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ABSTRACT – We report the first crystal structure determinations of chromites from an 23 

acapulcoite and from ordinary chondrites. Cell edges range from 8.3212 (3) to 8.3501 24 

(1) Å, while the oxygen positional parameters are in the range 0.2624 (3) to 0.26298 (9). 25 

Their compositions show they are very close to the chromite end-member FeCr2O4 with 26 

limited Al and Mg content. Titanium oxide content exceeds 1%, whereas the amount of 27 

Fe3+ is negligible. Extraterrestrial chromite is readily distinguished from terrestrial 28 

analogues on the basis of cell edge and oxygen positional parameter. These distinctions 29 

will facilitate ongoing attempts to reconstruct the paleoflux of meteorites to Earth from 30 

resistant extraterrestrial spinel grains recovered from ancient sediments. 31 

 32 
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1. INTRODUCTION 35 

Chromite is a minor but regular constituent of ordinary chondrites and its chemistry 36 

in meteorites has been studied since the 1960's. Bunch et al. (1967) were the first to 37 

give a survey of the chemical composition of chondritic chromites. They suggested that 38 

there is a relationship between chromite Fe-Mg contents and olivine Fe-Mg contents in 39 

the H, L and LL groups of equilibrated chondrites. Besides the main components FeO 40 

and Cr2O3, chromite contains minor amounts of MgO and Al2O3. The increase in 41 

Fe2+/(Fe2++Mg) from H to LL chondrites is evident. Nonetheless, Wlotzka (2005) 42 

argued it was not possible to distinguish between the H and L groups from the chromite 43 

composition alone, as has been attempted for fossil chondrites (Bridges et al., 2007), 44 

because of the overlapping Fe2+/(Fe2++Mg) ratios of chromites. Besides Al and Mg, Ti 45 

is a major element in the chromite. Although there is overlap in the composition of 46 
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chromites from H, L and LL chondrites, the average element composition of a larger set 47 

of chromite grains from fossil meteorite gives an indication of the dominant origin of 48 

the grains (Schmitz, 2013). This relation has been confirmed by oxygen isotopic 49 

analyses of chromites from fossil Ordovician meteorites showing that these indeed are 50 

dominantly pseudomorphosed L chondrites, as indicated by their chromite chemical 51 

composition  (Heck et al., 2010).  Acapulcoites are coarsely crystalline, unshocked 52 

objects of chondritic composition and igneous texture (Palme et al., 1981; Folco et al., 53 

2006; Rubin, 2007). Equilibration temperatures for acapulcoites are much higher than 54 

those estimated for the most equilibrated ordinary chondrites (950-1250 K; Dodd, 55 

1969). Oxygen-three isotopes indicate possible aqueous alteration of acapulcoites prior 56 

to the onset of thermal metamorphism (Greenwood et al., 2012), and a comparison of 57 

chromite from  acapulcoites and ordinary chondrites is thus of interest. 58 

It is well known that terrestrial Cr-bearing spinel can be considered as a petrogenetic 59 

indicator because chromite composition is a rich source of information on the origin and 60 

evolution of its parent magmas (Irvine, 1967; Dick and Bullen, 1984). The relationships 61 

between composition, structural parameters and genetic environment of Cr-bearing 62 

spinels from different terrestrial occurrences have been considered by several authors 63 

for a better understanding of their genesis and/or oxidation mechanisms (Della Giusta et 64 

al., 1986; Princivalle et al., 1989; Carbonin et al., 1999; Carraro, 2003; Bosi et al., 65 

2004; Uchida et al., 2005; Lenaz et al., 2010, 2011; Derbyshire et al., 2013; Princivalle 66 

et al., 2014).  67 

This study presents the first structural and chemical data of meteoritic chromite. Data 68 

are given for a total of nine chromite grains, including one from an acapulcoite (labeled 69 

ACAP), and four each from the Kernouvé H6 ordinary chondrite (H6) and from an ~ 70 

470 Ma old fossil meteorite, Gol 001 (GOL), found in Ordovician limestone at 71 

Kinnekulle in Sweden and originating from the coeval disruption of the L-chondrite 72 
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parent body (Schmitz et al., 2001; Heck et al., 2010; Schmitz, 2013). Recently, 73 

Alwmark and Schmitz (2009) and Heck et al. (2010) distinguished terrestrial and 74 

extraterrestrial chromite using relict silicate inclusions and high-precision oxygen three-75 

isotopes SIMS analyses, respectively. As these analyses are time-consuming and 76 

necessitate a lot of material, our study aims to determine whether structural parameters, 77 

such as cell edge and oxygen positional parameter, can be used to distinguish 78 

extraterrestrial from terrestrial chromite. Since structure refinement requires much less 79 

material, this will facilitate ongoing attempts to reconstruct the paleoflux of meteorites 80 

to Earth from resistant extraterrestrial spinel grains recovered from ancient sediments.  81 

 82 

2. MATERIALS AND BACKGROUND 83 

Acapulcoites belong to the class of acapulcoite-lodranite (A-L) meteorites (McCoy et 84 

al., 1993). A high degree of recrystallization and mineral chemical data indicate 85 

formation of acapulcoites under redox conditions intermediate between those of H- and 86 

E-chondrites, at about 1100°C, from which it cooled at a rate > l0°C/Ma (Dodd, 1969). 87 

The major element composition is within the range of H-chondrites. Troilite and metal 88 

are heterogeneously distributed. Associated trace elements are heterogeneously 89 

distributed whereas chromium content is a factor of two higher than in H-chondrites. 90 

Acapulcoites consist of an assemblage of orthopyroxene, olivine and feldspar associated 91 

with comparatively large amounts of metallic nickel-iron, and minor amounts of 92 

diopside, troilite, chromite and phosphate. The chromite is rather constant in 93 

composition from grain to grain and appears to be distinct from chromite in ordinary 94 

chondrites (Bunch et al., 1967), silicate inclusions of iron meteorites (Bunch et al., 95 

1970), pallasites, mesosiderites, and eucrites (Bunch and Keil, 1971). The distribution 96 

of divalent cations fits into the correlation observed for equilibrated meteorites. The 97 
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high concentrations of Cr, Mn and Zn in chromites are also observed in chromite from 98 

silicate inclusions of iron meteorites. ZnO concentrations in acapulcoite chromites range 99 

from 0.9 to 1.3%; these relatively high contents reflect the unusually high bulk Zn 100 

content of acapulcoite (Palme et al., 1981).  101 

Kernouvé is an ordinary chondrite of the H group from an observed fall in France in 102 

1869. It is texturally metamorphosed and of petrologic type 6. It contains abundant 103 

metals, was heated for a significant period of time before the onset of partial melting, 104 

and is minimally shocked (Ford et al., 2008). It contains relict chondrules set in a 105 

coarse-grained, recrystallized matrix of olivine (Fo80), orthopyroxene (Fs15.7-18.1), 106 

plagioclase, Fe-Ni metal, troilite, chromite and phosphate (Ford et al., 2008). Chromite 107 

grains from this chondrite are chemically homogeneous and have the typical 108 

equilibrated H-chondritic composition with generally somewhat lower TiO2 (~2.5 wt%) 109 

and higher Al2O3 (~6.0 wt%) contents than equilibrated L chondrites (typically TiO2 110 

~3.0 wt% and Al2O3 ~ 5.2 wt%) (Bunch et al., 1967; Schmitz et al., 2001).  111 

Meteorite Gol 001 (formal name Österplana 029) is a relatively large (6 x 9 x 2 cm) 112 

mid-Ordovician fossil meteorite found in the Golvsten bed in the Thorsberg quarry in 113 

southern Sweden (Schmitz et al., 2001).  The meteorite contains abundant, large and 114 

well-preserved chromite grains. Chromite grains are homogeneous in chemical 115 

composition throughout the meteorite, and the average composition of several of the 116 

grains plots with equilibrated L chondrites (Schmitz et al., 2001). Based on these data 117 

and the maximum chromite grain diameter, Bridges et al. (2007) assigned it to the L6 118 

group and type. Oxygen-three isotopic analyses of the chromite grains confirm an L or 119 

LL chondritic origin (Greenwood et al., 2007; Heck et al., 2010).  The cosmic-ray 120 

exposure age of meteorite Gol 001 is ca. 300 kyr based on noble (neon) gas isotopic 121 

measurements of chromite grains from the meteorite (Heck et al., 2004). This age 122 

concurs very well with the estimated timing of the break-up of the L chondrite parent-123 
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body based on the stratigraphic first appearance of abundant sediment-dispersed 124 

chromite grains from L-chondritic micrometeorites (Schmitz, 2013). Altogether the 125 

isotopic and chemical data show that the chromite grains from this meteorite are 126 

excellently preserved despite having been buried in marine limestone for 470 Ma. 127 

3. METHODS 128 

X-ray diffraction data for the nine chromite grains analyzed were recorded on an 129 

automated KUMA-KM4 (K-geometry) diffractometer at the Department of 130 

Mathematics and Geosciences (University of Trieste), using MoKα radiation, 131 

monochromatized by a flat graphite crystal. Chromites from the studied meteorites are 132 

usually rather small. The longer axis in these chromite grains is up to about 120 μm, but 133 

usually below 100 μm, the other axis is between 20 and 50 μm so that in some cases the 134 

grain is nearly "two-dimensional" with a thickness of only 20 μm. Given that, for the 135 

largest grains, twenty-four equivalent reflections of (12 8 4) peak, at about 80° of 2θ, 136 

were accurately centered at both sides of 2θ, and the α1 peak barycenter was used for 137 

cell parameter determination. For the smallest grains, forty-eight reflections of (8 4 0) 138 

and (8 4 4) peaks, at about 45-50° of 2θ, have been used. Data collection was made, 139 

according to Della Giusta et al. (1996), up to 50° of θ in the ω-2θ scan mode, scan 140 

width 1.8°2θ, counting time from 20 to 50 seconds depending on the peak standard 141 

deviation. Corrections for absorption and background were performed according to 142 

North et al. (1968). Structural refinement using the SHELX-97 program (Sheldrick, 143 

2008) was carried out against Fo2
hkl in the Fd-3m space group (with origin at -3m), 144 

since no evidence of different symmetry appeared. Scattering factors were taken from 145 

Prince (2004) and Tokonami (1965). Neutral scattering curves, Mg vs. Fe in T site and 146 

Cr vs. Al in M site, were assigned, with the constraints of full site occupancy and equal 147 

displacement parameters. Oxygen ionization was varied from one grain to another in 148 
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order to reach the best fit between structural refinement and chemical analyses and to 149 

obtain the best value for all conventional agreement factors. Results are in Table 1. 150 

After X-ray data collection, the same crystals used for X-ray data collection were 151 

mounted on glass slides, polished and carbon coated for electron microprobe analyses 152 

on a CAMECA-CAMEBAX microprobe at IGG-CNR, Padua, operating at 15kV and 153 

15nA. A 20-s counting time was used for both peak and total background. Synthetic 154 

oxide standards (MgO, Fe2O3, MnO, ZnO, NiO, Al2O3, Cr2O3, TiO2 and SiO2; purity 155 

99.99 %) and synthetic chromite and Mg-chromite (Lenaz et al., 2004b) were used. 156 

Raw data were reduced by PAP-type correction software provided by CAMECA. 157 

Results are in Table 2. 158 

Several different procedures may be adopted to determine cation distribution, and 159 

very satisfactory results have recently been obtained by combining data from single-160 

crystal X-ray structural refinements and electron microprobe analyses. This approach 161 

simultaneously takes into account both structural and chemical data and reproduces the 162 

observed parameters by optimizing cation distributions. Differences between measured 163 

and calculated parameters are minimized by a function F(X) taking in consideration 164 

different parameters as the observed quantity and their standard deviations, cation 165 

fractions in T and M sites, unit cell and oxygen parameter, mean atomic numbers of T 166 

and M sites, atomic proportions given by microprobe analyses, and constraints imposed 167 

by crystal chemistry (total charges and occupancies of T and M sites) (see Appendix). 168 

Several minimization cycles of the equation containing these parameters were 169 

performed until convergence according to the procedures described in Carbonin et al. 170 

(1996) and Lavina et al. (2002) (Table 2 and Table 3). We should note that the program 171 

operates in order that the number of cations totals 3. As a result, the GOL samples have 172 

large F(X) values and errors because the number of cations never exceeds 2.985. A 173 

similar situation arose with the Franz1 chromite analyzed by Carbonin et al. (1999). 174 
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Considering the possible valence state partitioning (Papike et al., 2005) we tested the 175 

effects of V2O5 instead of V2O3 without improvement. In Table 3 it is possible to 176 

observe the observed and calculated values of parameters involved in the minimization 177 

process. 178 

 179 

4. RESULTS AND DISCUSSION  180 

The cell edge of chromites in H6 ranges from 8.3480 (2) to 8.3501 (1) Å, while in 181 

GOL it varies from 8.3212 (3) to 8.3463 (3) Å (Table 1). The oxygen positional 182 

parameter ranges from 0.2627 (2) to 0.26298 (9) in H6 and from 0.2624 (3) and 0.26267 183 

(9) in GOL (Table 1). These values show that there are minor differences in chromite 184 

composition and structure from the two types of chondrites. The ACAP chromite shows 185 

a cell edge equal to 8.3384 (1) Å and an oxygen positional parameter of 0.26251 (9) 186 

(Table 1). 187 

The chemical composition of H6 and ACAP samples is rather homogeneous while 188 

GOL chromites present different compositions from one point to the other. This feature 189 

creates patch-like surfaces with local enrichment/depletion in major oxides. The 190 

analyzed chromites point to a nearly pure end-member composition with limited Al↔Cr 191 

(Al < 0.26 apfu) and Mg↔Fe2+ (Mg ≤ 0.15 apfu, except for the ACAP sample) 192 

substitutions. Ferric iron is negligible in all the analyzed chromites (Table 2), a feature 193 

characteristic of other phases too, in extraterrestrial materials (Papike et al., 1998). All 194 

the GOL chromites here analyzed have been assigned to the L-chondrite group (TiO2 in 195 

the range 2.9 – 3.3 wt.%) (Table 2).  196 

The large excess octahedral crystal field stabilization energy of Cr3+ (Δ CFSE(oct-tet) is 197 

about 160 kJ mol-1; O’Neill and Navrotsky, 1984) should ensure that Cr-bearing spinels 198 

have an almost completely normal cation distribution (Urusov, 1983), meaning that 199 

about ¾ of the M site is filled by Cr. Titanium and vanadium can also be assumed to 200 
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occupy this site, consequently only about 0.3 cation could be filled by other cations. 201 

Cation assignment, taking in account structural and chemical parameters, shows an 202 

ordered distribution where Al almost completely fills the balance of the M site (Table 203 

2).  204 

Calculation of the formulae for the chromites in the GOL samples from Kinnekulle 205 

gives a total number of cations less than 3 and a total number of electrons per formula 206 

unit significantly higher than that derived from structural refinement. In terrestrial 207 

samples this fact, coupled with a low oxygen parameter value (< 0.2620), suggested the 208 

presence of vacancies (Carbonin et al., 1999; Bosi et al., 2004; Lenaz et al., 2014a, 209 

2014c). The low oxygen positional parameter in terrestrial samples (in the range 210 

0.2608-0.2620) is a product of the 3Fe2+ → 2Fe3+ + vacancies transformation under 211 

oxidizing conditions. This causes the development of a magnetite component as seen 212 

from a combined X-ray single crystal diffraction and Mössbauer (MS) approach (Lenaz 213 

et al., 2014a, 2014c) and exemplified by Lenaz et al. (2013) by comparing the results of 214 

structural refinement (SREF), microprobe analyses, point-MS and powder-MS collected 215 

on several chromite samples. They showed that in some cases there was a large 216 

discrepancy between SREF and powder-MS because commonly used powder-MS needs 217 

a lot of grains where oxidation degree could be very different among the grains, while 218 

SREF and point-MS have been performed on the same single crystal yielding a good 219 

comparison. These phenomena in the terrestrial environment are considered as the result 220 

of oxidation processes that happened after primary chromite formation at temperatures 221 

between 600-700°C. It is unlikely this oxidation processes in the present case took place 222 

on the sea floor or during diagenesis, consequently we think that this non - 223 

stoichiometry should be primary. Alwmark and Schmitz (2007) noticed in some 224 

extraterrestrial chromites from the Lockne crater in central Sweden, Zn enrichment and 225 

oxidation that they suggested to be a result of the hydrothermal system induced by the 226 
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impact. In the present case there is undoubtedly a non - stoichiometry, but the absence 227 

of Zn enrichment as well as the oxygen parameters higher than 0.2624 suggest that the 228 

non-stoichiometry is not due to oxidation. Moreover, this feature has been already 229 

noticed in other extraterrestrial mineral phases (Weill et al., 1971; Herd and Papike, 230 

1998; Yurimoto et al., 2001; Abreu et al., 2014). Yurimoto et al. (2001) suggested a 231 

rapid crystallization to explain the non - stoichiometry of some spinels from a CO 232 

chondrite, while Abreu et al. (2014) suggested shock metamorphism for non-233 

stoichiometry in CR chondrite grains of several unknown ferromagnesian silicates 234 

(Fe5MgSi2O10, Fe4MgSi3O11 and other similar compounds). We suggest that the spinels 235 

studied here present a non - stoichiometry for similar reasons. 236 

By comparison with the structural parameters of chromites from terrestrial occurrences, 237 

in an oxygen positional parameter vs. cell edge diagram (Fig. 1) the extraterrestrial 238 

chromites fall in a field close to that of chromites from komatiites (Lenaz et al., 2004a), 239 

kimberlites and included in diamonds (Lenaz et al., 2009), and not far from that of 240 

layered intrusions (Lenaz et al., 2007, 2012) and the synthetic MgCr2O4-FeCr2O4 series 241 

(Lenaz et al., 2004b). When comparing the meteoritic spinels studied by us with the 242 

mantle occurrences from a structural point of view we can see that they fall in a field 243 

more or less parallel to that of the MgCr2O4-FeCr2O4 binary synthetic series (Lenaz et 244 

al., 2004b). Considering that the MgAl2O4 and FeAl2O4 spinels have cell edges equal to 245 

8.0855 and 8.1646 Å and oxygen positional parameter equal to 0.2613 and 0.2642, 246 

respectively, changes along the x-axis roughly suggest a Cr↔Al substitution (see also 247 

Lenaz and Skogby, 2013, for the hercynite-chromite synthetic series) while changes 248 

along the y-axis roughly suggest a Mg↔Fe2+ (Fig. 2). Our data suggest a limited 249 

Cr↔Al substitution (Al2O3 is close to 6.5 wt. % for H6 and to 5.8 wt. % for GOL) and a 250 

larger Mg↔Fe2+ (MgO ranges from 2 to 7 wt. %). Therefore the chromites in our 251 

meteorites (excluding the non-stoichiometric ones), those included in diamonds (Lenaz 252 
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et al., 2009) and those from komatiites (Lenaz et al., 2004a) are on a trend (R2=0.92). 253 

As all of these occurrences are mantle related, it is possible that this is a consequence of 254 

the degree of differentiation of the liquid from which they originated. 255 

Hazen and Ferry (2010) defined three eras and ten stages of mineral evolution in our 256 

solar system. During the first era, the so-called Era of Planetary Accretion (>4.55 Ga), 257 

perhaps 60 different mineral species appeared as primary condensates. These planet-258 

forming materials developed as planetesimals. As asteroids grew and began to 259 

experience modest heating by the decay of short-lived radionuclides such as 26Al, the 260 

melting of ice and the subsequent alteration at low temperatures increased mineral 261 

diversity to 250 (McCoy, 2010). In fact, one of the many mechanisms that drove 262 

mineral diversification is increase in the ranges of intensive variables such as pressure, 263 

temperature and the activities of H2O, CO2 and O2 (Hazen and Eldredge, 2010).  Even 264 

while this aqueous alteration and thermal metamorphism were occurring in asteroids, an 265 

era of intense bombardment began. These impacts formed new minerals as chondritic 266 

asteroids were subjected to intense heat and pressure (McCoy, 2010). As heating 267 

continued, the solidus temperature of about 950°C was exceeded and melting began. 268 

The earliest partial melts formed from FeNi metal and the iron sulfide troilite, but they 269 

also incorporated minerals like chromite and phosphates (McCoy, 2010). By using the 270 

geothermometer proposed by Princivalle et al. (1999) an intracrystalline equilibration 271 

temperature equal or higher than about 1250°C (Table 2) has been found for H6 and 272 

ACAP chromite grains, showing that the temperature reached after heating was very 273 

high. Calculated temperatures for GOL chromites are unreliable (> 1700°C). This 274 

happened also for some terrestrial occurrences (Derbyshire et al. 2013) where zoning is 275 

present, so that it is possible to assume that where well-defined core-rim zoning or 276 

patches are present, as in the GOL chromites, it is not possible to use the thermometer. 277 

 278 
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5.  CONCLUSIONS 279 

Because meteoritic material on the Earth surface is rapidly altered or weathered away 280 

with the exception of chromite, similarly to what happens for terrestrial mafic – 281 

ultramafic material (Lenaz et al., 2009, 2014b), different methodologies have been 282 

recently developed to recognize the extraterrestrial detrital chromitic material such as 283 

relict silicate inclusions (Alwmark and Schmitz, 2009) and high-precision oxygen three-284 

isotopes SIMS analyses (Heck et al., 2010). This work demonstrates that a structural 285 

study can, as well, distinguish extraterrestrial from terrestrial material and also that 286 

different chondritic (H and L) origins can be recognized. This will facilitate ongoing 287 

attempts to reconstruct the paleoflux of meteorites to Earth from resistant extraterrestrial 288 

spinel grains recovered from ancient sediments. 289 
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APPENDIX 299 

I) Cation distribution 300 

The cation distribution for the present samples has been achieved by using the Lavina et 301 

al. (2002) model. This model yields cation distribution by minimizing the weighted 302 

differences between observed crystal chemical data and data calculated from site atomic 303 
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fractions. This cation distribution in the tetrahedral (T) and octahedral (M) sites must be 304 

consistent with the assumptions that: 305 

1 – The mean atomic number (m.a.n.) corresponds to: 306 

m.a.n. T = Σi IVXiNi   (A1) 307 

m.a.n. M = Σi VIXiNi   (A2) 308 

where IVXi and VIXi are chemical species in T and M respectively and N is their atomic 309 

number 310 

2 – The site bond length arises from a linear contribution of each species to the 311 

tetrahedral (T-O) and octahedral (M-O) coordination distances so that: 312 

T-O = Σi IVXi
IVDi   (A3) 313 

M-O = Σi VIXi
VIDi   (A4) 314 

where IVDi and VIDi are the cation-to-oxygen bond distances of each cation in tetrahedral 315 

and octahedral coordination, respectively. 316 

To summarize, site atomic fractions IVXi and VIXi must not only satisfy the above 317 

equations, but also correspond to the atomic proportions from the chemical analyses and 318 

obey three crystal-chemical constrains: occupancies of T and M sites and formal 319 

valence. Consequently, IVXi and VIXi may be calculated by minimizing the following 320 

sum of residuals: 321 

 322 

Where Oj are the observed quantities with their standard deviation σj. Oj are the four 323 

observed crystallographic parameters (a, u and m.a.n. of T and M sites) and the 324 

chemical proportions for a total of n. Cj(Xi) are the corresponding quantities calculated 325 

by means of variable cation fractions Xi.  326 

 327 

II) Temperature calculation 328 
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Della Giusta et al. (1996) fitted the data of their heating experiments on spinels with the 329 

following empirical equation  330 

T(°C) = C1 – C2.B + C3.B2    (A6) 331 

where  332 

B = Al(T)/Altot + C4.(1-Mg(T) – Al(T) + C5.(2 – (Al(M) – Mg(M))  (A7) 333 

and C1 to C5 are the fitting coefficients. The second term of A7 takes into account the 334 

compositional influence of (Fe2+ + Fe3+ + Si + Mn + Zn) in the T site, and the third term 335 

(Cr + Fe2+ + Fe3+ + Ti + Ni) in the M site. Princivalle et al. (1999) revised the above 336 

equations obtaining the linear equation  337 

T(°C) = 6640.B  (A8) 338 

with new coefficients C4 and C5 being 0.101 and 0.041, respectively.  Obtained 339 

temperatures for the chromites studied by us are in Table 2. As happened for severely 340 

altered terrestrial chromites (Derbyshire et al., 2013), the temperatures of non-341 

stoichiometric chromites are unreliable and, consequently, not reported.  342 

 343 
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Figure captions 530 

Fig. 1: Oxygen positional parameter, u vs. cell edge, a. Red circles: H6, this study; red 531 

squares: GOL, this study; black diamond: ACAP chromite, this study; blue 532 

diamonds: chromite in kimberlites and included in diamonds (Lenaz et al., 2009); 533 

purple squares: chromites in komatiites (Lenaz et al., 2004a); yellow circles: 534 

chromites in layered intrusions (Lenaz et al., 2007; 2012); green circles: MgCr2O4-535 

FeCr2O4 synthetic spinels (Lenaz et al., 2004b).  536 

Fig. 2: Oxygen positional parameter, u vs. cell edge, a for synthetic series and the 537 

meteoritic chromites studied here. Blue squares: MgAl2O4-FeAl2O4 (Andreozzi and 538 

Lucchesi, 2002); orange diamonds: FeAl2O4-FeCr2O4 (Lenaz and Skogby, 2013); 539 

green circles: MgCr2O4-FeCr2O4 spinels (Lenaz et al., 2004b). The meteorite 540 

chromites of this study are represented by red circles.  541 



Table 1: Results of crystal structure refinements of chromite 
 
Sample H6-1 H6-2 H6-C H6-D ACAP GOL-A GOL-B GOL-C GOL-D
a (Å) 8.3488 (1) 8.3501 (1) 8.3480 (2) 8.3485 (2) 8.3384 (1) 8.3463 (3) 8.3349 (3) 8.3347 (3) 8.3212 (3)
u 0.26286 (7) 0.26291 (7) 0.26298 (9) 0.2627 (2) 0.26251 (9) 0.26267 (9) 0.2625 (1) 0.2626 (1) 0.2624 (3)
T-O 1.994 (1) 1.995 (1) 1.995 (1) 1.992 (3) 1.987 (1) 1.990 (1) 1.985 (2) 1.989 (2) 1.980 (5)
M-O 1.9856 (5) 1.9856 (5) 1.9845 (7) 1.986 (2) 1.9854 (6) 1.9864 (7) 1.9852 (8) 1.986 (2) 1.983 (2)
m.a.n.T 23.7 (4) 24.0 (6) 24.2 (5) 24.5 (6) 21.3 (2) 23.3 (3) 22.0 (4) 24.0 (5) 22.1 (5)
m.a.n.M 22.1 (5) 22.1 (7) 22.5 (6) 22.0 (5) 22.5 (3) 22.4 (3) 21.9 (6) 22.6 (5) 22.3 (5)
U (M) 0.0038 (1) 0.0039 (1) 0.0045 (1) 0.0039 (2) 0.0045 (1) 0.0046 (1) 0.0059 (1) 0.0052 (1) 0.0059 (3)
U (T)  0.0068 (1) 0.0071 (2) 0.0075 (2) 0.0073 (3) 0.0073 (1) 0.0073 (1) 0.0081 (2) 0.0082 (2) 0.0086 (5)
U (O) 0.0059 (2) 0.0060 (3) 0.0060 (3) 0.0070 (5) 0.0063 (2) 0.0068 (2) 0.0084 (3) 0.0072 (4) 0.0085 (9)
N. refl. 155 152 122 117 177 155 127 118 85
R1 2.01 1.86 1.80 3.01 1.67 2.04 2.23 2.43 3.55
wR2 2.77 3.11 2.67 6.65 3.31 3.62 3.34 4.64 5.50
GooF 1.241 1.088 1.119 1.173 1.154 1.258 1.145 1.137 1.296
Diff. peaks 2.91; -0.99 1.63; -0.64 1.12; -0.89 2.26; -1.53 1.74; -0.84 2.33; -1.29 1.62; -0.61 2.28; -0.63 1.75; -1.21
 

a: cell parameter (Å); u: oxygen positional parameter; T-O and M-O: tetrahedral and octahedral bond lenghts (Å), respectively; m.a.n.T and M: mean atomic 

number; U(M), U(T), U(O): displacement parameters for M site, T site and O; N. Refl.: number of unique reflections; R1 all (%), wR2 (%), GooF as defined in 

Sheldrick (2008). Diff.peaks: maximum and minimum residual electron density (± e/Å3). Space Group: Fd-3m. Origin fixed at –3m. Z=8. Reciprocal space range: 

-19 ≤ h ≤ 19; 0 ≤ k ≤ 19; 0 ≤ l ≤ 19. Estimated standard deviations in brackets.  

 

 

 



Table 2. Mean chemical analyses and cation distribution of chromite 
 
Sample H6-1 H6-2 H6-C H6-D ACAP GOL-A GOL-B GOL-C GOL-D
MgO 3.35 (8) 3.3 (1) 3.2 (1) 3.0 (1) 6.9 (3) 2.3 (2) 2.9 (3) 2.0 (1) 2.67 (9)
Al2O3 6.5 (2) 6.4 (1) 6.46 (8) 6.7 (1) 6.1 (1) 5.9 (1) 5.8 (1) 5.8 (3) 5.78 (4)
TiO2 2.3 (2) 2.32 (7) 2.29 (4) 2.10 (7) 1.18 (4) 3.08 (4) 3.2 (1) 2.9 (1) 3.32 (3)
V2O3 0.74 (6) 0.67 (5) 0.66 (3) 0.71 (6) 0.57 (3) 0.67 (1) 0.73 (5) 0.65 (5) 0.69 (1)
Cr2O3 56.9 (4) 56.9 (5) 57.2 (1) 56.4 (5) 61.7 (5) 57.0 (7) 57.2 (9) 57.0 (8) 56.62 (6)
MnO 0.91 (6) 0.87 (6) 0.95 (7) 0.84 (4) 1.6 (5) 0.68 (7) 0.71 (6) 0.57 (6) 0.93 (6)
FeO 28.7 (3) 29.1 (3) 29.0 (2) 29.2 (2) 21.1 (4) 29.5 (1.0) 29.0 (1.0) 28.9 (1.5) 28.6 (3)
NiO* 0.03 (3) 0.02 (3) 0.00 (0) 0.01 (1) 0.01 (1) 0.01 (1) 0.01 (1) 0.01 (1) 0.01 (1)
ZnO* 0.37 (2) 0.36 (5) 0.31 (3) 0.33 (4) 1.0 (1) 0.30 (3) 0.33 (6)  0.7 (1)
Sum 99.74 99.92 100.00 99.19 100.13 99.39 99.23 98.8 99.3
     
T Site     
Mg 0.152 (4) 0.107 (6) 0.110 (4) 0.101 (6) 0.32 (1) 0.105 (9) 0.16 (1) 0.07 (1) 0.089 (4)
Al 0.009 (1) 0.013 (1) 0.0090 (4) 0.020 (1) 0.017 (1) 0.027 (2) 0.0001 (1) 0.037 (5) 0.0702 (9)
Mn 0.027 (2) 0.026 (2) 0.027 (2) 0.025 (1) 0.05 (1) 0.020 (2) 0.022 (2) 0.017 (2) 0.028 (2)
Fe2+ 0.803 (6) 0.843 (8) 0.845 (5) 0.844 (7) 0.59 (1) 0.82 (2) 0.51 (1) 0.86 (3) 0.783 (6)
Zn 0.009 (1) 0.009 (1) 0.009 (1) 0.009 (1) 0.025 (3) 0.0079 (8) 0.010 (2)  0.018 (4)
Vac.    0.0184 (5) 0.13 (1) 0.0114 (8) 0.0104 (8)
     
M Site     
Mg 0.027 (2) 0.067 (5) 0.058 (3) 0.057 (4) 0.033 (4) 0.022 (4) 0.040 (7) 
Al 0.260 (5) 0.252 (5) 0.260 (2) 0.262 (4) 0.231 (4) 0.225 (6) 0.230 (6) 0.22 (1) 0.174 (1)
Ti 0.060 (3) 0.062 (2) 0.061 (1) 0.056 (2) 0.031 (1) 0.082 (2) 0.082 (3) 0.078 (3) 0.0889 (8)
V 0.021 (2) 0.019 (1) 0.0187 (8) 0.020 (2) 0.0157 (8) 0.0191 (4) 0.020 (1) 0.019 (2) 0.0197 (3)
Cr 1.593 (8) 1.588 (9) 1.592 (5) 1.584 (9) 1.68 (1) 1.61 (2) 1.52 (2) 1.61 (3) 1.609 (5)
Fe2+ 0.038 (1) 0.0076 (1) 0.0090 (5) 0.018 (1) 0.012 (1) 0.044 (5) 0.020 (5) 0.049 (1)
Vac.    0.006 (2) 0.0086 (7) 0.0050 (6)
     
T (°C) 1245 1374 1265 1512 1377  
 

T (°C) is the intracrystalline temperature calculated by using the thermometer of Princivalle et al. (1999). *Ni and, occasionally, Zn not present in 

cation distribution because of the deviation higher than 2σ. Estimated standard deviations are in brackets. High F(X) values are caused by the not-

stoichiometry of the spinels with a number of cations in the range 2.980-2.984. Temperatures for non-stoichiometric chromites are unreliable and, consequently, 

not reported (see Appendix for details).  



Table 3. Comparison of observed number of electrons, cell edge a and oxygen positional parameter u with corresponding values calculated with the 

MINUIT program.  

 
Sample H6-1 H6-2 H6-C H6-D ACAP GOL-A GOL-B GOL-C GOL-D 
          
e-Tobs 23.7 (4) 24.0 (6) 24.2 (5) 24.5 (6) 21.3 (2) 23.3 (3) 21.9 (4) 24.0 (5) 22.1 (5) 
e-Tcalc 23.7 24.3 24.3 24.3 21.3 23.7 20.5 24.2 23.6 
     
e-Mobs 22.1 (5) 22.1 (7) 22.5 (5) 22.0 (5) 22.5 (3) 22.4 (3) 21.9 (6) 22.6 (6) 22.3 (5) 
e-Mcalc 22.4 22.1 22.1 22.2 22.5 22.5 22.8 22.4 22.6 
          
aobs 8.3488 (1) 8.3501 (1) 8.3480 (2) 8.3485 (2) 8.3384 (1) 8.3463 (3) 8.3349 (3) 8.3439 (3) 8.3212 (3)
acalc 8.3488 8.3501 8.3480 8.3485 8.3384 8.3463 8.3348 8.3439 8.3215 
          
uobs 0.26286 (7) 0.26291 (7) 0.26298 (9) 0.2627 (2) 0.26251 (9) 0.26267 (9) 0.2625 (1) 0.2626 (1) 0.2624 (2)
ucalc 0.26284 0.26287 0.26294 0.2627 0.26248 0.26266 0.2620 0.2626 0.2622 
          
F(X) 0.16 0.14 0.22 0.72 0.09 0.54 4.08 0.51 8.94 
 

F(x): minimisation factor, which takes into account the mean of square differences between calculated and observed parameters, divided by their 

standard deviations. 
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