), the feedback loop supplies the correct voltage to adjust the piezoelectric 

scanner in order to reduce |𝐸(𝑡)| , ideally reaching the condition 𝐸(𝑡) = 0 . The type of 

feedback control used in AFM is called a proportional-integral-derivative controller (PID), 

described as: 

 

 
𝐸𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑(𝑡) =  𝑃 ∙ 𝐸(𝑡) + 𝐼 ∙ ∫𝐸(𝑡′)𝑑𝑡′ + 𝐷 ∙

𝑑𝐸(𝑡)

𝑑𝑡
 

 

(3.2.12) 

 

where 𝐸𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑(𝑡) is the adjusted error signal, while 𝑃, 𝐼, 𝐷 are the proportional, integral and 

derivative parameters, respectively. With the appropriate choice of the parameters 𝑃, 𝐼, 𝐷 the 

probe will follow the sample's topography, keeping 𝐸(𝑡) at minimum. The integral 𝐼  term 

facilitates the probe moving over large surface features and the 𝑃 and 𝐷 terms allow the probe 

to follow the smaller, high-frequency features on a surface. Any feedback control system has 

its inherent bandwidth, which means that due to its nonzero response time the feedback loop 

might fail to make adjustments fast enough if the measured quantity 𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) is varying 

rapidly with time. 109 
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3.2.5 Operation modes 
 

The AFM has three main operation modes, denominated contact, non-contact and 

tapping mode. They will be introduced in the following, but particular attention will be given 

to the tapping mode, being the one used to acquire the AFM data presented in this thesis. 

In the contact mode of operation, the cantilever is moved towards the sample until it 

physically touches it. In this case, the cantilever-sample interaction leads to a bending of the 

cantilever due to repulsion forces. The height position of the translation stage is controlled by 

a feedback loop in order to maintain the force between the tip and the sample constant while 

scanning the surface. Typically, the cantilevers exploited in the contact mode are made of 

silicon nitride, thus making them extremely flexible. This operating mode creates high lateral 

forces, capable of altering the surface and perturbing the measurements.  

In the non-contact mode, the tip never physically touches the surface of the sample. In 

this case, the cantilever oscillates at a frequency close (or equal) to the resonant one. Forces 

from the surface of the samples (e.g. Van der Waals) interfere with the cantilever trying to 

modify its oscillation frequency, which is kept constant by the feedback loop system by 

adjusting the tip-sample distance. In this case, stiffer (with respect to the contact mode) tips 

have to be exploited, because there is no risk in damaging the sample. Lateral forces are 

avoided, while as a drawback an instability caused by working in the attractive regime is 

present. 

The tapping mode (usually denoted as semi-contact mode or intermittent contact mode) 

is a compromise between contact and non-contact modes. In this technique, the cantilever is 

forced to oscillate near resonance frequency with an amplitude about 1 – 100 nanometers. 

  

 
Fig. 3.2.5: Graph representing the force between the microscope tip and the sample surface. 

For small distances, the tip physically touches the sample (contact regime) experiencing a 

repulsive force, while for increasing distances the regime shifts to the non-contact and the tip 

experiences an attractive force. 

 

These oscillations cause the cantilever to tap along the surface, getting in contact with 

the sample surface in the lower semi-oscillation, which corresponds to the repulsive region in 

the force-distance diagram (Fig. 3.2.5). The tip-sample interaction influences the oscillation 
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amplitude of the tip, which is kept constant by means of the feedback loop acting on the position 

of the cantilever above the sample. The operating mode just described prevents the tip from 

damaging the sample surface. Due to the nature of this approach and to the high frequency 

interactions with the sample, the tips employed must be stiffer (usually made of silicon) than 

the ones used for the contact mode. Similarly to the contact mode, tapping mode exploits the 

contact region of the force potential curve, but lateral forces are much reduced, decreasing the 

risk of sample damage.106 During scanning, the changes of amplitude and phase of cantilever 

oscillations are recorded.   

 

 
Fig. 3.2.6: scheme representing the tip-sample interaction in the tapping mode: the range goes 

from the repulsive region, where the tip is in contact with the surface, to the attractive region 

where the tip is not touching the sample. These interactions cause different cantilever bending 

highlighted in the right side of the figure. 

 

In the tapping process, tip-sample interaction passes from the attractive regime, through 

the ‘zero-force’ regime, and into the repulsive regime, as shown in Fig. 3.2.6, leading some 

important advantages: the first is that due to the movement of the tip (perpendicular to the 

surface) lateral forces, which can cause great problems in contact-mode, are almost eliminated, 

while the fundamental instability of non-contact AFM (operating in attractive regime) is 

overcome. The second advantage is represented by the absence of the influence of the 

contamination layer, which is a thin film present on most surfaces in air due to the direct 

exposure of the sample to the environment condition. This region is not representative of the 

sample (see Fig. 3.2.7) and by means of tapping mode it is possible to avoid its influence on 

the data acquisition. In fact, the restoring force of the cantilever withdraws the tip from the 

contamination layer in each cycle, thus reducing the effect of capillary forces on the image. 

 

 
Fig. 3.2.7: representation of the measurement process of the tapping mode AFM: during the 

scan, the tip reaches the surface of the sample with vertical movements being not sensitive to 

the contamination layer. 
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In most cases, the probe is oscillated by an additional piezoelectric element attached to 

the probe holder. Often, in addition to the amplitude signal (main signal acquired in tapping 

mode), the delay in the phase of the probe oscillation is recorded (Fig. 3.2.8). In a similar way 

to deflection in contact mode, the amplitude signal in intermittent contact may be used as an 

illustration of the shape of the sample.  

 

 
Fig. 3.2.8: differences in the amplitude and phase shift signals characterizing the tapping mode. 

 

In order to describe quantitatively the tapping mode, at a first glance the AFM cantilever 

can be interpreted as a point-mass spring acting like a harmonic oscillator. In the absence of 

tip-surface forces, i.e. 𝐹𝑡𝑠(𝑧) = 0, the general equation is the one of a forced harmonic oscillator 

with damping. The dependence of the amplitude with the excitation frequency can be calculated 

by the Lorentzian expression  

 

 
𝐴(𝜔) =  

𝐹0/𝑚

[(𝜔0
2 − 𝜔2)2 + (

𝜔 ∙ 𝜔0
𝑄 )2]

1/2
 

(3.2.13) 

 

where 𝜔0 is the natural frequency of the oscillation and 𝐹0 its related elastic force, Q is the 

quality factor for the system (𝑄 =  
𝜔0𝑚

𝛾
) with 𝛾 taking into account the viscous force in air 

(damping). The phase shift can be expressed as 

 

 

𝜑 =  𝑎𝑡𝑎𝑛(

𝜔 ∙ 𝜔0
𝑄

𝜔0
2 − 𝜔2

). (3.2.14) 

 

The damping modifies the resonance frequency of the cantilever. Resonant and natural 

(free resonance) frequencies are related by Eq. 3.2.15 

 

 
𝜔𝑟 = 𝜔0 (1 −

1

2𝑄2
)
1/2

. (3.2.15) 
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Assuming that the cantilever (harmonic oscillator) is under the influence of a parabolic 

tip-surface interaction potential, then the total force 𝐹 acting on the tip includes the elastic 

response 𝑘𝑐 ∙ 𝑧 and the tip-sample interaction force 𝐹𝑡𝑠. For small displacements with respect 

to the equilibrium position, the total force can be expressed by  

 

 
𝐹 =  𝐹0 + (

𝑑𝐹

𝑑𝑧
)
𝑧0

(𝑧 − 𝑧0) 

 

(3.2.16) 

 

with  

 
𝑘𝑒 = −

𝑑𝐹

𝑑𝑧
=  (𝑘𝑐 − 

𝑑𝐹𝑡𝑠

𝑑𝑧
)
𝑧0

 

 

(3.2.17) 

 

then, the new effective resonance frequency is calculated by 

  

 
𝜔𝑒 = (

𝑘𝑐 − (𝑑𝐹𝑡𝑠/𝑑𝑧)

𝑚
)
1/2

. (3.2.18) 

 

This shows that the resonance frequency of a weakly perturbed harmonic oscillator 

depends on the gradient of the interaction (in the AFM case, the tip-sample interaction). The 

dependence of the amplitude on the excitation and effective resonance frequencies introduces 

a possible mechanism to explain the dependence of the oscillation amplitude with the strength 

of the interaction force. Assuming the tip is excited at the natural frequency, the approach of 

the tip towards the surface will modify the resonance frequency, which implies a modification 

of the oscillation amplitude. The actual amplitude will be given by the value of the new 

resonance curve at the excitation frequency 𝜔𝑒 of the oscillator. As a consequence, the new 

oscillation amplitude would be smaller than the free amplitude. Harmonic models are useful to 

provide some of the concepts that appear in AFM experiments, however in most cases they fail 

to provide quantitative agreement with the experiment. A quantitative discussion on the 

limitations of the harmonic approach to interpret dynamic AFM experiments is provided in the 

literature.110 

One important approach was proposed by San Paulo and Garcia.111 They have applied 

the virial theorem < 𝐾 > =  −
1

2
< 𝐹𝑧 >  and the consideration that at the steady-state the 

average rate at which energy is supplied to the tip must be equal to the average rate at which 

energy is dissipated by hydrodynamic and tip-surface forces. Those assumptions have allowed 

to derive a general relationship for the oscillation amplitude 

 

 

𝐴 ≈  
𝐴0

√2
(1 − 

2𝑃𝑡𝑠

𝑃𝑚𝑒𝑑
 ±  √1 − 

4𝑃𝑡𝑠

𝑃𝑚𝑒𝑑
− 16(

< 𝐹𝑡𝑠𝑧 >

𝐹0𝐴0
)
2

)

1/2

 (3.2.19) 

 

where 𝑃𝑡𝑠  and 𝑃𝑚𝑒𝑑  are the average dissipated power in a cycle by tip-surface (𝑃𝑡𝑠 ) and 

hydrodynamic (𝑃𝑚𝑒𝑑)  forces (where the label med indicates the medium in which the 

measurement is performed). The formula states, without placing any restrictions on the nature 

of the tip-sample forces, that the amplitude reduction is controlled by the average interaction 
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force times the deflection and the average power dissipated by the tip-sample forces. The 

dependence on average quantities is a direct consequence of a tip motion that experiences 

different values of the tip-surface force per cycle. 

Cleveland and co-workers have deduced an analytical relationship between the phase 

angle of the tip motion and the energy dissipated by the tip-surface forces.112,113 Similar to the 

previous case, this model is based on the assumption that in the steady-state the average energy 

supplied to the cantilever per period must be equal to the average energy dissipated via 

hydrodynamic viscous interactions with the environment (𝐸𝑚𝑒𝑑) and by inelastic interactions 

at the tip-sample interface (𝐸𝑡𝑠); 𝐸𝑒𝑥𝑡  is the energy supplied by piezo-vibrator during one 

oscillation period. 

 

 
𝐸𝑒𝑥𝑡 = ∫ 𝐹0cos (𝜔𝑡)

𝑑𝑧

𝑑𝑡
𝑑𝑡

𝑡+2𝜋/𝜔

𝑡

 

 

(3.2.20a) 

  

𝐸𝑚𝑒𝑑 = ∫
𝑚𝜔0

𝑄
(
𝑑𝑧

𝑑𝑡
)
2

𝑑𝑡
𝑡+2𝜋/𝜔

𝑡

 

 

(3.2.20b) 

  

𝐸𝑡𝑠 = ∫ 𝐹𝑡𝑠(𝑧)
𝑑𝑧

𝑑𝑡
𝑑𝑡

𝑡+2𝜋/𝜔

𝑡

 

 

(3.2.20c) 

 

From the equilibrium condition it follows that  

 

 𝐸𝑒𝑥𝑡 = 𝐸𝑚𝑒𝑑 + 𝐸𝑡𝑠 (3.2.21) 

 

and assuming stationary oscillations 𝑧 = 𝑢0𝑐𝑜𝑠(𝜔𝑡 +  𝜑) 

 

 
𝐸𝑡𝑠 = 𝐸𝑒𝑥𝑡 − 𝐸𝑚𝑒𝑑 =

𝜋𝑘𝐴𝑢0

𝑄
sin(𝜑) −

𝜋𝑘𝜔𝐴2

𝜔0𝑄
  (3.2.22) 

 

the phase shift can be obtained from the following equation: 

 

 
𝑠𝑖𝑛𝜑 =  

𝜔𝐴

𝜔0𝑢0
+ 

𝑄𝐸𝑡𝑠

𝜋𝑘𝐴𝑢0
 (3.2.23) 

 

Thus, the cantilever oscillations phase shift in "semi-contact mode" is determined by the 

amount of dissipative tip-sample interaction. A closer examination of the previous equation 

reveals the presence of two components, the elastic (
𝐴

𝑢0
) and the inelastic contributions (𝑄 and 

𝐸𝑡𝑠). The phase imaging in tapping mode is performed at fixed set point amplitude 𝐴 = 𝑐𝑜𝑛𝑠𝑡. 

This means that the elastic term remains constant while imaging. Consequently, changes in the 

phase shift could only come from changes in the energy dissipated by the tip-sample forces. 

 

 

 



51 
 

3.2.6 Experimental setup 
 

In this thesis work, an AFM Solver Pro-M (NT-MDT, Russia, Fig. 3.2.9) was used to 

characterize the films in terms of thickness and surface roughness. The AFM was equipped 

with a NSG01 tetrahedral Si tip with nominal resonance frequency in the 87 – 230 kHz range. 

The microscope was operated in tapping mode and all measurements were carried out in air at 

room temperature. Regarding the experimental use of the AFM, in this thesis two different type 

of data have been collected: information about the thickness of the layers and information 

regarding the surface roughness, following the process illustrated in Section 6.2.  

 

 
Fig. 3.2.9: image of the AFM Solver Pro-M used to acquire the AFM data.114 
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3.3 Synchrotron-radiation X-Ray Computed Tomography 
 

Generally speaking, CT is an imaging technique consisting on a computer-processed 

acquisition of a 3D reconstruction of any object. Many typologies of CT are known, as for 

example computed axial tomography (CAT), single-photon emission computed tomography 

(SPECT) or positron emission tomography (PET), but in this thesis Synchrotron-radiation X-

Ray Computed Tomography has been specifically exploited. CT data presented in this work 

were collected at the SYRMEP beamline of the Elettra Synchrotron light source in Trieste, 

using a Phase-contrast Imaging approach, and in the specific by means of Propagation-based 

Phase-Contrast Imaging (PPCI). A full overview of Phase-contrast Imaging can be found in the 

literature.115 To understand better all the physics behind the CT technique, it is important to 

introduce a set of concepts regarding X-ray interaction with matter and to explain in detail the 

PPCI. 

 

3.3.1 Coherence 
 

An imaging system that exploits the coherence of the illuminating radiation can produce 

observable effects of interference and diffraction. In particular, temporal (or longitudinal) 

coherence is related to the energy spectrum of the source (the narrower the spectral bandwidth, 

the higher the coherence) and spatial (or lateral) coherence is related with the source size and 

geometry (the smaller the source size and the larger the source-to-sample distance, the higher 

the coherence). A hypothetical system with a monochromatic point-like source is perfectly 

spatially coherent, while the degree of coherence of a real source depends on how well it 

approximates monochromaticity and point-like size. When dealing with partially coherent 

sources, it may be helpful to introduce the coherence lengths. The temporal (or longitudinal) 

coherence length 𝐿𝑡 =  
𝜆2

∆𝜆
 , with ∆𝜆 being the spectral bandwidth, defines the length up to 

which the beam can be considered coherent along the propagation direction. On the other hand, 

the spatial coherence length 𝐿𝑠 = 
𝜆𝑧1

𝑆
 , where 𝑧1 is the source to sample distance and S is the 

source size, defines a scale for the transverse coherence perpendicular to the beam propagation 

direction.116 Synchrotron radiation facilities are examples of moderately coherent X-ray 

sources, so that this property of their radiation can be exploited, at least practically, for imaging 

purposes, while Free-Electron Laser (FEL) sources are largely coherent, yielding phase-

sensitive diffraction-based imaging capabilities (speckles). 

  

3.3.2 X-ray imaging 
 

In X-ray absorption-based imaging, the contrast between different materials is generated 

by differences in density, thickness of the sample and X-ray absorption coefficient. The 

interaction between X-rays and matter can be described exploiting the complex refractive index, 

whose dispersion corrections (δ and β) are related to scattering and absorption of X-rays, 

respectively. The complex refractive index for X-rays can be thus written as 117  

 

 𝑛 = 1 −  𝛿 + 𝑖𝛽 (3.3.1) 

 

Suppose now X-rays going through a sample, as depicted in Fig. 3.3.1.  
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Fig. 3.3.1: schematic description of the X-ray wave interaction with the sample. The plane wave 

front is modified by the specimen and this modification gives important information regarding 

the transmission function of the sample itself.  

  

The object can be described by means of a three-dimensional (3D) distribution of the 

complex refractive index 

 

 𝑛(𝑥, 𝑦, 𝑧) = 1 −  𝛿(𝑥, 𝑦, 𝑧) + 𝑖𝛽(𝑥, 𝑦, 𝑧) (3.3.2) 

 

The X-ray wave 𝛹𝑜𝑢𝑡(𝑥, 𝑦, 𝑧)  emerging from the point (𝑥, 𝑦)  of the object can be 

written as a product of the incident plane wave  𝛹(𝑧) (parallel and monochromatic X-ray beam 

traveling in vacuum along the z axis) and the sample’s transmission function 𝑇(𝑥, 𝑦) 

 

 𝛹𝑜𝑢𝑡(𝑥, 𝑦, 𝑧) = 𝑇(𝑥, 𝑦)𝛹(𝑧) = 𝑇(𝑥, 𝑦)𝛹0𝑒
𝑖𝑘𝑧 (3.3.3) 

 

where 𝛹(𝑧) has been splitted in amplitude (𝛹0) and phase (𝑒𝑖𝑘𝑧) contributions and 𝑇(𝑥, 𝑦)is a 

complex function that can be written as  

 

 𝑇(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)𝑒𝑖𝛷(𝑥,𝑦) (3.3.4) 

 

with  

 

 𝐴(𝑥, 𝑦) =  𝑒−𝑘∫𝛽(𝑥,𝑦,𝑧)𝑑𝑧 (3.3.5) 

 

and 

 

 
𝛷(𝑥, 𝑦) =  −𝑘 ∫𝛿(𝑥, 𝑦, 𝑧)𝑑𝑧  ≅  − 𝑟0𝜆∫𝜌𝑒(𝑥, 𝑦, 𝑧)𝑑𝑧 (3.3.6) 

 

where 𝑘 represents the wavenumber of the impinging light and the integrals are evaluated over 

the full extension of the object along the 𝑧 direction.118 The last expression was evaluated 

assuming the X-ray energy is higher than a given elemental absorption edge. In this case, the 

classical electrodynamics equations can be exploited, obtaining 
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𝛿 ≅

𝑟0𝜌𝑒𝜆
2

2𝜋
 (3.3.7) 

 

being 𝑟0 the classical electron radius and 𝜌𝑒 the electron density. Thus, the object affects the X-

ray beam both in amplitude and in phase. The amplitude modulation can be linked to the so-

called Lambert-Beer law 

 𝐼𝑜𝑢𝑡 = 𝐼0𝑒
−∫𝜇(𝑥,𝑦,𝑧)𝑑𝑧 (3.3.8) 

 

where 𝐼0 is the incident beam intensity, 𝐼𝑜𝑢𝑡  the intensity of the outgoing beam and 𝜇(𝑥, 𝑦, 𝑧) 

the linear attenuation coefficient. The amplitude attenuation given by Eq. 3.3.5 corresponds to 

a reduction in intensity of  

 

 𝐴2(𝑥, 𝑦) =  𝑒−2𝑘 ∫𝛽(𝑥,𝑦,𝑧)𝑑𝑧  (3.3.9) 

 

which is equivalent to the Lambert-Beer law. Linking the two equations together, remembering 

𝑘 =  
2𝜋

𝜆
, gives the following relation between the linear attenuation coefficient 𝜇  and the 

imaginary part of the refractive index β: 

 

 
𝜇(𝑥, 𝑦, 𝑧) =

4𝜋𝛽(𝑥, 𝑦, 𝑧)

𝜆
 (3.3.10) 

 

Alongside absorption, also a phase shift 𝛷(𝑥, 𝑦) is introduced. As seen before, the phase 

shift 𝛷(𝑥, 𝑦) is proportional to the refractive index decrement δ (Eq. 3.3.6), while absorption is 

related to the imaginary part β (Eq. 3.3.5). The wave coming out from the object will no longer 

be a plane wave traveling along the 𝑧 direction due to the interaction with the object itself. 

Supposing the wave number is larger than the absolute values of the spatial derivatives, which 

means 

 

 
[
𝜕𝛷(𝑥, 𝑦)

𝜕𝑥
] , [

𝜕𝛷(𝑥, 𝑦)

𝜕𝑦
]  ≪ 𝑘 (3.3.11) 

 

the wave vector 𝒌𝑜𝑢𝑡 of the outgoing wave at the point (𝑥, 𝑦) can be written as 

 

 
𝒌𝑜𝑢𝑡(𝑥, 𝑦) =  [

𝜕𝛷(𝑥, 𝑦)

𝜕𝑥
] �̂� + [

𝜕𝛷(𝑥, 𝑦)

𝜕𝑦
] �̂� +  𝑘�̂� =  𝛁𝑥𝑦𝛷(𝑥, 𝑦) + 𝑘�̂�. (3.3.12) 

 

In other words, the wave leaving the object plane at the point (𝑥, 𝑦) will be deviated by 

a refraction angle α with respect to the original direction 𝑧, where  

 

 

𝛼 ≅
1

𝑘
√(

𝜕𝛷(𝑥, 𝑦)

𝜕𝑥
)

2

+ (
𝜕𝛷(𝑥, 𝑦)

𝜕𝑦
)

2

= 
1

𝑘
|∇𝑥𝑦𝛷(𝑥, 𝑦)|. (3.3.13) 

 

Conventional X-ray imaging is not capable of acquiring the phase shift 𝛷(𝑥, 𝑦) 

information because X-ray detectors are sensitive to the intensity of the radiation only, and not 

to its phase. In order to highlight the phase shift and to use it as an additional information, it 

must be first converted in an intensity modulation. Several methods, typically based on coherent 
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X-ray sources, can be used to reveal the contrast hidden in the phase shift term 𝛷(𝑥, 𝑦): they 

are the so called phase-sensitive X-ray imaging techniques. Among all the phase-sensitive 

techniques, in this thesis the attention will be focused only on the propagation-based phase-

contrast imaging (PPCI) approach. 

 

3.3.3 Propagation-based phase-contrast imaging 
 

In PPCI technique, an X-ray beam irradiates the sample, giving rise to a spatially varying 

phase shift. As the beam passes through the object, parts of the wave front undergoing 

deflections interfere, producing a characteristic pattern, which is registered by a detector placed 

at a suitable distance.119 Due to the Fresnel diffraction, the phase shifts are then converted into 

detectable intensity modulations. In this technique no optical elements between the sample and 

detector are required, avoiding aberration problems and decrements of spatial resolution.120,121 

A crucial dependence of the phase contrast signal on the effective propagation distance can be 

defined as 

 

 𝐷 = 
𝑧1𝑧2

(𝑧1 + 𝑧2)
 (3.3.14) 

 

where 𝑧1 the source-sample distance and 𝑧2 is the sample-detector distance, as reported in Fig. 

3.3.2. For 𝑧1 >> 𝑧2, which is the normal operating condition for synchrotron facilities, the 

effective distance is determined by the propagation distance 𝑧2 . Taking into account the 

transverse size h of the sample, four different regimes can be defined:122 

 

• Absorption regime: sample-detector distance is close to zero (𝑧2 ≈ 0). It is also called 

contact region. 

• Near-field diffraction regime: the effective propagation distance is such that  𝜆𝐷 ≪ ℎ2. 

In these conditions, the contrast is formed locally around specific object features. The 

boundaries of the object are strongly enhanced, and a distinct interference pattern 

corresponds to every edge, giving reliable information on the geometry of the object. 

To express the above condition for the near-field regime, a Fresnel number must be 

defined as 𝑁𝐹 = 
ℎ2

𝜆𝐷
 so that 𝑁𝐹 ≫ 1. 

• Fresnel regime: here 𝜆 ≈  ℎ2 meaning 𝑁𝐹  ≈ 1 

• Fraunhofer regime: the effective propagation distance is quite large, 𝜆𝐷 ≫ ℎ2 and so 

𝑁𝐹 ≪ 1. In this condition, the interference fringes can be well detected but they cannot 

be related to a specific edge of the sample, so that the shape of the sample is difficult to 

be recognized. 

 

In this thesis, all CT images have been acquired in a near-field diffraction regime. An 

example of the PPCI principle is shown in Fig. 3.3.2.  
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Fig. 3.3.2: example of PPCI principle: in panel (a) the detector is too close to the object and 

only the absorption component can be acquired, while in panel (b) the distance is large enough 

to acquire both the absorption and phase signals.   

 

Fig. 3.3.2a shows the conventional configuration, in which the detector is placed close 

behind the object (contact region); the image is recorded where the contrast emerges from the 

selective absorption (or scattering at large angles due to the Compton effect) of structures inside 

the sample. In this case, the detail (represented as a dark oval-shaped) absorbs more X-rays than 

the background (grey rectangle), resulting in an intensity peak on the profile of the standard 

absorption image. On the contrary, if the source is sufficiently spatially coherent, PPCI is 

achievable by simply moving the detector at an adequate distance away from the sample (Fig. 

3.3.2b). In this configuration, the perturbed wave front 𝑊2, generated by the object from the 

impinging unperturbed wave front 𝑊1, has adequate space to evolve before being captured by 

the detector. Therefore, a typical intensity modulation profile corresponding to the edges is 

recorded in the phase-contrast image. These peaks generate a strong edge enhancement that can 

increase the possibility of structures identification, especially when the absorption contrast is 

not sufficient.  

 

3.3.4 Computed Tomography 
 

After discussing the origins of the contrast, it is time to introduce the Computed 

Tomography (CT). It is possible to describe the working principle of CT saying that a series of 

angular projection data are gathered together and processed by a tomographic reconstruction 
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algorithm, producing an image of the section of the sample, called "slice". The obtained image 

contains information about the internal 3D distribution of the refractive index. The process of 

data acquisition is the same as the one explained in the sections above, in fact the PPCI 

technique can be readily implemented also in CT mode provided that reconstruction algorithms 

are exploited to reproduce the 3D geometry of the sample. Phase retrieval is a fundamental 

process to reconstruct the image, therefore the general idea will be now presented. The action 

of the sample on the X-ray beam can be represented, as described before, by the transmission 

complex function  

 

 𝑇(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)𝑒𝑖𝛷(𝑥,𝑦). (3.3.15) 

 

The absorption contrast, proportional to 𝐴2(𝑥, 𝑦) can be mixed with phase contrast, 

proportional to 𝛷(𝑥, 𝑦). In this context, phase retrieval describes the procedure of carrying out 

the phase-shift map 𝛷(𝑥, 𝑦) and more generally the transmission function 𝑇(𝑥, 𝑦) of an object 

from its phase-contrast images. While boundaries of the different details are greatly enhanced 

by PPCI, the bulk signal could be weak and the phase shift 𝛷(𝑥, 𝑦) may vary slowly; phase 

retrieval can then highlight possible important differences in the phase-shift value between 

adjacent voxels. Normally, phase retrieval in PPCI requires at least two images, acquired either 

at two different distances from the sample or at two different beam energies. Supposing that 

only one image is acquired, there is no way to determine which contribution in the recorded 

intensity pattern is due to absorption and which one must be ascribed to the phase shift term. 

This uncertainty is due to the fact that image detectors are sensitive to intensity only, and that 

consequently both absorption and phase contrast are recorded as intensity fluctuations; once the 

intensity pattern is collected, there is no way to disentangle the contributions due to the different 

physical effects. However, the two contributions can be distinguished by exploiting distance or 

energy dependence. Several different approaches to phase retrieval are reported in the literature, 

but their description is out of the scope of this thesis.123–126  

Once the set of projections is collected, the problem consists in reconstructing the 3D 

𝑛(𝑥, 𝑦, 𝑧) distribution. The reconstruction of the CT images can be performed by means of 

several algorithms based on the analytical Fourier-based method or on iterative methods 

(algebraic and analytical). The following sections will address the physical and mathematical 

framework that enables such a reconstruction, followed by an assessment of typical artifacts 

that may occur and limiting the attention to the use of synchrotron radiation. All the basic steps 

of the image processing, such as flat fielding normalization and ring removal algorithm, will be 

described as they have been applied to obtain the reconstructions presented in this thesis work. 

The Radon transform and the Fourier slice theorem will be addressed, as each applies to CT 

image reconstruction. These techniques require reconstruction of a density function 

representing the internal structure of an object. This is typically accomplished by calculating a 

series of two-dimensional density functions (or slices) through the object on a set of planes and 

reconstructing the three-dimensional image from those images. Thus, the fundamental problem 

in both of these techniques is the calculation of the two-dimensional density function starting 

from angular-dependent projections. The following derivations use Fourier analysis to relate a 

filtered version of this measured signal to the density function of an object within the measured 

region. 
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3.3.5 Physical background 
 

Radon Transform 

 

Johann Radon in 1917 derived the fundamental mathematics for reconstructing a 

function, when its integral values are given.127 Consider Fig. 3.3.3. 

 

 
Fig. 3.3.3: illustration of the Radon transform. A 2D object (red circle and yellow square) 

described by a function 𝑓(𝑥, 𝑦) is hit by parallel X-rays (dashed green line). Interacting with 

the 2D object, the projected values form a one-dimensional profile 𝑅𝛼𝑓(𝑠) depending on the 

position s along a line, perpendicular to the projection direction. 

 

A function 𝑓(𝑥, 𝑦), maps each point 𝑟⊥ ∈  ℝ2 of an object to a value 𝑔 ∈ ℝ. In the 

example represented in Fig. 3.3.3, the object is composed by two regions of constant density: a 

red sphere with 𝑓(𝑥, 𝑦) = 1  and a yellow rectangle with 𝑓(𝑥, 𝑦) = 0.8 . The X-ray beam, 

represented by the green dashed arrow, is illuminating the object with a certain angle α, and is 

subject to attenuation and phase shift. Behind the object, a projection (represented by blue 

lines), given by all the values corresponding to each point (𝑥, 𝑦) over the whole distance can 

be measured. The calculation, for a given angle, is made possible by means of the 2D Radon 

transform 𝑅𝛼𝑓 mathematically expressed as follows:128 

 

 
𝑅𝛼𝑓(𝑠) =  ∫𝑓(𝒓⊥)𝛿(𝒓⊥ ∙ 𝒏𝜶 − 𝑠)𝑑𝒓⊥ 

 

(3.3.16) 

where 𝒓⊥ = (𝑥, 𝑦)𝑇 is the vector defining the coordinate in the image plane that is orthogonal 

to the rotation axis, 𝑠  is the coordinate of the projected profile, 𝛿(𝒓⊥ ∙ 𝒏𝜶 − 𝑠) is the one-

dimensional Dirac delta distribution and 𝒏𝛼 = (𝑐𝑜𝑠𝛼, 𝑠𝑖𝑛𝛼)𝑇  is the normal vector 

perpendicular to the projection direction. Doing the scalar product 𝒓⊥ ∙ 𝒏𝜶 , the coordinate 

vector 𝒓⊥ is projected to a line forming the angle α with the x-axis (black line in Fig. 3.3.3). 

Accordingly, the argument of the delta distribution goes to zero for points forming a straight 
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line of angle α with the y-axis with distance 𝑠 to the origin. In such a way, only points on the 

X-rays propagation direction contribute to the 𝑅𝛼𝑓(𝑠). Thus, the 2D integral in Eq. 3.3.16 

becomes a one-dimensional integral over the line. 

 
Fig. 3.3.4: illustration of the process from 2D slices to a 3D object. In a tomographic scan, 

each vertical position in a projection image (z = const) forms (c) a sinogram, i.e., the projected 

profiles𝑅𝛼𝑓(𝑠) plotted as a function of the projection angle α. These can be inverted to obtain 

(b) a reconstructed slice f(x, y) that can be virtually stacked to yield (a) a 3D volume. Figure 

adapted from the literature.129 

 

The generalization of the Radon transform to higher dimensions n is easily possible.129 

For example, in the case of a 3D Radon transform as a function R: ℝ3 → ℝ, in which the 

integral is calculated over a plane instead of a line and the vector 𝒏 will be the normal vector 

to this plane. Taking into account the Radon transform of a single point at a certain distance 

from the origin, the 2D plot of all the projected values as a function of the angle, is a sine curve; 

such a data representation is the so-called sinogram (see Fig. 3.3.4c). For a given sinogram 

𝑝(𝛼, 𝑠) =  𝑝𝛼(𝑠) =  𝑅𝛼𝑓(𝑠), therefore it is possible to obtain a 2D image 𝑓(𝑥, 𝑦) from a set of 

1D projections taken at different angles by mean of an inverse Radon transform formally written 

as: 

 

 𝑓(𝑥, 𝑦) =  𝑅−1(𝑝(𝛼, 𝑠)) (3.3.17) 

 

thus, to obtain a 3D reconstruction of an entire object, all the collected 𝑓(𝑥, 𝑦) can be stacked 

in the z direction, yielding a 3D dataset 𝑓(𝑥, 𝑦, 𝑧) as shown in Fig. 3.3.4. 

 

Fourier slice Theorem 

 

The reconstruction of the 2D image of the object from the Radon transform can be 

accomplished exploiting the Fourier analysis technique, using the Fourier slice theorem. To 

explain the Fourier slice theorem, consider a general 2D function 𝑓(𝑥, 𝑦) which is projected (or 

more precisely integrated) along the y axis to generate the new function of x only, defined by 
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𝑝(𝑥) =  ∫𝑓(𝑥, 𝑦)𝑑𝑦. (3.3.18) 

 

The Fourier transform of 𝑝(𝑥) is  

 

 
𝑃(𝑞𝑥) =  ∫𝑝(𝑥)𝑒𝑖𝑞𝑥𝑥𝑑𝑥 (3.3.19) 

 

while the Fourier transform of the function 𝑓(𝑥, 𝑦) is 

 

 
𝐹(𝑞𝑥 , 𝑞𝑦) =  ∬𝑓(𝑥, 𝑦)𝑒𝑖(𝑞𝑥𝑥+ 𝑞𝑦𝑦)𝑑𝑥𝑑𝑦. (3.3.20) 

 

Setting 𝑞𝑦 = 0 defines a slice through 𝐹(𝑞𝑥, 𝑞𝑦) given by 

 

 
𝐹(𝑞𝑥 , 𝑞𝑦 = 0) = ∫[∫𝑓(𝑥, 𝑦) 𝑑𝑦] 𝑒𝑖𝑞𝑥𝑥𝑑𝑥 (3.3.21) 

 

which can be written as  

 

 
𝐹(𝑞𝑥 , 𝑞𝑦 = 0) = ∫𝑝(𝑥)𝑒𝑖𝑞𝑥𝑥𝑑𝑥 = 𝑃(𝑞𝑥) (3.3.22) 

 

 

 
Fig. 3.3.5: illustration of the Fourier slice theorem. 𝑓(𝑥, 𝑦) is a 2D top-hat function with 

Fourier transform 𝐹(𝑞𝑥, 𝑞𝑦) =  [
𝑠𝑖𝑛 (𝑞𝑥𝑥)

𝑞𝑥𝑥
] [

𝑠𝑖𝑛 (𝑞𝑦𝑦)

𝑞𝑦𝑦
]. When 𝑓(𝑥, 𝑦) is integrated (projected) 

along the y axis, it generates a 1D top hat function 𝑝(𝑥) depending on x only. The Fourier 

transform of 𝑝(𝑥) is 𝑃(𝑞𝑥) =  [
𝑠𝑖𝑛 (𝑞𝑥𝑥)

𝑞𝑥𝑥
] which is the 𝑞𝑦 = 0 slice through 𝐹(𝑞𝑥, 𝑞𝑦). Figure 

adapted from the literature.130 
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In other words, the Fourier transform of the projection along a particular line of a two-

dimensional function 𝑓(𝑥, 𝑦) is equal to a slice through the Fourier transform of 𝑓(𝑥, 𝑦) along 

a line passing through the origin orthogonal to the propagation direction. In a more general way 

it is possible to consider the n-dimensional Radon transform 𝑅𝑓(𝑠) of a certain function 𝑓(𝒓)  

with 𝒓 ∈  ℝ𝑛  and 𝒏 the normal vector of a hyperplane in ℝ𝑛−1  the Fourier transform with 

respect to s is: 

 

 
𝐹𝑠(𝑅𝑓)(𝜌) =  ∫(𝑒−2𝜋𝑖𝜌𝑠 ∫𝑓(𝑟)𝛿(𝒓 ∙ 𝒏 − 𝑠)𝑑𝒓) 𝑑𝑠 =  ∫𝑒−2𝜋𝑖𝜌𝒓∙𝒏𝑓(𝒓)𝑑𝒓 (3.3.23) 

 

where the order of integration has been changed and then integral over s have been carried out, 

eliminating the delta distribution. It is possible to define a coordinate vector in the reciprocal 

space as 𝝂 =  𝜌𝒏, so that the equation above is proportional to the Fourier transform of the 

function 𝑓(𝒓) with respect to the coordinate vector 𝒓: 

 

 
𝐹𝑠(𝑅𝑓)(𝜌) =  ∫𝑒−2𝜋𝑖𝝂∙𝒓𝑓(𝒓)𝑑𝒓 =  𝐹𝑟(𝑓)(𝝂) (3.3.24) 

 

This last equation is the Fourier slice theorem, which states that the one-dimensional 

Fourier transform of a projection 𝑅𝑓(𝑠) gives the values of the n-dimensional Fourier transform 

of the starting function 𝑓(𝑟) along a slice through the origin defined by 𝝂 =  𝜌𝒏 and it proves 

that the Radon transform is invertible for every dimension n. For the 2D case (Fig. 3.3.5), the 

theorem will be: 

 

 �̃�𝛼(𝜌) =  𝐹𝑠(𝑅𝛼𝑓)(𝜌) = 𝑓(𝜌𝑐𝑜𝑠𝛼, 𝑟𝑠𝑖𝑛𝛼) (3.3.25) 

 

using the typical notation for the Fourier transformed quantities. Accordingly, the Fourier space 

can be totally determined and the initial function 𝑓(𝒓) can be reconstructed by mean of the 

inverse Fourier transform. This method is known as direct Fourier method. Looking at Fig. 

3.3.6 it is noticeable that, when the function 𝑓(𝒓) is given at discrete points and a limited 

number of angles is used, the Fourier space won’t be uniformly sampled, as the points won’t 

be on a rectangular grid. For this reason, it is necessary to apply interpolation methods with the 

consequent introduction of artefacts in the real space. In addition, there is a difference in point 

density between low (near the origin) and large spatial frequencies, therefore the high resolution 

information in the image can be under-represented. 
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Fig. 3.3.6: illustration of the Fourier slice theorem for 2D case (n = 2): the 1D Fourier 

transform of a projection 𝑅𝛼𝑓(𝑠) corresponds to a slice (red line) in the 2D Fourier transform 

of the object f(ν). If the function is given at discrete points, indicated by the black dots, a 

sophisticated interpolation in Fourier space is necessary to avoid artefacts in the tomographic 

reconstruction. Both Radon transform and Fourier slice theorem are fundamental in the 

acquisition of the CT data.  

 

3.3.6 Artifacts 
 

The inhomogeneity of the CT images is one of the most common problems occurring 

during a CT acquisition. This non-uniform aspect, appearing both in the sample region and 

outside of it, can have different origins, such as: 

• the temporal instability of the incident X-ray beam due to a possible decrement of the 

machine current, to the vibrations or thermal drift of the optics; 

• the spatial inhomogeneity of the incident beam due to some intrinsic inhomogeneity of 

the X-ray beam from the wiggler, defects or deformations of optical elements or similar; 

• the detector response inhomogeneity caused by electron noise or pixels having different 

gain. 

Darknoise (taken without the beam illuminating the detector) and whitefield (taken with 

beam impinging on the detector without the sample in the X-ray path) images are used for a 

proper renormalization of the signal, usually implemented before the slices’ reconstruction, 

according to: 

 
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 =  

𝑟𝑎𝑤 𝑖𝑚𝑎𝑔𝑒 − 𝑑𝑎𝑟𝑘𝑛𝑜𝑖𝑠𝑒

𝑤ℎ𝑖𝑡𝑒𝑓𝑖𝑒𝑙𝑑 − 𝑑𝑎𝑟𝑘𝑛𝑜𝑖𝑠𝑒
 (3.3.26) 

 

performed on a pixel by pixel basis. One recurrent artifact that typically degrades image quality 

in X-ray tomography is the presence of concentric rings arising from the non-uniform pixel 

response of detector elements. The ring shape results from the back projection of stripe artifacts 

in the sinogram image, which is interpreted as a feature that always has the same distance to 

the center of rotation and is present at each angle. A usual way to overcome this problem is to 

de-stripe the sinogram or, in order to avoid the need of additional imaging data (i.e. whitefield 

and sinogram images), it is possible to apply a de-striping filter directly to the transformed 

reconstructed slices. To do that, images are transformed into polar coordinates (where the value 

of the x axis represents the distance from the rotation axis and the values on the y axis the 

rotation angle) so that the rings show up as lines parallel to the y direction. Many approaches 
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are exploited to remove these defects. The Rivers method at first computes the average row of 

the sinogram. The average should have the minimal high-frequency content, as real objects 

usually move in the sinogram, and are blurred out when computing the average row. In fact, 

anomalous detector elements will show up as spikes or dips. The magnitude of these detector 

anomalies is then computed by subtracting a smoothed version of the average row from the 

unmodified average. Subtracting the result of this last step from each row in the sinogram, will 

result in a final sinogram with much less vertical striping.131  

 

3.3.7 Experimental setup 
 

The measurements presented in this thesis were performed at the SYRMEP beamline, 

of Elettra Sincrotrone Trieste (schematic representation of the beamline reported in Fig. 3.3.7). 

SYRMEP is the acronym of Synchrotron Radiation for Medical Physics. Thanks to the 

horizontal acceptance covered by the front-end port (7 mrad), the beamline is able to provide, 

at a distance of about 30 m from the source, a mono-energetic laminar beam with an area of 

(210 x 5) mm2 at 20 keV. Depending on the experimental setup, a white beam can be exploited, 

or a monochromator may be placed between the source and the sample.132 

 

 
Fig. 3.3.7: schematic sketch of the SYRMEP beamline. 

 

In the applications of this thesis only the “white-beam” configuration mode was 

exploited, illuminating the sample with the polychromatic X-ray beam filtered for low energy 

components by means of 0.5 mm of silicon, resulting in a mean energy of about 17 keV. The 

imaging system consists in a Hamamatsu sCMOS detector, optically coupled to a 17 µm thick 

GGG (Gd3Ga5O12:Eu) scintillator utilizing a set of optical lenses, which enable different 

magnifications. The sCMOS sensor comprises 2048 × 2048 pixels (with a size of 6.5 µm × 6.5 

µm) and features a dynamic range of 37,000:1. The optical magnification has been set to 3.25, 

which translates into a field of view of 4.1 mm × 4.1 mm and a pixel size of 2 µm × 2 µm. 

Given the sample diameter (less than 1 mm) and the parallel beam geometry, tomographic 

images were reconstructed from 1800 evenly spaced projections spanning over 180 degrees and 

collected in continuous rotation mode. The exposure time was set to 200 ms/projection, thus 

resulting in an overall sample exposure of approximately 6 minutes. The exposure time was 

chosen to have a good SNR and, at the same time, not damaging the plastic samples. The source-

to-sample distance was approximately 22 m, while the sample-to-detector distance was 100 

mm. Thanks to this geometry and to the spatial coherence of the source, projection images were 
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obtained in the propagation-based phase-contrast regime, in the near field diffraction regime. 

Prior to reconstruction (performed with a GPU-based filtered back-projection algorithm), 

projections were further processed by means of a TIE-Hom based phase-retrieval filter, 

obtaining a higher signal-to-noise ratio at cost of a loss of edge-enhancement signal.133 After 

processing, the final CT reconstruction yields a 3D map, in which the contrast is substantially 

proportional to the linear attenuation coefficient of the sample.134,135 
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3.4 Bidirectional Reflectance Distribution Function 
 

The Bidirectional Reflectance Distribution Function (BRDF) characterizes the visual 

appearance of materials i.e. it describes objects’ colors and aesthetic appearance characteristics. 

The BRDF is extremely important to digitally reproduce an object through computer graphics, 

perform rendering but also describe materials properties that must be implemented in ray-

tracing software. Evidently, the BRDF holds a great amount of information; therefore having 

the ability to both quantize and decode a BRDF is an important tool for the research.136,137 

Formally, BRDF quantifies the geometric radiance distribution which results from visible 

incident light. The term bidirectional is used as it is a function of both incident and reflected 

light directions. It is also a distribution function in the classical sense, as integration over the 

hemisphere above the sample surface results in the reflectance, 𝜌, which ranges from 0 to 1. 

Before introducing the BRDF, it is important to focus the attention on the radiance, irradiance 

and reflectance quantities. 

 

3.4.1 Radiance, irradiance, reflectance 
 

At first, consider an ideal point-like light source, i.e. an infinitesimal point radiating 

electromagnetic energy uniformly in all space directions. The radiant flux, or radiant power, 𝛷 

measured in Watts [W], is the radiant energy per unit time emitted, transmitted or received by 

an object. Light sources are not ideal point sources, in the sense that they have a finite size and 

they radiate differently in the space; thus, it is important to describe the amount of energy being 

emitted in a certain direction. In this case, we define the radiant intensity (𝐼) as the amount of 

radiant flux 𝛷 per solid angle dω (graphic representation reported in Fig. 3.4.1): 

 

 
𝐼 =  

𝑑𝛷

𝑑𝜔
   [ 

𝑊

𝑠𝑟
 ] (3.4.1) 

 

 
Fig. 3.4.1: ideal point-like light source radiating uniformly in the space. The radiant intensity 

is the radiant flux traveling through and infinitesimal solid angle ω in the ω direction. 

 

Rather than following the light along a specific ray (and so, a specific direction), it is of 

particular interest to observe a finite surface illuminated by a point light source. The term 
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characterizing the incident flux on the surface is called irradiance, 𝐸, and is defined as flux per 

unit sample area: 

 
𝐸 = 

𝑑𝛷

𝑑𝐴
    [

𝑊

𝑚2]. (3.4.2) 

 

Consider now an isotropic point light source. The flux emitted by the source at a distance 

𝑟 will be distributed across a spherical surface with the same radius. Moreover, irradiance is in 

general proportional to the cosine between surface normal and the direction of the light. This 

fact is highlighted in the Fig. 3.4.2, where two equal surfaces receive different amount of 

radiation due to their diverse orientation and distance from the source.  

 

 
Fig. 3.4.2: examples of orientation and distance from the source dependence on the irradiance. 

  

In the same way, it is possible to consider the light leaving a surface. This phenomenon 

is described by the physical quantity denominated radiance, usually labelled with 𝐿. Radiance 

is defined as the flux received per solid angle, per projected surface area: 

 

 
𝐿 =  

𝑑2𝛷

𝑑𝐴𝑝𝑟𝑜𝑗𝑑𝜔
=  

𝑑2𝛷

𝑑𝐴𝑐𝑜𝑠𝜃𝑑𝜔
       [

𝑊

𝑚2 ∙ 𝑠𝑟
] (3.4.3) 

 

where 𝜃 is the angle between the surface normal and the direction to the observer/detector. 

Clearly, the received power should be normalized to the solid angle covered by the aperture of 

the camera (ω) and to the projected surface area. 

It is worthwhile at this point to explore the definition of reflectance. The reflectance is 

defined as the ratio of the power leaving a surface to the power incident upon a surface.  

 

 
𝜌 =  

𝛷𝑟

𝛷𝑖
  (3.4.4) 

 

Reflectance is therefore unitless and, if the material taken in consideration is passive 

(i.e. no energy being added by the material itself), has a range limited to 0 ≤ 𝜌 ≤ 1. There exist 

multiple variants of reflectance, like the hemispherical reflectance, describing the total amount 

of power leaving a surface relative to the total amount entering, or the spectral reflectance 

focusing on the ratio at a specified wavelength (Nicodemus notes nine different reflectance 
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specifications),138 but the quantity of interest is the Total Integrated Scatter (TIS) also known 

as Directional Hemispherical Reflectance (DHR). The TIS, 𝜌𝑇𝐼𝑆(𝜃𝑖 , 𝛷𝑖, 𝜆), is the ratio of the 

total energy reflected from a surface into the subtending hemisphere to that incident on the 

surface from a precise given direction. 

  

 
𝜌𝑇𝐼𝑆(𝜃𝑖, 𝜑𝑖 , 𝜆) =  

𝛷𝑟

𝛷𝑖
 (3.4.5) 

 

The difference with respect to the general reflectance is that now the direction of the 

incident light is considered. As with other radiometric terms, the TIS is also a function of 

wavelength. The diffuse reflectance,  𝜌𝑑(𝜃𝑖, 𝜑𝑖, 𝜆) , can be described as the TIS minus the 

specular reflectance coming from a small solid angle encompassing the specular lobe. The ratio 

of diffuse reflectance to TIS may then be used as a measure of a diffuseness, d, of a material 

 

 
𝑑 =  

𝜌𝑑(𝜃𝑖, 𝜑𝑖 , 𝜆)

𝜌𝑇𝐼𝑆(𝜃𝑖, 𝜑𝑖 , 𝜆)
 (3.4.6) 

 

A perfect diffusive (also known as Lambertian) surface would therefore have d = 1, 

while a perfect mirror would have d = 0. 

 

3.4.2 Bidirectional Reflectance Distribution Function definition and 

properties 
 

Using the quantities introduced above, the precise definition of the BRDF will be given, 

which was originally coined by Nicodemus.139 Theoretically, the BRDF describes the spectral 

reflectance properties of a material as a function of both illumination or viewing angles. BRDF 

is defined in radiometric terms as the surface radiance of a sample due to the scattering of the 

incident radiation from a defined direction of irradiation: 

 

 
𝑓𝑟(𝜔𝑖, 𝜔𝑟 , 𝜆) =  𝑓𝑟(𝜃𝑖, 𝜑𝑖 , 𝜃𝑟, 𝜑𝑟 , 𝜆) =  

𝑑𝐿𝑟(𝝎𝑟, 𝜆)

𝑑𝐸𝑖(𝝎𝑖, 𝜆)
=  

𝑑𝐿𝑟(𝝎𝑟, 𝜆)

𝐿𝑖(𝝎𝑖, 𝜆)𝑐𝑜𝑠𝜃𝑖𝑑𝜔𝑖
     [ 

1

𝑠𝑟
 ] (3.4.7) 

 

and describes the ratio between the radiance reflected off a surface in a specific direction and 

the irradiance hitting the surface from another specific direction. The BRDF depends on the 

incidence and reflection directions (𝜃𝑖 , 𝜑𝑖, 𝜃𝑟 , 𝜑𝑟)  in the polar and azimuthal coordinates 

formalism, and on the wavelength (λ) of the incident light. Hence, the BRDF is a 5-dimensional 

quantity.140 BRDF is theoretically specified for a point source and detector, as well as an 

infinitesimal surface area, but practical measurement considerations results in some averaging 

over the source and detector solid angles (𝜔𝑖, 𝜔𝑟) and surface area A. Going back to some 

concepts introduced before, it is possible to review them in terms of the BRDF. TIS is therefore 

given by  

 
𝜌𝑇𝐼𝑆(𝜃𝑖, 𝜑𝑖, 𝜆) =  ∫𝑓𝑟(𝜃𝑖, 𝜑𝑖, 𝜃𝑟, 𝜑𝑟, 𝜆)𝑑𝜔𝑟 (3.4.8) 

 

being 

 𝑑𝜔𝑟 =  𝑐𝑜𝑠𝜃𝑟𝑠𝑖𝑛𝜃𝑟𝑑𝜃𝑟𝑑𝜑𝑟 (3.4.9) 

 

while incident flux, and reflected flux are defined as 
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𝛷𝑖 = ∫𝐸𝑖(𝜃𝑖, 𝜑𝑖, 𝜆)𝑑𝐴𝑖 (3.4.10) 

 

and 

 
𝛷𝑟 = ∬𝑓𝑟( 𝜃𝑖, 𝜑𝑖, 𝜃𝑟, 𝜑𝑟 , 𝜆)𝐸𝑖(𝜃𝑖, 𝜑𝑖 , 𝜆)𝑑𝐴𝑖𝑑𝜔𝑟. (3.4.11) 

 

 
Fig. 3.4.3: the BRDF (𝑓𝑟 ) relates the amount of radiance leaving a surface in a specific 

direction, 𝜔𝑟, relative to the amount of irradiance hitting the surface from a direction 𝜔𝑖. 

 

The observed reflected radiance 𝐿0 at a direction 𝜔𝑟 can be calculated by inserting the 

surface BRDF into the so-called rendering equation:141  

 

 
𝐿0(𝜔𝑟, 𝜆) =  𝐿𝑒(𝜔𝑟, 𝜆) + 𝐿𝑟(𝜔𝑟, 𝜆) =  𝐿𝑒𝜔𝑟 + ∫𝑓𝑟(𝜔𝑖, 𝜔𝑟, 𝜆)𝐿𝑖(𝜔𝑖, 𝜆)𝑑𝜔𝑖 (3.4.12) 

 

where the integration is performed over the whole solid angle. 𝐿𝑒 is the radiance contributed by 

the surface, and for passive materials the term can be neglected. In this case, the above equation 

is referred to as the “reflected radiance equation”, and 𝐿0(𝜔𝑟 , 𝜆) =  𝐿𝑟(𝜔𝑟 , 𝜆) . To keep a 

consistent notation with r-subscripts the term 𝐿𝑟 will be used in spite of  𝐿0 in the whole thesis.  

In contrast to the reflectance, ρ, the BRDF may locally take values greater than 1 𝑠𝑟−1. Instead, 

energy conservation states that the integrated BRDF (over all possible directions of observation) 

should never exceed 1 𝑠𝑟−1: 

 

 
∀ 𝜔𝑖 ∶ 0 ≤  ∫𝑓𝑟 (𝜔𝑖, 𝜔𝑟, 𝜆)𝑑𝜔𝑟  ≤ 1. (3.4.13) 

 

The BRDF of a perfect mirror is a Dirac delta function, having maximum intensity when 

the observation direction coincides with the reflected direction of the light, and zero everywhere 

else. On the other hand, a perfect diffuse surface with no absorption will have, instead, a 

constant BRDF of 𝑓𝑑 = 
1

𝜋
 (since the integral of the cosine over the hemisphere equals π). If the 

reflector is Lambertian, which means the surface is ideal matte and the brightness is the same 

regardless of the observer angle, therefore 

 

 𝑓(𝜃𝑖, 𝜑𝑖 , 𝜃𝑟, 𝜑𝑟 , 𝜆) =  𝑓𝑑(𝜃𝑖, 𝜑𝑖 , 𝜆) (3.4.14) 

 

which is constant over the reflected hemisphere, and that the irradiance is uniform. The resulting 

derivation is 
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𝜌(𝜃𝑖, 𝜑𝑖, 𝜆) =  

∬𝑓( 𝜃𝑖, 𝜑𝑖 , 𝜃𝑟, 𝜑𝑟 , 𝜆)𝐸𝑖(𝜃𝑖, 𝜑𝑖, 𝜆)𝑑𝐴𝑖𝑑𝜔𝑟

∫𝐸𝑖(𝜃𝑖, 𝜑𝑖, 𝜆)𝑑𝐴𝑖

 (3.4.15a) 

 

 

 
= ∫ ∫ 𝑓(𝜃𝑖, 𝜑𝑖, 𝜃𝑟, 𝜑𝑟 , 𝜆)𝑐𝑜𝑠𝜃𝑟𝑠𝑖𝑛𝜃𝑟𝑑𝜃𝑟𝑑𝜑𝑟

𝜋/2

0

2𝜋

0

 (3.4.15b) 

 

 
= 2𝜋𝑓𝑑(𝜃𝑖, 𝜑𝑖 , 𝜆)∫ 𝑐𝑜𝑠𝜃𝑟𝑠𝑖𝑛𝜃𝑟𝑑𝜃𝑟

𝜋/2

0

=  𝜋𝑓𝑑(𝜃𝑖, 𝜑𝑖, 𝜆) (3.4.15c) 

 

hence 

 

 
𝑓𝑑(𝜃𝑖, 𝜑𝑖, 𝜆) =  

𝜌(𝜃𝑖, 𝜑𝑖, 𝜆)

𝜋
 (3.4.16) 

 

and remembering that the reflector is ideal (𝜌(𝜃𝑖 , 𝜑𝑖, 𝜆) = 1) the constant BRDF value of  
1

𝜋
 is 

obtained. Unfortunately, none of the two models presented before (perfect specular and 

perfectly diffusing) is valid to describe a real surface, due to the presence of surface roughness 

and inelastic scattering effects. The simplest way to handle this is to create a model where a 

perfectly diffusive, or Lambertian, component is simply added to a specular component. This 

is about as far as the discussion can be taken without looking at a specific model. A three 

dimensional depiction of the diffuse component, specular component, and the diffuse-specular 

combination BRDF models are shown in Fig. 3.4.4. 

 

 
Fig. 3.4.4: (a) Lambertian reflection model, (b) specular reflection model, (c) sum of the Lambertian 

and specular models. 

 

Another important property of the BRDF is that it obeys Helmholtz reciprocity:142 

 

 𝑓𝑟(𝜔𝑖, 𝜔𝑟) =  𝑓𝑟(𝜔𝑟, 𝜔𝑖) (3.4.17) 

 

stating that a ray of light’s path is reversible. In computer graphics, this property is utilized for 

example in ray-tracing,143 and back-tracing.144 These two techniques have been developed to 

consider the kinematics of electromagnetic waves along with their associated propagation and 

reflection properties to perform optical simulations. The forward ray-tracing technique consists 

of projecting rays from a source and collecting the rays at an observer. Realistic scenarios 

directly follow this approach. The backward ray-tracing technique (also known as back-tracing) 

consists of projecting rays from an observer and collecting them at a source. The forward 

technique is valid for small sources when compared to the observer and the backward technique 
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is valid for the opposite.145 The Helmholtz reciprocity is also very convenient in a measurement 

scheme since 

 

 𝑓𝑟(𝜃𝑖, 𝜑𝑖, 𝜃𝑟, 𝜑𝑟 , 𝜆) =  𝑓𝑟(𝜃𝑖, 𝜑𝑖 + 𝜋, 𝜃𝑟, 𝜑𝑟 + 𝜋, 𝜆) (3.4.18) 

 

implying that only half of the hemisphere needs to be covered: 𝜃 ∈ [0,
𝜋

2
] and 𝜑 ∈ [0, 𝜋]. For a 

large group of materials, rotating the surface around its normal will not affect the amount of 

reflected light in any given light/view configuration. Materials holding this property are called 

isotropic and materials not holding it are called anisotropic. Isotropy implies that the BRDF is 

invariant with respect to rotations about the surface normal, i.e. 

 

 𝑓𝑟(𝜃𝑖 , 𝜑𝑖 , 𝜃𝑟, 𝜑𝑟 , 𝜆) =  𝑓𝑟(𝜃𝑖, 𝜑𝑖 +  𝛼, 𝜃𝑟, 𝜑𝑟 +  𝛼, 𝜆) ∀ 𝛼 ∈ ℝ (3.4.19) 

 

3.4.3 Experimental setup 
 

The BRDF measurements were performed at the Light&Lighting laboratory of the KU 

Leuven University. A home-built full three-dimensional BRDF instrument (see Fig. 3.4.5) was 

used. The light source represented in the illumination section (Fig. 3.4.5a) consists of a xenon 

arc lamp mounted in a lamp housing, in front of which a diaphragm is positioned; an image of 

the diaphragm aperture is formed at the detector plane by use of a collimating mirror. The 

detection section (Fig. 3.4.5b) includes a collector lens, imaging the sample area onto an 

aperture of an integrating cavity, which in turn is coupled to a spectrometer with 

interchangeable gratings, by use of a high-grade fused silica fiber bundle. The detector head is 

mounted on a bench, which can be rotated by aid of two motorized rotation stages, enabling 

alignment at any viewing angle with respect to the sample. The sample holder allows manual 

positioning and alignment of the specimen by adjusting two rotation stages and one translation 

stage. For a more detailed description of the instrument, see Leloup et al.146  

 

 
Fig. 3.4.5: Light&Lighting laboratory BRDF measurement setup showing (a) the illumination 

and (b) the detection sections. 

 

BRDF measurements were performed at an incident angle of 45°. In particular, to better 

emphasize the wavelength dependence the 45°,0°: 45°,180° geometry was used, while to stress 

the angular dependence the 45°,0°: x,180° geometry, with x in the interval [20°,70°], was 

exploited.147 The integration time was optimized for each viewing angle. All measurements 
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were dark current corrected. The angular distribution of the incident beam is reported in Fig. 

3.4.6 and it affects the angular dependence of the BRDF. This limits the angular resolution of 

the BRDF spectra.148 

 

  
Fig. 3.4.6: angular distribution of the incident beam represented using linear scale (a) and 

semi-log scale (b). 
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4. Computer-based inspection and characterization 

approaches 
 

4.1 Introduction to machine vision 
 

In this chapter, a general overview regarding some basic concepts of computer vision 

algorithms will be presented. In particular, the fundamental notions useful to understand the 

experimental section involving the filtering and segmentation processes exploited to tune the 

machine for the automatic detection of defects (Chapter 5) will be introduced. It is firstly 

convenient to give a definition of a digital greyscale image. An greyscale image may be defined 

as a two-dimensional function, 𝑓(𝑥, 𝑦), where x and y are spatial (planar) coordinates, and the 

amplitude of 𝑓 at any pair of coordinates (𝑥, 𝑦) is called the intensity or gray level of the image 

at that point. When 𝑥, 𝑦, and the intensity values of 𝑓 are all finite, discrete quantities, the image 

is called digital image. Pixel is the term used most widely to denote the elements of a digital 

image. 

 

4.1.1 Intensity transformation and spatial filtering 
 

The processing techniques exploited for the realization of an automatic visual inspection 

system have been implemented to operate in the spatial domain, which is the plane containing 

the pixels. These techniques work directly on the pixels of an image as opposed to the frequency 

domain, in which operations are performed on the Fourier transform of the image itself. 

Usually, spatial domain techniques are computationally more efficient and require fewer 

processing resources. They can be denoted by  

 

 𝑔(𝑥, 𝑦) = 𝑇[𝑓(𝑥, 𝑦)] (4.1.1) 

 

where 𝑓(𝑥, 𝑦) is the input image, 𝑔(𝑥, 𝑦) is the output image, and 𝑇 is an operator applied on 

𝑓. For any location (𝑥, 𝑦), the output image value 𝑔 at those coordinates is obtained applying 

𝑇 to the neighborhood with origin at (𝑥, 𝑦) in 𝑓. Typically, the process starts at the top left of 

the input image and proceeds pixel by pixel in a horizontal scan, one row at a time. When the 

origin of the neighborhood is at the border or in the corner of the image, part of the 

neighborhood will reside outside the image. The procedure is either to ignore the outside 

neighbors in the computations specified by 𝑇 or to pad the image with a border of 0s or some 

other specified intensity values. The procedure just defined is denominated spatial filtering, 

while the neighborhood is called a spatial filter (also referred to as a spatial mask, kernel or 

template). The smallest possible neighborhood is of size 1  1. In this case, 𝑔 depends only on 

the value of 𝑓  at a unique point (𝑥, 𝑦) and 𝑇  becomes an intensity (also called gray-level) 

transformation function of the form 

 

 𝑠 = 𝑇(𝑟) (4.1.2) 

 

where, for simplicity in notation, 𝑠 and 𝑟 are variables denoting the intensity of 𝑔 and 𝑓 at any 

point (𝑥, 𝑦) , respectively. Some processing approaches can be formulated with intensity 

transformation functions. These transformations can be used for image enhancement and image 
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segmentation, as it will be presented in detail in the next sections. Approaches whose results 

depend only on the intensity at a point sometimes are called point processing techniques, as 

opposed to the neighborhood processing techniques discussed earlier in this section. Intensity 

transformations are among the simplest of all image processing techniques. As denoted 

previously, these values are related by an expression of the form 𝑠 = 𝑇(𝑟). One example of 

such intensity transformations is represented by the thresholding.149 

 

Thresholding 

 

Suppose that the intensity histogram of an image 𝑓(𝑥, 𝑦), composed of light objects on 

a dark background, is similar to the one represented in Fig. 4.1.1a with object and background 

pixels that have intensity values peaked into two dominant regions. 

  

 
Fig. 4.1.1: representation of two typologies of intensity histograms: in panel (a) two intensity 

peaks are evidenced, leading to a single threshold, while in panel (b) two peaks are visible and 

the thresholding process requires a dual threshold. 

 

One possibility to extract the objects from the background is to fix a threshold 𝑇 that 

separates the two main modes. Then, any point (𝑥, 𝑦) in the image at which 𝑓(𝑥, 𝑦) > 𝑇 is 

called an object point; otherwise, the point is called a background point. The segmented image 

𝑔(𝑥, 𝑦), is given by 

 
𝑔(𝑥, 𝑦) =  {

1     𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑇

0     𝑖𝑓 𝑓(𝑥, 𝑦) ≤ 𝑇.
 (4.1.3) 

 

If the constant 𝑇  is the same over the entire image, the process described above is 

referred to as “global thresholding”, while if the value of 𝑇  changes over an image, the 

procedure is called “variable thresholding”. Fig. 4.1.1b shows a more complex thresholding 

problem involving a histogram with three dominant modes. Here, multiple thresholding 

classifies a point (𝑥, 𝑦) as belonging to the background if 𝑓(𝑥, 𝑦) ≤  𝑇1, to one object if 𝑇1 <

𝑓(𝑥, 𝑦) ≤ 𝑇2, and to the other object if 𝑓(𝑥, 𝑦) >  𝑇2. That is, the segmented image is given by 

 

 

𝑔(𝑥, 𝑦) =  {

𝑎     if    𝑓(𝑥, 𝑦) > 𝑇2           

𝑏     if    𝑇1 < 𝑓(𝑥, 𝑦) ≤ 𝑇2 

𝑐     if    𝑓(𝑥, 𝑦) ≤ 𝑇1           

 (4.1.4) 

 

where 𝑎, 𝑏 and 𝑐 are three distinct constant values. To obtain a good thresholding, some aspects 

are important: (1) the separation between peaks; (2) the noise content in the image; (3) the 

relative sizes of objects and background; (4) the uniformity of the illumination source; and (5) 

the uniformity of the reflectance properties of the image. Illumination inhomogeneity may bring 

to the erroneous classification of pixels, while the relative size of objects with respect to 
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background is important to perform a distinction between the objects. If one of the features 

above described is not well tuned, sometimes it is not possible to perform a good thresholding: 

in order to exploit this process, the experimental setup must be adequately prepared.150  

 

Spatial correlation and convolution 

 

Correlation and convolution belong to the class of linear spatial filtering features, 

modifying an image 𝑓 by replacing the value at each pixel with some linear function of the 

values of nearby pixels. Correlation is the process of moving a filter mask over the image and 

computing the sum of products at each location.151 The convolution is the same procedure, 

except for the fact that the filter is first rotated by 180°. The differences will be now highlighted 

using a 1D example.  

 

 
Fig. 4.1.2: 1D correlation (left column, panels a-g) and convolution (right column, panels h-n) 

of a filter 𝜔 with a discrete unit impulse. Taking into account the correlation the processes are: 

introduction of function and filter (panel a), alignment of the two elements in the starting 

position (b), zero padding (c), overall position after one filter shift (d), final position of the filter 

(e), correlation result (f) and cropped correlation result (g). The same steps are applied for the 

convolution (panels h-n). 

 

Fig. 4.1.2a shows a 1D function, 𝑓, and a filter, 𝜔, while Fig. 4.1.2b shows the starting 

position to perform correlation. If there are parts of the functions (𝑓 and 𝜔) that do not overlap, 

it is possible to pad 𝑓 with enough 0s on either side to allow each pixel in 𝜔 to visit every pixel 

in 𝑓 (Fig. 4.1.2c). If the filter is of size 𝑚, 𝑚 − 1  0s on either side of 𝑓 need to be added. The 

first value of correlation is the sum of products of 𝑓 and 𝜔 for the initial position shown in Fig. 

4.1.2c (the sum of products is 0 in the example). This corresponds to no displacement of the 

filter: indicating with 𝑥 the filter displacement, this case is typified by 𝑥 = 0. To obtain the 

second value of correlation, 𝜔 is shifted one pixel location to the right (displacement of 𝑥 = 1, 

panel d) and the sum of products is computed. Proceeding in this manner, the full correlation 
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result is obtained in Fig. 4.1.2f. Note that it took 12 values of 𝑥 (i.e., 0,1,2,…,11) to fully slide 

𝜔 past 𝑓 so that each pixel in 𝜔 visited every pixel in 𝑓. The correlation is, therefore, a function 

of displacement of the filter, which means that the first value corresponds to no displacement 

of the filter, the second to one unit displacement and so on. The correlation of a filter, with a 

function containing all the values equal to 0 and only one value equals to 1 (a discrete unit 

impulse), will give a copy of the filter rotated by 180°.152 On the contrary, as learned above, the 

convolution applied to a discrete unit impulse does not rotate the filter, highlighting the 

complementarity of these two filtering features (panels h-n). The procedure illustrated can be 

easily extended to images, as shown in Fig. 4.1.3. For a filter of size 𝑚  𝑛 is required padding 

the image with a minimum of 𝑚 − 1 rows of 0s at the top and bottom and 𝑛 − 1 columns of 0s 

on the left and right. In this case, 𝑚 and 𝑛 are equal to 3, then it is important to pad 𝑓 with 2 

rows of 0s above and below and 2 columns of 0s to the right and left, as Fig. 4.1.3b shows.  

 

 
Fig. 4.1.3: correlation (middle row) and convolution (final row) of a 2D filter 𝜔 with a 2D 

discrete unit impulse f (original function represented in panel a, filter in panel b). In panel c 

the starting position of the filter on the padded image is represented, then the full correlation 

result is showed (panel d) together with the cropped result (e). Same for the convolution (panels 

f-g). 
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Fig. 4.1.3c shows the initial position of the filter mask for performing correlation, and 

Fig. 4.1.3d shows the full correlation result (in Fig. 4.1.3e the result is cropped). Note again 

that the result is rotated by 180°. For convolution process it is possible to obtain the same result 

if a pre-rotation of the mask is performed and the sliding sum of products is repeated. Figs. 

4.1.3f-h show the convolution result. Clearly, if the filter mask is symmetric, correlation and 

convolution yield the same result. Correlation and convolution can be therefore used also to 

find matches between images, and this is the way it has been exploited for the realization of the 

machine. Formally, the correlation of a filter 𝜔(𝑥, 𝑦) of size 𝑚  𝑛 with an image 𝑓(𝑥, 𝑦), 

denoted as  

 𝜔(𝑥, 𝑦)∎𝑓(𝑥, 𝑦) (4.1.5) 

 

is given by the equation: 

 

 

𝜔(𝑥, 𝑦)∎𝑓(𝑥, 𝑦) =  ∑ ∑ 𝜔(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)

𝑏

𝑡=−𝑏

.

𝑎

𝑠=−𝑎

 (4.1.6) 

 

This equation is evaluated for all values of the displacement variables 𝑥 and 𝑦 to permit 

all elements of 𝜔 to visit every pixel in 𝑓, assuming 𝑓 has been padded appropriately; 𝑎 =
(𝑚−1)

2
 and 𝑏 =

(𝑛−1)

2
, and for notational convenience 𝑚 and 𝑛 are odd integers. In a similar 

manner, the convolution of 𝜔(𝑥, 𝑦) and 𝑓(𝑥, 𝑦), denoted by 𝜔(𝑥, 𝑦) † 𝑓(𝑥, 𝑦) is given by the 

expression  

 

𝜔(𝑥, 𝑦) † 𝑓(𝑥, 𝑦) = ∑ ∑ 𝜔(𝑠, 𝑡)𝑓(𝑥 − 𝑠, 𝑦 − 𝑡)

𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

 (4.1.7) 

 

where the minus signs on the right flip 𝑓 (i.e., rotate it by 180°). Flipping and shifting 𝑓 instead 

of 𝜔 is done for notational simplicity and also to follow convention. This equation is evaluated, 

as for the correlation, for all values of the displacement variables 𝑥 and 𝑦 so that every element 

of 𝜔 visits every pixel in 𝑓, which we assume has been padded appropriately. To sum up, if 

correlation has to be performed, it must be inserted 𝜔  as an input into the algorithm; for 

convolution, the input 𝜔 has to be rotated by 180°. 

 

4.1.2 Sharpening spatial filters 
 

The principal objective of sharpening is to highlight intensity transitions, and this can 

be accomplished by spatial differentiation. In fact, the intensity of the response of a derivative 

operator is proportional to the discontinuity of the image where the operator is applied. Thus, 

image differentiation enhances edges and discontinuities while it deemphasizes areas with 

slowly or not varying intensities. 

 

The Laplacian 

 

The implementation of a 2D, second order derivatives algorithm is useful for image 

segmentation. The approach consists on defining a discrete formulation of the second-order 

derivative and then build up a filter mask based on that formulation. The main interest relies on 
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isotropic filters, whose responses are independent of the direction of the discontinuities: they 

are, in fact, rotationally invariant, meaning that rotating the image and then applying the filter 

gives the same result as applying the filter to the image first and then rotating the result. The 

simplest isotropic derivative operator is the Laplacian, which, for a function (image) 𝑓(𝑥, 𝑦) of 

two variables, is defined as 

 

 
∇2𝑓 =  

𝜕2𝑓

𝜕𝑥2
+ 

𝜕2𝑓

𝜕𝑦2
 . (4.1.8) 

 

Because derivatives of any order are linear operations, the Laplacian is a linear operator. 

To express this equation in discrete form. In the x-direction, we have 

 

 𝜕2𝑓

𝜕𝑥2
= 𝑓(𝑥 + 1, 𝑦) + 𝑓(𝑥 − 1, 𝑦) − 2𝑓(𝑥, 𝑦) (4.1.9) 

 

and similarly, in the y-direction 

 

 𝜕2𝑓

𝜕𝑦2
= 𝑓(𝑥, 𝑦 + 1) + 𝑓(𝑥, 𝑦 − 1) − 2𝑓(𝑥, 𝑦) (4.1.10) 

 

Therefore, it follows from the preceding three equations that the discrete Laplacian of 

two variables is 

 

 ∇2𝑓 =  𝑓(𝑥 + 1, 𝑦) + 𝑓(𝑥 − 1, 𝑦) + 𝑓(𝑥, 𝑦 + 1) + 𝑓(𝑥, 𝑦 − 1) − 4𝑓(𝑥, 𝑦). (4.1.11) 

 

Eq. 4.1.11 can be implemented using the filter mask in Fig. 4.1.4a, which gives an 

isotropic result for rotations in increments of 90°.  

 

 
Fig. 4.1.4: panel (a), filter mask representing the Laplacian equation. Panel (b), extension of 

filter described in panel (a) including the diagonal terms. In panels (c, d) two other 

representations of the Laplacian filter are shown.  
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The mechanics of implementation of the filters are the same as the ones described before 

for the convolution and correlation. It is possible to obtain a mask that yields isotropic results 

in increments of 45° by incorporating the diagonal directions by adding two more terms to the 

equation of the Laplacian to one for each of the two diagonal directions. Each diagonal term 

also contains a −2𝑓(𝑥, 𝑦) term, the total subtracted from the difference terms now would be 

−8𝑓(𝑥, 𝑦)  because four elements have to be added (Fig 4.1.4b). Other two filters are 

represented in Fig. 4.1.4c and Fig. 4.1.4d: they are obtained from definitions of the second 

derivatives that are the negatives of the ones used in the equation above, and as such, they yield 

equivalent results, but the difference in sign must be kept in mind when combining (adding or 

subtracting) a Laplacian-filtered image with another image. Because the Laplacian is a 

derivative operator, it will produce images that have grayish edge lines and other 

discontinuities, all superimposed on a dark, featureless background. Background features can 

be “recovered” while preserving the sharpening simply by adding the Laplacian image to the 

original. Thus, the basic way in which we use the Laplacian for image sharpening is 

 

 𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑐[𝛻2𝑓(𝑥, 𝑦)] (4.1.12) 

 

where 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are the input and sharpened images, respectively. The constant is 

𝑐 = −1 if the Laplacian filters in Fig. 4.1.4a or Fig. 4.1.4b are used, and 𝑐 = 1  if either of the 

other two filters are used. 

 

The Gradient 

 

First derivatives in image processing are implemented using the magnitude of the 

gradient. For a function 𝑓(𝑥, 𝑦), the gradient of 𝑓 at coordinates (𝑥, 𝑦) is defined as the two-

dimensional column vector 

 

∇𝑓 = 𝑔𝑟𝑎𝑑(𝑓) =  [
𝑔𝑥

𝑔𝑦
] =  

[
 
 
 
𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦]
 
 
 
 . 

 

(4.1.13) 

This vector has the important geometrical property that it points in the direction of the 

greatest rate of change of 𝑓 at location (𝑥, 𝑦). The magnitude (length) of vector ∇𝑓 denoted as 

𝑀(𝑥, 𝑦), where 

 
𝑀(𝑥, 𝑦) =  √𝑔𝑥

2 + 𝑔𝑦
2 (4.1.14) 

 

is the value at (𝑥, 𝑦) of the rate of change in the direction of the gradient vector. Note that 

𝑀(𝑥, 𝑦) is an image of the same size as the original, created when 𝑥 and 𝑦 vary over all pixel 

locations in 𝑓. This is the gradient image (or simply the gradient, when the meaning is clear). 

The partial derivatives exploited from the gradient are not rotationally invariant (isotropic), but 

the magnitude of the gradient vector is. In some implementations, it is more computationally 

suitable to approximate the squares and square root operations by absolute values: 

 

 𝑀(𝑥, 𝑦) ≈  |𝑔𝑥| + |𝑔𝑦| (4.1.15) 

 

This expression still preserves the relative changes in intensity, but the isotropic 

property is lost in general. The most popular masks used to approximate the gradient are 
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isotropic at multiples of 90°. These results are independent of whether we use the magnitude as 

sum of squares or as sum of absolute values, therefore nothing of significance is lost in using 

the latter equation if we choose to do so. Discrete approximations, as for the Laplacian case, 

can be formulated to build the appropriate filter masks. In Fig 4.1.5 some examples of 2  2 

and 3  3 gradient filters are illustrated.  

 

 
Fig. 4.1.5: panels (a, b) representation of  2  2 gradient filters. In panels (c, d), 3  3 gradient 

filters are shown. 

 

4.1.3 Morphological image processing 
 

Erosion and dilatation 

 

Erosion and dilation are two fundamental operations to morphological processing. With 

𝐴 and 𝐵 as sets in ℤ2, the erosion of 𝐴 by 𝐵, denoted 𝐴 ⊝ 𝐵 is defined as 

 

 𝐴 ⊝ 𝐵 = {𝑧|(𝐵)𝑧 ⊆  𝐴}.   (4.1.16) 

 

Eq. 4.1.16 indicates that the erosion of 𝐴 by 𝐵  is the set of all points such that 𝐵 , 

translated by 𝑧, is contained in 𝐴. In the following, set 𝐵 is assumed to be a structuring element, 

that is a small set or used to probe an image under study for properties of interest. The exact 

same definition of erosion can be achieved remembering that the statement “𝐵  has to be 

contained in 𝐴” is equivalent to “𝐵 not sharing any common elements with the background”, 

therefore:  

 

 𝐴 ⊝ 𝐵 =  {𝑧|(𝐵)𝑧 ∩ 𝐴𝑐 =  ∅} (4.1.17) 

 

where, 𝐴𝑐  is the complement of 𝐴 and ∅ is the empty set. Fig. 4.1.6 shows an example of 

erosion.  



81 
 

 
Fig. 4.1.6: representation of a set A (panel a), a square structuring element (b) and the erosion 

of A by B (c). Another structuring element (d), with shape different from the square one can be 

used to perform the erosion of A by B (e). 

 

The solid boundary in Fig. 4.1.6c is the limit beyond which further displacements of the 

origin of 𝐵 would cause the structuring element to cease being completely contained in 𝐴. Thus, 

the locus of points (locations of the origin of 𝐵) within (and including) this boundary constitutes 

the erosion of 𝐴 by 𝐵. Fig. 4.1.6d shows structuring element with shape different to the square, 

and panel e shows the erosion of 𝐴 by this element.  

With 𝐴 and 𝐵 as sets in ℤ2, the dilation of 𝐴 by 𝐵 denoted 𝐴 ⊕ 𝐵 is defined as  

 

 𝐴 ⊕ 𝐵 = {𝑧| [(�̂�)
𝑧
∩ 𝐴]  ≠  ∅}. (4.1.18) 

 

Eq. 4.1.18 is based on reflecting 𝐵 about its origin and shifting this reflection by 𝑧. The 

dilation of 𝐴 by 𝐵 then is the set of all displacements 𝑧, such that �̂� and 𝐴 overlap by at least 

one element. Based on this interpretation, Eq. 4.1.18 can be written equivalently as 

 

 𝐴 ⊕ 𝐵 =  {𝑧| [(�̂�)
𝑧
∩ 𝐴]  ⊆  𝐴} (4.1.19) 

 

As before, referring to Fig. 4.1.7, 𝐵 is a structuring element and 𝐴 is the set (image 

objects) to be dilated. The process of rotating 𝐵  about its origin and then successively 

displacing it so that it slides over set (image) 𝐴 is analogous to spatial convolution introduced 

before. Keep in mind, however, that dilation is based on set operations and therefore is a 

nonlinear operation, whereas convolution is a linear operation. Unlike erosion, which is a 

shrinking or thinning operation, dilation “grows” or “thickens” objects in a binary image. The 

specific manner and extent of this thickening is controlled by the shape of the structuring 

element used.  
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Fig. 4.1.7: representation of a set A (panel a), a square structuring element (b) and the 

dilatation of A by B (c). Another structuring element (d), with shape different from the square 

one can be used to perform the dilatation of A by B (e). 

 

Fig. 4.1.7a shows the same set used in Fig. 4.1.6a, and Fig. 4.1.7b shows the structuring 

element (in this case �̂� = 𝐵 because it is symmetric about its origin) taken into account. The 

dashed line in Fig. 4.1.7c shows the original set for reference, and the solid line shows the limit 

beyond which any further displacements of the origin of �̂� by 𝑧 would cause the intersection of 

�̂� and 𝐴 to be empty. Therefore, all points on and inside this boundary constitute the dilation 

of 𝐴 by 𝐵. Fig. 4.1.7d shows a different structuring element, and Fig. 4.1.7e shows the dilation 

achieved with this element. 

 

Opening and closing 

 

Dilation expands the components of an image and erosion shrinks them. Opening and 

closing are two important morphological operations which can be obtained starting from 

dilatation and erosion. Opening generally smooths the contour of an object, breaks narrow 

edges, and eliminates thin protrusions. Closing also tends to smooth sections of contours but, 

as opposed to opening, it generally eliminates small holes, and fills gaps in the contour. The 

opening of set 𝐴 by structuring element 𝐵, denoted 𝐴 ∘ 𝐵, is defined as 

 

 𝐴 ∘ 𝐵 = (𝐴 ⊝ 𝐵 )  ⊕ 𝐵 (4.1.20) 

 



83 
 

thus, the opening 𝐴 by 𝐵 is the erosion of 𝐴 by 𝐵 followed by a dilation of the result by 𝐵. 

Similarly, the closing of set 𝐴 by structuring element 𝐵, denoted 𝐴 ∙ 𝐵 is defined as 

 

 𝐴 ∙ 𝐵 =  (𝐴 ⊕ 𝐵 )  ⊝ 𝐵  (4.1.21) 

 

which states that the closing of 𝐴 by 𝐵 is simply the dilation of 𝐴 by 𝐵, followed by the erosion 

of the result by 𝐵. The opening operation has a simple geometric interpretation (Fig. 4.1.8).  

 

 
Fig. 4.1.8: the structuring element B is made rolling along the border of A (on the inside) 

obtaining the opening (right). 

 

Suppose that the structuring element 𝐵 is represented as a ball. The boundary of 𝐴 ∘ 𝐵 

is then determined by the points in 𝐵 that reach the farthest into the boundary of 𝐴 as 𝐵 is rolled 

around the inside of this boundary. This leads to a set-theoretic formulation, which states that 

the opening of 𝐴 by 𝐵 is obtained by taking the union of all translates of 𝐵 that match into 𝐴. 

Therefore, opening can be expressed as a fitting process such that 

 

 𝐴 ∘ 𝐵 = ⋃{(𝐵)𝑧| (𝐵)𝑧  ⊆  𝐴} (4.1.22) 

 

where the big ∪ {∙} denotes the union of all the sets inside the braces. Closing has a similar 

geometric interpretation, except that now B is rolled on the outside of the boundary (Fig. 4.1.9).  

 

 
Fig. 4.1.9: the structuring element B is made rolling along the border of A (on the outside) 

obtaining the closing (right). 

 

Opening and closing are duals of each other. Geometrically, a point 𝜔 is an element of 

𝐴 ∙ 𝐵  if and only if {(𝐵)𝑧 ∩ 𝐴 ≠  ∅}  for any translate (𝐵)𝑧  of that contains 𝜔 . Fig. 4.1.9 

illustrates the basic geometrical properties of closing. As in the case with dilation and erosion, 

opening and closing are duals of each other with respect to set complementation and reflection, 

which means 

 

 (𝐴 ∙ 𝐵)𝑐 = (𝐴𝑐  ∘ �̂�) (4.1.23) 
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and 

 (𝐴 ∘ 𝐵)𝑐 = (𝐴𝑐 ∙ �̂�). (4.1.24) 

 

Of importance is the boundary extraction of a feature. The boundary of a set 𝐴, denoted 

by 𝛽(𝐴), can be obtained by first eroding 𝐴  by a suitable structuring element 𝐵  and then 

performing the set difference between 𝐴 and its erosion, as reported in Eq. 4.1.25 

 

 𝛽(𝐴) = 𝐴 − (𝐴 ⊝ 𝐵). (4.1.25) 

 

4.1.4 Image segmentation 
 

Segmentation algorithms are based on discontinuity and similarity. In the first category, 

the partition of an image is based on abrupt changes in intensity, such as edges (edge-based 

segmentation).153,154 The principal approaches exploited in the second category are based on 

partitioning an image into regions that are similar according to a set of predefined criteria 

(region-based segmentation).155,156 

 

Edge-based segmentation 

 

For line detection, second derivatives result in a stronger response and produce thinner 

lines than first derivatives. Thus, a Laplacian mask can be exploited for the purpose. Often, 

interest lies in detecting lines in specific directions. Consider the masks in Fig. 4.1.10a. Suppose 

that an image with a constant background and containing various lines (oriented at 0°, 45° and 

90°) is filtered with the first mask. The maximum responses would occur at image locations in 

which a horizontal line passed through the middle row of the mask. A similar experiment would 

reveal that the mask depicted in Fig. 4.1.10b responds best to lines oriented at +45°, the one 

represented in Fig. 4.1.10c mask to vertical lines, and the one reported in Fig. 4.1.10d to lines 

in the -45° direction. The preferred direction of each mask is weighted with a larger coefficient 

(i.e., 2) than other possible directions. The coefficients in each mask sum to zero, indicating a 

zero response in areas of constant intensity. If the interest lies in detecting all the lines in an 

image in the direction defined by a given mask, it is sufficient to run the mask through the 

image and threshold the absolute value of the result. The points that are left are the strongest 

responses which correspond closest to the direction defined by the mask. 

 

 
Fig. 4.1.10: filters exploited for the line detection: in particular, they focus on horizontal (a), 

+45° (b), vertical (c) and -45° (d) lines. 

 

Edge detection is the approach used most frequently for segmenting images based on 

abrupt local changes in intensity. Edge models are classified according to their intensity 

profiles. A step edge involves a sudden transition between two intensity levels, ideally over the 

distance of 1 pixel (Fig. 4.1.11a). 
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Fig. 4.1.11: representation of step (a), ramp (b) and roof edges (c) with their corresponding 

intensities. Adapted from the literature.157  

 

These ideal edges can occur over the distance of 1 pixel, provided that no additional 

processing (such as smoothing) is used to make them look “real”. In practice, digital images 

have edges that are blurred and noisy; in such situations, edges are more closely modeled as 

having an intensity ramp profile, such as the one represented in Fig. 4.1.11b. The edge point 

now is any point contained in the ramp, and an edge segment would then be a set of such points 

that are connected. A third model of an edge is the so-called roof edge, having the characteristics 

illustrated in Fig. 4.1.11c. Roof edges are models of lines through a region, with the base 

(width) of a roof edge being determined by the thickness and sharpness of the line. In the limit, 

when its base is 1 pixel wide, a roof edge is really nothing more than a 1-pixel-thick line running 

through a region in an image. It is not unusual to find images that contain all three types of 

edges. Although blurring and noise result in deviations from the ideal shapes, edges in images 

that are reasonably sharp and have a moderate amount of noise do resemble the characteristics 

of the edge models in Fig. 4.1.11. The models in Fig. 4.1.11 allow us is to write mathematical 

expressions for edges in the development of image processing algorithms. The performance of 

these algorithms will depend on the differences between actual edges and the models used in 

developing the algorithms.  

 
Fig. 4.1.12: on the left, enlargement of the ramp depicted in figure 4.1.11b. On the right, 

description of the profile together with its first and second derivatives. Adapted from the 

literature.157 

 

The left part of Fig. 4.1.12 shows an enlargement of the step represented in Fig. 4.1.11b, 

while on the right a horizontal intensity profile is depicted. This figure shows also the first and 

second derivatives of the intensity profile. Moving from left to right, the first derivative takes a 

positive value at the onset of the ramp and at points on the ramp, while it is equal to zero in 
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areas of constant intensity. Obviously, the second derivative is positive at the beginning of the 

ramp, negative at the end of the ramp, zero at points on the ramp, and zero at points of constant 

intensity. The intersection between the zero intensity axis and a line extending between the 

extrema of the second derivative marks a point called the zero crossing of the second derivative. 

The magnitude of the first derivative can be used to detect the presence of an edge at a point in 

an image. Similarly, the sign of the second derivative can be used to determine whether an edge 

pixel lies on the dark or light side of an edge. However, the conclusions reached using those 

models are the same as with an ideal ramp and working with the latter simplifies theoretical 

formulations. Finally, although attention thus far has been limited to a 1D horizontal profile, a 

similar argument applies to an edge of any orientation in an image. We simply define a profile 

perpendicular to the edge direction at any desired point and interpret the results in the same 

manner as for the vertical edge just discussed.158  

 

Region based segmentation - Maximally stable extremal region  

 

Extraction of invariant regions has been the focus of intense study supporting a wide 

variety of applications such as recognition, image retrieval, 3D reconstruction, tracking, robot 

navigation and more.159,160 Maximally Stable Extremal Regions (MSER) described in the 

literature (Matas et al.)161 have become one of the commonly used region detector types, due to 

their high repeatability and because of their complementarity to many other commonly used 

detectors. They have commonly been used in recognition as well as tracking and these two 

fields are the one exploited in this thesis. The standard algorithms for computing MSER are 

similar to a flooding simulation algorithm for computing a watershed segmentation.162,163 

Maximally stable extremal region (MSER) is a technique to detect particular features in a digital 

image. The formal definition of the MSER concept and the fundamental auxiliary definitions 

as introduced by Matas et al. are given in the definitions below: 

 

Image 𝐼 is mapping 𝐼: 𝐷 ⊂ ℤ2 → 𝑆. Extremal regions are well defined on images if: 

 

• S is totally ordered, i.e. reflexive, antisymmetric and transitive binary relation exists. In 

this thesis only 𝑆 = {0,1, … ,255} is considered. 

• A neighborhood relation 𝐴 ⊂ 𝐷  𝐷 is defined. 

 

Region: Q is a contiguous subset of 𝐷 , i.e. for each 𝑝, 𝑞 ∊ 𝑄 there is a sequence 

𝑝, 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑞 and  𝑝𝐴𝑎1, 𝑎𝑖𝐴𝑎𝑖+1, … , 𝑎𝑛𝐴𝑞. 

Outer Region Boundary: 𝜕𝑄 = {𝑞 ∊ 𝐷\𝑄: ∃𝑝 ∊ 𝑄: 𝑞𝐴𝑝} i.e. the boundary 𝜕𝑄 of 𝑄 is a set of 

pixels being adjacent to at least one pixel of 𝑄 but not belonging to 𝑄. 

Extremal Region: 𝑄 ⊂ 𝐷 is a region such that for all 𝑝 ∊ 𝑄, 𝑞 ∊ 𝜕𝑄: 𝐼(𝑝) > 𝐼(𝑞) (maximum 

intensity region) or 𝐼(𝑝) < 𝐼(𝑞) (minimum intensity region). 

Maximally Stable Extremal Region (MSER): let 𝑄1, … , 𝑄𝑖−1, 𝑄𝑖, … be a sequence of nested 

extremal region, i.e. 𝑄𝑖 ⊂ 𝑄𝑖+1 . Extremal region 𝑄𝑖∗  is maximally stable if 𝑞(𝑖) = |𝑄𝑖+∆\

𝑄𝑖−∆|/|𝑄𝑖| has a local minimum at 𝑖∗. (where | ∙ | denotes cardinality and ∆∊ 𝑆 is a parameter). 

The above definitions can be interpreted as follow. The first step to detect MSERs is to 

compute all the binary regions by thresholding the image at all possible gray levels. Suppose 

that all the pixels with intensity below a given threshold are white and all those above or equal 

are black. At the beginning, the image will be totally black, but performing the MSER procedure 

there will be white spots which will merge and at the end the image would be completely white. 
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While changing the threshold, the area of each region is monitored; regions whose rate of 

change of area with respect to the threshold is minimal are defined as “maximally stable”. Such 

regions are therefore invariant to both affine geometric and photometric (linear bias-gain) 

transformations. The word extremal refers to the property that all pixels inside the MSER have 

either higher (bright extremal regions) or lower (dark extremal regions) intensity than all the 

pixels on its outer boundary. Over a large range of thresholds, the local binarization is stable in 

certain regions, and have the following properties: 1) they are invariant to affine transformation 

of image intensities 2) only the regions whose support is nearly the same over a range of 

thresholds are selected 3) can be applied to both large and fine structure.164 

 

Region based segmentation - Marching squares 

 

One approach to isosurface construction will be now described, the widely used 

Marching Cubes algorithm by Lorensen and Cline.165 The Marching Cubes algorithm is based 

on two ideas. First, the isosurface can be constructed piecewise within each cube of the grid 

without reference to other grid cubes. Second, the combinatorial structure of each isosurface 

patch in a grid cube can be retrieved from a lookup table. Since the main operation is retrieving 

this structure from the lookup table, the algorithm runs in time proportional to the number of 

grid cubes. In particular, in this thesis the 2D version of the algorithm has been exploited, the 

so-called Marching Squares, by means of which it is possible to construct two-dimensional 

isocontours. Given a regular scalar grid and an isovalue σ, it is convenient to assign “+” and 

“−” labels to each grid vertex based on the relationship between every single scalar value and 

the selected isovalue σ. A grid vertex is positive, “+”, if its scalar value is greater than or equal 

to σ (strictly positive if its scalar value is not equal to σ) and it is negative (“−”) if its scalar 

value is less than σ. Since the scalar value of a negative vertex never equals the isovalue, there 

is no point in defining a similar “strictly negative” term. Grid edges can be characterized by the 

labels at their endpoints and they can be positive, if both endpoints are positive, negative, if 

both are negative and bipolar if one endpoint is positive and the other one is negative. Note that 

a grid vertex or edge is only positive or negative in relationship to a given isovalue. The above 

definitions apply also to curvilinear grids. They also apply to the vertices and edges of 

polyhedral meshes such as tetrahedral and simplicial meshes. The inputs to the Marching 

Squares algorithm are so an isovalue and a set of scalar values at the vertices of a two-

dimensional regular grid. The algorithm has three steps:  

 

1) Read in the isocontour lookup table.  

2) For each square, find the corresponding set of isocontour edges (from the table), 

correctly describing the combinatorial structure of the isocontour in analysis, remembering that 

the endpoints of these edges form the isocontour vertices.  

3) Assign geometric locations to the isocontour vertices based on the scalar values at 

the square edge endpoints.  

 

A square has four vertices, therefore there are 24 = 16 different configurations of square vertex 

labels. These configurations are listed in Fig. 4.1.13. 

  



88 
 

 
Fig. 4.1.13: representation of the 16 square configurations. The black vertices have values 

greater than the isovalue.  

 

The structure of the isocontour within each square is ruled by the configuration of the 

square’s vertex labels. The isocontour must intersect any square edge that has one positive and 

one negative endpoint. For each square configuration k, let 𝐸𝑘
+/−

 be the set of bipolar edges. 

Note that the size of 𝐸𝑘
+/−

 is either zero, two, or four, because the isocontour can touch the 

edges zero, two or four times. Pair the edges of 𝐸𝑘
+/−

. Each such pair represents an isocontour 

edge with endpoints on the two elements of the pair. Fig. 4.1.14 contains the sixteen square 

configurations and their isocontours. There, the isocontour edges are drawn connecting the 

midpoints of each square edge. This is for illustration purposes only. The geometric locations 

of the isocontour vertices are not defined by the lookup table. 

 

 
Fig. 4.1.14: all the possible square isocontours obtainable from the marching square 

algorithm. 
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Fig. 4.1.15: example of isocontour with isovalue equals to 5. Panel a represents the grid, while 

in panel b the black spot is assigned to values greater than the isovalue. In panel c the vertices 

assignation is performed while in panel d the isocontour are drawn. Figure adapted from the 

literature.166 

 

By means of the Marching Squares algorithm and selecting a proper isovalue it is 

possible to extract contours which are fundamental for the detection of the defects as will be 

expressed in the next chapter, as it is schematized in Fig. 4.1.15.167,168 
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4.2 Introduction to Support Vector Machine 
 

Statistical learning theory is a framework built for machine learning purposes associated 

with statistics and functional analysis. The aim of statistical learning is to find a function 𝑓, 

which will be used for prediction and inference, based on the machine response to some 

predictor elements. To estimate this unknown function, a supervised approach is exploited, 

which suggests the usage of a training method to teach the machine how to estimate 𝑓. In fact, 

a given set of labeled data consisting of input and outputs are used to train the specific desired 

model. Every point in the training data is an input-output pair where both the input and output 

are well classified by the scientists. The statistical leaning problem consists of inferring the 

function that maps the input and the output, such that the learned function can be used to predict 

output from future input. A classification algorithm attempts to regulate the experimental data 

into different and distinct categories to locate new data in future easily. It consists of two main 

parts: model training and prediction. Support Vector Machines (SVMs) are sets of supervised 

learning methods with associated leaning algorithms exploited to analyze data. They have first 

been introduced as methods to solve classification problems.169 However, due to many 

attractive features, they have recently been extended to the area of regression analysis. One of 

the main and hot topics in which SVMs are exploited is text categorization.170,171 It consists in 

assigning labels or categories to a text according to its context (web news organization, 

academic paper classification, spam filtering, …) by means of linear SVM. In this thesis, the 

classification of defects arising on reflectors and the characterization of their optical properties 

have been implemented by means of SVM-based algorithms.  

 

4.2.1 How does SVM work? 
 

SVM algorithms generate learning models for automatic data classification based on a 

set of given data. Suppose that, in a 2D space, two different types of data are present, 

represented in Fig. 4.2.1 as circles and squares. The aim is to find the best way to separate the 

two families. It is possible to exploit different straight lines, denominated 𝐻1  and 𝐻2  and 

represented in Fig. 4.2.1a. In the present case, the best separators are represented by straight 

lines, but in a more general case (3D or greater dimensions) they are addressed as hyperplanes. 

If one hyperplane is selected for the classifier model, then when a new data is received, the 

decision on its shape depends on its position relative to the hyperplane. Another possibility is 

to use nonlinear separator when data cannot be separated linearly. An example of a two-

dimensional nonlinear separator has been shown in Fig. 4.2.1b. Decision between linear or 

nonlinear classification depends on distribution of samples in the input data.172 
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Fig. 4.2.1: examples of linear (a) and curvilinear (b) separators. 

 

4.2.2 The Linear SVM 
 

In SVM, the goal is to find the best separator line for a given set of data. Consider the 

following set containing N samples: 

 

 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)} (4.2.1) 

 

𝑥𝑖 is the input vector in ℝ𝑞 and 𝑦𝑖 is the corresponding output. In this general formulation of q-

dimensional classification problem, the hyperplanes are subspaces of dimension 𝑞 − 1 like 

straight lines in two-dimensional space.173 To make things clearer, consider the problem 

discussed before which involves inputs in ℝ2 . Data are linearly separable and different 

hyperplanes (in this specific case, planes) can perform the separation, defined by the equation 

𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 = 0. For the classification of linearly separable data, this idea is to find 

among all the hyperplanes that minimize the error, the one with the largest margin. 

 

 
Fig. 4.2.2: a vertical separation (left) may not be the most correct choice. In fact, as evidenced 

by the graph on the right, an oblique separation line has a bigger margin for the case presented. 

 

By using given training examples, during the learning stage, the machine finds 

parameters 𝒘 = (𝑤1, 𝑤2, … , 𝑤𝑛) and 𝑏 of a decision function 𝑑(𝒙,𝒘, 𝑏) given as 

 

 
𝑑(𝒙,𝒘, 𝑏) = 𝒘 ∙ 𝒙 + 𝑏 = ∑𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

. (4.2.2) 
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After the successful training stage, the learning machine, by using the weights obtained 

and given a previously unseen pattern 𝒙𝑝, produces output 0 (zero) according to an indicator 

function given as 

 

 𝑖𝐹 = 0 = 𝑠𝑖𝑔𝑛(𝑑(𝒙𝑝, 𝒘, 𝑏)) (4.2.3) 

 

where 0 is the standard notation for the output from the learning machine. In other words, the 

decision rule is: 

 

• if 𝑑(𝒙𝑝, 𝒘, 𝑏) > 0 the pattern 𝒙𝑝 belongs to class 1 (𝑦1 = +1) 

• if 𝑑(𝒙𝑝, 𝒘, 𝑏) < 0 the pattern 𝒙𝑝 belongs to class 2 (𝑦2 = −1) 

 

It is important to introduce the expression for the calculation of a distance (the margin, 

indicated with the letter M) between the closest members from two diverse classes: 𝑀 =
2

‖𝒘‖
. 

From the formula, it is clear that the minimization of a norm of a hyperplane normal weight 

vector ‖𝒘‖ =  √(𝒘𝑇𝒘) leads to a maximization of a margin 𝑀. The square root is a monotonic 

function, therefore the minimization of ‖𝒘‖ equals to the minimization of 𝒘𝑇𝒘 = ∑ 𝑤𝑖
2𝑛

𝑖=1 . 

Hence, the learning problem is  

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

1

2
(𝒘𝑇𝒘) (4.2.4) 

 

(multiplication by 0.5 is for numerical convenience only). The separating hyperplane with the 

largest margin defined by 𝑀 =
2

‖𝒘‖
, is denominated Optimal Canonical Hyperplane (OCH) and 

specifies the support vectors, i.e. training data points which satisfy the equation 

 

 𝑦𝑖(𝒘 ∙ 𝒙𝒊 + 𝑏) = 1 (4.2.5a) 

 

for all 𝑖 = 1,2, … ,𝑁𝑆𝑉. For all the other (non-SVs) data points the OCH satisfies inequalities  

 

 𝑦𝑖(𝒘 ∙ 𝒙𝒊 + 𝑏) > 1. (4.2.5b) 

 

In general, OCH should satisfy the following constraints 

 

 𝑦𝑖(𝒘 ∙ 𝒙𝒊 + 𝑏) ≥ 1, 𝑖 = 1,2,… , 𝑛 (4.2.5c) 

 

where 𝑛 denotes a number of training data points, and 𝑁𝑆𝑉 stands for a number of SVs. This is 

a quadratic optimization problem with inequality constraints, which can be solved by the saddle 

point of the Lagrange functional (Lagrangian) 

 

 
𝐿(𝒘, 𝑏, 𝜶) =

1

2
‖𝒘‖2 − ∑𝛼𝑖[𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) − 1]

𝑛

𝑖=1

 (4.2.6) 

 

where 𝛼𝑖  are Lagrange multipliers. The search for an optimal saddle point (𝒘0, 𝑏0, 𝛼0)  is 

necessary because the Lagrangian must be minimized with respect to 𝑤 and 𝑏, and maximized 

with respect to nonnegative 𝛼𝑖 (𝛼𝑖 ≥ 0 should be found). This problem can be solved either in 

a primal space (which is the space of parameters 𝑤 and 𝑏) or in a dual space (which is the space 
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of Lagrange multipliers 𝛼𝑖). The second approach gives insightful results. In order to do that, 

Karush-Kuhn-Tucker (KKT) conditions must be used for the optimum of a constrained 

function. These conditions imply that at the saddle point (𝒘0, 𝑏0, 𝛼0), the derivatives of the 

Lagrangian 𝐿 with respect to primal variables should vanish 

 

 𝜕𝐿

𝜕𝒘0
= 0 (4.2.7a) 

   

 

 

𝜕𝐿

𝜕𝑏0
= 0 (4.2.7b) 

 

therefore,  

 
𝒘0 = ∑𝛼𝑖

𝑛

𝑖=1

𝑦𝑖𝒙𝑖 (4.2.8a) 

 

 

 ∑𝛼𝑖

𝑛

𝑖=1

𝑦𝑖 = 0 (4.2.8b) 

 

and the KKT complementarity conditions below (products between dual variables and 

constraints at the solution point must be equals zero) must also be satisfied, 

 

 𝛼𝑖[𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) − 1] = 0. (4.2.9) 

 

and performing the substitution, it is possible to obtain 

 

 
𝐿𝑑(𝛼) = − 

1

2
∑ 𝛼𝑖𝑦𝑖𝛼𝑗𝑦𝑗(𝒙𝑖 ∙ 𝒙𝑗)

𝑛

𝑖,𝑗=1

+ ∑𝛼𝑖

𝑛

𝑖=1

. (4.2.10) 

 

To find the correct hyperplane, the dual Lagrangian 𝐿𝑑(𝛼) has to be maximized with 

respect to nonnegative 𝛼𝑖 and with respect to the equality constraint as follows 

 

 
∑𝛼𝑖𝑦𝑖 = 

𝑛

𝑖=1

0, 𝑖 = 1,2,… , 𝑛  (4.2.11a) 

 

 𝛼𝑖 ≥ 0, 𝑖 = 1,2,… , 𝑛  (4.2.11b) 

 

Note that the dual Lagrangian 𝐿𝑑(𝛼) is expressed in terms of training data and depends 

only on the scalar products of input patterns (𝒙𝑖 ∙ 𝒙𝑗). Note also that the number of unknown 

variables equals the number of training data n. After the learning process, the number of free 

parameters is equal to the number of SVs, which is not depend on the dimensionality of input 

space. Such a standard quadratic optimization problem can be expressed in a matrix notation 

(out of the scope of this thesis). Solutions 𝛼0𝑖 of the dual optimization problem above determine 

the parameters 𝒘0 and 𝑏0 of the optimal hyperplane  

 

 
𝒘0 = ∑𝛼0𝑖

𝑛

𝑖=1

𝑦𝑖𝒙𝑖 (4.2.12a) 
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𝑏0 =
1

𝑁𝑆𝑉
(∑ (

1

𝑦𝑠
− 𝒙𝑠 ∙ 𝒘0)

𝑁𝑆𝑉

𝑠=1

). (4.2.12b) 

 

The fact that the summation in Eq. 4.2.12a goes over all training data patterns (i.e., from 

1 to 𝑛) is irrelevant because the Lagrange multipliers for all non-support vectors (NSV) equal 

zero (𝛼0𝑖  = 0, for i = NSV + 1,…, n). Finally, having calculated 𝒘0  and 𝑏0  a decision 

hyperplane 𝑑(𝒙) and an indicator function 𝑖𝐹 are obtained 

 

 
𝑑(𝒙) = ∑𝜔0𝑖𝑥𝑖 + 𝑏0 = ∑𝛼𝑖𝑦𝑖(𝒙𝑖 ∙ 𝒙) + 𝑏0

𝑛

𝑖=1

𝑛

𝑖=1

 (4.2.13a) 

 

 𝑖𝐹 = 0 = 𝑠𝑖𝑔𝑛(𝑑(𝒙)). (4.2.13b) 

 

Training data patterns having non-zero Lagrange multipliers are called support vectors. 

For linearly separable training data, all support vectors lie on the margin and they are generally 

just a small portion of all training data (typically, 𝑁𝑆𝑉 << 𝑛). 

 

Linear soft margin classifier for overlapping classes 

 

The learning procedure presented before is valid for linearly separable data which 

means, from the experimental point of view, training data sets with no overlapping data. 

Quadratic programming solutions as explained above cannot be used in the case of overlapping 

because the constraints 𝑦𝑖[𝒘 ∙ 𝒙𝑖 + 𝑏] ≥ 1, for 𝑖 = 1, … , 𝑛  cannot be satisfied. The overlapped 

data points cannot be correctly classified, and this means that for any misclassified training data 

point 𝒙𝑖, the corresponding 𝛼𝑖 will tend to infinity. In such a situation, the algorithm chooses 

almost all training data points as support vectors. To find a classifier with a maximal margin, 

the algorithm must be changed allowing some data to be unclassified or leaving some of them 

as incorrectly classified. In practice, a soft margin is allowed and all data inside this margin 

(whether on the correct or wrong side of the separating line) are neglected. The width of a soft 

margin can be controlled by a corresponding penalty parameter 𝐶 . Similarly to the case 

presented before, the goal is to minimize the equation 

 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 

1

2
𝒘𝑇𝒘 + 𝐶(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑑𝑎𝑡𝑎) (4.2.14) 

 

where 𝐶 is a penalty parameter which takes into account the margin size (defined by 𝒘) and the 

number of misclassified points. Large 𝐶  leads to small number of misclassifications, and 

consequently to a smaller margin and vice versa. Obviously taking 𝐶 = ∞ requires that the 

number of misclassified data is zero and, in the case of an overlapping, this is not possible. 

Hence, the problem may be feasible only for some value 𝐶 < ∞. 

To be more precise, it is convenient to measure the distances ξ𝑖  of the points in the 

region enclosed by the two margins with respect to the corresponding and trade their sum for 

the margin size as given by Eq. 4.2.15 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 

1

2
𝒘𝑇𝒘 + 𝐶(𝑠𝑢𝑚 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑟𝑜𝑛𝑔 𝑠𝑖𝑑𝑒 𝑝𝑜𝑖𝑛𝑡𝑠). (4.2.15) 

 

This is exactly how the problem of the data overlapping was solved in the literature. The 

separating hyperplane must now satisfy 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 

1

2
𝒘𝑇𝒘 + 𝐶 ∑ξ𝑖

𝑛

𝑖=1

 (4.2.16) 

 

subject to 

 𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) ≥ 1 − ξ𝑖 , 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛, ξ𝑖 ≥ 0 (4.2.17) 

 

which means 

 (𝒘 ∙ 𝒙𝑖 + 𝑏) ≥ 1 − ξ𝑖 , 𝑓𝑜𝑟 𝑦𝑖 = +1, ξ𝑖 ≥ 0 (4.2.18a) 

 

 (𝒘 ∙ 𝒙𝑖 + 𝑏) ≤ −1 + ξ𝑖 , 𝑓𝑜𝑟 𝑦𝑖 = −1, ξ𝑖 ≥ 0. (4.2.18b) 

 

Hence, for such a generalized optimal separating hyperplane, the functional to be 

minimized comprises an extra term. The function above can be even more general  

 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 

1

2
𝒘𝑇𝒘 + 𝐶 ∑ξ𝑖

𝑘

𝑛

𝑖=1

 (4.2.19) 

 

subject to the same constraints. This is a convex programming problem that is usually solved 

only for k = 1 or k = 2, and such soft margin SVMs are dubbed L1 and L2 SVMs respectively. 

By choosing exponent k = 1, neither ξ𝑖  nor their Lagrange multipliers 𝛽𝑖  appear in a dual 

Lagrangian 𝐿𝑑. Same as for a linearly separable problem presented previously, for L1 SVMs (k 

= 1), the solution to a quadratic programming problem, is given by the saddle point of the primal 

Lagrangian 𝐿𝑃(𝒘, 𝑏, ξ, 𝛼, 𝛽) shown below  

 
𝐿𝑃(𝒘, 𝑏, ξ, 𝛼, 𝛽) =

1

2
‖𝒘‖2 + 𝐶 (∑ξ𝑖

𝑛

𝑖=1

)

− ∑𝛼𝑖[𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) − 1 + ξ𝑖]

𝑛

𝑖=1

− ∑𝛽𝑖ξ𝑖, 𝑓𝑜𝑟 𝐿1 𝑆𝑉𝑀

𝑛

𝑖=1

 

 

(4.2.20) 

where 𝛼𝑖 and 𝛽𝑖 are the Lagrange multipliers. The optimal saddle point (𝒘0, 𝑏0, ξ0, 𝛼0, 𝛽0) must 

be found in order for the Lagrangian 𝐿𝑃 to be minimized with respect to 𝑤, 𝑏, ξ and maximized 

with respect to nonnegative 𝛼𝑖 and 𝛽𝑖. As before, the solution in a dual space is considered  

 

 𝜕𝐿

𝜕𝒘0
= 0  𝑖. 𝑒.  𝒘0 = ∑𝛼𝑖

𝑛

𝑖=1

𝑦𝑖𝒙𝑖  (4.2.21a) 

 

 𝜕𝐿

𝜕𝑏0
= 0  𝑖. 𝑒.  ∑𝛼𝑖

𝑛

𝑖=1

𝑦𝑖 = 0 (4.2.21b) 
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 𝜕𝐿

𝜕ξ𝑖
= 0  𝑖. 𝑒.   𝛼𝑖 + 𝛽𝑖 = 𝐶 (4.2.21c) 

 

and the KKT complementarity conditions below 

 

 𝛼𝑖[𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) − 1 + ξ𝑖] = 0   𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 (4.2.22a) 

 

 𝛽𝑖ξ𝑖 = (𝐶 − 𝛼𝑖)ξ𝑖 = 0   𝑓𝑜𝑟 𝑖 = 1,… , 𝑛. (4.2.22b) 

 

At the optimal solution, due to the KKT conditions, the last two terms in the primal 

Lagrangian 𝐿𝑃 vanish and the dual variables Lagrangian 𝐿𝑑(𝛼), for L1 SVM, is not a function 

of 𝛽𝑖 

 

 
𝐿𝑑(𝛼) = − 

1

2
∑ 𝛼𝑖𝑦𝑖𝛼𝑗𝑦𝑗(𝒙𝑖 ∙ 𝒙𝑗)

𝑛

𝑖,𝑗=1

+ ∑𝛼𝑖

𝑛

𝑖=1

. (4.2.23) 

 

To find the optimal hyperplane, the dual Lagrangian 𝐿𝑑(𝛼) has to be maximized with 

respect to nonnegative and (unlike before) smaller than or equal to 𝐶, 𝛼𝑖  

 

 𝐶 ≥ 𝛼𝑖 ≥ 0, 𝑖 = 1,… , 𝑛 (4.2.24) 

 

and under the constraint  

 
∑𝛼𝑖𝑦𝑖 = 

𝑛

𝑖=1

0. (4.2.25) 

 

The final quadratic optimization problem is therefore the same as that for the separable 

case, with the only difference laying in the modified bounds of the Lagrange multipliers 𝛼𝑖. 

The penalty parameter 𝐶, which is now the upper bound on 𝛼𝑖, is determined by the user and 

the selection of a “proper” parameter is always done experimentally by using some cross-

validation technique. The learning problem is expressed only in terms of unknown Lagrange 

multipliers 𝛼𝑖, and known inputs and outputs. Furthermore, optimization does not solely depend 

upon input, but it depends upon a scalar product of input vectors 𝒙𝑖. Finally, expressions for 

both a decision function 𝑑(𝒙) and an indicator function 𝑖𝐹 = 𝑠𝑖𝑔𝑛(𝑑(𝒙)) for a soft margin 

classifier are same as for linearly separable classes.  
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Fig. 4.2.3: visual representation of classification problem. The red objects are the support 

vectors. Two misclassifications are also highlighted.  

 

Only three possible solutions for 𝛼𝑖 (see Fig. 4.2.3): 

 

• 𝛼𝑖 = 0, ξ𝑖 = 0, data point 𝒙𝑖 is correctly classified,  

• 𝐶 > 𝛼𝑖 > 0, → then, the two complementarity conditions must result in 𝑦𝑖(𝒘 ∙ 𝒙𝑖 +

𝑏) − 1 + ξ𝑖 = 0, and ξ𝑖 = 0. Thus, 𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) = 1 and 𝒙𝑖 is a support vector. The 

support vectors with 𝐶 > 𝛼𝑖 > 0 are called free support vectors because they lie on the 

two margins,  

• 𝛼𝑖 = 𝐶, → then, 𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) − 1 + ξ𝑖 = 0, and ξ𝑖 ≥ 0, and 𝒙𝑖 is a support vector. 

The support vectors with 𝛼𝑖 = 𝐶 are called bounded support vectors. They lie on the 

“wrong” side of the margin. For 1 > ξ𝑖 ≥ 0, 𝒙𝑖 is still correctly classified, and if ξ𝑖 ≥

1, 𝒙𝑖 is misclassified. 

 

For L2 SVM the second term in the cost function (Eq. 4.2.19) is quadratic, i.e., 

 
𝐶 ∑ξ𝑖

2

𝑛

𝑖=1

 (4.2.26) 

 

and this leads to changes in a dual optimization problem, 

 

 
𝐿𝑑(𝛼) = − 

1

2
∑ 𝛼𝑖𝑦𝑖𝛼𝑗𝑦𝑗 (𝒙𝑖 ∙ 𝒙𝑗 +

𝛿𝑖𝑗

𝐶
)

𝑛

𝑖,𝑗=1

+ ∑𝛼𝑖

𝑛

𝑖=1

 (4.2.27) 

 

subject to 

 𝛼𝑖 ≥ 0, 𝑖 = 1,… , 𝑛 (4.2.28) 

 

and  

 
∑𝛼𝑖𝑦𝑖 = 

𝑛

𝑖=1

0 (4.2.29) 

 

where, 𝛿𝑖𝑗 = 1 for i = j, and it is zero otherwise.  
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4.2.3 The nonlinear SVM 
 

The linear classifiers presented above are limited. In most cases, the categories are not 

only overlapped, but the separation functions are nonlinear hypersurfaces. The approach 

presented above can be extended to create nonlinear decision boundaries. The motivation for 

such an extension is that an SV machine that can create a nonlinear decision hypersurface will 

be able to classify nonlinearly separable data (example in Fig. 4.2.4).174 This will be achieved 

by considering a linear classifier in the so-called feature space.175 

 

 
Fig. 4.2.4: visual representation of the nonlinear classification problem. A straight line is 

unable to correctly classify the squares and the circles, leading to several misclassifications 

(red objects). Instead, a parabolic line is able to distinguish correctly the two classes.  

 

Usually, for 𝑚 -dimensional input sets, an SVM will create a nonlinear separating 

hypersurface. The basic idea in designing nonlinear SVM is to map input vectors 𝒙 ∈ ℝ𝑚 into 

vectors 𝜱(𝒙) of a higher dimensional feature space F (where 𝜱 represents mapping: ℝ𝑚 → 

ℝ𝑓), and to solve a linear classification problem in this feature space 

 

 𝒙 ∈  ℝ𝑚 → 𝜱(𝒙) = [𝛷1(𝒙), 𝛷2(𝒙),… ,𝛷𝑛(𝒙)] ∈ ℝ𝑓
 (4.2.30) 

 

A mapping 𝜱(𝒙) is chosen in advance. i.e., it is a fixed function. An input space (in the 

present case, the 𝒙-space) is spanned by components 𝑥𝑖 of an input vector 𝒙 and a feature space 

𝐹 (in the 𝜱-space) is spanned by components 𝛷𝑖(𝒙) of a vector 𝜱(𝒙). The aforementioned 

mapping is useful for the algorithm to find, in a 𝜱-space, a linear separation images of 𝒙 by 

applying the linear SVM formulation presented above. The solution for an indicator function 

 

 
𝑖𝐹(𝑥) = 𝑠𝑖𝑔𝑛(𝒘 ∙ 𝜱(𝒙) + 𝑏) = 𝑠𝑖𝑔𝑛(∑𝑦𝑖𝛼𝑖𝜱

𝑇

𝑛

𝑖=1

(𝒙𝑖)𝜱(𝒙) + 𝑏) 

 

(4.2.31) 

which is a linear classifier in a feature space, will create a nonlinear separating hypersurface in 

the original input space. 𝑖𝐹(𝑥) can therefore be rewritten as  
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𝑖𝐹(𝑥) = 𝑠𝑖𝑔𝑛 (∑𝑦𝑖𝛼𝑖𝜱

𝑇

𝑛

𝑖=1

(𝒙𝑖)𝜱(𝒙) + 𝑏)

= 𝑠𝑖𝑔𝑛 (∑𝛼𝑖𝑦𝑖𝑘(𝒙𝑖, 𝒙) + 𝑏

𝑛

𝑖=1

)

= 𝑠𝑖𝑔𝑛 (∑𝑣𝑖𝑘(𝒙𝑖, 𝒙) + 𝑏

𝑛

𝑖=1

) 

 

(4.2.32) 

where 𝑣𝑖 correspond to the output layer weights of the “SVM’s network” and 𝑘(𝒙𝑖, 𝒙) denotes 

the value of the kernel function.176 Now 𝑣𝑖 are scalar values composing the weight vector 𝒗 

which dimension is equal to the number of training data points, in contrast to the previous case, 

where 𝒘 is the vector of the same dimension as the feature space vector 𝜱(𝒙). As stated before, 

the (𝑛 − 𝑁𝑆𝑉𝑠) components of 𝒗 are null, and only 𝑁𝑆𝑉𝑠 entries of 𝒗 are nonzero elements.  

Two problems can arise when mapping an input in the x-space to the higher dimensionality 

F-space: 

 

• the choice of the vector 𝜱(𝒙)  should be correct, resulting in a “rich” class of 

hypersurfaces, 

• the scalar product 𝜱𝑇(𝒙)𝜱(𝒙) can be computationally expensive due to the extremely 

large number of features 𝑓 (which represents the dimensionality of the feature space). 

 

The second obstacle is related to a phenomenon called “curse of dimensionality”. For 

example, to construct a decision surface corresponding to a polynomial of degree two in an n-

D input space, a dimensionality of a feature space 𝑓 =
𝑛(𝑛+3)

2
 is required. Performing a scalar 

product operation with vectors of such, or higher, dimensions, is not a cheap computational 

task. This explosion in dimensionality can be avoided by noticing that in the quadratic 

optimization problem, as well as in the final expression for a classifier, training data only appear 

in the form of scalar products 𝒙𝑖
𝑇 ∙ 𝒙𝑗. These products will be replaced by scalar products 

 

 𝜱𝑇(𝒙)𝜱(𝒙𝑖) =  [𝛷1(𝒙),𝛷2(𝒙),… , 𝛷𝑛(𝒙)]𝑇[𝛷1(𝒙𝑖), 𝛷2(𝒙𝑖),… ,𝛷𝑛(𝒙𝑖)] (4.2.33) 

 

in a feature space 𝐹, and the latter can be and will be expressed by using the kernel function  

 

 𝐾(𝒙𝑖, 𝒙𝑗) = 𝜱𝑇(𝒙𝑖)𝜱(𝒙𝑗) (4.2.34) 

 

which is a function in the input space.177 Thus, the basic advantage in using kernel function 

𝐾(𝒙𝑖, 𝒙𝑗) is in avoiding performing a mapping 𝜱(𝒙). Instead, the required scalar products in a 

feature space 𝜱𝑇(𝒙𝑖)𝜱(𝒙𝑗) are calculated directly by computing kernels 𝐾(𝒙𝑖, 𝒙𝑗) for given 

training data vectors in an input space. In this way, the extremely high dimensionality of a 

feature space 𝐹 is avoided. In addition, as will be shown below, by applying kernels we do not 

even have to know what the actual mapping 𝜱(𝒙) is. Further details and a complete list of 

kernels are findable in the literature.178 
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4.2.4 Regression by support vector machine 
 

In the regression procedure, the functional dependence of the output variable 𝑦 ∈ ℝ  

is estimated based on the 𝑚-dimensional input variable 𝒙. Thus, the object of study are real 

valued functions with the mapping going from an input ℝ𝑚  space to an output space of 

dimensionality ℝ1. Same as in the case of classification, this will be achieved by training the 

SVM model on a training data set. Initially developed for solving classification problems, SV 

techniques can be successfully applied in regression, i.e., for a functional approximation 

problem. The general regression learning problem is set as follows: the learning machine is 

given 𝑛 training data from which it attempts to learn the input-output relationship (dependence, 

mapping or function) 𝑓(𝒙) . A training data set 𝐷 =  {[𝒙(𝑖), 𝑦(𝑖)]  ∈  ℝ𝑛  ×  ℝ,  being 𝑖 =

 1, . . . , 𝑛}  consists of n pairs (𝒙1, 𝑦1), (𝒙2, 𝑦2), . . . , (𝒙𝑛, 𝑦𝑛) , where the inputs 𝒙  are n-

dimensional vectors 𝒙 ∈ ℝ𝑛 and system responses 𝑦 ∈ ℝ , are continuous values. As for the 

previous case, a regression hyperplane 𝑓(𝒙,𝒘) can be expressed as 

 

 𝑓(𝒙,𝒘)  =  𝒘 ∙ 𝒙 + 𝑏 . (4.2.35) 

 

In the case of SVM’s regression, the error of approximation is exploited in spite of the 

margin. The Vapnik’s linear loss (error) function with ε-insensitivity may be exploited, which 

is defined as 

 

 
𝐸 (𝒙, 𝑦, 𝑓) =  |𝑦 − 𝑓(𝒙,𝒘)|𝜀 = {

0,                    if |𝑦 − 𝑓(𝒙,𝒘)| ≤ 휀

  |𝑦 − 𝑓(𝒙,𝒘)| −  휀, otherwise
 (4.2.36a) 

 

or as 

 𝑒(𝒙, 𝑦, 𝑓) = max(0, |𝑦 − 𝑓(𝒙,𝒘)| − 휀) (4.2.36b) 

 

Thus, loss = 0 is obtained if the difference between the predicted 𝑓(𝒙𝑖, 𝒘) and the 

measured value 𝑦𝑖  is less than ε. Vapnik’s ε-insensitivity loss function defines an ε tube, 

represented in Fig. 4.2.5. If the predicted value is within the tube, the loss is zero. For all other 

points outside the tube, the loss equals the magnitude of the difference between the predicted 

value and the radius ε of the tube. 

 

 
Fig. 4.2.5: visual representation of the ε tube. Cyan squares on the boundary of the tube are 

support vectors, yellow ones are not. 
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The two classic error functions are: a square error, i.e., 𝐿2 norm (𝑦 − 𝑓)2, as well as an 

absolute error, i.e., 𝐿1 norm, least modulus |𝑦 − 𝑓|. Note that for ε = 0, Vapnik’s loss function 

equals a least modulus function. Typical graph of a (nonlinear) regression problem as well as 

all relevant mathematical objects required in learning unknown coefficients 𝑤𝑖 are shown in 

Fig. 4.2.6. As for the classification problem, SVM regression’s algorithm will be formulated 

for the linear case first and then, applying mapping to a feature space, and using the kernel trick, 

they will be extended to nonlinear regression hypersurface. Here, for the regression, the 

empirical error term 𝑅𝑒𝑚𝑝 is measured using by Vapnik’s ε-insensitivity loss function given by 

Eq. 4.2.36 and shown in Fig. 4.2.6c. 

 

 
Fig. 4.2.6: different error typologies. 

 

The empirical risk is given as 

 
𝑅𝑒𝑚𝑝

𝜀 (𝒘, 𝑏) =  
1

𝑛
 ∑|𝑦𝑖 − 𝒘 ∙ 𝒙i − 𝑏|𝜀

𝑛

𝑖=1

  (4.2.37) 

 

Fig. 4.2.7 shows two linear approximating functions as dashed lines inside an ε-tube having the 

same empirical risk 𝑅𝑒𝑚𝑝
𝜀  as the regression function 𝑓(𝒙,𝒘) on the training data. 

 

 
Fig. 4.2.7. two linear approximations inside an ε tube (green dashed lines) have the same 

empirical risk 𝑅𝑒𝑚𝑝
𝜀  on the training data as the regression function. 
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The goal is to simultaneously minimize both the empirical risk 𝑅𝑒𝑚𝑝
𝜀  and ‖𝒘‖2. Thus, 

as in the classification case, a linear regression hyperplane 𝑓(𝒙,𝒘) = 𝒘𝑇𝒙 + 𝑏  is built by 

minimizing 

 

 
𝑅 = 

1

2
 ‖𝒘‖2 + 𝐶 ∑|𝑦𝑖 − 𝑓(𝒙𝑖, 𝒘)|𝜀

𝑛

𝑖=𝑙

  . (4.2.38) 

 

Note that Vapnik’s ε-insensitivity loss function instead of a squared error is used now. 

It is possible to distinguish the training data as 

 

 |𝑦 − 𝑓(𝒙,𝒘)| − 휀 = 𝜉  (4.2.39) 

 

for data “above” an ε-tube or 

 

 |𝑦 − 𝑓(𝒙,𝒘)| − 휀 = 𝜉∗  (4.2.40) 

 

for data “below” an ε-tube. Thus, minimizing the risk 𝑅 is the same process as the minimization 

of  

 

 

𝑅w,𝜉,𝜉∗ = [
1

2
 ‖𝒘‖2 + 𝐶 (∑𝜉𝑖

𝑙

𝑖=𝑙

+ ∑𝜉𝑖
∗

𝑙

𝑖=1

)], (4.2.41) 

 

under constraints 

 

 𝑦𝑖 − 𝒘 ∙ 𝒙𝑖 − 𝑏 ≤ 휀 + 𝜉𝑖  ,       𝑖 = 1,… , 𝑛 (4.2.42a) 

 

 𝒘 ∙ 𝒙𝑖 + 𝑏 − 𝑦𝑖 ≤ 휀 + 𝜉𝑖
∗ ,      𝑖 = 1, . . , 𝑛  (4.2.42b) 

 

 𝜉𝑖 ≥ 0, 𝜉𝑖
∗ ≥ 0,                  𝑖 = 1,… , 𝑛  (4.2.42c) 

 

where 𝜉𝑖  and 𝜉𝑖
∗  are positive slack variables; 𝛼𝑖  and 𝛼𝑖

∗ , will be nonzero values for training 

points “above” and “below” an ε-tube respectively. Since no training data can be on both sides 

of the tube, either 𝛼𝑖 or 𝛼𝑖
∗ will be nonzero. For data points inside the tube, both multipliers will 

be equal to zero. Thus 𝛼𝑖𝛼𝑖
∗ = 0 . 

Note also that the constant 𝐶 is a parameter that is chosen by the user. An increase in 𝐶 

penalizes larger errors because it forces 𝜉𝑖 and 𝜉𝑖
∗ to be small. This leads to an approximation 

error decrease which is achieved only by increasing the weight vector norm ‖𝒘‖. Another 

design parameter is represented by the ε value that defines the size of an ε-tube. The choice of 

ε value is easier than the choice of 𝐶 and it is given as either maximally allowed or some given 

or desired percentage of the output values 𝑦𝑖 (say, ε = 0.1 of the mean value of 𝒚). 

The constrained optimization problem is solved by forming a primal variables 

Lagrangian as follows, 
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 𝐿𝑝(𝒘, 𝑏, 𝜉𝑖 , 𝜉𝑖
∗, 𝛼𝑖 , 𝛼𝑖

∗, 𝛽𝑖, 𝛽𝑖
∗)

=
1

2
𝒘𝑇𝒘 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗) − ∑(𝛽𝑖
∗𝜉𝑖

∗ + 𝛽𝑖𝜉𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

 

−∑𝛼𝑖[𝒘 ∙ 𝒙𝑖 + 𝑏 − 𝑦𝑖 + 𝜉 + 𝜉𝑖
∗]

𝑛

𝑖=1

 

−∑𝛼𝑖
∗

𝑛

𝑖=1

[𝑦𝑖 − 𝒘 ∙ 𝒙𝑖, −𝑏 + 𝜉 + 𝜉𝑖
∗] 

(4.2.43) 

 

The primal variables Lagrangian 𝐿𝑝(𝒘, 𝑏, 𝜉𝑖 , 𝜉𝑖
∗, 𝛼𝑖𝛼𝑖

∗, 𝛽𝑖, 𝛽𝑖
∗) expressed above must be 

minimized with respect to primal variables 𝒘, 𝑏, 𝜉𝑖  and 𝜉𝑖
∗  and maximized with respect to 

Lagrange multipliers 𝛼, 𝛼𝑖
∗, 𝛽 and 𝛽𝑖

∗ having the saddle point at the solution (𝒘0, 𝑏0,  𝜉𝑖0, 𝜉𝑖0
∗ ) 

to the original problem. At the optimal solution the partial derivatives of 𝐿𝑝 in respect to primal 

variables vanish (because of the nature of saddle point): 

 

 𝜕𝐿𝑝(𝒘0, 𝑏0, 𝜉𝑖0, 𝜉𝑖0
∗ , 𝛼𝑖, 𝛼𝑖

∗, 𝛽𝑖, 𝛽𝑖
∗)

𝜕𝝎
= 𝝎0 − ∑(𝛼𝑖 − 𝛼𝑖

∗)𝒙𝑖 = 0

𝑛

𝑖=1

 (4.2.44a) 

 

 𝜕𝐿𝑝(𝒘0, 𝑏0, 𝜉𝑖0, 𝜉𝑖0
∗ , 𝛼𝑖 , 𝛼𝑖

∗, 𝛽𝑖, 𝛽𝑖
∗)

𝜕𝑏
= ∑(𝛼𝑖 − 𝛼𝑖

∗) = 0

𝑛

𝑖=1

 (4.2.44b) 

 

 𝜕𝐿𝑝(𝒘0, 𝑏0, 𝜉𝑖0, 𝜉𝑖0
∗ , 𝛼𝑖 , 𝛼𝑖

∗, 𝛽𝑖, 𝛽𝑖
∗)

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0 (4.2.44c) 

 

 𝜕𝐿𝑝(𝒘0, 𝑏0, 𝜉𝑖0, 𝜉𝑖0
∗ , 𝛼𝑖, 𝛼𝑖

∗, 𝛽𝑖, 𝛽𝑖
∗)

𝜕𝜉𝑖
∗ = 𝐶 − 𝛼𝑖

∗ − 𝛽𝑖
∗ = 0. (4.2.44d) 

 

Substituting the KKT into the 𝐿𝑝 , the problem shifts to the maximization of a dual 

variables Lagrangian 𝐿𝑑(𝛼𝑖, 𝛼𝑖
∗)  

 
𝐿𝑑(𝛼𝑖, 𝛼𝑖

∗) = −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)(𝒙𝑖 ∙ 𝒙𝑗)

𝑛

𝑖,𝑗=1

− 𝜖 ∑(𝛼𝑖 + 𝛼𝑖
∗) + ∑(𝛼𝑖 − 𝛼𝑖

∗)𝑦𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

= −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)(𝒙𝑖 ∙ 𝒙𝑗) − ∑(휀 − 𝑦𝑖𝑖

)𝛼𝑖 + ∑(휀 + 𝑦𝑖𝑖
)𝛼𝑖

∗

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖,𝑗=1

 

 

(4.2.45) 

 

subjects to constraints 

 
∑𝛼𝑖

∗ = ∑𝛼𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 (4.2.46a) 

 

 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… , 𝑛 (4.2.46b) 

 

 0 ≤ 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1,… , 𝑛 (4.2.46c) 
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Note that 𝐿𝑑(𝛼𝑖, 𝛼𝑖
∗) is expressed in terms of Lagrange multipliers 𝛼𝑖 and 𝛼𝑖

∗ only. After the 

learning stage, 𝑛 Lagrange multiplier pairs (𝛼𝑖, 𝛼𝑖
∗) are obtained and the number of nonzero 

parameters 𝛼𝑖 or 𝛼𝑖
∗ is equal to the number of SVs (independent on the dimensionality of the 

input space). Given that at least one element of each pair (𝛼𝑖, 𝛼𝑖
∗), i = 1, … 𝑛, is zero, the product 

of 𝛼𝑖  and 𝛼𝑖
∗  is always zero, i.e., 𝛼𝑖𝛼𝑖

∗ = 0. At the optimal solution the following KKT 

complementarity conditions must be fulfilled 

 

 𝛼𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏 − 𝑦𝑖 + 𝜖 + 𝜉𝑖) = 0 (4.2.47a) 

 

 𝛼𝑖
∗(−𝒘 ∙ 𝒙𝑖 − 𝑏 + 𝑦𝑖 + 𝜖 + 𝜉𝑖

∗) = 0 (4.2.47b) 

 

 𝛽𝑖𝜉𝑖 = (𝐶 − 𝛼𝑖)𝜉𝑖 = 0 (4.2.47c) 

 

 𝛽𝑖
∗𝜉𝑖

∗ = (𝐶 − 𝛼𝑖
∗)𝜉𝑖

∗ = 0 (4.2.47d) 

 

From the above equations it is possible to conclude that for 0 < 𝛼𝑖 < 𝐶, 𝜉𝑖 = 0 holds. 

Similarly, it follows that for 0 < 𝛼𝑖
∗ < 𝐶, 𝜉𝑖

∗ = 0 and, for 0 < 𝛼𝑖𝛼𝑖
∗ < 𝐶, follows, 

 

 𝒘 ∙ 𝒙𝑖 + 𝑏 − 𝑦𝑖 + 𝜖 = 0 (4.2.48a) 

 

 −𝒘 ∙ 𝒙𝑖 − 𝑏 + 𝑦𝑖 + 𝜖 = 0 (4.2.48b) 

 

Thus, for all the data points fulfilling 𝑦 − 𝑓(𝑥) = 𝜖, 𝛼𝑖 must be in the interval 0 < 𝛼𝑖 <

𝐶, and for the ones satisfying 𝑦 − 𝑓(𝑥) = −𝜖, the dual variable 𝛼𝑖
∗ take on values  0 < 𝛼𝑖

∗ <

𝐶. These data points are called the free (or unbounded) support vectors. They role is to help 

computing the bias term b  

 

 𝑏 = 𝑦𝑖 − 𝒘 ∙ 𝒙𝑖 − 휀, 𝑓𝑜𝑟 0 < 𝛼𝑖 < 𝐶 (4.2.49a) 

 

 𝑏 = 𝑦𝑖 − 𝒘 ∙ 𝒙𝑖 + 휀, 𝑓𝑜𝑟 0 < 𝛼𝑖
∗ < 𝐶 (4.2.49b) 

 

The best way to compute the bias 𝑏 is taking the average over all the free support 

vectors, because the calculation requires high precision. For all the data points outside the ε-

tube,  𝜉𝑖 > 0  and 𝜉𝑖
∗ > 0, 𝛼𝑖 = 𝐶 for the points above and 𝛼𝑖

∗ = 𝐶 for the points below the 

tube. These data are the so-called bounded support vectors. It is important to note that all the 

training data points within the tube are neither support vectors nor they construct the decision 

function 𝑓(𝑥). 
The optimal weight vector of the regression hyperplane can be written as 

 
𝒘0 = ∑(𝛼𝑖 − 𝛼𝑖

∗)𝒙𝑖

𝑛

𝑖=1

 (4.2.50) 

 

and the best regression hyperplane obtained is given by 

 
𝑓(𝒙,𝒘) = 𝒘0 ∙ 𝒙 + 𝑏 = ∑(𝛼𝑖 − 𝛼𝑖

∗)𝒙𝑖 ∙ 𝒙 + 𝑏

𝑛

𝑖=1

 (4.2.51) 

 

The nonlinear task is a more challenging problem. The generalization to nonlinear 

regression (NR) can be performed by carrying the mapping to the feature space, or by using 

kernel functions. Therefore, the NR function in an input space will be devised considering a 
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linear regression hyperplane in the feature space. Recalling the explanation given for the 

classification problem, the input vectors 𝒙 ∈  ℝ𝑚 are mapped into vectors 𝜱(𝒙) of a higher 

dimensional feature space 𝐹  (where 𝜱  represents mapping: ℝ𝑚  → ℝ𝑓  ) then the linear 

regression problem in this feature space can be solved exploiting the algorithms expressed 

above. In fact, by performing the described mapping in a 𝜱-space, the hope is that the learning 

algorithm will be able to perform a linear regression hyperplane by applying the linear 

regression SVM formulation, expecting this approach to lead to solving a quadratic 

optimization problem with inequality constraints in the feature space. The linear (in space 𝐹) 

solution for the regression hyperplane 𝑓 = 𝒘 ∙ 𝜱 + 𝑏, will then generate a nonlinear regressing 

hypersurface in the original input x space. An optimal weighting vector of the kernel’s 

expansion can be found as 

 

 𝒗0 = 𝜶 − 𝜶∗. (4.2.52) 

 

With respect to the previous (classification) case, in a non-linear SVMs’ regression, the optimal 

weight vector 𝒘0 could often be of infinite dimension. This is the reason why the best NR 

function is created by using the weighting vector 𝒗0 and the kernel (Gramian matrix G where 

𝐺𝑖𝑗 = 𝚽𝑇(𝒙𝑖)𝚽(𝒙𝑗)) as follows, 

 

 𝑓(𝒙,𝒘) = 𝑮𝒗𝟎 + 𝑏 (4.2.53) 

 

therefore  

 𝑮𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗). (4.2.54) 

 

In the same way it is possible to obtain: 

 
𝑤0 = ∑(𝛼𝑖 − 𝛼𝑖

∗)𝜱(𝒙𝑖)

𝑛

𝑖=1

 (4.2.55) 

and 

 
𝑓(𝑥, 𝑤) = ∑(𝛼𝑖 − 𝛼𝑖

∗)𝜱𝑇(𝒙𝑖)𝜱(𝒙) + 𝑏 =

𝑛

𝑖=1

∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝒙𝑖 , 𝒙) + 𝑏

𝑛

𝑖=1

. (4.2.56) 

 

If the bias term 𝑏 is explicitly used as in Eq. 4.2.53 then, for an NL SVMs’ regression, 

it can be calculated from the upper SVs as, 

 

 

𝑏 = 𝑦𝑖 − ∑ (𝛼𝑗 − 𝛼𝑗
∗)𝐾(

𝑁 𝑓𝑟𝑒𝑒𝑢𝑝𝑝𝑒𝑟 𝑆𝑉

𝑗=1

𝒙𝑖, 𝒙𝑗) − 𝜖 (4.2.57b) 

 

or from the lower ones as, 

 

𝑏 = 𝑦𝑖 − ∑ (𝛼𝑗 − 𝛼𝑗
∗)𝐾(

𝑁 𝑓𝑟𝑒𝑒𝑙𝑜𝑤𝑒𝑟 𝑆𝑉

𝑗=1

𝒙𝑖, 𝒙𝑗) + 𝜖 (4.2.57b) 

 

Note that 𝛼𝑗
∗ = 0 in Eq. 4.2.57a and so is 𝛼𝑗 = 0 in Eq. 4.2.57b. Similarly to the linear 

case, it is better to calculate the bias term 𝑏 averaging over all the free support vector data 

points. All three parameters’ sets involving the insensitivity zone ε, the penalty parameter 𝐶 

shape and the kernel function should be selected by the user. The parameter selection is usually 
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a though procedure. The most popular method to facilitate the task is the cross-validation, which 

exploits at the beginning a trial and error approach to find at least one of the three parameters 

described. 

 

4.2.5 Case study 
 

The SVM algorithms have been exploited for the commissioning of the prototype 

machine to detect defects and classify reflectance properties of reflectors. For this case, non-

linear classifiers have been used due to the nature of the experimental data. In fact, the input 

data are not classifiable with a linear dependence and non-linear techniques must be used. In 

particular, the Gaussian Radial Basis function (RBF) has been chosen as kernel which can be 

expressed as  

 

 𝐾(𝒙𝒊, 𝒙𝒋) = 𝑒−‖𝒙𝒊−𝒙𝒋‖
2
/2𝜎2

 (4.2.58) 

 

or 

 

 𝐾(𝒙𝒊, 𝒙𝒋) = 𝑒−𝛾‖𝒙𝒊−𝒙𝒋‖
2

. (4.2.58) 

 

This kernel is of the general type where 𝐾(𝒙𝒊, 𝒙𝒋) depends on 𝒙𝒊 and 𝒙𝒋 only through 

the norm 

  

 𝐾(𝒙𝒊, 𝒙𝒋) = 𝑘 (‖𝒙𝒊 − 𝒙𝒋‖
2
). (4.2.59) 

 

It nonlinearly maps samples into a higher dimensional space with the possibility to 

handle the case where relation between class labels and attributes is nonlinear.179 It is based on 

a supervised learning methodology; in fact, it must be given to the algorithm some input-output 

pairs as examples in order to be trained. The RDF kernel is fast, does not require high computing 

performances and it supplies reliable results.180,181 The advantages of using the RDF kernel, 

with respect to polynomial ones are multiple: it has less hyperparameters, which influence the 

complexity of the described model, and its kernel is limited to values in the range 0 <

𝐾(𝑥𝑖, 𝑥𝑗) ≤ 1 in contrast to polynomial ones which may go to zero or to infinite. However, 

there are some situations where the RBF kernel is not suitable. Particularly, when the number 

of features is very large, one may just use the linear kernel and try to find the correct linear 

approximation. Two parameters are present in the RBF kernel: 𝐶 and 𝛾 (𝛾 explicitly expressed 

in the kernel formula while 𝐶 is the well-known penalty parameter). The values of the two 

parameters are not known beforehand; consequently, some kind of model selection (parameter 

search) must be performed to correctly analyze the data. The goal is to identify good (𝐶, 𝛾) so 

that the classifier can accurately predict unknown data (the so-called testing data). To test the 

algorithms based on the kernel described above, two sets of samples have been prepared: the 

training set, used to teach the prototype machine how to recognize compliant and non-compliant 

components, and the validation set, exploited to check if the detection rate is sufficient for the 

detection.182 
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5. Automated characterization of outer lenses 
 

5.1 Introduction 
 

In the past, monitoring the quality of products was a human task. A dedicated operator 

had to take the decision whether a part was compliant or not, evaluating it in every single detail. 

Thus, several cofactors could have influenced the judgment: for example, poor ambient lighting 

and environmental conditions could have led to a quality check failure, with the presence of 

both false positive and false negative results. In addition, depending on the typology and 

dimensions of the component, the analysis could have taken a considerable amount of time, 

thus slowing or even limiting as a bottle neck the production chain.183 An automated testing 

process for components is the key to improve the situation. Since computer vision systems can 

provide a fast and reliable analysis, in the present times automated inspection is exploited in 

multiple and various branches.184,185 In the specific case of the automotive industry, in order to 

fulfill the market requests asking for progressively novel and more performing components, the 

need of an automated analysis system is strongly rising to maintain high productive standards 

and to reduce the inspection time.186 The automotive lighting industry is not an exception in 

this constant upgrading progression: new technologies are exploited, and novel inspection 

methods are required to monitor different steps of the production chain. Spots of different color, 

cracks, incompleteness, excess and/or lack of material are just some examples of defects 

affecting the components of a rear lamp, which lead to discard the component or, even worse, 

the entire lamp. In this chapter, the attention is focused on the detection of structural and 

aesthetical defects that may arise during the production of the Mercedes E-class outer lens. 

 

 
Fig. 5.1.1: left panel, example of rear lamp. Central panel, CAD model of the outer lens scanned 

with the prototype machine. Right panel, picture of the real outer lens. 

 

The outer lens is the most external part of an automotive lamp and it must be qualitatively 

perfect, without flaws (examples representing the complete lamp, the CAD model and the outer 

lens are reported in Fig. 5.1.1). It is manufactured via injection molding of PMMA granules 

and the desired shape is obtained by means of steel molds in which the liquid PMMA is flown. 

The process is extremely accurate, but in some cases it is possible to have some defects in the 

shape or in the aesthetical aspects of the lens. In the specific case, selected examples are: 

   

• Black spot: it is a small, dark, opaque area, which is observable due to the high contrast 

with the PMMA on which the defect is formed. 

• Vinyl disk defect: in the zone affected by this flaw a wave-like behavior denoted by 

high surface roughness is visible, reminding the surface of a vinyl disk.  
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• Incompleteness: this macro-defect arises from an incomplete filling of the mold by the 

liquid PMMA and it is observable in a partial lack of a part (or more) of the lens. 

• Scratch: visible as a scrape of various size and depth on the surface of the lens, the 

nature of this defect is various, but it is mainly caused by physical contact of the sample 

with other sharp objects. 

• Air bubble: it is a region where the filling of the fluid PMMA is not complete cause of 

a small quantity of air inside the mold, leading to the formation of a zone with different 

transparency with respect to the rest of the lens. 

• Crack: macro-flaw visible as rupture or rift in the lens, due to problems in the injection 

of the liquid PMMA. 

 

 
Fig. 5.1.2: images representing some of the defects described. Black spot (a), air bubble (b), 

incompleteness (c), and crack (d). 

 

Fig. 5.1.2 reports some of the abovementioned defects. In the view of designing an 

automated inspection process, three steps are necessary to classify a defect univocally: data 

acquisition (scanning of the lens), image analysis (defects spotting), and defect evaluation 

(classification and attribution of a severity index). The full description of these three steps will 

be presented in the following. In addition, optical simulations performed to replicate all the 

possible defects’ aspects and positions will be introduced. These simulations have been crucial 

to determine the feasibility of the different detection procedures and, therefore, fundamental for 

the entire prototype machine.  
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5.2 Layout and simulations 
 

The pieces under examination are transparent and do not emit light by themselves 

therefore, in order to be analyzed, an external light source must be exploited. The lighting 

system is placed behind the lens, opposite to the camera and, taking advantage of the 

transparency of the outer lens, the signal can be acquired in transmission mode. The defects 

presented in the last section have different nature and they need different inspection 

methodologies to be analyzed. In order to be able to detect all the different types of flaws, a 

homemade illuminator has been designed. Optical simulations involving ray-tracing (both 

forward- and back-tracing) have been performed to determine the setup configuration yielding 

proper illumination conditions; moreover, the simulations were fundamental in order to 

understand how to detect all the possible defects arising on the lenses. These have been 

performed by means of a proprietary working environment allowing the ray-tracing calculation 

in CATIA, a multi-platform software suite for computer-aided design (CAD). To better detect 

the defects on the transparent component, the light source has been designed to achieve a near 

Lambertian distribution, so that its brightness is the same regardless the observer’s angle of 

view. In Fig. 5.2.1a, the lateral view of the illuminator is schematized. The white foil 

contributes to the diffusion of light and to reduce the intensity peaks in the region close to each 

LED, while the aluminum foil on the back helps reflecting the light in the correct direction. A 

LED light strip composed of 40 LEDs is placed on the bottom of the illuminator and in Fig. 

5.2.1b, the geometric distribution of the LEDs on the stripe is represented.  

 

 
Fig. 5.2.1: (a) lateral view of the homemade illuminator (light source). (b), sizes of the LED 

stripe. 
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The emission spectrum of each LED is represented in Fig. 5.2.2. The white light is 

obtained combining the blue and yellow peaks evidenced in the emission spectrum.   

 

 
Fig. 5.2.2: emission intensity of the LEDs exploited for the illumination system. The white light 

is obtained by combining blue and yellow light, whose peaks are reported for a wavelength of 

450 nm and 560 nm. 

 

An opal diffuser, placed in the front side of the illuminator, helps spreading the light. 

An opal material is characterized by random micro-structures inside it having different 

refractive index with respect to the material in which they are immersed. These random 

“blisters” help scattering light randomly in all directions, as it is possible to see from the picture 

reported in Fig.5.2.3.  

 

 
Figure 5.2.3: frontal picture of the illuminator.   
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The preliminary simulations performed to control if the illuminator can be compared to 

a Lambertian emitter are represented in Fig. 5.2.4.  

 

 
Fig. 5.2.4: ray-tracing simulation of the light source, with 2000 rays (a), 10000 rays (b) and 

8000 rays from two different perspectives (c and d). 

 

These simulations were performed exploiting the ray-tracing rendering technique 

selecting a different number of rays and a different perspective. The spatial uniformity of the 

emitted light testified the goodness of the setup. In the next pages, the simulations of defects 

appearance on the outer lens are reported. The simulations have been performed prior to the 

realization of the machine to test different geometrical configurations to better detect every kind 

of flaw. All defect-simulations have been performed in the back-tracing configuration, which 

is far more realistic. Moreover, even if back-tracing simulations take more time and require a 

more powerful GPU, it is the only method to simulate the passive functions of the lamp (i.e. 

components which do not emit light by themselves).  

The actual inspection system is surrounded by dark panels, which are used to shield light 

coming from the surrounding environment. The prototype machine is illustrated in Fig. 5.2.5. 
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Fig. 5.2.5: representation of the prototype machine: the illuminator (on the left) lights up the 

outer lens (in the middle); the images are then acquired by a camera (on the right). It is possible 

to see the dark panels used to shield the system from the external light. 

 

The detector is a GigE “mvBlueCOUGAR-X104C (2048x1088)” camera. The camera 

and the illuminator can move along three axes, while the lens can only rotate around the center 

of the footboard where it is placed, to maintain the orthogonality between its surface and the 

line connecting the illuminator and the camera. By moving the camera and the illuminator 

together, it is possible to collect a set of high-resolution images (which are always taken at some 

pre-determined fixed positions during the scans) and to analyze them without the severe 

distortion induced by the shape of the outer lens. The coordination of the source-camera 

movements is fundamental in pursuance of minimizing the distortion induced by the curved 

lens surface. A filter with three structures (two dark disks and one dark grating) is superimposed 

on the illuminator (scheme in Fig. 5.2.6). Thanks to this framework, it is possible to distinguish 

on the illuminator three different regions: the “transmission area” which has no structures on it, 

the “refraction area” with two dark disks on it, and the “pattern area” with the dark grating.  
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Fig. 5.2.6: schematic representation of the illuminator. Three zones are clearly visible: from 

left to right, the first is the region with the two black disks (refraction area), the second is the 

region without features on it (transmission area), and the last one is characterized by the 

presence of the pattern (pattern area). The numbers outside the golden frame represent the 

physical sizes of the illuminator and are expressed in cm. 

 

These zones are specifically designed to detect different defects on the lens. The three 

areas are associated with different light scattering properties: in the “transmission area” the 

intensity of the light reaching every pixel of the camera is evaluated. This zone allows for a 

uniform illumination of the portion of the lens under examination in order to detect component’s 

regions with low transparency due to the presence of defects. The defects here analyzable could 

belong to one of two main families: presence of a dark spot that reflects or absorbs light and 

presence of discontinuity of the plastic material that inhibits light propagation in precise 

directions. Here in the specific black spots, air bubbles, cracks and incompleteness defects will 

be analyzed. In the “refraction zone”, due to the presence of the disks on the illuminator, the 

light comes with an incident angle that is not normal to the surface. Therefore, part of the 

refracted light can hit the camera if a defect on the surface of the lens modifies the path of the 

light beam. The blemish will be detected looking for high intensity signal in low intensity 

regions (dark background due to the presence of the disks in the background). In the “pattern 

zone” the interaction of light with the surface of the lens is similar to the one described for the 

“refraction zone”, but here the defects that are meant to be analyzed produce a quite regular and 

smooth distortion of the image, enhanced by the pattern superimposed to the illuminator to 

better recognize the defects in examination. Vinyl disk flaws are analyzed here. 
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5.3 Working principle 
 

Different illumination conditions are used to better detect the defects under examination, 

therefore diverse algorithms are used for different blemishes. In fact, they are different in 

nature, physical aspect and properties. The implemented algorithms will be synthesized here, 

divided in categories. 

 

5.3.1 Transmission region 
 

In this region no filters on the backlight are present and multiple defects can be analyzed 

thanks to this setup: black spots, air bubbles, cracks, incompleteness. 

 

Black spots 

 

The presence of black spots (possible causes described in Section 2.1.2) inhibits the 

correct transmission of light in a region of the size of the defect itself. To perform the simulation 

of a black spot on the surface of an outer lens, the defect has been represented as a perfect circle 

made by a different material with respect to the whole compliant lens, showing dark appearance. 

In particular, the real part of the refractive index for the outer lens is 1.493, while the black spot 

has been treated like a perfect absorber, which means all the light rays impinging on it are 

absorbed. The output of the backtracing simulation is reported in Fig. 5.3.1. 

   

 
Fig. 5.3.1: back-tracing simulation of the black spot detected in the transmission region. Rays 

used: 8.000.000. 

  

The actual result obtained starting from the images, taken by the machine and reported 

in Fig. 5.3.2, is close to and in agreement with the simulations. 
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Fig. 5.3.2: two possible cases of black spot. In the detection phase the multi-scale kernels permit 

to identify approximate position and scale (highlighted by the green circles). In the first case 

(a), two scales have been associated to the same position, while in the second (b) just one scale 

is used.   

 

Defining 𝐼 as the image taken by the camera and 𝑠 the scale of an image, the detection 

algorithm for the black spots processes the image by creating a set of masks 𝐺(𝑠, 𝐼) convolving 

the red channel (because the main color of the outer lens is red) of the image 𝐼 with kernels 

𝑘(𝑠) of different sizes 𝑠. An example of a kernel shape is represented in Fig. 5.3.3. 

 

 
Fig. 5.3.3: example of a 5x5 kernel 𝑘(𝑠) used to convolve the red channel of the image and 

obtain the desired masks 𝐺(𝑠, 𝐼).  

 

Each cell of the kernel has a variable pixel size depending on the scale 𝑠, therefore 

𝐺(𝑠, 𝐼) returns a list of possible black spots in the points (𝑥, 𝑦), which correspond to local 

maxima in the masks 𝐺(𝑠, 𝐼). For each defect candidate the radius is estimated as proportional 

to the scale of the mask 𝐺(𝑠, 𝐼), with maximum intensity in the corresponding point (𝑥, 𝑦). The 

output of this analysis is a list of candidates represented by point-coordinates (𝑥, 𝑦) in which 

the results of the convolution process is maximum. Every black spot-nominate has an esteemed 

radius which is proportional to the scale 𝑠 for which the response function has a maximum. The 

convolution is cost-demanding, therefore the integral image technique is used to speed up the 

computation.187–190 In a second phase, important features are extracted from every candidate in 

order to describe its characteristics and to find out whether it is a defect or not. Remarkable 

quantities are, for example, the compactness and bipolarity indexes. The former indicates how 

much the defect approximates the shape of a circle, while the latter indicates if the defect is 
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composed by a single spot or if it is a sum of some minor flaws. Defining 𝑃(𝑃0, 𝑃1, 𝑃2, … ) the 

parameter-space generated by the features (for example, 𝑃0 = compactness index, etc.) only the 

candidates which exhibit a feature-vector which falls inside the subspace compatible with the 

characteristics expected for a black spot are indicated as effective defects. For this, specific 

threshold values have been calibrated. 

 

Air bubble 

 

As the name suggests, air bubble defects are caused by small volumes of air trapped 

inside the PMMA; due to the presence of multiple inner interfaces, light refraction occurs at the 

defects, thus affecting the transmitted beam path. Two different simulations have been 

performed to determine how to better detect the air bubble on the illuminator: one simulation 

was performed with the blemish placed in correspondence of black disk, the other with the flaw 

on the bare illuminator. The air bubble has been simulated as a hemispherical structure having 

refractive index equal to the air’s one. The effect of the air bubble is visible both on the disk 

and on the bare illuminator, as represented in Fig. 5.3.4 and enlarged in Fig. 5.3.5. Due to the 

double possibility, the detection algorithm has been implemented to work both in the 

transmission and in the refraction region, in order not to confuse this structure with a black spot 

and raise the reliability of the results. The effect of these scattering points is visible both in the 

transmission area - as the light normal to the surface is partially deviated away from the 

impinging direction and the image exhibits a darker circular region - and in in the refraction 

area, where bright circular areas are observed on a darker background.  

     

 
Fig. 5.3.4: full images of the back-tracing simulation of an air bubble detected on the black 

disk (a) and on the transmission region (b) (8.000.000 rays). It is of important to underline that 

the irregularities evidenced on the pattern structure in (a) are due to the natural curvature of 

the lens scanned and are not ascribable to a defect.  
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Fig. 5.3.5: enlargement of figure 5.3.4. Here it is better visible the influence of the air bubble 

on the dark disk background and on the bare illuminator.  

 

A specific re-parameterization of the algorithm used to detect the black spots is 

exploited both in the transmission region, to detect small circular elements darker than the 

background, and in the refraction region, using the signal-inverted image instead of the original 

image to detect white circles on a dark background. Clearly, the same location on the lens 

surface can’t be analyzed both in the reflection and in the transmission regions in the same 

frame. A precise mapping from the image coordinates (pixel) of a given frame to the lens 

surface physical coordinates (mm) can be used instead to detect correctly the air bubbles on the 

surface of the lens. This precise mapping is possible because the physical machine parameters 

are well known. The positions of air bubble candidates are then expressed in physical 

coordinates to locate them on the lens surface and only if a candidate detected in the refraction 

regions shares the same location with a candidate detected in the transmission region, it is 

confirmed as air bubble defect and validated (details in Fig. 5.3.6). The algorithm is powerful 

and very reliable due to the double check made in the two regions, thanks to which air bubbles 

are detected with approximately the 100% detection rate. 

 

 
Fig. 5.3.6: (a), original frame from the refraction zone: the air bubble can be seen as a white 

spot on the dark background. In (b), inversion of the image has occurred, now the air bubble is 

a black spot on a white background and the algorithm is able to detect the position. In (c), the 

transformation from image coordinates to surface coordinates is performed and the proper 

frame is selected. Linking these results, it is possible to correctly spot the air bubble. 
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Cracks 

 

It is possible to find cracks along the boundary between two different plastic castings or 

along the external profile of the lens. These flaws do not always appear at the center of the 

surface, though they are present at the borders of the lens. The detection algorithm looks 

therefore specifically for defects at the border of the surface or at the interfaces, where the 

cracks indeed take origin. The algorithm superimposes the 𝑖𝑡ℎ frame of a reference sample (i.e. 

without blemishes), 𝑅𝐹(𝑖), to the 𝑖𝑡ℎ frame of the current acquisition, named 𝐶𝐹(𝑖). Then it 

segments the connected areas that appear brighter than a threshold in the difference image 

𝐷(𝑖) = 𝐶𝐹(𝑖) − 𝑅𝐹(𝑖), producing a series of contour candidates, as showed in the examples in 

Fig. 5.3.7.  

 
Fig. 5.3.7: the panels (a, b) on top show defects on a lens, while the panels on bottom (c, d) 

show the references, used as comparison. The mapping between image and reference must be 

very precise because usually the breaks are parallel to the boundaries and misclassifications 

can arise. 

 

The superimposition and extraction process must take into account several aspects: 

 

• Luminosity differences: the light of the source may vary in intensity or color due to 

source-related issues (different temperature of the source). These instabilities may 

induce different intensity levels in corresponding regions, yielding false negative 
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defects when identified by image subtraction algorithms. This issue is easily solved 

since cracks are generally strong absorbers, allowing for high threshold levels in the 

contour extraction process. 

• Positioning zeroes: some mismatch in the positioning of the transparent may be 

possible. A feature of the transparent imaged in the frame 𝑅𝐹(𝑖) can be seen in an offset 

position when imaged in the frame 𝐶𝐹(𝑖). This latter issue can be corrected thanks to a 

rigid translation 𝑇𝑟(𝑖) = [𝑑𝑥(𝑖); 𝑑𝑦(𝑖)]  of the frame data, avoiding false positive 

detections due to the misalignment of the two frames. A registration algorithm 

maximizing the cross correlation between two frames is used to extrapolate 

automatically the translation 𝑇𝑟(𝑖) to correct for the rigid offset. The difference frame 

is then computed as 𝐷(𝑖) = 𝐶𝐹𝑇(𝑖) − 𝑅𝐹(𝑖)  where 𝐶𝐹𝑇(𝑖)  is he frame 𝐶𝐹(𝑖) 

translated by 𝑇𝑟(𝑖). 

• Local deformation of the transparent: the extrapolated translation 𝑇𝑟(𝑖) between frame 

𝑅𝐹(𝑖) and 𝐶𝐹(𝑖) is good enough to represent the sliding of the profile lines of the 

transparent, but is not always suitable for other features (internal junction lines, injection 

points, ...) far from them due to local deformations of the transparent caused by the 

printing process. As the breaks are searched only near the profile lines, this can’t affect 

the candidate detection process, but can compromise the preliminary registration. Thus, 

a Gaussian mask is applied to the borders of the image as a local weighting in the cost 

function of the registry maximization problem. The farther the point from the border, 

the lower is its weight. 

 

Candidates obtained in this segmentation phase are then sifted using a set of filters 

analogously to what described for the black spots. In this case, the features used to classify the 

images are mainly based on geometry: width, length, and elongation of the candidates. 

The cracks haven’t been simulated before the realization of the machine due to their 

extremely infrequent presence on the lenses. 

 

Incompleteness 

 

When the PMMA is injected into the mold it may happen that the material fails to reach 

the furthest zones with respect to the injection point. In our case study, the lack of material can 

arise only with red PMMA filling due to its wider area (with respect to the colorless one).  
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Fig. 5.3.8: back-tracing simulation of an incompleteness flaw on the outer lens (8.000.000 

rays).  

 

The simulation has been performed by simply removing part of the PMMA from the 

portion of the lens further from the injection point (used to fill the mold with liquid PMMA). 

Fig. 5.3.8 demonstrates that the transmission region is the perfect zone to spot this flaw. Two 

types of incompleteness can be distinguished: color incompleteness, when the red casting 

cannot reach all the correct regions and cannot be correctly superimposed to the transparent 

casting, leaving uncolored regions, and figure incompleteness, when the material coming from 

both the two castings is missing, leading to an incorrect geometry of the lens. These two 

categories are clearly different, one concerning the shape and one concerning the perceived 

color of the lens, therefore two different algorithms have been implemented to detect both of 

them. For what concerns figure incompleteness defects, the algorithm is similar to the one used 

for the cracks, in fact it finds and extracts the contour that delimits the border of the lens in 

𝐶𝐹𝑇(𝑖) and compares it with a reference. The maximum distance metric is used between the 

two borders (i.e. the one from the incomplete sample and the one from the reference sample) to 

expresses the presence of incompleteness or anomalies, as shown in Fig. 5.3.9. Regarding color 

incompleteness, the border is still present so can’t be used as a discriminative feature as before, 

but it can be used to fine tune the reference-current image match. Once the two images are 

perfectly aligned, the areas covered by white pixels inside the border in the reference and 

current frame are expected to have similar extensions. Thus, the algorithm counts the number 

of pixels of the current frame in which the red channel intensity is similar to the intensities of 

the other channels (white area) giving back as result an area and compares this value with the 

expected extension precomputed from the reference frame. A color incompleteness is then 

reported if the calculated difference (expressed in pixel2 or mm2) is greater than a given absolute 

threshold. A threshold value of 9 mm2 has been used in the final solution. 
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Fig. 5.3.9: in (a), an example of figure incompleteness is reported. Panel (b), highlights the 

differences between the border extracted from the reference (in green) and the border of the 

lens in analysis (in red). The maximum distance between the two borders is used as parameter 

to identify the defect. 

 

5.3.2 Refraction region 
 

This region is assigned to the identification and classification of scratches and other 

similar defects on the surface of the lens. In the refraction area, the black disks are exploited in 

order to screen the light propagating along the normal to the surface, thus yielding sensitivity 

to light beams diffracted and refracted at the defects. This is typical of the specific typology of 

defects that are intended to be analyzed here, scratches mainly. 
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Fig. 5.3.10: back-tracing simulation (8.000.000 rays) of a scratch on the outer lens. The scratch 

is places between the dark circle and the white background to evidence the importance of the 

dark structure in the scratch detection process. 

 

The simulations performed to determine which configuration was the most correct to 

detect a scratch suggested to use a dark background. As it is possible to perceive from Fig. 

5.3.10, the scratch is highly visible while it is superimposed to a dark circle, due to the high 

contrast. On the contrary, if the scratch is superimposed to the bare illuminator, it is extremely 

difficult to be spotted. In fact, the scratch modifies the smooth surface of the lens, changing the 

path of the light rays crossing the lens: the dark circles help increasing the contrast, making the 

defect more visible.  

The algorithm exploited to detect the real defects will be now presented. Masks obtained 

from a reference without defects are used to compensate for the deformation of the black disks 

caused by the non-null curvatures of the lens. Masks delimit the regions on the images where 

the analysis will be performed. They also serve to cover the presence of structures inside the 

lens itself (e.g. injection point, junction lines, …) and the uncontrolled reflections of the light 

source on the different components of the machine, that can lead to erroneous analysis. Every 

frame has its own mask, created starting from the acquisition of a lens without defects. Applying 

the marching squares algorithm on the red channel of the image (since the lens is principally 

made of red PMMA, defects result enhanced in that spectral region), the global threshold level 

is chosen in order not to neglect faint flaws nor to classify dirt as a defect. The contours obtained 

are used to fill the masks, setting the external points to 0 and the internal ones to 1. When in a 

frame a junction line is present, caused by different fluid castings, the situation is more complex, 

due to the different position it can have depending on the physical properties of the injected 

material. In order to detect the junction line, the marching squares algorithm is applied also on 

the gradient of the image to enhance the sharp variations. Once the masks are built, each 

acquired frame is multiplied pixel by pixel with the corresponding mask. This process leads to 

a revised image that, in case of no defects, should appear dark (artificially set to zero the pixels 
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where the analysis is not of interest and with very low intensity values induced by the presence 

of the disks in the remaining pixels). To find the defects in the refraction region, in each image 

the marching squares algorithm is used a first time with a specified threshold and a constraint 

on the minimum area analyzable. Blemishes with intensity below that threshold or composed 

by multiple disconnected small zones are not detected at this stage. In order to locate also these 

defects, a second marching squares algorithm is run with a lower threshold, close to the 

background intensity of the image. Then, the pixel intensities near those contours are lifted 

proportionally to the proximity to the centroid and to the area delimited by them. Thanks to a 

third application of the marching square algorithm on this latter modified image, using the first 

threshold, it is possible now to identify defects composed by a multitude of small areas that 

without the enhancement process were impossible to be detected. The severity of a defect is 

proportional to light deviated by the blemish itself which is dependent on the perceived intensity 

of the flaw and on its extension. For what concerns the intensity, every pixel value in the range 

[0, 255] is mapped with a piecewise quadratic polynomial function in the range [0, 1]; the 

mapped values represent weights that encode the severity associated to a defect of unitary area 

with all uniform intensity. All those values relative to pixels inside the contour that delimits the 

defect are summed up to obtain a value in the range [0, +∞[  that brings with it also the 

information about the extension. Finally, the sum is transformed in the interval [0, 1[  with an 

inverse exponential function. The result represents an estimate of the severity of the blemish. 

An example of single and cluster defect is represented in Fig. 5.3.11. At the end of the analysis 

of the single frames, neighboring defects are clustered. For every cluster, a flaw is signaled in 

the centroid of its connected components. To estimate the clusters’ severity, the assumption that 

the total light deviated is the sum of the light deviated by every single defect together with the 

choice of using an exponential function in the last step make the computation straightforward: 
  

𝑆(𝐷𝐶) = 1 − (1 − 𝑆(𝐷1))⋅(1 − 𝑆(𝐷2))⋅… ⋅(1 − 𝑆(𝐷𝑛)) 
 

(5.3.1) 

 

 

where 𝐷𝐶  is the clustered defect, 𝐷1, … , 𝐷𝑛 are the defects that constitute the cluster and 𝑆(𝐷) 

is the severity of a defect.  
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Fig. 5.3.11: on the top panels (a, b) it is possible to observe the mask performed on the black 

disk, on bottom panels (c, d), the original images with the highlighted defect are reported. For 

the first case (left side panels, a, c) the defect is sufficiently clear and it is recognized by the 

algorithm at first try, while in the second case (right side panels, b, d) only some spots of the 

defects have intensity higher than the threshold, so the clustering described in the last section 

is needed to classify correctly the defect.  

   

5.3.3 Pattern region 
 

The vinyl-disk defect is ascribed to a non-uniform filling process during injection. The 

flaws are mostly located in the regions that are far from the injection point. Therefore, the 

analysis was focused on specific frames where this type of defect is probably generated. This 

flaw does not alter in a significant way the absorption or the refraction of light, thus a new 

detection tool is required in order to recognize it. An opaque, black, rectangular pattern is 

exploited in this case, with three vertically-oriented holes in it. The mild light deflections 

introduced by the vinyl-disk blemish have the characteristics of being periodic and oriented, 

like ripples. Without the presence of flaws on the lens, the sides of the edges of the slots on the 

rectangular pattern may appear distorted due to the different curvature of the lens and blurred 

for the variety of incident angles of the light beams: in the described case the edge’s deformation 

is very smooth. When a vinyl-disk defect affecting the lens is superimposed to the pattern, the 

pattern deformation becomes sharp and periodic. The algorithm first detects the areas of interest 

in the frame: the maximally stable extremal regions algorithm is employed to segment the 

pattern and isolate the slots profiles.161,191 The area of the frame covered by each detected slot 
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position 𝑠 is then processed applying the Laplace operator, to enhance the sudden variations of 

the slot profile due to the ripple-refraction of light (induced by the vinyl-disk defect) and 

producing the response 𝐿(𝑠). A Gaussian filter mask 𝐺(𝑠) is computed from each single slot 

region vertical borders to exclude out-of-slot occasional features, enhancing the ripples on the 

slot border and evaluating each slot singularly. The ratio 

 

 𝐴𝑣𝑔[𝐿(𝑠) ∙ 𝐺(𝑠)]

𝐴𝑣𝑔[𝐺(𝑠)]
 (5.3.2) 

 

where 𝐿(𝑠) ∙ 𝐺(𝑠) is the Laplacian response weighted pixel by pixel with the Gaussian mask. 

It represents the average intensity of ripples around the slot border and it is used as a [0, 1] 
index to classify the s-slot area. Each frame can produce a total of three such indexes depending 

on the number of slots identified: if at least one of the indexes is higher than a threshold level, 

the flaw is recognized and characterized as vinyl-disk defect. An example is shown in Fig. 

5.3.12. 

 

 
Fig. 5.3.12: examples of one compliant outer lens (left side, panels a, c, e, g) and one showing 

the vinyl-disk defect (right side, panels b, d, f, h). On top panels (a, b), automatic detection of 

the black-white-black pattern observed through the lens. The other panels represent, in order, 

the extracted area from the top panel (c, d), the result of the application of the Laplace operator 

to the extracted image (e, f) and the detection of the defect thanks to the application of the 

algorithm (g, h). No vertical green lines are visible in panel g because there is no vinyl-disk 

defect on that outer lens (in contrast to panel h).   
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5.4 Preliminary results 
 

After a testing period when, in collaboration with quality operators, the parameters of 

the various algorithms have been calibrated to fulfill the requirements imposed by market 

requests, the prototype machine has undergone a validation phase, in which 204 lenses were 

scanned to retrieve some statistics about the reliability of the algorithms. The system has been 

configured to indicate three different values of severity for every lens scanned: “waste”, 

“warning”, or “fine”. In the two cases, “fine” and “waste”, there is no need of human operators, 

because the component would pass to the next stage of production or would be discarded, 

respectively. In the presence of the “warning” signal, the machine will report the typology of 

issue and the zone where the flaw has been detected to an operator, who will visually inspect 

and check the piece. The importance of the “warning” label is fundamental because it permits 

to save pieces without defects and to discard components that are affected by slight impurities, 

not recognized with certainty by the machine. The system has been tested with both compliant 

and non-compliant pieces, for a total number of 106 defects in 204 test parts. It is important to 

underline that, with respect to the standard production percentage, a higher number of non-

compliant lenses have been selected to test the machine: it is not normal to have almost 50:50 

ratio of compliant and non-compliant components. In most of the cases the machine was able 

to detect, without the need of an operator, if a component was faulty or not. In approximately 

10% of the cases, the system was not able to sort the outer lens in examination, leading to a 

classification of the component as “warning”: in this case, a human operator is needed to state 

if the outer lens is compliant or not.  

Less reliable is the case in which the machine classifies a piece as compliant even if it 

is, in practice, non-compliant and vice versa (i.e., false positives and false negatives). Speaking 

about the false positive, that is pieces that are compliant but are, indeed, discarded by the system 

without any possibility of a check by a human operator because classified as “waste”, from the 

validation period resulted that only the black spots show false positive. The amount of false 

positive ascribable to black spots is very small, the 0.61%. This means that the machine is able 

to detect approximately every compliant piece and a compliant component is incorrectly 

discarded only in very rare cases. For what concerns the false negatives, that is pieces that are 

classified by the prototype as compliant but show at least one severe defect and so they should 

be classified as non-compliant, the results are represented numerically in Table 5.4.1. 

 

False negatives 

Cracks 7.46 % 

Air bubbles 0.00 % 

Black spots 0.00 % 

Scratches 4.35 % 

Incompleteness 0.00 % 

Vinyl disk 0.00 % 

Table 5.4.1: numeric results coming from the analysis of the false negative pieces. Only cracks 

and scratches show off false negative, in low percentage compared to the overall production. 

Speaking about air bubbles, black spots, lack of material and vinyl disk defects, no false 

negative has been detected. 
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The rates of false negative are higher than the false positives for the cracks and the 

scratches, while on the contrary the black spots do not show any false positive. The reason of 

these higher rates is due to the multiplicity of different cracks and scratches that may arise 

during the production of the lamp. Considering the scratches, they can occur with different 

shapes, depth and location, therefore it is not easy to set the algorithm in order to detect this 

high variety of possibilities. The percentage of the false negative are quite small, if compared 

to the entire production: only the 7.46% of breaks passing the automatic control were, 

effectively, non-compliant pieces and only the 4.35% of scratches. However, by implementing 

another camera (placed on top of the structure) it has been estimated that the detection accuracy 

related to the cracks will raise, reaching the 100%. Keeping in mind the beforementioned fact 

that the analyzed set has a non-standard 50:50 percentage of compliant and non-compliant 

pieces, the reliability of the prototype machine is extremely high. It never fails in detecting the 

air bubbles, vinyl disk and incompleteness defects, while the 0.61% of black sports have been 

detected as false positive and the 7.46% and 4.35% of cracks and scratches, respectively, as 

false negative.  
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5.5 Discussion 
 

It has been possible to demonstrate that defects on the surface of the lamps can be 

automatically detected and identified, exploiting machine vision algorithms and a well 

synchronized axis motion and alignment system. The importance of having a specific machine 

is crucial inasmuch as the samples are almost transparent and with a non-constant surface 

curvature. A simple and straightforward CCD fixed camera geometry cannot be used to make 

all the work. The results, numerically speaking, are promising since human work can be reduced 

by about 90%, leading the operator to check only the components that the machine is not able 

to classify properly. The recognition efficiency of compliant pieces is extremely high, while the 

detection of non-compliant pieces is a little bit less efficient due to the high multiplicity of 

possible defects present on the surface of the lens. Moreover, the design of an easy and trivial 

visualization system to follow in real time the acquisition of the images (Fig. 5.5.1) makes it 

possible to easily implement the machine into the chain processes and to teach rapidly the 

human operators how to use it. This interface guarantees the visualization of the exact frame 

the camera is acquiring (top left image) and the last defect detected (bottom left). Furthermore, 

on a 2D sketch of the outer lens it is possible to visualize the location of the defects and their 

typologies, because at each different flaw category a diverse color is associated. The horizontal 

bar on the top (yellow in the image) defines if the component in analysis is compliant (green) 

not compliant (red) or warning (yellow). This interface helps and accelerates the work of the 

operator.  

 

 
Fig. 5.5.1: user interface implemented on the automatic vision machine. 

 

A further improvement of the algorithms and a minor modification of the inspection 

system are being developed and will further reduce the incidence of false positive results. To 

sum up, thanks to this machinery it is possible to scan the lens in a safe and light-controlled 

environment, implementing the automation in the automotive lighting industry sector. A faster, 

more precise and more objective quality control is thus attained with this system, implying a 

more correct identification of defects on the lens.   
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6. Characterization of reflectors 
 

6.1 Surface defects 
 

The target of the automotive lighting industry, as manufacturing industry, is to produce 

the highest number of compliant pieces reducing the production time, the costs, and the wastes, 

as recommended by the “lean manufacturing” method.192–196 At the same time, stringent quality 

standards, together with compliance requirements have to be accomplished. Thus, this has to 

be performed striving for a constant improvement of both the quality of products and processes 

involved in the production.  

In the specific case, particular attention has to be devoted to the quality of surfaces as 

parts of optical components.197 The reflectors’ polymer-based templates and supports, covered 

with ultra-thin metallic films calibrated to yield the desired reflective properties,198–200 and 

protected from mechanical and chemical damaging by a silicon-based protective layer (see 

Section 2.2 for further details),201,202 are designed to guarantee the agreed performances and 

aesthetic features. As described in the previous sections, the purpose of the metallization 

process applied to automotive rear lamps is dual: on the one hand it must fulfill the photometric 

requirements imposed by the market regulation (functional value) while, on the other hand, it 

represents a style feature (aesthetical value). The presence of defects, which may arise during 

the several steps of every reflector’s production process, hampers both the optical performance 

of the lamp and its appearance. In this section, the attention will be focused on the aesthetic 

defects that may also contribute from the beginning or during the work lifetime of the lamp 

with a performance degradation. Indeed, these defects invalidate both the optical requirements 

and the aesthetic aspect, and their origin must be investigated to prevent their occurrence. 

The investigated samples come from standard production, thus representing a precise 

selection of effective issues occurring in the growth of metal-polymer heterojunctions. Selected 

surface defects were indeed identified and cut out from real reflectors by means of a bandsaw 

and blown with gaseous nitrogen, obtaining samples with appropriate size to fit the 

experimental laboratory requirements. In the specific case, plastic substrates are made of 

polycarbonate (PC) and metallized according to the process described in detail previously 

(Section 2.2).203,204 Different kinds of defects involving the plastic substrate, the metallic film, 

and the HMDSO layer have been identified. 

The observed faults have been classified in families, influencing the optical and 

aesthetic quality of the surfaces in an irreversible way: protrusions (PRTs), depressions (DPRs), 

opaque white spots (WSs), black spots (BSs) and scratches (SCRs). Representative images 

taken by means of a conventional camera of some examples of defects are shown in Fig. 6.1.1.  
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Fig. 6.1.1: images taken by a conventional camera of four examples of defects: (a) protrusions 

(PRT), (b) depressions (DPR), (c) white spots (WS), (d) black spots (BS), and (e) scratches 

(SCR). 

 

The nature of these morphological and compositional alterations of the surfaces was 

thoroughly investigated by means of a combined microscopy-, spectroscopy-, and tomography-

based approach. To this purpose, two complementary techniques have been exploited: Scanning 

Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), and 

Synchrotron-Radiation X-ray Computed Tomography (SR-CT), which has been recently 

demonstrated to play a fundamental role in the characterization of the internal structural failure 

(cracks) of materials.205,206 The SEM and EDS measurements were performed at the CNR-IOM 

laboratory (Trieste) while the SR-CT analyses were performed at the SYRMEP beamline of the 

Elettra synchrotron (Trieste): access to the beamline was granted through proposal no. 

20190256. The combined use of electron microscopy and SR-CT to perform a noninvasive 

investigation of this kind of multilayer films was exploited to indicate that both chemical 

contaminations, introduced in the fabrication process, and growth conditions strongly affect the 

presence of defects. 

 

6.1.1 Protrusions (PRT)  
 

3D defects induce strong structural and geometric distortions of the surface, thus being 

relevant from an optical point of view, together with chemical alterations that locally influence 

the reflectivity. The 3D reconstruction of a selected, typical protrusion (PRT) defect analyzed 

by means of X-ray SR-CT is shown in Fig. 6.1.2. 
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Fig. 6.1.2: (a) prospective view of a selected PRT defect imaged by means of SR-CT; (b) same 

prospective view where the PRT has been virtually removed, thus evidencing the cavities 

containing air at the interface with the substrate; (c) crosscut section, evidencing the cavities 

at the defect-substrate interface, as well as a large spheroidal air bubble trapped in the bulk of 

the PRT defect; (d) zoom of the clipped surface in (c), with arrows pointing to the air cavities 

inside (white arrow) and below (yellow arrow) the PRT. The dotted circle highlights a bright 

spot indicating strong X-ray attenuation. Parameters used for the acquisition and 

reconstruction: beam energy = 17 keV, pixel size = 2 µm, scintillator-sample distance = 100 

mm, δ/β = 5. 

 

The size of the defect amounts to a maximum lateral extension of 3000 μm, with a depth 

of 800 μm (Fig. 6.1.2a). In Fig. 6.1.2b, the PRT has been virtually removed thus evidencing 

the presence of several air cavities in the substrate at the polymer-metal interface. A cut along 

the direction perpendicular to the surface is shown instead in Fig. 6.1.2c and in an enlarged 

front view in Fig. 6.1.2d. From the images, strong signal variations can be observed within the 

bulk of the defect, suggesting internal inhomogeneity due to the presence of different 

compositional phases. The latter cause contrast modulations, which are well captured in SR-CT 

images, allowing for image segmentation. Within the defect, the co-presence of non-miscible 

phases of Al (bright regions, high X-ray attenuation) and PC (dark regions, low X-ray 
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attenuations) uniformly dispersed inside the structure can be observed. Moreover, a spheroidal 

structure is visible inside the defect in panels (c) and (d, white arrow). The volume enclosed by 

this structure generates an extremely faint contrast, witnessing the presence of an air bubble in 

the protruding material. Similar, smaller cavities can be found also in the plastic substrate below 

the defect: they can be identified in panels (b), (c), and (d, yellow arrow) as a lack of substrate 

material with air trapped at the defective Al-PC interface. The results shown in Fig. 6.1.2 

suggest that both sintering of excess aluminum at the polycarbonate surface and, most probably, 

large Al clusters impinging at high temperature during the PVD process, can induce local 

melting of the interface. Polycarbonate and aluminum thus mix forming a porous structure that, 

upon venting of the deposition setup, is backfilled with air. Further support to this interpretation 

is provided by the depletion of PC under the defect due to inclusion in the 3D porous defective 

structure. A quantitative analysis has been performed to derive information about the internal 

composition of the Al-PC structure. The defect has a volume of 0.75 mm3 and it is composed 

by PC (80.5%), Al (18.1%), and air (1.3%). Interestingly, a small fraction of the volume (0.1%) 

is occupied by a material with a significantly higher attenuation coefficient (see e.g. the small 

bright feature circled in Fig. 6.1.2d), suggesting the presence of a heavier contaminant in the 

Al evaporation flux used for the PVD process. A good contamination candidate is iron (Fe), 

which is indeed a stronger X-ray absorber than Al.  
  
 

 

Fig. 6.1.3: (a) prospective view of a selected PRT defect imaged by means of SR-CT; (b) virtual 

removal of the PRT revealing air cavities in the underlying substrate; (c) crosscut view, with 

arrows pointing to the air cavities inside (white arrow) and below (yellow arrow) the PRT. 

Parameters used for the acquisition and reconstruction: beam energy = 17 keV, pixel size = 2 

µm, scintillator-sample distance = 100 mm, δ/β = 5. 

 

The above situation is further confirmed by the analysis of a second, smaller defect (0.03 

mm3, Fig 6.1.3a). Again, the internal portion of the PRT (panel c) has a non-homogeneous 

filling, put in evidence by the color-scale contrast (polycarbonate darker than aluminum). Voids 

filled by trapped air can be observed in the bottom left corner of the crosscut section shown in 

Fig 6.1.3c (white arrow), together with cavities in the plastic substrate at the defect-substrate 

interface (yellow arrow). The interface is well imaged by virtually removing the PRT (Fig 

6.1.3b). These observations consistently support the abovementioned interpretation, suggesting 

Al-induced melting of the plastic surface. The defect’s composition is approximately the same 
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as in the previous case (79.4% of PC, 19.7% of Al, and 0.9% of air). At variance, no local 

contamination by heavier elements is observed here. 

Another visualization of the same protrusion represented in Fig. 6.1.3, consisting on a 

set of 2D images taken at different penetration depth, is depicted in Fig. 6.1.4. The plane cutting 

the defect approaches the surface of the reflector from panel a (plane is outside the defect) to 

panel k (the plane is inside the reflector). With this set of images, the different internal 

composition is easily recognizable (panels b-h) as for the presence of void inside the protrusion 

(panels d-f). Moreover, the cavities in the substrate are clearly highlighted (panels h-j).  

 
 

 

Fig. 6.1.4: set of bidimensional images representing the same protrusion depicted in figure 

6.1.3. The penetration depth increases from panel (a, outside) to panel (k, completely inside the 

substrate) following a direction normal to the surface. 
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6.1.2 Depressions (DPR) 
 

Concerning depression-like (DPR) defects, their lateral size allows the clear 

identification of the spots already to the naked eye. The tomographic reconstructions of two 

selected defects of this type are shown in Fig. 6.1.5.  

 

 

Fig. 6.1.5: a-b) prospective views of selected DPR defects; c-d) corresponding lateral views. 

Parameters used for the acquisition and reconstruction: beam energy = 17 keV, pixel size = 2 

µm, scintillator-sample distance = 100 mm; δ/β = 100 for panels a) and c), δ/β = 150 for panels 

b) and d). 

 

The concave DPRs have an irregular shape (panels a-b), both at the border and at the 

substrate-defect interface. Lateral views in panels (c-d) put in evidence the co-presence of 

structures protruding from the surface plane, which in one case can be as high as 200 μm (panel 

c). The morphology of the DPR defects suggests that the degree of melting at the Al-PC 

interface was so high that detachment of a PRT particle (similar to those previously shown) 

occurred. Indeed, melting induced by a hot Al cluster yields both formation of a porous 3D 

structure of mixed aluminum and polycarbonate composition, and the growth of a void at the 

defect-substrate interface due to PC migration. If the latter cavity is large enough, detachment 

of the whole structure may occur, possibly during the venting of the PVD setup, thus giving 

origin to the DPR defects. The comparable lateral size of the two typologies of defects further 

corroborates this interpretation. 
 

6.1.3 White spots (WS) 
 

Three additional flaw typologies have been identified by SEM. Two of them, based on 

their appearance and color upon simple optical inspection, have been classified as white and 

black spots (WS and BS, see Section 6.1.4 for the BS defect description), while the last type is 
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called scratch (SCR, see Section 6.1.5). The WS is an extended region of approximately 1 mm 

width characterized by a geometrically regular superstructure growing on top of the metallized 

surface, altering both the reflectance properties of the film and its aesthetic appearance. When 

imaged by means of SR-CT, the defect does not show any 3D structure, affecting only the 

interface between the plastic substrate and the Al film, without any involvement of the 

underlying polycarbonate bulk (Fig. 6.1.6). 
 

 

Fig. 6.1.6: (a) frontal and (b) lateral oblique views of a WS defect, as imaged by means of SR-

CT (lateral dimensions 1.5 mm × 1.85 mm); parameters used for the acquisition and 

reconstruction: beam energy = 17 keV, pixel size = 2 µm, scintillator-sample distance = 100 

mm, δ/β = 150. 

 

Fig. 6.1.7 shows, instead, two SEM images of the same WS defect depicted in Fig. 6.1.6.  

 

Fig. 6.1.7: SEM images representing the WS defect at different magnification; (a) overview 

taken with the Everhart-Thornley secondary electrons detector at 5 kV; (b) enlargement of the 

detail represented inside the green rectangle in panel (a) taken at 15 kV using the In-lens 

detector. 

 

Fig. 6.1.7a represents an overview of the blemish which extends inside the borders pointed by 

the red arrows. The image is taken by the secondary electrons’ detector, providing information 

on topographic details within the imaged area. Indeed, taking into consideration the defocusing 

difference between the borders and the outer substrate, it is quite clear that the flaw is 
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superimposed to the substrate, thus protruding from the surface. This is further confirmed (see 

again the red arrows) by the geometric shading effects due to the electron beam impinging 

direction. At the center of the defect a bright contrast, regular, geometric, fractal-like structure 

of about 200 μm  300 μm is visible. A detail of the region enclosed in the green rectangle is 

depicted in Fig. 6.1.7b at higher magnification. The sharp edges and the regularity of the bright 

structure above the darker background support the thesis of a crystalline contamination. To 

yield better insight, the chemical composition of the structure was investigated by EDS 

elemental maps of the region shown in Fig. 6.1.7b, displayed in Fig. 6.1.8.  

 

 

Fig. 6.1.8: EDS maps, collected at EHT = 5 kV showing the (a - green) carbon, (b - yellow) 

oxygen, (c - cyan) aluminum, (d - purple) silicon, (e - orange) chlorine, and (f - red) potassium 

spatial distributions over the detail represented in Fig. 6.1.7b. 

 

It is important to recall that the presence of carbon and oxygen is associated with both the 

polymeric substrate and, to a smaller fraction, the HMDSO protective layer. The silicon signal 

is instead specific of the protector deposited on top of the sample to prevent oxidation, while 

aluminum is the only component of the metallic film. Thus, potassium and chlorine signals 

were not expected, therefore witnessing chemical contamination. The carbon map (Fig. 6.1.8a) 

is not homogeneous, indicating C depletion or screening at the dendritic defect, accompanied 

by complementary signals of both Cl and K (Fig. 6.1.8e and Fig. 6.1.8f, respectively). Same 

reasoning to be applied to the O signal (panel b), even if in this latter case the difference is less 

pronounced. The C and O signals are dominated by the contribution from the substrate polymer: 

this further support the idea that the defect is additive, thus covering the PC substrate. In 

addition, the homogeneity of the Al and Si maps (panels c and d, respectively) indicates that 

the K and Cl contaminations are not present over but below the metal thin film. It is possible to 

conclude that the contaminants are stacked at the interface between the plastic substrate and the 

Al film. Therefore, the surface has been contaminated prior to the PVD process, yielding 

incorporation and coating of the defect by Al. The high temperature of the metal Al atoms 

impinging at the surface upon metallization may also explain the induced recrystallization 
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promoted by heat. The structural and chemical characteristics of the defect are compatible with 

sweat, associated with human contamination of the polymer surface. The chemical composition 

of the sweat, showing the presence of both Cl and K elements, supports this scenario.207,208 
 

6.1.4 Black spots (BS) 
 

BSs are characterized by a dark region which does not reflect visible light and has a 

completely different appearance when compared to the surrounding, intact multilayer. In this 

case SR-CT does not provide useful insight into the nature of the defect, since the latter is 

limited to the very terminal layers and does not involve the underlying PC bulk. Interestingly, 

the SEM image collected over the BS (Fig. 6.1.9a) is affected, even when using the lowest EHT 

necessary to be surface sensitive, by strong electrostatic charging effects.  
 

 

Fig. 6.1.9: SEM image taken at 5.0 kV with the In-Lens detector (a); EDS maps of (b - green) 

carbon, (c - yellow) oxygen, (d - cyan) aluminum, and (e - purple) silicon collected on the black 

spot defect shown in (a). 

 

This indicates a locally poor electrical conductivity (white regions in Fig. 6.1.9a) 

associated with the exposure of the dielectric substrate and with a depletion of the conductive 

Al layer. Indeed, the corresponding EDS maps (panels b-e in Fig. 6.1.9) put in evidence the 

local depletion of both Al and Si in correspondence of the white dielectric areas, while C and 

O are homogeneously distributed over the entire map. Consequently, it is concluded that the 

metallized layer has detached completely from this portion of the surface, leaving the bare black 

polymeric substrate exposed.  

 

6.1.5 Scratches (SCR) 
 

SEM was fundamental also to yield better insight into the scratches, with the typical size 

of these latter defects ranges from hundreds of nanometers to several centimeters. These defects 

may, depending on their size, affect both appearance and optical properties of the reflectors. 

Two different samples have been examined by both imaging (Fig. 6.1.10, panels a, e) and 

chemical contrast (Fig. 6.1.10, panels b-d, f-h). The two scratches differ in size, but most 

importantly in chemical composition. Specifically, the most evident discrepancies can be 



138 
 

evidenced when comparing the carbon and the aluminum maps: panel d shows Al depletion, 

accompanied by an increment of the C signal (panel b). On the contrary, the C and Al 

distribution maps (panels f, h) referring to the second scratch (e) are homogeneous. This 

remarkable difference is fundamental to understand that the scratch may arise in different stages 

of the fabrication process: the scratch represented in panel (a) arose after the metallization 

process, more probably due to a human fault than to a machine problem, while the other defect 

(panel e) was present on the reflector surface prior to the metallization process and is therefore 

ascribable to the injection molding process. The O maps (panels c and g) are always 

homogeneous because oxygen is one of the constituted elements of polycarbonate-based 

substrate.    

 

 

Fig. 6.1.10: SEM images taken at 5.0 kV with the In-Lens detector representing two different 

scratches (panels a and e). Panels b-d, EDS maps collected at EHT = 5 kV showing the (b - 

green) carbon, (c - yellow) oxygen, (d - cyan) aluminum spatial distributions of the defect 

represented in (a). Panels f-h, EDS maps collected at EHT = 5 kV showing the (f - green) 

carbon, (g - yellow) oxygen, (h - cyan) aluminum spatial distributions of the defect represented 

in (e). 

 

6.1.6 Discussion 
 

Morphological and compositional characterization details of defects appearing at the 

interface of aluminum-polymer heterostacks and originating from the growth process has been 

unraveled thanks to the measurements presented before. Insight into the buried interfaces has 

been achieved by means of SR-CT, while electron microscopy provided details about the role 

of contaminants. The SR-CT measurements were optimal to investigate the morphology of 3D 

defects involving interfaces between different materials, while on the contrary less information 

could be obtained when trying to characterize defects involving only the most terminal layer. 

On the other hand, SEM coupled with EDS enabled to obtain information on the morphology 
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and on the chemical distribution of the defects, thus complementing the information within a 

complete picture. Most of the issues arise from the Al deposition recipes, associated with the 

growth rate and the heat loading of the polymeric support. Thanks to these observations, the 

metal coating process recipes will be possibly revised, introducing lower deposition rates, 

compatibly with the pace required by the production chain. This will prevent aggregation of 

fused Al clusters that concurrently induces melting and damaging at the heterostack interfaces. 

Accordingly, external sources of chemical contamination will also be investigated, both 

environmental and due to the surface handling procedures. Moreover, the thorough 

characterization of the defects’ morphology has already fostered the design and commissioning 

of an automated inspection system that allows for an in-line fast and efficient identification and 

classification of the defects, thus monitoring the optical and structural compliance in real time 

at the production stage. This prototype inspection system will be presented in Section 6.3.  
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6.2 Surface morphology and optical properties 
 

In this chapter the attention will be focused on the functional parameters of the 

reflectors, characterizing the optical properties of the lamp, and correlating them to the different 

production recipes. A combined morphological and optical characterization of aluminum-

coated thermoplastic polymer surfaces will be presented. The substrates used in this study 

consist of black polymeric plates of either polycarbonate (PC) or acrylonitrile butadiene styrene 

(ABS). A dedicated set of samples was specifically prepared following the same approach 

presented in the previous sections and adopted in the production chain, i.e. covering the plastic 

substrates with ultra-thin aluminum films evaporated in vacuo, on top of which a HMDSO 

protective layer was deposited. However, for this specific case the substrates have been chosen 

to be flat, in order to better perform the optical and structural analysis. Nevertheless, the 

production steps and instrumentations were exactly the same as the one exploited for the 

standard reflectors’ preparations and described in Section 2.2 (an image representing some of 

the samples is reported in Fig. 6.2.1).  

 

 

Fig. 6.2.1: image representing some of the square-based (1.5 cm side) samples prepared for 

the optical and structural characterization.  

 

Multiple, different preparation recipes were followed in order to investigate the role of 

several parameters, including the substrate material (PC or ABS), its thickness (1.5 or 3 mm), 

the thickness of the Al film and of the protective layer. The different treatments were studied 

in order to unravel the influence of substrate chemistry, substrate thickness, aluminum, 

protective layer thickness, and surface roughness on the actual optical reflectance properties. 

BRDF measurements, corroborated by surface morphological information obtained by means 

of AFM, correlate reflectance characteristics with the root mean square surface roughness, 

putting in evidence the role of the substrate and of the thin films’ morphology. The results 

unravel information of interest within many applicative fields involving metal coating processes 

of plastic substrates in general, as well as for the specific case of automotive lighting. Optical 

properties, such as total reflectance, specular reflectance, and scattering behavior were 

examined at each step of the reflector coating process. Theoretical reflectance scattering models 

were sought to fit and parametrize the experimental data in a quantitative approach, with the 

future aim of implementing the results in a ray-tracing simulation environment as a tool for 

developers in the lighting design process. Finally, the possibility to extract information about 
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the surface roughness directly from the optical measurements has been verified, yielding 

remarkable results, in line with parallel, direct, but more expensive and time-consuming 

roughness measurements performed by means of AFM. The aforementioned measurements 

were performed within an international collaboration framework involving the KU Leuven 

Light&Lighting laboratory (for the BRDF measurements) and the Department of Engineering 

and Architecture of the Università degli Studi di Trieste (for the AFM measurements).  
 

6.2.1 AFM analysis 
 

The industrial evaporator is composed by 22 tungsten wires, which can contain a total 

of 44 Al spirals (see Section 2.2 for details). Four configurations, depicted in Fig. 6.2.2 and 

described in Table 6.2.1, have been selected to fill the evaporator in order to vary the amount 

of evaporated metal. In Fig. 6.2.2, the 2 wires-unit-cell configurations, repeated across the 

whole evaporator, are represented. 

 

     

Fig. 6.2.2: schematic representation of the four possible configurations to fill the evaporators. 

The details are reported in table 6.2.1. 

 

Case Spirals on the  

1st wire 

Spirals on the 

2nd wire 

Total spirals Al thickness 

(nm) 

a) 1 0 11 68 ± 3 

b) 1 1 22 81 ± 3 

c) 2 1 33 115 ± 7 

d) 2 2 44 166 ± 3 

Table 6.2.1: quantitative description of the four cases used to fill the evaporator and depicted 

in Fig. 6.2.2. In the last column, the thickness measured with the AFM is reported.  

 

No differences in the Al coating uniformity are observable if the spiral is placed in the 

meander on the left or in the one on the right of the wire due to the mechanic carousel rotation. 

These recipes result in different Al layer thickness values of (68 ± 3) nm, (81 ± 3) nm, (115 ± 

7) nm, and (166 ± 3) nm, respectively. To determine the thickness values, the samples have 

been prepared by means of photolithography using a precise step-like photolithographic mask, 

which exhibited a sharp edge, useful to determine the thickness of the layers (as already shown 

in Fig. 2.3.3). Two HMDSO evaporation recipes were also tested, yielding (35 ± 4) nm and (61 

± 1) nm thick protective layers, respectively. For the silicon-based protective layer the 

photolithography was not exploited due to the solubility of the HMDSO in the acetone used for 

the lift-off. A physical masking with another glass slab over the main one was used. The AFM 

images showing the steps to determine the Al (panels a-d) and HMDSO (e, f) thickness are 

displayed in Fig. 6.2.3.  
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Fig. 6.2.3: AFM images representing the step between the coated and uncoated regions. Panels 

(a-d) refer to the metallization cycles listed in table 6.2.1, with layer thickness of (68 ± 3) nm, 

(81 ± 3) nm, (115 ± 7) nm, and (166 ± 3) nm, respectively. Panels (e, f) refers to the HMDSO 

thin film of thickness (35 ± 4) nm and (61 ± 1) nm respectively, generated starting from a 300 

s and 600 s PECVD process. 

 

Some environmental contaminations appear on the surfaces (for example on the right of 

the AFM image in panel c and f) because the measurements were performed in air and not in 

vacuo. On the raw AFM data, some height profiles in the direction perpendicular to the step 

have been taken (Fig. 6.2.4). The flat regions in the profile, corresponding to the bare glass 

substrate and the Al layer, have been fitted with a linear regression (light and dark green, 

respectively). The two regressions are not horizontal due to a possible tilt in the sample 

positioning. In the inflection point, a straight line perpendicular to the linear best fits has been 

taken (orange line, as highlighted in Fig. 6.2.4a) and the intersection of this line with the two 

regressions are represented with two red dots, named 𝑃1 and 𝑃2. In Fig. 6.2.4b an enlargement 

of the region of interest is represented: now the orange line is no more perpendicular to any of 

the two green lines, because the vertical dimensions are different with respect to the horizontal 

ones. Knowing the (𝑃1, 𝑃2) distance, it is then possible to obtain the thickness of the deposited 

layer. 
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Fig. 6.2.4: example of data analysis for the thickness evaluation (note the scale expansion in 

panel b). 

  

For every sample represented in Fig. 6.2.3, 20 height profiles have been acquired in 

regions not affected by environmental contaminations. The uncertainties are given by the 

statistical error originating from multiple measurements performed along the step edge. 

Concerning the surface roughness, it can be easily obtained from the AFM images as the root-

mean-square (rms) (σ) 

 

𝜎 =  √
1

𝑛
∑𝑦𝑖

2

𝑛

𝑖=1

 

 

where 𝑦𝑖 is the difference between every local height with respect to the average height of the 

considered region. Both the actual roughness values and the associated uncertainties of the 

samples reported in Fig. 6.2.5 were obtained statistically, i.e., by collecting and averaging local 

information from several regions on each sample (sampling window kept at a constant size of 

20 μm  20 μm). In particular, the central part (150  150 pixels) of each full-size image (256 

 256 pixels) was taken into account, excluding the external frame to avoid border and drift 

effects. The central region was divided in 9 subregions (50  50 pixels, around 4 μm  4μm 

each). Mean values and standard deviations have been obtained performing the analysis on 

these 9 subregions (results are reported in Table 6.2.2). The rms surface roughness value for 

PC-based samples was found to be of the order of 5 nm, whereas ABS-supported films exhibited 

a higher surface roughness (20-30 nm), interestingly almost independent from the film 

thickness.  
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Fig. 6.2.5: selected AFM images of the samples listed in table 6.2.2  
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Id. Substrate Substrate 

thickness 

(mm) 

Al thickness 

(nm) 

Protector 

thickness 

(nm) 

AFM rms 

(nm) 

a) ABS 1.5 ± 0.1 115 ± 7 35 ± 4 21 ± 4 

b) ABS 3.0 ± 0.1 68 ± 3 35 ± 4 26 ± 4 

c) ABS 3.0 ± 0.1 81 ± 3 35 ± 4 22 ± 3 

d) ABS 3.0 ± 0.1 115 ± 7 35 ± 4 30 ± 5 

e) ABS 3.0 ± 0.1 115 ± 7 0 20 ± 2 

f) ABS 3.0 ± 0.1 115 ± 3 61 ± 1 21 ± 2 

g) ABS 3.0 ± 0.1 166 ± 3 35 ± 4 23 ± 3 

h) PC 1.5 ± 0.1 115 ± 7 35 ± 4 6 ± 1 

i) PC 3.0 ± 0.1 68 ± 3 35 ± 4 5 ± 1 

j) PC 3.0 ± 0.1 81 ± 3 35 ± 4 8 ± 2 

k) PC 3.0 ± 0.1 115 ± 7 35 ± 4 7 ± 2 

l) PC 3.0 ± 0.1 115 ± 7 0 6 ± 1 

m) PC 3.0 ± 0.1 115 ± 7 61 ± 1 6 ± 1 

n) PC 3.0 ± 0.1 166 ± 3 35 ± 4 13 ± 2 

o) ABS 1.5 ± 0.1 0 0 14 ± 3 

p) ABS 3.0 ± 0.1 0 0 19 ± 4 

q) PC 1.5 ± 0.1 0 0 3 ± 1 

r) PC 3.0 ± 0.1 0 0 4 ± 1 

Table 6.2.2: surface roughness values and uncertainties extracted from AFM measurements. 

 

6.2.2 BRDF analysis 
 

Role of the substrate 

 

Since the rms surface roughness seemed to be primarily determined by the type of 

substrate (PC vs ABS), the first investigation regards the role of the substrate on surface 

reflectance. The spectral BRDF of coated PC and ABS samples of 1.5 mm and 3 mm thickness 

was therefore measured (Fig. 6.2.6). In the case shown in the figure, the thicknesses of the Al 

and HMDSO were the same for all samples, i.e. (115 ± 7) nm and (35 ± 4) nm, respectively. 

This specific configuration was selected because it best represents what is actually implemented 

at the applicative industrial level. The spectral BRDF, measured in the 45°,0°: 45°,180° 

geometry, is shown in Fig. 6.2.6a.  
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Fig. 6.2.6: measured BRDF for the different substrates (PC and ABS, 1.5 and 3 mm) coated 

with (115 ± 7) nm of Al and (35 ± 4) nm hexamethyldisiloxane; (a) spectral dependence (45°: 

45° specular geometry); (b) angular (555 nm) dependence. Angles refer to the sample surface 

normal. 

 

Major differences in the scattering properties of the two sample types can be evidenced 

readily at a first glance. The trend is very different for the two types of substrates: for PC, the 

spectral BRDF slightly increases with wavelength (~ 10%) for both the 1.5 mm (3874 sr-1 and 

4209 sr-1) and the 3 mm (4348 sr-1 and 4740 sr-1) thick substrates, while for ABS this 

wavelength-dependence is more pronounced (~ 35%) for the two thicknesses (1.5 mm: 2372 sr-

1 and 3503 sr-1; 3 mm: 2669 sr-1 and 3918 sr-1). The angular distribution of the BRDF, measured 

in the 45°,0°: x,180° geometry with x in the interval [20°,70°] at a wavelength of 555 nm, is 

depicted in Fig. 6.2.6b (angles refer to the sample surface normal). PC samples show a narrower 

specular distribution than ABS samples, corresponding to a greater capacity of PC to act as a 

mirror-like material. For both sample types, the BRDF increases with substrate thickness. 

Indeed, for the ABS samples, the specular BRDF peak at 555 nm for the 3 mm specimen is 

significantly higher than the value of the 1.5 mm one (approximately 9% difference, 3590 sr-1 

vs. 3307 sr-1, respectively), while for the PC specimens the relative difference is even larger 

(13%, 4703 sr-1 vs. 4112 sr-1). This trend was found for all the different recipes exploited to 

prepare the samples, verifying the conclusion that rougher surfaces exhibit a much more diffuse 

behavior with respect to smoother samples. Profilometry measurements revealed that the 1.5 

mm substrate displays long-range surface height deformations of about 12 μm in a 20 mm 

range, while for the 3 mm substrate the recorded value is an order of magnitude lower (Fig. 

6.2.7). This finding confirms the information gained by the BRDF data, indicating that thinner 

substrates undergo deformation at the injection molding production stage, thus before the 

coating process. 
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Fig. 6.2.7: profilometer measurements on the plastic plates; 1.5 mm PC (red full line), 3 mm 

PC (blue dashed line). Similar results were obtained for the ABS case. 

 

Role of the reflective layer 

 

Both PC and ABS substrates (1.5 and 3.0 mm thick) were coated with an Al layer of 

thickness between 70 and 170 nm, depending on the evaporation recipe. A (35 ± 4) nm HMDSO 

protective layer was post-deposited on top. The BRDF functions of the 3 mm PC samples with 

an Al coating thickness of (68 ± 3) nm, (81 ± 3) nm, (115 ± 7) nm, and (166 ± 3) nm, 

respectively, are shown in Fig. 6.2.8.  

 

 

Fig. 6.2.8: measured dependence of the BRDF on the Al film thickness for a 3 mm PC substrate; 

(a) spectral (45° with respect to the sample surface normal) and (b) angular (555 nm) BRDF. 

The Al thicknesses reported in the figure are: 68 nm (blue continuous line), 81 nm (green dotted 

line), 115 nm (red dashed line), 166 nm (orange dot-dashed line) and bare PC (continuous cyan 

line). Apart from the bare PC, all the samples have a 35 nm of HMDSO over the Al layer. 

 

The BRDF data of a 3 mm thick bare PC sample is also shown for direct comparison 

(no Al and no HMDSO on top, cyan full line). As expected, the addition of the Al layer increases 

the BRDF value of about one order of magnitude, both in the specular and off-specular 

directions. Interestingly, the Al layer film thickness does not seem to affect the BRDF peak 

value, apart from the case of the thickest film (166 nm), which yields a significantly lower 

BRDF intensity. As for the spectral dependence of the BRDF, measured in the 45°,0°: 45°,180° 
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geometry (Fig. 6.2.8a), it is observed that the overall shape of the function is similar for all Al 

films, showing increasing reflectance with wavelength. Clear differences are observed for what 

concerns the angular dependence of the BRDF (Fig. 6.2.8b), indicating best specular and off-

specular reflectance for an Al layer thickness between 81 and 115 nm. The total reflectance of 

the samples was measured by means of a HunterLab Ultrascan PRO spectrophotometer (8°: d 

geometry). In particular, we found that the total reflectance (specular included) amounts to (82 

± 2) % for Al thickness in the range of 68-115 nm, slightly decreasing to (79 ± 1) % for the 166 

nm Al film, in contrast with only (5 ± 1) % for the bare PC substrate. Almost similar conclusions 

are drawn from the results obtained for the thinner (1.5 mm) PC substrate, apart from the effects 

ascribed to the substrate deformation, as discussed above.  

Similar to the PC case, the Al-covered 3 mm thick ABS samples yield an almost one 

order of magnitude higher BRDF than the bare ABS surface (Fig. 6.2.9). Regarding the spectral 

distribution (Fig. 6.2.9a), the ABS sample with an 81 nm thick Al film yields the highest signal, 

while the lowest BRDF is observed for the thickest coating (166 nm Al), in analogy with the 

PC case. The spectral trend is also similar, yielding progressively increasing BRDF values for 

increasing wavelength. Concerning the BRDF angular dependence (Fig. 6.2.9b), equivalently 

to the PC-based samples, the highest BRDF can be obtained with a coating thickness ranging 

between 81 nm and 115 nm. The total reflectance ranges from (70 ± 1) % to (69 ± 1) % for the 

samples characterized by 68 nm, 81 nm, and 115 nm Al layer, respectively, while it drops to 

(66 ± 1) % for the 166 nm Al sample. For the bare ABS substrate, the total reflectance is (5 ± 

1) %. Therefore, it is found that for both ABS and PC substrates the Al coating thickness 

yielding best spectral and spatial (both in the specular and off-specular directions) properties 

ranges between 81 and 115 nm, corresponding to best integrated reflectance. 
 

 

Fig. 6.2.9: measured dependence of the BRDF from the Al film thickness for a 3 mm ABS 

substrate; (a) spectral (45° with respect to the sample surface normal) and (b) angular (555 

nm) BRDF. The Al thicknesses reported in the figure are: 68 nm (blue continuous line), 81 nm 

(green dotted line), 115 nm (red dashed line), 166 nm (orange dot-dashed line) and bare ABS 

(continuous cyan line). Apart from the bare ABS, all the samples have a 35 nm of HMDSO over 

the Al layer.  

  

Role of the protective layer 

 

As already mentioned, the HMDSO protective layer is deposited by means of PECVD 

over the Al film in order to prevent both oxidation and mechanical damage. The influence of 
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this necessary protection on the surface scattering properties was analyzed for six different 

types of samples. Different HMDSO evaporation recipes were adopted, yielding HMDSO films 

of (35 ± 4) and (61 ± 1) nm as quantified by means of AFM, respectively, on top of both PC 

and ABS substrates covered by a (115 ± 7) nm thick Al film. A bare Al film without protective 

layer was adopted as a reference. The measured spectral BRDF in the 45°,0°: 45°,180° 

geometry and the spatial distribution at 555 nm for the 3 mm thick PC substrates is depicted in 

Fig. 6.2.10. The total reflectance measured with the HunterLab spectrophotometer varies from 

(85 ± 1) %, referred to the sample without protective layer on top, (82 ± 1) % for the specimen 

with the 35 nm thick protective layer, and to (76 ± 1) % for the specimen with the 61 nm thick 

protective layer.  

 

 

Fig. 6.2.10: measured dependence of the BRDF from the thickness of the protective layer 

deposited on 115 nm Al on 3 mm PC; (a) spectral (45° with respect to the sample surface 

normal) and (b) angular (555 nm) BRDF for samples with 0, (35 ± 4) and (61 ± 1) nm thick 

protective layer on top of a 115 nm thick Aluminum film (respectively blue continuous line, 

green dotted line and red dashed line). 

 

As expected, the protective layer affects the spatial BRDF. The BRDF peak at 555 nm 

drops from 4732 sr-1 for the uncoated film to 4246 sr-1 and 3340 sr-1 for the samples covered by 

35 and 61 nm of HMDSO, respectively. Interestingly, a 35 nm thick protective layer yields the 

lowest signal for angles far from the specular direction, while a thicker coating (61 nm) 

introduces a broader angular dispersion. Summarizing, the protective layer deposited on the Al 

film supported by PC hampers the reflectance in the specular direction, while it introduces an 

angular spreading. 

Data for the ABS substrates metallized with 115 nm of Al and covered with different 

HMDSO films are shown in Fig. 6.2.11. The bare Al film displays the largest BRDF peak value 

at all wavelengths (Fig. 6.2.11a) while, at variance with the PC samples case, the sample with 

an intermediate protector layer thickness (35 nm) has the lowest specular reflectance. 

Remarkably, the thickest protective layer (61 nm) behaves like the bare aluminum at 

wavelengths below 430 nm, drastically changing its trend for wavelengths larger than 430 nm, 

resembling the 35 nm HMDSO sample profile. This is ascribed to the role of the CH species in 

HMDSO which are known to contribute with transition lines at a wavelength of 430 nm.209,210 

The contribution of the CH species is also imperceptibly visible on PC substrates (Fig. 6.2.10a) 

as a soft difference in the trend, starting from 430 nm, of the spectrum characterized by 61 nm 

of HMDSO on top of it. The different behaviors could be explained by diverse interaction with 
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the substrate. The angular spread is weakly affected, all three samples exhibit very similar 

properties (Fig. 6.2.11b). The total reflectance values range from (70 ± 1) % to (65 ± 1) % (the 

higher the HMDSO thickness, the lower the reflectance). 

 

 

Fig. 6.2.11: measured dependence of the BRDF from the thickness of the protective layer 

deposited on 115 nm Al on 3 mm ABS; (a) spectral (45° with respect to the sample surface 

normal) and (b) angular (555 nm) BRDF for samples with 0, (35 ± 4) and (61 ± 1) nm thick 

protective layer on top of a 115 nm thick Aluminum film  (respectively blue continuous line, 

green dotted line and red dashed line). 

 

6.2.3 Data evaluation and modelling 
 

The preparation of the samples, characterized by the PVD and PECVD processes, yields 

surfaces with isotropic roughness, as demonstrated by AFM images (Fig 6.2.5). Moreover, it 

became obvious from the BRDF data that incident light is reflected within a narrow scattering 

angle which brings us to compare the samples with perfect mirrors. These two observations 

lead us to employ the empirical ABg model, which is widely used in many fields,211,212 to fit the 

BRDF data.213 To analyze the specimens with the ABg model, we switched to the Harvey Shack 

representation; the most important coordinate in this reference system is |𝛽 − 𝛽0| that is the 

difference between the projection of the scattered beam (𝛽 = 𝑠𝑖𝑛𝜃𝑠𝑐𝑎𝑡𝑡𝑒𝑟) and the projection of 

the specular direction (𝛽0 = 𝑠𝑖𝑛𝜃𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟) in the plane of incidence. The ABg formula to fit the 

data is defined as 

 
𝐵𝑅𝐷𝐹 = 

𝐴

𝐵 + |𝛽 − 𝛽0|
𝑔

 (6.2.1) 

 

where the parameters (A, B and g) used in this model come from a rearrangement of the Harvey 

fitting function.214 The BRDF spectra, taken at a fixed wavelength of 555 nm, have been plotted 

in a log-log graph with respect to |𝛽 − 𝛽0|. The ABg model is not able to fit the experimental 

data in the specular reflection direction, in fact ray-tracer software platforms require the 

specular reflection as an additional parameter. With the experimental setup used, it is not 

possible to precisely measure the specular component due to the convolution of the incident 

and reflected beams’ angular distributions, which affects a finite angular region that will be 

called, from now on, convolution-region (the angular distribution of the incident beam can be 

seen in Section 3.4.3). This, combined with the substrates showing small geometric 

deformations due to the molding process of the supports, with the finite size of the probe light 
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beam (diameter = 1.2 cm), and with the aperture size of the detector (diameter = 1.5 cm), results 

in a region where specular Fresnel reflection cannot be easily distinguished and decoupled from 

small angle scattering.215 In a first approximation, it has been assumed that the signal 

contribution in the convolution-region is all ascribable to the specular Fresnel reflection. In fact, 

for the model fitting procedure, our interest is focused on the off-specular component of the 

reflected beam (i.e. pure surface scattering). In order to select properly the region of interest, a 

scan of the incident beam has been performed. This defines the angular region that must be 

excluded during the fitting of the model. An example of the data fitting to the ABg model is 

shown in Fig. 6.2.12, highlighting that the only scatter region is considered (i.e. convolution-

region excluded). 
 

 

Fig. 6.2.12: Harvey Shack representation of the BRDF data (blue dots), together with the best 

fit according to the ABg model (red full line); the green dashed line represents the measured 

incident beam. 

 

Quantitative information on the morphological properties can be obtained from the 

empirical ABg model parameters. In particular, the reconstruction of the BRDF function is 

attained by exploiting the fitted parameters. Integration over the space yields then the Total 

Integrated Scattering (TIS), defined as:  

 

 
𝑇𝐼𝑆 =  ∫ ∫ 𝐵𝑅𝐷𝐹(𝜃𝑖,  𝜑𝑖,  𝜃𝑠,  𝜑𝑠,  𝜆)𝑠𝑖𝑛𝜃𝑠𝑐𝑜𝑠𝜃𝑠𝑑𝜃𝑠𝑑𝜑𝑠

𝜋/2

𝜃𝑠=0

2𝜋

𝜑𝑠=0

. (6.2.2) 

 

In our case, we calculated the TIS integral substituting the ABg expression for the BRDF 

and operating a simple change of variable expressing |𝛽 − 𝛽0| in terms of 𝜃𝑖, 𝜃𝑠, 𝜑𝑠 

 

 
𝑇𝐼𝑆 =  ∫ ∫

𝐴

𝐵 + [(𝑠𝑖𝑛𝜃𝑠 ∙ 𝑠𝑖𝑛𝜑𝑠)
2 + (𝑠𝑖𝑛𝜃𝑠 ∙ 𝑐𝑜𝑠𝜃𝑠 − 𝑠𝑖𝑛𝜃𝑖)

2]𝑔/2
𝑠𝑖𝑛𝜃𝑠𝑐𝑜𝑠𝜃𝑠𝑑𝜃𝑠𝑑𝜑𝑠,

𝜋/2

𝜃𝑠=0

2𝜋

𝜑𝑠=0

 (6.2.3)) 

 

excluding the angles in both 𝜃𝑠 and 𝜑𝑠 representing the specular direction. The wavelength of 

the exploited incident light is larger than the rms surface roughness (λ > rms) and it is possible 

to assume that scattering (outside the convolution-region) is mainly ascribable to the surface 

roughness of the specimen. Moreover, as demonstrated by AFM measurements, samples exhibit 

an isotropic surface roughness. These motivations permit to obtain the surface roughness (σ) 

from the TIS using the formula 
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𝑇𝐼𝑆 = 1 –  𝑒

−(
4𝜋𝑐𝑜𝑠𝜃𝑖𝜎

𝜆
)2

 (6.2.4) 

 

where 𝜃𝑖  is the incident beam angle with respect to the normal of the sample, and λ is the 

wavelength of the incident light. The TIS data obtained from the spectrophotometer 

measurements and from the BRDF fits are reported in Table 6.2.3.216 It is important to remark 

that the zone chosen to perform the BRDF fit does not include the convolution-region, being 

the interest focused on the surface scattering only. However, for the spectrophotometer 

measurements it has been possible to consider the TIS both taking into account and avoiding 

the specular reflectance (third and fourth column in Table 6.2.3, respectively).  

 

Sample TIS from BDRF 

data fit 

TIS from total 

reflectance 

TIS from diffuse 

reflectance 

a) 0.083 ± 0.009 0.113 ± 0.005 0.095 ± 0.005 

b) 0.097 ± 0.008 0.108 ± 0.005 0.091 ± 0.005 

c) 0.094 ± 0.009 0.111 ± 0.005 0.092 ± 0.005 

d) 0.092 ± 0.009 0.119 ± 0.005 0.099 ± 0.005 

e) 0.115 ± 0.010 0.155 ± 0.005 0.136 ± 0.005 

f) 0.088 ± 0.009 0.142 ± 0.005 0.113 ± 0.005 

g) 0.094 ± 0.009 0.154 ± 0.005 0.118 ± 0.005 

h) 0.004 ± 0.002 0.007 ± 0.005 0.006 ± 0.005 

i) 0.007 ± 0.002 0.007 ± 0.005 0.006 ± 0.005 

j) 0.013 ± 0.002 0.013 ± 0.005 0.011 ± 0.005 

k) 0.012 ± 0.002 0.010 ± 0.005 0.009 ± 0.005 

l) 0.006 ± 0.002 0.008 ± 0.005 0.007 ± 0.005 

m) 0.010 ± 0.002 0.017 ± 0.005 0.014 ± 0.005 

n) 0.004 ± 0.002 0.006 ± 0.005 0.005 ± 0.005 

o) 0.031 ± 0.003 0.050 ± 0.005 0.042 ± 0.005 

p) 0.043 ± 0.003 0.060 ± 0.005 0.047 ± 0.005 

q) 0.003 ± 0.002 0.011 ± 0.005 0.005 ± 0.005 

r) 0.002 ± 0.002 0.012 ± 0.005 0.005 ± 0.005 

Table 6.2.3: TIS values obtained from the BRDF data (second column), from the total (third 

column) and diffuse (fourth column) reflectance measured by means of spectrophotometer. 

Samples’ names in the first column are the same as the ones reported in Table 6.2.2.  

 

In most of the cases, the TIS values from the fit are smaller than the ones obtained by means of 

total reflectance spectrophotometer measurements. As discussed above, the BRDF data 

belonging to the convolution-region cannot be fitted; instead, the TIS from the 

spectrophotometer can be calculated considering the diffuse (i.e. not specular) reflectance only. 

In this case (fourth column in Table 6.2.3) the data are slightly closer to the one obtained from 

the BRDF measurements. The deviations between the TIS extrapolated from the BRDF data 

and the TIS calculated using the spectrophotometer data can be imputable to the different 

experimental setup, in fact the incident angle for the spectrophotometer measurements is equal 

to 8°, while for the BRDF it is 45°. 

The roughness values obtained from the BRDF measurements have been compared with 

the corresponding values coming from the AFM experiments and the ones coming from the 

reflectance measurements, yielding remarkable agreement. They can be visually seen in Fig. 

6.2.13 and the Table 6.2.4.  



153 
 

 

 

Fig. 6.2.13: root mean square surface roughness extracted from AFM and BRDF measurements 

for samples prepared on different substrates (PC and ABS): in panel (a), the substrate thickness 

dependence is represented, in panel (b) the influence of the Al film thickness is showed, while 

in panel (c) the influence of the HMDSO film thickness is highlighted. 
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Id. Substrate Substrate 

thickness 

(mm) 

Al 

thickness 

(nm) 

Protector 

thickness 

(nm) 

BRDF 

rms 

(nm) 

AFM 

rms 

(nm) 

Total 

reflectance 

rms (nm) 

Diffuse 

reflectance 

rms (nm) 

a) ABS 1.5 ± 0.1 115 ± 7 35 ± 4 20 ± 3 21 ± 4 14 ± 1 15 ± 1 

b) ABS 3.0 ± 0.1 68 ± 3 35 ± 4 19 ± 3 26 ± 4 17 ± 2 19 ± 2 

c) ABS 3.0 ± 0.1 81 ± 3 35 ± 4 19 ± 3 22 ± 3 16 ± 2 16 ± 2 

d) ABS 3.0 ± 0.1 115 ± 7 35 ± 4 20 ± 3 30 ± 5 15 ± 2 16 ± 2 

e) ABS 3.0 ± 0.1 115 ± 7 0 24 ± 3 20 ± 2 17 ± 2 18 ± 2 

f) ABS 3.0 ± 0.1 115 ± 3 61 ± 1 22 ± 3 21 ± 2 17 ± 2 18 ± 2 

g) ABS 3.0 ± 0.1 166 ± 3 35 ± 4 20 ± 3 23 ± 3 17 ± 2 19 ± 2 

h) PC 1.5 ± 0.1 115 ± 7 35 ± 4 5 ± 1 6 ± 1 4 ± 1 4 ± 1 

i) PC 3.0 ± 0.1 68 ± 3 35 ± 4 5 ± 1 5 ± 1 4 ± 1 4 ± 1 

j) PC 3.0 ± 0.1 81 ± 3 35 ± 4 7 ± 1 8 ± 2 5 ± 1 5 ± 1 

k) PC 3.0 ± 0.1 115 ± 7 35 ± 4 6 ± 1 7 ± 2 4 ± 1 5 ± 1 

l) PC 3.0 ± 0.1 115 ± 7 0 5 ± 1 6 ± 1 4 ± 1 4 ± 1 

m) PC 3.0 ± 0.1 115 ± 7 61 ± 1 5 ± 1 6 ± 1 5 ± 1 5 ± 1 

n) PC 3.0 ± 0.1 166 ± 3 35 ± 4 4 ± 1 13 ± 2 3 ± 1 4 ± 1 

o) ABS 1.5 ± 0.1 0 0 12 ± 1 14 ± 3 20 ± 2 20 ± 2 

p) ABS 3.0 ± 0.1 0 0 14 ± 2 19 ± 4 21 ± 2 21 ± 2 

q) PC 1.5 ± 0.1 0 0 2 ± 1 3 ± 1 9 ± 1 8 ± 1 

r) PC 3.0 ± 0.1 0 0 2 ± 1 4 ± 1 9 ± 1 9 ± 1 

Table 6.2.4: surface roughness values and uncertainties extracted from BRDF, AFM 

measurements, and total reflectance measurements. As highlighted by the table, the rms surface 

roughness is primarily determined by the substrate type.  

   

A better match between the rms values extracted from BRDF and AFM measurements 

with respect to both the reflectance spectrophotometer values (total and diffuse) is evident. This 

could be ascribable to the different incident angle of the impinging light exploited for the BRDF 

and spectrophotometer measurements (45° and 8° respectively) or to the deformation of the 

substrate (stressed in Fig. 6.2.7) which could have played a crucial role in the acquisition of the 

signal with the two different experimental techniques. The investigation on the dependence of 

the surface roughness on different substrate, Al and HMDSO thickness shows that increasing 

the film thickness of both the Al and HMDSO layers has no influence on the rms values, while 

the main difference is in the plastic type used as substrate for the growth of the layers. In 

particular, the roughness values obtained on ABS-based samples are always greater than the 

PC-based counterparts, showing that the roughness is mainly determined by the substrate type 

(PC or ABS). 

It has been demonstrated that is therefore possible to determine the surface roughness 

of the samples by means of a BRDF analysis based on the ABg model. Concerning the trends, 

as reasonably expected, the higher the surface roughness, the lower the specular and the higher 

the off-specular BRDF values. When, as stated before, this information is associated with the 

fact that the roughness is mainly influenced by the substrate type and not by the different 

metallization treatments (Fig. 6.2.13), it is possible to conclude that films supported by ABS 

act more as diffusers, while PC-based films behave more mirror-like. The selection of the 

substrate material must be defined according to the scope of the reflector: if the purpose of the 

reflective component is to spatially spread the light over a wider angular interval (without 

inserting any diffusive element inside the lamp, but only exploiting the optical properties 

supplied by different substrates), an ABS substrate could be envisaged. If the main goal of the 

reflector is to focus light in a selected direction, PC should be put forward. Optimal values for 
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the metallic film thickness were determined in order to maximize the total integrated reflectance 

(81-115 nm Al). For a thickness around 68 nm the transmission through the Al film affects the 

reflectance,217 while for thicker films the accumulation of contaminants in the deposition 

process may start to play a role, thus decreasing the overall reflectance.218,219 Concerning the 

HMDSO, its presence is mandatory to prevent the sample from oxidation, even if it hampers 

the optical properties of the metal, as shown in the literature.220 The 35 nm film is more 

performant than the 61 nm one, while still being sufficient for adequate protection, which has 

been confirmed by internal validation tests performed inside the company. 

To perform a more complete and rigorous analysis, the specular component must be 

kept into account when performing the fit. For this task, the   

 

6.2.4 Discussion 
 

The experimental measurements and the subsequent data analysis reported in this 

chapter helped in gaining a deeper insight into the optical properties of Al-coated thermoplastic 

polymer surfaces. The most important discovery was that the bare ABS substrate is rougher 

than the PC one and the actual surface roughness of the multilayer coating is dominated by the 

substrate material. Consequently, metallic films grown on ABS act more as diffusers, while PC 

substrates yield mirror-like characteristics. In an applicative view, these differences already 

play a relevant role in the choice of the proper substrate material for each element of the 

reflective part of a car head or rear lamp. As a function of the different metallization layers, the 

BRDF analysis revealed small spectral and angular distribution differences, so that it has been 

possible to optimize the metallization process parameters. More specifically, an Al coating of 

80-115 nm optimizes the surface reflectance. Regarding the protective HMDSO layer, a 35 nm 

thick film proved to be the best solution to achieve the desired optical properties and, 

simultaneously, it prevents both surface oxidation and possible mechanical damage. Thicker 

coatings reduce the reflectance, affecting the optical performance of the device. The BRDF and 

total reflectance analysis performed within the ABg framework provided the retrieval of 

quantitative parameters that will allow modeling of the multilayer films in a simulation software 

to design and engineer automotive lighting devices. The advantages of the BRDF measurements 

over the total reflectance ones can be found in a more detailed geometrical description of the 

off-specular scattered component of the reflected beam, which turns out to be a key-factor for 

the ray-tracer simulations. In fact, by means of the measurements described in this section new 

and more precise models have been introduced in the ray-tracing simulators, to be used by 

optical engineers to better simulate the different metallization treatments. 
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6.3 Automatic quality check for reflectors 
 

Automatic inspection is a fundamental task in a production process in order to increase 

quality standards and reduce associated time and costs. As already discussed in Chapter 5, 

human supervision can be inefficient. In addition, in the specific case, if not promptly detected, 

a defective component could be assembled on a lamp and could lead to discard the final product, 

together with all its compliant components. To reduce the possibilities of error, an automated 

computer-based inspection system yielding a greater reliability of the quality check results is 

required. In this section, the design and validation of an innovative and unique machine, able 

to both recognize the defects arising on the reflectors’ surfaces and to check the reflective 

properties of the metal thin film is presented. The double aim of the reflectors, i.e. giving the 

lamp the desired aesthetic aspect and supplying the precise optical properties demanded by the 

photometric specifications, requires a precise and thorough quality inspection. The inspection 

system has been specifically tailored for the reflectors because, in addition to the defects 

detection, it has been designed to check the local reflectance properties of the aluminum layer: 

in fact, the geometric shape of these components, characterized by paraboloidal cavities, 

together with finer superstructures exploited to focus light, makes a standard reflectance 

measurement  impossible to perform. Indeed, the most common experimental instruments such 

as spectrophotometers, reflectometers or ellipsometers need precise geometries and possibly 

flat samples.221–223 Moreover, such techniques are usually cost and time demanding, making it 

impossible to check every single component with such methodologies. The prototype machine 

that will be presented in this chapter can, instead, perform a fast and reliable investigation to 

determine if the local and global reflective properties of the deposited Al coating satisfy the 

quality requirements by means of an optical inspection. Moreover, exploiting Support Vector 

Machines (SVMs) supervised learning models, the prototype tool is able to recognize 

autonomously the defects arising on the reflectors and classify them.224,225 The role of the 

machine learning models – the SVM in the present case – allows the prototype to progressively 

fine tune its precision with every scan, leading to a satisfactory detection accuracy for both the 

structural and optical defects.  

 

6.3.1 Why optical properties? 
 

As stated above, the complex geometries of the reflectors make it impossible to adopt 

standard reflectance measurements setups. BRDF measurements, as discussed in Section 6.2, 

have been performed on almost flat samples, to be able to contain the angular spreading of the 

reflected light. Some other methodologies to determine the optical properties of the metal-

polymer heterostacks have been investigated and have been classified as inadequate. One 

approach (intensively exploited by many packaging companies) involves instead the evaluation 

of the electrical conductivity of the metal layer measured by sheet resistance.226 In brief, sheet 

resistance consists in a measure of the resistance of thin films uniform in thickness. Knowing 

the geometrical positions of the two pins used to generate a potential difference and of the two 

exploited to measure the current intensity, it is possible to determine the resistance of the layer. 

Thanks to tabulated values of resistivity (reported in the literature for several elements)227 it is 

possible to extrapolate the thickness of the film. This approach demonstrates some weaknesses: 

the aluminum layer deposited over a polymeric template has a thickness in the nm range, which 

is not the correct operation range for such technique (best operating range ~ μm). Moreover, 
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the technique implies a uniform contact of the pins with the sample, and this is extremely 

difficult to guarantee when the samples are not flat. Lastly, the thickness of a thin layer is not 

to the only parameters that determines the actual optical properties of the film itself. In fact, 

chemical composition (contamination) also contributes. In Table 6.3.1, the comparison between 

Atomic Force Microscopy and Sheet resistance results is reported for the present case: four flat 

samples with different thickness values have been measured and no agreement can be seen from 

the results.   

 

AFM thickness (nm) Sheet resistance thickness (nm) 

68 ± 3 40 ± 10 

81 ± 3 50 ± 11 

115 ± 7 80 ± 15 

166 ± 3 120 ± 25 

Table 6.3.1: measurements of the thicknesses of four different samples by means of AFM (left 

column) and sheet resistance (right column). No agreement is evidenced. 

 

Therefore, an innovative approach to check the optical properties of the reflectors 

exploiting an optical-based-system has been implemented. Using a luminance camera (LMK 5 

by Technoteam, example of luminance image in Fig. 6.3.1), it is possible to highlight the 

differences resulting from different metallization treatments.  

 
Fig. 6.3.1: example of luminance image of reflector and light source. The color bar on the right 

expresses the luminance value of each pixel (in nit). 

  

This method does not give information regarding the absolute reflectance value, while 

once a correct threshold has been determined it yields a Boolean discrimination factor, thus 

permitting to distinguish compliant and non-compliant reflectors. Six different recipes have 

been considered to deposit the aluminum on the plastic substrate: they differ only in the 

numbers of aluminum spirals evaporated, thus yielding layers with different Al thickness. A 

recap of the recipes and the relative number of Al spirals used is reported in Table 6.3.2. 
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Cycle number Aluminum spirals used 

1 2 

2 5 

3 8 

4 11 

5 14 

6 17 

Table 6.3.2: cycle number (left column) and total Al spirals used in each cycle (right column). 

 

Together with the quality check team, the reflectors metallized exploiting the different 

cycles have been classified as compliant or non-compliant by means of visual inspection: cycle 

1 and 2 yield non-compliant coatings. In Fig. 6.3.2 it is possible to visualize these differences: 

Fig. 6.3.2a represents the luminance image coming from a reflector metallized with “cycle 1” 

treatment, while the luminance image reported in Fig. 6.3.2b is obtained using 17 Al spirals 

(cycle 6) during the evaporation process. They both show the luminance images of the reflector 

with the subtraction of the bulb filament contribution: to perform a correct analysis, in fact, the 

light source must be excluded to focus the attention on the reflector only. The color bar on the 

right of the figure is essential to comprehend the different outputs.  

 
Fig. 6.3.2: two luminance images of different reflectors. Panel (a) represents a reflector 

metallized using cycle number 1, while (b) one metallized by means of cycle 6. 

 

The introduction of an opal material positioned between the reflector and the camera is 

useful to gain information regarding the overall reflective properties of the samples. Clearly, 

the local information is lost by the introduction of the slab, which homogenously scatters light. 

It is therefore impossible in this latter case to disentangle the intensity contributions ascribable 

to the bulb from the one coming from the reflector. On the other side, the total integration of 

the signal is a key-information to unravel the spatial distribution of light and therefore detect 

possible failures in the manufacturing or coating process. Moreover, the introduction of the 

diffusive material supplies a fast and robust chance to check the correct placement of the 

reflector on the holder (the control performed also by checking the pins positions) (Fig. 6.3.3) 

without having saturation problems.       
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Fig. 6.3.3: visual representation of bad positioning: (a) right positioning of reflector, (b) same 

reflector rotated with an angle of 2.5° with respect to the normal direction. The difference is 

evidenced by a 300 pixel shift of the image in the vertical direction.  

 

Unluckily, the luminance camera is an expensive and precious object that cannot be 

installed on a prototype machine, placed in the productive chain to scan a high number of 

components. However, similar information can be achieved by means of a standard camera: 

exploiting a photopic filter and acquiring multiple images at different integration times, it is 

possible to mimic the functionality of the luminance camera and to become sensitive to the 

extremely wide range of luminance values that can arise at different locations on the reflector. 

The photopic filter (transmission spectrum depicted in Fig. 6.3.4) is necessary to simulate the 

human light perception and, therefore, replicate the luminance camera working principle. 

  

 
Fig. 6.3.4: characteristic transmission spectrum of the photopic filter. 

 

The results are highlighted in Fig. 6.3.5, where a comparison between data acquired by 

luminance camera (Fig. 6.3.5a) and standard camera (Fig. 6.3.5b) are represented. The trend of 

the two set of data is similar and in both it has been possible to set a threshold in order to 

distinguish compliant components from defective ones. As stated above, cycle 1 and 2 produce 

scrap components, while the other four cycles lead to a correct Al coverage. 
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Fig. 6.3.5: comparison between luminance camera (a) and standard camera (b) signals. The 

red line is the threshold distinguishing compliant and non-compliant reflectors; it has been 

applied in collaboration with quality operators. 

 

Moreover, by means of this prototype machine it will be possible to give a real time 

feedback regarding some process failures, affecting both the injection molding process and the 

coatings deposition. In fact, the SVM-based machine decreases the detection time required for 

each component and subsequently performs the analysis, allowing to have a prompt response, 

which can be supplied to technicians to fine tune the metallization and molding processes 

parameters involved in the production chain.  

 

6.3.2 Setup of the machine 
 

The machine structure can be described as a 1.5 m high parallelepiped having a square 

basis (side = 1.2 m): a sketch can be observed in Fig. 6.3.6, representing the isometric view 

(panel a), the lateral (b), top (c), and front (d) views.  
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Fig. 6.3.6: CAD model of the prototype machine. Isometric (a), lateral (b), top (c), and front 

(d) views. 

 

The reflector is placed on a rotating footboard in the middle of the structure (Fig. 6.3.6). 

Two GigE “mvBlueCOUGAR-X104ic” cameras, with resolution of 2464x2056 pixels 

acquiring greyscale images, are installed: the top camera is equipped with a photopic filter and 

is dedicated to the “luminance-like” images acquisitions. No illuminator is needed to evaluate 

the reflectance of the sample because the bulb lamp (spectrum in Fig. 6.3.7) placed inside the 

housing is exploited. Anyway, for the structural and color evaluations the illuminators are still 

needed.  

 

 
Fig. 6.3.7: emission spectrum of the light bulb mounted on the chosen reflector.  

 

The aim of the front camera is to scan the components looking for structural defects: 

standard 8-bits greyscale images are acquired at different incident angles, exploiting the rotating 
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board. An array of photodiodes, coupled with a diffractive prism, is exploited to evaluate the 

color of the metallization treatments performed on the reflector. Four illuminators are 

alternately turned on to shine light from precise directions to highlight possible defects. One 

(on the opposite side of the front camera) helps detecting the incompleteness, two (on either 

side of the front camera) illuminate from different directions the reflectors to better detect flaws 

on its surface, and the last one (located below the photodiode) shine light to perform the color 

evaluation. A picture representing the machine is reported in Fig. 6.3.8. 

 

 
Fig. 6.3.8: prototype machine picture, representing the front camera, the top camera, the 

photodiode and the opal slab. The reflector is placed on a rotating footboard to be correctly 

scanned. 

 

The design of a software architecture (coded in C#) composed by several algorithmic 

modules to correctly perform the optical and structural evaluations has been developed. The 

main aspects that must be accommodated to preserve the functional characteristics of the 

machine are the following:  

 

• Configurability: the software must allow for an easy adaptation to different reflectors 

models. 

• Objectivity of the measurements: the software must associate to each sample some 

univocal quantities (luminance, color, dimensions) which must be reproducible and 

easily interpretable. 
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• Trained classification and prediction: the system must be able to find the correct 

parameters to predict the presence of future anomalies coherently with the instructions 

given by the operators. 

 

To satisfy all these requirements, a three-layers-architecture has been designed, composed by:  

  

• Acquisition layer: constituted by modules, sensors, illuminators, and motors, it defines 

in a standard and repeatable way the operations to be performed during the acquisition 

process. These operations generate raw files of different nature as for example images 

or text files. 

• Analysis layer: its aim is to analyze the heterogeneous data generated by the acquisition 

layer and provide, as output, series of numbers (features) which represent the main 

characteristics of the item scanned. All these features represent the whole description of 

the item which must be compared to the reference in order to find some defects.  

• Applicative layer: it is made by three main processes: 

A) Training: the users can set the system defining the defects’ classes and associating 

them a severity. A measurement campaign has to be performed, manually labelling 

all the items in order to teach the machine how to recognize the different defects.  

B) Prediction: the predictive models designed can be implemented to scan each 

reflector, indicating the presence and the location of defects.  

C) Validation: allows the users to evaluate the predictive performance of the system on 

a new dataset, where both defective and compliant components can be scanned and 

classified. The overall evaluation metrics (number of defective components, false 

positives, false negatives, …) are given. 

  

The abovementioned details are summarized in Fig. 6.3.9. 

 

 
Fig. 6.3.9: schematic representation of the three-layer architecture designed for the prototype 

machine. 
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6.3.3 Working principle 
 

The main defects arising on reflectors ascribable to the injection molding process 

(incompleteness, flash) or to the deposition process (color) are depicted in Fig. 6.3.10. An 

incorrect filling of the mold results in an incompleteness, which is evident for the farthest region 

with respect to the injection point (shape incompleteness – Fig. 6.3.10a and pin incompleteness 

– Fig. 6.3.10b). If the temperature of the melt PC is not high enough, some “scars” will be 

visible on the reflector’s aspect. This defect is denominated flash and is represented in Fig. 

6.3.10c. Finally, if the metal evaporation rate is too high, the metal layer acquires a yellowish 

aspect, not shiny enough for the correct optical performances to be fulfilled (Fig. 6.3.10d).   

 

 
Figure 6.3.10: images showing defects appearing on the reflectors: shape incompleteness (a), 

pin incompleteness (b), trace (c) and yellowish (d). 

 

A training, aiming on building precise classification models, has been performed. To 

create the models, 106 components, as a training set, have been scanned and peculiar features 

have been extracted. During this process, all the scanned reflectors have been manually labelled 

as compliant/non-compliant. Based on the training, for each defect we have selected the more 

suitable features to describe it. These features are used, by means of SVM, to generate a model 

allowing for an automatic classification of the components. 

 

Component Scanning 

 

During the scanning process, the rotating footboard, the illuminators, the cameras and 

the photodiodes are synchronized to perform a fast data acquisition. During a 180° rotation of 

the footboard, 10 images are acquired to perform the shape and pins incompleteness evaluation 

and to look for potential flashes. In addition, color spectrum is acquired exploiting the 

photodiode and 10 images taken using different integration times (20, 40, 80, 160, 320, 640, 

1280, 2560, 5120, 10240 μs) are collected by the top camera to perform the reflectance 

evaluation. Lastly, the opal slab slides between the reflector and the top camera to take 

additional 5 images (integration times: 1500, 3000, 4500, 6000, 7500 μs). The whole acquisition 

process lasts 72 seconds, with most of the time dedicated in footboard rotations and slab sliding. 
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Upgrading the moving motors, it will be possible to reduce the acquisition time below 10 

seconds, thus faster than the human check in the production line (12 seconds). 

 

Features extraction 

 

The heart of the detection process is the extraction of features. The features, which are 

translated into quantitative values, are crucial for the SVM learning models and for the 

subsequent classification of the components. All the extracted features can be grouped in five 

big families, involving the five main defects typologies under examination: 

 

a) Color 

b) Reflectance 

c) Trace 

d) Shape incompleteness 

e) Pin incompleteness 

 

Color 

 

The color evaluation is performed acquiring the signal emitted by the component in the 

visible region by means of the photodiode installed in the machine. 

 

 
Fig. 6.3.11: example of yellowish. The sample on the left is compliant, while the middle (faint 

yellowish) and the right (severe yellowish) ones are scraps.  

 

When not correctly metallized, reflectors tend to change their aesthetic appearance, they 

lose their brilliant and gleamy aspect and exhibit a yellowish color (Fig. 6.3.11). Five intensity 

values are measured, acquired at 545, 555, 565, 575, 585 nm (yellow region of the visible 

spectrum) to perform the distinction between compliant and non-compliant reflectors. The 

spectra extracted from the analysis of the three reflectors in Fig. 6.3.11 are reported in Fig. 

6.3.12. They are represented with different colors: red for the sample with a standard coverage 

of Al, green for the sample with a faint lack of coverage while blue for the sample with a severe 

absence of Al on the plastic surface. The spectra have been measured in the 500-700 nm range. 

In Fig. 6.3.12 there are 5 black vertical lines highlighting the wavelengths at which the analysis 

is performed. From the graph, a clear difference between the three spectra is evincible: in 

particular, the intensity signal is lower for samples with more pronounced yellow aspect.  
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Fig. 6.3.12: reflectance spectra of the three samples showed in picture 6.3.11 (red – compliant 

reflector, green and blue – defective components). The vertical lines represent the wavelengths 

at which the features are extracted. 

 

Reflectance 

 

As described in the previous section, a standard camera is exploited to check the 

reflectance properties of the coated components, acquiring several images with different 

integration time (IT). The role of the photopic filter is essential to collect data which are similar 

to the luminance ones. An example of a poorly coated reflector is visible on the right side of 

Fig. 6.3.13.  

 

 
Fig. 6.3.13: example of different metallization treatments on different reflectors: one with 

correct aluminum thickness (left) and one with insufficient Al on top (right). 

 

The variation of the IT is fundamental to be sensitive to different regions of the reflector: 

lower ITs permit to better detect shiny regions, while higher ITs allow for a better analysis of 

darker zones, i.e. zones with low Al coverage. To compare images acquired with different ITs, 

the value of every pixel is “normalized” to a common 10 ms integration time (𝑡𝑐𝑜𝑚𝑚𝑜𝑛) by 

multiplying each pixel intensity for the ratio between the common exposure time and the 

measured one. For example, for an image acquired using an integration time equals to 2560 μs 
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(i.e. 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2560 μs), the single pixel intensity calculation to obtain the common intensity 

value (𝐼𝑐𝑜𝑚𝑚𝑜𝑛) will be 

 

 
𝐼𝑐𝑜𝑚𝑚𝑜𝑛 = 𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑡𝑐𝑜𝑚𝑚𝑜𝑛

𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒
 (6.3.1) 

 

This normalization procedure is performed for each pixel of every collected image. The 

images are then merged by taking the pixel-wise maximum and an output image is generated 

with the same size of the original ones (2464 x 2056 pixels). The resulting grayscale images 

can have intensity values greater than 255, therefore a 16-bit encoding is used to extend the 

range of possible value. If, for a precise integration time, the pixel intensity is saturated, the 

algorithm automatically considers the acquisition with less integration time and performs again 

the saturation check. Five features are extracted on the resulting images: 

 

a) Maximum pixel value intensity 𝐼𝑀𝐴𝑋 

b) Horizontal pixel position of the maximum 𝑥𝑀𝐴𝑋 

c) Vertical pixel position of the maximum 𝑦𝑀𝐴𝑋 

d) Total intensity (i.e. sum of the single pixels intensities) 𝐼𝑇𝑂𝑇 

e) Total intensity using predefined masks which exclude the light source and the lateral 

faces of the reflector 𝐼𝑇𝑂𝑇 

 

The same process described above has been applied to the images taken with the opal 

material interposed between the reflector and the camera. In this case, the local properties of 

the sample are lost while more information regarding the global reflective properties and the 

positioning accuracy of the component on its holder are earned. Obviously, only 4 features are 

extracted: in fact, the introduction of the opal causes the uncontrolled refraction of light and the 

subsequent inability to separate the signal component ascribable to the reflector from the one 

attributable to the light source. In Fig. 6.3.14, the images involving two samples showing non-

compliant (a-e and k-o) and compliant (f-j and p-t) reflectance properties, taken with increasing 

integration time, are represented. As perceivable from the figure, incrementing the integration 

time leads to a larger recorded intensity. However, the algorithm abovementioned is 

fundamental to avoid saturation (as the case represented in panel t) which may bring to incorrect 

conclusions.  
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Fig. 6.3.14: 20 images representing acquisitions performed with different integration times. 

The IT increases from 20 (a and f) to 10240 (o and t) μs by doubling in every image. Panels (a-

e) and (k-o) are representative of the cycle 1, while images (f-j) and (p-t) are showing cycle 5. 

Differences are clearly visible. 

  

Flash 

 

Flashes can arise in many different locations on the reflector. In addition, their size range 

is wide: some of them cover the whole reflector (approximately 15 cm), while others are just 

some fractions of mm long. To be more sensible to the correct location of the flashes, the whole 

reflector surface has been divided in 6 regions (represented in Fig. 6.3.15) and a different model 

has been trained for each of them. Moreover, every region has been subsequently divided in 

sub-regions, denominated zones, in order to increase the sensitivity of the feature extraction 

process. As an example, it is possible to consider the upper part of the reflector, the region 

labelled with number 2 in Fig. 6.3.15. 
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Fig. 6.3.15: enumeration of different reflector’s regions.  

 

The entire surface of region 2 has been divided in 25 zones, and for each zone the 

algorithm extracts the same variety of texture features. Two sample zones are depicted in Fig. 

6.3.16.   

 
Fig. 6.3.16: representation of two zones in which the region 2 has been divided. 

 

In the specific, two main groups of quantities have been utilized: First Order Statistics 

(FOS),228–230 that concerns the distribution of gray level intensities, and Gray Level Co-

occurrence Matrix (GLCM),231–233 which takes information about spatial relation between the 

gray-level intensity values. 19 FOS features have been implemented, and one of the most 

suitable to detect anomalies on the selected region was found to be the so-called Entropy 
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𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  −∑𝑝(𝑖)𝑙𝑜𝑔2[𝑝(𝑖) + 𝜖]

𝑁

𝑖=1

, 

 

(6.3.2) 

where 𝑁 is the number of greyscale levels in the selected region, 𝑝(. ) the normalized first order 

histogram and 𝜖  an arbitrarily small positive number.234,235 This quantity specifies the 

randomness in the image pixels intensities, it therefore measures the average amount of 

information required to encode the image values. A GLCM of size N × N describes the second-

order joint probability function of an image region constrained by the mask and is defined as 

𝑃(𝑖, 𝑗|δ, θ). The (𝑖, 𝑗)𝑡ℎ element of this matrix represents the number of times the combination 

of levels 𝑖 and 𝑗 occur in two pixels in the image, that are separated by a distance of δ pixels 

along angle θ (δ defined according to the infinity norm). 𝜇𝑥 is the mean gray level intensity of 

𝑝𝑥 (which is the normalized first order histogram for the x-component of the image) and is 

defined as 𝜇𝑥 = ∑ 𝑝𝑥(𝑖)𝑖
𝑁
𝑖=1  while 𝜇𝑦 is the mean gray level intensity of 𝑝𝑦 and is defined as 

𝜇𝑦 = ∑ 𝑝𝑦(𝑗)𝑗𝑁
𝑗=1 . 𝜎𝑥 and 𝜎𝑦 are the standard deviation of 𝜇𝑥 and 𝜇𝑦, respectively. A GLCM 

feature that revealed to well distinguish defective items from compliant ones is the Correlation, 

a value ranging between -1 (inversely correlated) and 1 (perfectly correlated) which shows the 

linear dependence of gray level values to their respective pixels in the GLCM (correlation 

equals to 0 means pixels are uncorrelated)236,237 

 

 
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗 − 𝜇𝑥𝜇𝑦
𝑁
𝑗=1

𝑁
𝑖=1

𝜎𝑥(𝑖)𝜎𝑦(𝑗)
. (6.3.3) 

 

Apart from the correlation, other 24 features are extracted on every zone of each 

reflector. In Fig. 6.3.17 are represented the differences between a compliant component (d-f 

and j-l) and a non-compliant one (a-c and g-i) due to the present of an extended flash. The 

rotation of the footboard permits to correctly shine light on the different regions of the reflector 

and therefore to perform the analysis in the best conditions. Exploiting the different reflection 

induced by the flash, by means of the abovementioned features it is possible to detect and 

classify the blemish. 
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Fig. 6.3.17: images representing the acquisitions performed to detect the trace defect. A 

compliant component (d-f and j-l) and a non-compliant piece (a-c and g-i) are showed. 

 

Shape incompleteness 

 

Regions furthest to the injection point are filled lastly by the liquid PC inside the mold. 

This aspect is extremely important to easily determine the incompleteness defects locations on 

the reflectors. Two regions, highlighted by the red circles in Fig. 6.3.18, are the ones showing 

the concerning defects more frequently.  
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Fig. 6.3.18: CAD model illustrating the regions where the shape (a) and pin incompleteness 

(b) may manifest. 

 

In this section the attention will be focused on the shape incompleteness, represented in 

Fig. 6.3.18a, while in the next section the pin incompleteness (Fig. 6.3.18b) will be treated. A 

real example of shape incompleteness is represented in Fig. 6.3.19. Here, one compliant 

reflector (panel a) is compared to two scrap components, showing a small (b) and a severe (c) 

lack of material. 

 

 
Fig. 6.3.19: a compliant reflector (a) compared to two components showing a faint shape 

incompleteness (b) and a severe incompleteness (c). 
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Fig. 6.3.20: visual representation of the shape incompleteness detection process. The red 

rectangle represents a possible ROI used to spot the flaw in the different cases: compliant 

component (a), faint defect (b), severe blemish (c). 

 

To enhance its shape, the reflector is placed directly in front of a uniform and Lambertian 

light source, providing both spatial and angular uniform illumination. The algorithms work by 

comparing the acquired image with a reference, taken from a compliant sample. Once the image 

has been collected, rigid rotations and translations are performed to superpose it to the reference 

one. Marching squares algorithm is applied in a predefined region of interest (ROI), giving as 

output the profile contour of both reference and current image. Four features are extracted: 

 

a) Discrete reference-sample mean distance  

b) Discrete sample-reference mean distance  

c) Area of the symmetric difference of the contours 

d) Maximum distance sample-reference 

 

Reference-sample and sample-reference mean distances are not the same in discrete 

geometry, because the contour is a discrete set of points: this is the reason why both of them 

are considered. As perceivable from Fig. 6.3.20, the differences between compliant reflectors 

(panel a) and defective ones (panel b and c) is evident focus the attention on the red rectangles. 

  

Pin incompleteness 

 

The other region which is lastly filled by the fluid PC is represented by the pin, 

highlighted in Fig. 6.3.21. The pins are fundamental for fixing the reflector to the housing and 

their shape must be perfect to avoid the detachment of the component. In Fig. 6.3.21 a perfect-

shape pin is represented (a), compared to one showing a tenuous flaw (b) and one representing 

a serious blemish (c). 
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Fig. 6.3.21: example of pin incompleteness. A compliant piece (a) is compared to a pin showing 

a faint incompleteness (b) and one presenting a severe defect (c). 

 

The reflector has three pins: during the description only one will be considered, being 

the procedure the same for the other two. The algorithm selects a well-defined ROI in the 

proximity of the final section of the pin, highlighted by the red square in Fig. 6.3.22. In this 

region dark and bright zones, ascribable to the illumination direction, form a well-defined 

regular pattern. A “response” to this pattern can be estimated by the sum of intensities of all 

bright pixels minus the sum of intensities of all dark pixels   

 

 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  ∑{𝐼(𝑏𝑟𝑖𝑔ℎ𝑡) + [(−1) ∙ 𝐼(𝑑𝑎𝑟𝑘)]}. (6.3.4) 

 

If the pin is absent or its shape is not ideal, the light/dark pattern is completely different 

with respect to the expected one. This is stressed by the abovementioned formula, leading to 

different numerical values in presence of incompleteness. The accuracy of this detection 

process is extremely high, being able to recognize defects even smaller than 0.5 mm. In fact, 

the minimal absence of plastic represented in Fig. 6.3.22b and Fig. 6.3.22c is easily identified 

by the prototype machine. 

 

 
Fig. 6.3.22: example of detection of pin incompleteness. The red rectangle represents an 

enlargement of the ROI exploited for the pixel intensity analysis, which otherwise would have 

been impossible to be visualized. It is therefore possible to distinguish compliant (a) and faulty 

pieces (b, c).  
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6.3.4 Preliminary results 
 

By means of an accurate supervised training process, it is possible to teach the machine 

to autonomously detect the scraps. The training consists in scanning both defective and non-

defective samples manually labelling them as compliant or non-compliant. This process is 

fundamental to find the correct hyperplane in the feature space to separate the experimental 

data in two categories (corresponding to compliant/non-compliant classification), as described 

in Section 4.2. During the validation process, performed after the training, the reflectors have 

been scanned and classified autonomously by the prototype: the output produced by the 

machine has been then compared with the response of the quality operators, which represents 

the inspection standard. The results are summarized in the two tables below, for both the 

metallized and non-metallized samples (Table 6.3.3 and Table 6.3.4). 

 

Non-metallized samples 

Defect type No. of 

Samples 

False 

positives 

False 

positives (%) 

False 

negatives 

False 

negatives (%) 

Pin 

incompleteness 

147 0 0 % 0 0 % 

Figure 

incompleteness 

147 0 0 % 0 0 % 

Flash 147 9 6 % 1 0.7 % 

Table 6.3.3: results of the scanning process on non-metallized samples. 

 

Regarding the non-metallized samples, the setup chosen, and the algorithms 

implemented allowed the machine to perfectly detect the incompleteness defects (both affecting 

the figure and the pins). Concerning the flash, a 6% of the total components scanned have 

resulted in false positives (compliant components incorrectly discarded by the machine), while 

a 0.7% of reflectors have been classified as false negatives (defective components not 

recognized by the machine). When the analysis is performed on metallized reflectors, the flash 

flaw is more evident and the accuracy increases: in fact, as reported in Table 6.3.4, all the 

flashes are correctly detected. For the yellowish, both false positive and false negatives are 

present. The rates are low, and their incorrect classification is ascribable to their borderline 

color appearance which is extremely difficult to be correctly tracked. The outcomes of the 

analysis performed to evaluate the reflectance of the Al layer deposited over the plastic substrate 

demonstrated that no false positive has been found, meaning that not a single component has 

been incorrectly discarded by the prototype. However, 4% of the total components analyzed for 

the reflectance are false negatives. 

 

Metallized samples 

Defect type No. of 

Samples 

False 

positives 

False 

positives (%) 

False 

negatives 

False 

negatives (%) 

Flash 98 0 0 % 0 0 % 

Yellowish 103 3 3 % 4 4 % 

Reflectance 

analysis 

148 0 0 % 6 4 % 

Table 6.3.4: results of the scanning process on metallized samples. 
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6.3.5 Discussion 
 

A machine vision- and learning-based prototype setup to autonomously detect defects 

on the reflectors and to monitor their reflective properties has been designed and validated. The 

preliminary studies performed exploiting a visual inspection-based approach showed 

encouraging results, driving to the use of a luminance camera to evaluate the reflectance of the 

metallized reflectors. The prototype machine has been designed with two standard CCD 

cameras to monitor the structural and optical characteristics of the sample and with a photodiode 

able to detect the color appearance of the Al layer deposited. One of the two standard camera 

has been equipped with a photopic filter which, in combination with the constant variation of 

the integration times, permits to obtain information coherent with the luminance camera one. 

The preliminary results are promising, with an overall accuracy around 95% which can be even 

higher for some specific defects.  

Moreover, the prototype has been designed in order to be easily implemented along the 

production lines chain to perform the scanning and give a real time feedback to the operators. 

At the end of every scan the software displays a 3D model of the reflector indicating, by means 

of a color code, the typologies of defects have been observed during the acquisition and their 

location, as represented in Fig. 6.3.23. 

  

 
Fig. 6.3.23: example of the 3D model as displayed by the software after an acquisition. The 

colored regions indicate the presence of a blemish, whose family is described by the color-

coded legend (top-right corner). 

 

The main future perspective is to increase the detection accuracy of the machine until it 

reaches (ideally) the 100%. This can be performed by increasing the number of training scans, 

particularly for the yellowish and luminance blemishes to better recognize the borderline flaws. 

In addition to the fine tuning of the detection procedures, the next planned implementation is 

the realization of a communication system between the prototype detection machine, the 

metallization machine and the simulation software, working on automatic feedback to tune in 

real time the working parameters.  
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7. Conclusions and perspectives 
 

The PhD project I have been involved in was a collaboration between the University of 

Trieste and Marelli Automotive Lighting Italy. The aim of this collaboration was the 

exploitation of surface physics and material science methodologies to give solutions to several 

industrial issues, associated to both the design and productive processes of a rear lamp. During 

the three-years-long-project, several answers to many questions have been provided.  

The combined SEM and SR-CT analysis, performed on defective reflectors, allowed for 

a deep insight into the nature of surface and interface defects that may arise during the molding 

or the metallization production phases. In fact, by means of SEM it has been possible to gain 

topographic and chemical information regarding surface defects (white spots, black spots, 

scratches) with nanometric resolution, while exploiting the SR-CT the deep nature of the 

interface defects has been unraveled. Thanks to this study, the origins of several surface and 

interface defects have been understood, thus allowing to take some preventive actions to avoid 

their future formation.  

The characterization of the optical properties of reflector-like samples has been 

performed by means of BRDF measurements: spectral and angular distributions of the light 

scattered from several samples’ surfaces have been acquired to determine the single production 

parameter’s effect on the overall optical properties. Exploiting the Harvey Shack representation 

and the ABg model, the experimental data have been fitted and the parameters A, B, and g have 

been extracted for each sample. Furthermore, by means of BRDF measurements, the rms 

surface roughness of the samples can be estimated. These values, obtained by optical measures, 

have been compared to the one extracted using AFM and excellent agreement has been found. 

Moreover, exploiting a photolithographic process, the thickness evaluation of both the Al and 

HMDSO thin films has been performed. These measurements have a prime importance because 

they permit to better represents the diverse metallization treatments with the ray-tracing 

simulations during the concept design of a rear lamp, thus allowing for a more reliable and more 

precise representation of the diverse configurations available. 

Finally, two detection concept machines have been designed and validated during the 

doctoral project. The first, performing a machine vision-based analysis, grants a reliable quality 

check on the outer lenses. The second one is based on both machine-vision and machine-

learning algorithms and allows for a fast and solid detection of scrap reflectors. The analysis is 

accomplished to spot both structural defects arising from the injection molding process and to 

check the correct optical properties given by the Al layer. The uniqueness of this machine 

consists in implementing a luminance-like analysis on the reflector to check if the Al coverage 

is adequate by upgrading a standard CCD camera. The results coming from the validation of 

both the machine are encouraging, with an overall accuracy of 95%. The two prototypes 

represent a big step into the “Industry 4.0” framework, leading the possibility to perform real 

time and automatic quality analysis on each component. 

One of the main perspectives is to perform BRDF measurements on glass flat samples, 

thus being insensitive to the deformation of the plastic substrate. Those measurements are 

fundamental to unravel the fine influence of the Al and HMDSO layers on the overall optical 

properties of the samples. Moreover, exploiting transparent substrates (glass) the Bidirectional 

Transmittance Distribution Function (BTDF) of the samples can be studied, therefore being 

able to fully characterize all the optical properties (reflection, transmission and absorption) of 
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the metal and protective layers. Those measurements were initially scheduled in March-April 

2020, but the covid-19 pandemic made it impossible to complete the task. 

Regarding the prototype machine dedicated to the automatic scan of reflectors, the next 

and most important upgrade is to connect it to the molding and metallizing software, generating 

a closed feedback loop. In case of defects, the feedback loop will give the possibility to tune in 

real time and following a computer-based way the production parameters to correct the faults. 

This will be, for the company, the definitive jump in the “Industry 4.0” environment, allowing 

for a safer and more controlled parameters selection.     
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