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Abstract

We study the existence of subharmonic solutions of the prescribed curvature equation

−
“
u′/
p

1 + u′2
”′

= f(t, u).

According to the behaviour at zero, or at infinity, of the prescribed curvature f , we
prove the existence of arbitrarily small classical subharmonic solutions, or bounded
variation subharmonic solutions with arbitrarily large oscillations.
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1 Introduction

In this paper we are concerned with the existence of periodic, in particular subharmonic,
solutions of the quasilinear ordinary differential equation

−
(
u′/
√

1 + u′2
)′

= f(t, u). (1)
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This equation, together with its N -dimensional counterpart

−div
(
∇u/

√
1 + |∇u|2

)
= f(x, u),

plays a relevant role in various physical and geometrical questions, such as capillarity-type
problems, flux limited diffusion phenomena, prescribed mean curvature problems (see, e.g.,
[1, 2, 3]). The question of the existence of periodic solutions of (1) has received considerable
attention in recent years: the existence of classical solutions has been addressed in [4, 5,
6, 7, 8, 9, 10] by using topological methods, whereas the existence of bounded variation
solutions has been discussed in [11, 12, 13] by using non-smooth critical point theory. The
advisability of considering bounded variation solutions, besides classical solutions, in order
to have a complete picture of the solvability patterns of (1), is already evident for the
autonomous equation

−
(
u′/
√

1 + u′2
)′

= f(u).

Indeed, elementary phase-plane analysis and energy arguments, as in [14, 15, 16, 17], show
that any solution u, for which

∫ u(·)
0

f(ξ)dξ exceeds somewhere the threshold 1, exhibits
discontinuities and therefore cannot be a solution of (1) in the classical sense. The coexis-
tence of classical and non-classical solutions of (1), according to the terminology introduced
in [18, 19, 15, 17, 20], is determined by the specific structure of the curvature operator(
u′/
√

1 + u′2
)′, which behaves like the 2-Laplacian u′′ near zero and like the 1-Laplacian(

sgn(u′)
)′at infinity. These considerations lead us to introduce the following concept of

periodic solution for equation (1) that will be considered throughout this paper.

Definition 1.1. Let τ > 0 be fixed. We say that a function u ∈ BVloc(R) is a τ -periodic
solution of (1) if u is τ -periodic, f(·, u) ∈ L1(0, τ) and∫ τ

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dt+
∫ τ

0

sgn
(
Du

|Du|

)
Dφ

|Dφ|
|Dφ|s

+sgn
(
u(0+)− u(τ−)

) (
φ(0+) − φ(τ−)

)
=
∫ τ

0

f(t, u)φdt (2)

holds for every φ ∈ BVloc(R) such that |Dφ|s is absolutely continuous with respect to |Du|s.

As usual, for any v ∈ BV (a, b), Dv = (Dv)adt + (Dv)s is the Lebesgue decomposition
of the measure Dv in its absolutely continuous part (Dv)adt, with density function (Dv)a,
and its singular part (Dv)s with respect to the Lebesgue measure in R, |Dv| denotes the
total variation of the measure Dv, |Dv| = |Dv|adt + |Dv|s is the Lebesgue decomposition
of |Dv|, and Dv

|Dv| is the density function of Dv with respect to its total variation |Dv|.

It is immediate to verify that if u is a τ -periodic solution of (1) such that u ∈W 1,1
loc (R),

then it is a weak τ -periodic solution of (1), in the sense that∫ τ

0

u′φ′√
1 + u′2

dt =
∫ τ

0

f(t, u)φdt

for every φ ∈ W 1,1(0, τ) with φ(0) = φ(τ). This implies that u′/
√

1 + u′2 ∈ W 1,1
loc (R),

u′/
√

1 + u′2 is τ -periodic and −
(
u′/
√

1 + u′2
)′ = f(t, u) a.e. in ]0, τ [. Note that a weak τ -

periodic solution u of (1) is continuous, but may present a derivative blow up. However, we
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have u′ ∈ C0([0, τ ], [−∞,+∞]). Hence u′ satisfies the periodicity conditions in an extended
sense, i.e., with possibly u′(0) = u′(τ) = +∞ or u′(0) = u′(τ) = −∞. It is clear that, if
u ∈ C1(R), then u is a τ -periodic solution of (1) in the Carathéodory sense; if, in addition,
f : R× R→ R is continuous and τ -periodic in t, then u is a classical τ -periodic solution of
(1).

There exists a huge literature concerning the existence of periodic, specifically subhar-
monic, solutions of the semilinear equation

−u′′ = f(t, u), (3)

where f : R × R → R is, say, Lipschitz continuous and T -periodic in t, for some T > 0.
We refer, e.g., to [21] for a rather exhaustive and updated bibliography on this subject.
Although various definitions exist, a subharmonic solution of (3) is usually intended to be
a periodic solution of the equation having minimum period mT for some integer m ≥ 2. If
this last piece of information is missing, a subharmonic solution is at least required to be
mT -periodic, but not T -periodic. In case the solution is mT -periodic, but not jT -periodic,
for any j = 1, 2, . . . ,m− 1, then it is referred to as a subharmonic solution of order m. As
a general rule in this context, one tries to get as much information as possible about the
minimality of the period. In particular, in [22] the existence of subharmonic solutions of (3)
has been proved assuming that either f is superlinear at 0, i.e.,

lim
s→0±

f(t, s)
s

= 0, (4)

uniformly in t, or sublinear at infinity

lim
s→±∞

f(t, s)
s

= 0, (5)

uniformly in t. More precisely, it is shown in [22] that condition (4), even assumed only
at 0+, or at 0−, implies the existence of two sequences of arbitrarily small subharmonic
solutions having a prescribed number of zeroes and condition (5), even assumed only at
+∞, or at −∞, implies the existence of two sequences of arbitrarily large subharmonic
solutions having a prescribed number of zeroes. The proof is performed by a phase-plane
analysis and relies on the Poincaré-Birkhoff fixed point theorem; the nodal properties of the
solutions are obtained by using the rotation number which counts the number of turns of
the solutions around the origin in the phase-plane.

Our aim here is to investigate the existence of subharmonic solutions for (1), taking
inspiration from these results, but keeping in mind the behaviour of the curvature operator
at 0 and at infinity. The following notions of subharmonic solution of (1) are used in this
paper.

Definition 1.2. We say that u is a subharmonic solution of (1) if it is a periodic solution
of (1) having minimum period τ = rT for some r ∈ Q with r > 1.

Definition 1.3. We say that u is a subharmonic solution of order m of (1) if it is a mT -
periodic solution of (1) for some m ∈ N with m ≥ 2, but it is not jT -periodic, for any
j = 1, 2, . . . ,m− 1.



4

It is easily seen that a subharmonic solution of (1) having minimum period τ = p
qT , for

some p, q ∈ N0, with p, q coprime and p > q, is a subharmonic solution of order p of (1).
Assuming that f is superlinear at 0, we prove in Theorem 3.4 the existence of small

classical subharmonic solutions having suitable nodal properties; in this case the proof,
which borrows some arguments from [22], is based on the use of the rotation number and
on a version of the Poincaré-Birkhoff theorem given in [23, Theorem 8.2] and not requiring
uniqueness of solutions for the Cauchy problems associated with (1). In particular, the
following result holds.

Theorem 1.1. Assume that

(h0) f : R × R → R is T -periodic with respect to the first variable, for some T > 0, and
continuous,

(h1) lim
s→0

f(t, s)
s

= 0, uniformly in t ∈ [0, T ],

(h2) there exists δ > 0 such that f(t, s)s > 0, for all t ∈ [0, T ] and for all s ∈ [−δ, δ] \ {0}.

Then there exists a sequence (uk)k of classical subharmonic solutions of (1) such that

lim
k→+∞

‖uk‖C1 = 0

and whose minimum periods diverge.

A parallel result concerning the existence of subharmonic solutions of (1) having large
oscillations is obtained supposing that the potential F of f is sublinear and coercive at
infinity; in this case bounded variation non-classical solutions are expected. The proof makes
use of some tools of non-smooth critical point theory, namely a version of the mountain pass
lemma in the space of bounded variation functions given in [12, Lemma 2.13], combined with
suitable critical value estimates as introduced for the semilinear problem (3) in [24].

Theorem 1.2. Assume that

(k0) f : R × R → R is T -periodic with respect to the first variable, for some T > 0, and
satisfies the L1-Carathéodory conditions in [0, T ]× R,

(k1) lim
|s|→+∞

f(t, s) = 0 uniformly a.e. in t ∈ [0, T ],

(k2) lim
|s|→+∞

∫ T

0

F (t, s) dt = +∞, where F (t, s) =
∫ s

0

f(t, ξ) dξ,

(k3) there exists R > 0 such that f(t, s)s > 0 for a.e. t ∈ [0, T ] and every s with |s| ≥ R.

Then there exists a sequence (uk)k of subharmonic solutions of (1) such that

lim
k→+∞

( ess sup
R

uk − ess inf
R

uk) = +∞

and whose minimum periods diverge.
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Notations. For any given a, b ∈ R, with a < b, and each v ∈ BV (a, b) we set, as usual,∫ b

a

|Dv| = sup
{∫ b

a

vw′ dt : w ∈ C1
0 (]a, b[), ‖w‖L∞(a,b) ≤ 1

}
and ∫ b

a

√
1 + |Dv|2 = sup

{∫ b

a

(vw′1 + w2) dt : w1, w2 ∈ C1
0 (]a, b[)

and ‖w2
1 + w2

2‖L∞(a,b) ≤ 1
}
.

Clearly, we have ∫ b

a

|Dv| ≤
∫ b

a

√
1 + |Dv|2.

The norm in BV (a, b) is defined by

‖v‖BV (a,b) =
∫ b

a

|v| dt+
∫ b

a

|Dv|.

We also denote by v(t+0 ) the right trace of v at t0 ∈ [a, b[ and by v(t−0 ) the left trace of
v at t0 ∈ ]a, b]. Finally, we write N0 = {n ∈ N : n ≥ 1}, R+

0 = {x ∈ R : x > 0} and
R−0 = {x ∈ R : x < 0}.

2 The autonomous equation

In this section we discuss the existence of periodic solutions of the autonomous equation

−
(
u′/
√

1 + u′2
)′

= f(u), (6)

by performing an elementary analysis in the phase-plane. We assume that f : R→ R is odd
and continuous. We also suppose that f(s) > 0 for all s > 0 and lim

s→+∞
F (s) = +∞, with

F (s) =
∫ s

0

f(ξ) dξ. Let us define the functions

ϕ : R→ ]− 1, 1[, ϕ(s) =
s√

1 + s2
,

ψ : ]− 1, 1[→ R, ψ(s) =
s√

1− s2
(7)

and set Ψ(s) =
∫ s

0

ψ(ξ) dξ = 1 −
√

1− s2 for every s ∈ ]− 1, 1[. Then equation (6) is

equivalent to the planar system {
u′ = −ψ(v)
v′ = f(u).

(8)

The energy function associated with (8) is given by

E(u, v) = Ψ(v) + F (u).
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Clearly, the solutions (u, v) of (8) parametrize the level curves of E . Let us fix r > 0. We
know by [25] that there is a unique non-extendible solution u of the Cauchy problem

−
(
ϕ(u′)

)′ = f(u)
u(0) = r

u′(0) = 0,
(9)

which satisfies
Ψ
(
ϕ(u′(t))

)
+ F

(
u(t)

)
= F (r)

for all t belonging to its domain. Let us define

Cr = {(x, y) ∈ R2 : Ψ
(
ϕ(y)

)
+ F (x) = F (r)}.

Note that Ψ(ϕ(y)) = 1− 1√
1+y2

. The curve Cr is symmetric with respect to the origin and

its topology depends on the value F (r). Indeed, since Cr can be represented in the form

Cr =
{

(x, y) ∈ R2 : y = ±
√
F (r)− F (x)

χ(F (r)− F (x))

}
,

with
χ : [0, 1]→ R, χ(s) =

1− s√
2− s

,

we see that Cr is connected if and only if F (r) < 1; indeed, under this assumption, Cr
is homeomorphic to the circle S1. Otherwise Cr is disconnected and unbounded in the
y-component; namely, setting r∞ = F−1(F (r)− 1) ∈ [0, r[, we have that, if (x, y) ∈ Cr and
x→ ±r±∞, then |y| → +∞ (cf. Figure 1).

Figure 1: The level sets Cr of the energy E , with F (x) = log(1 + x4).

If Cr is connected and u is a non-extendible solution of (9) such that the trajectory
(u, u′) parametrizes Cr, then u ∈ C2(R) and is periodic with minimum period 4T (r), where
T (r) ∈ R+

0 is the first positive zero of u, i.e., u is a classical 4T (r)-periodic solution of (6).
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If Cr is disconnected and u is a non-extendible solution of (9) such that the trajectory
(u, u′) parametrizes Cr ∩

(
R+

0 × R
)
, then there exists S(r) ∈ R+

0 such that

lim
t→S(r)−

u(t) = r∞ and lim
t→S(r)−

u′(t) = −∞

and, by symmetry,

lim
t→−S(r)+

u(t) = r∞ and lim
t→−S(r)+

u′(t) = +∞.

Clearly, u ∈W 1,1(−S(r), S(r)). Since, by symmetry, (−u,−u′) parametrizes Cr∩
(
R−0 ×R

)
,

we can extend u to the interval ] − S(r), 3S(r)[, by setting u(t) = −u(t − 2S(r)) for all
t ∈ ]S(r), 3S(r)[, and then by 4S(r)-periodicity all over R. It is clear that u ∈ BVloc(R) and
is periodic, with minimum period 4S(r). Let us show that u is a 4S(r)-periodic solution of
(6) according to (2). Without restriction we can also replace u with u(·+ S(r)).

Let φ ∈ BVloc(R) be such that |Dφ|s is absolutely continuous with respect to |Du|s.
Denote by φ1 and φ2 the restrictions of φ to ]0, 2S(r)[ and to ]2S(r), 4S(r)[, respectively.
By the regularity of u in ]0, 2S(r)[ and in ]2S(r), 4S(r)[, we have |Dφ1|s = |Dφ2|s = 0: this
implies that φ1 ∈ W 1,1(0, 2S(r)) and φ2 ∈ W 1,1(2S(r), 4S(r)). Hence, multiplying (6) by
φj , j = 1, 2, and integrating by parts in ]0, 2S(r)[ and in ]2S(r), 4S(r)[, respectively, we
obtain

−
∫ 2S(r)

0

(
ϕ(u′)

)′
φ1 dt = − [ϕ(u′)φ1](2S(r))−

0+ +
∫ 2S(r)

0

ϕ(u′)φ′1 dt =
∫ 2S(r)

0

f(u)φ1 dt,

−
∫ 4S(r)

2S(r)

(
ϕ(u′)

)′
φ2 dt = − [ϕ(u′)φ2](4S(r))−

(2S(r))+ +
∫ 4S(r)

2S(r)

ϕ(u′)φ′2 dt =
∫ 4S(r)

2S(r)

f(u)φ2 dt.

By the properties of u, we have

[ϕ(u′)φ1](2S(r))−

0+ = −φ1

(
0+
)
− φ1

(
(2S(r))−

)
,

[ϕ(u′)φ2](4S(r))−

(2S(r))+ = φ2

(
(2S(r))+

)
+ φ2

(
(4S(r))−

)
.

Therefore summing up we get∫ 2S(r)

0

ϕ(u′)φ′ dt+
∫ 4S(r)

2S(r)

ϕ(u′)φ′ dt

+
[
φ(0+)− φ((4S(r))−)

]
+
[
φ
(
(2S(r))−

)
− φ

(
(2S(r))+

)]
=
∫ 4S(r)

0

f(u)φdt. (10)
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Notice that∫ 2S(r)

0

ϕ(u′)φ′ dt+
∫ 4S(r)

2S(r)

ϕ(u′)φ′ dt =
∫ 4S(r)

0

ϕ
(
(Du)a)(Dφ)a dt

=
∫ 4S(r)

0

(Du)a(Dφ)a√
1 + |(Du)a|2

dt,

φ(0+)− φ((4S(r))−) = sgn
(
u(0+)− u((4S(r))−)

)(
φ(0+)− φ((4S(r))−)

)
,

φ
(
(2S(r))−

)
− φ

(
(2S(r))+

)
= −

∫ 4S(r)

0

(Dφ)s = −
∫ 4S(r)

0

(Dφ)s

|Dφ|s
|Dφ|s

= −
∫ 4S(r)

0

Dφ

|Dφ|
|Dφ|s =

∫ 4S(r)

0

sgn
(
Du

|Du|

)
Dφ

|Dφ|
|Dφ|s.

Substituting in (10), we obtain (2) with τ = S(r), that is, u is a 4S(r)-periodic solution of
(6).

We conclude this section by discussing the existence of periodic solutions of the au-
tonomous equation (6) with reference to two model examples for f = F ′, at 0 or at ±∞,
respectively. Namely we suppose that

(a) F (s) = |s|p+1
, for some p > 1, in a neighbourhood of 0,

or

(b) F (s) = |s|q+1
, for some q ∈ ]− 1, 0[, in neighbourhoods of ±∞.

Assume that (a) holds: the expression of the classical time-map T : ]0, F−1(1)[ →
]0,+∞[, with F−1(1) = 1, is

T (r) =
∫ r

0

χ
(
F (r)− F (s)

)√
F (r)− F (s)

ds = r
1−p
2

∫ 1

0

χ
(
rp+1(1− sp+1)

)
√

1− sp+1
ds.

The concavity of the function χ implies that

1√
2

(1− s) ≤ χ(s) ≤ 1√
2

in [0, 1]. (11)

Hence we obtain

r
1−p
2

√
2

∫ 1

0

1√
1− sp+1

ds ≥ T (r) ≥ r
1−p
2

√
2

∫ 1

0

1√
1− sp+1

ds− r
3+p
2

√
2

∫ 1

0

√
1− sp+1 ds

for all r ∈ ]0, 1[. Then we conclude

lim
r→0+

T (r) = +∞.

This implies that in case (a) there exists a family of classical periodic solutions of (6),
approaching 0 in the C1-norm and having arbitrarily large minimum periods.

Assume that (b) holds: the expression of the non-classical time-map S : [F−1(1),+∞[→
]0,+∞[, with F−1(1) = 1, is

S(r) =
∫ r

r∞

χ
(
F (r)− F (s)

)√
F (r)− F (s)

ds = r
1−q
2

∫ 1

r∞/r

χ
(
rq+1(1− sq+1)

)
√

1− sq+1
ds.
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By using (11), we have

r
1−q
2

√
2

∫ 1

r∞/r

1√
1− sq+1

ds ≥ S(r) ≥ r
1−q
2

√
2

∫ 1

r∞/r

1− rq+1(1− sq+1)√
1− sq+1

ds

=
r

1−q
2

(q + 1)
√

2

∫ 1/rq+1

0

1− rq+1s√
s

(1− s)−
q
q+1 ds,

for all r > r∞. Taking r > r∞ sufficiently large, we have (1−s)−
q
q+1 ≥ 1√

2
for all s ∈ [0, 1

rq+1 ]
and then

S(r) ≥ r
1−q
2

2(q + 1)

∫ 1/rq+1

0

1− rq+1s√
s

ds =
2

3(q + 1)rq
.

Hence we conclude that
lim

r→+∞
S(r) = +∞.

This implies that in case (b) there exists a family of periodic solutions of (6) according to
Definition 1.1, having arbitrarily large oscillations and arbitrarily large minimum periods.

These simple observations are the starting point of our study of the general non-autono-
mous equation (1). In particular, the estimates we have produced on T (r) and on S(r) in
the model cases (a) and (b) motivate the introduction of the assumptions of superlinearity
of f at 0 and of sublinearity of F at infinity.

3 Small classical subharmonic solutions

We start this section with an elementary result concerning a property of the solutions of the
first order system in RN

z′ = `(t, z). (12)

We recall that a continuous function κ : R+
0 → R+

0 is an Osgood function if∫ 1

0

dξ

κ(ξ)
= +∞ =

∫ +∞

1

dξ

κ(ξ)
.

Let us set, for each s > 0,

H(s) =
∫ s

1

dξ

κ(ξ)
;

it is immediate to see that H : R+
0 → R is an increasing diffeomorphism. Then the following

conclusion is (essentially) a consequence of a classical result of I. Bihari [26].

Lemma 3.1. Assume that ` : I × RN → RN is continuous, with I ⊆ R an interval, and
suppose that there exists an Osgood function κ such that

|`(t, ζ) · ζ| ≤ κ(|ζ|2),

for all t ∈ I and ζ ∈ RN . Then any non-trivial solution z of (12) is globally defined and
satisfies

H−1(−2|t− t0|+H(|z(t0)|2)) ≤ |z(t)|2 ≤ H−1(2|t− t0|+H(|z(t0)|2)),

for all t, t0 ∈ I. In particular, z never vanishes.
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Throughout this section we suppose that f : R×R→ R satisfies assumptions (h0), (h1),
(h2). Let us define f̄ : R× R→ R by setting, for any t,

f̄(t, s) =


f(t,−δ) if s < −δ,
f(t, s) if |s| ≤ δ,
f(t, δ) if s > δ.

The function f̄ satisfies the same assumptions as f does, in particular, (h2) holds, with f
replaced by f̄ , for all t ∈ [0, T ] and s ∈ R \ {0}. Let us also define ψ̄ : R→ R by

ψ̄(s) =


−ψ(δ) + ψ′(δ)(s+ δ) if s < −δ,
ψ(s) if |s| ≤ δ,
ψ(δ) + ψ′(δ)(s− δ) if s > δ,

where ψ has been defined in (7). It is easily checked that the vector field `(t, ζ) = (−ψ̄(y), f̄(t, x))
satisfies the assumptions of Lemma 3.1, where the Osgood function κ can be taken to be
a non-zero linear function, say, κ(s) = κ s and thus H(s) = 1

κ ln(s). Hence Lemma 3.1
guarantees that any Cauchy problem associated with the system{

u′ = −ψ̄(v)
v′ = f̄(t, u)

(13)

has a global solution z = (u, v) ∈ C1(R), which, if non-trivial, never vanishes, since it
satisfies

|z(t0)| exp(−κ|t− t0|) ≤ |z(t)| ≤ |z(t0)| exp(κ|t− t0|) (14)

for all t, t0 ∈ R. This allows, in particular, to represent such a solution in polar coordinates
as

u(t) = ρ(t) cos θ(t), v(t) = ρ(t) sin θ(t).

Note that the couple (ρ, θ) satisfies

ρ′(t) = f̄
(
t, ρ(t) cos θ(t)

)
sin θ(t)− ψ̄

(
ρ(t) sin θ(t)

)
cos θ(t),

θ′(t) =
ψ̄
(
ρ(t) sin θ(t)

)
ρ(t) sin θ(t) + f̄

(
t, ρ(t) cos θ(t)

)
ρ(t) cos θ(t)

ρ(t)2
,

or equivalently

ρ′(t) =
f̄
(
t, u(t)

)
v(t)− ψ̄

(
v(t)

)
u(t)√

u(t)2 + v(t)2
,

θ′(t) =
ψ̄
(
v(t)

)
v(t) + f̄(t, u(t)

)
u(t)

u(t)2 + v(t)2
,

for all t ∈ R.
For any fixed t0, t1 ∈ R, with t0 < t1, and assuming that z(t0) = z0 for some z0 ∈ R2\{0},

we define the rotation number of z in [t0, t1] by

Rot(z; [t0, t1]) =
θ(t1)− θ(t0)

2π
=

1
2π

∫ t1

t0

ψ̄
(
v(t)

)
v(t) + f̄(t, u(t)

)
u(t)

u(t)2 + v(t)2
dt.
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The rotation number counts the counterclockwise turns of the function z around the origin
in the time interval [t0, t1].

We notice that the sign conditions satisfied by f̄ and ψ̄, namely f̄(t, s)s > 0 and ψ̄(s)s >
0, for all t ∈ R and s ∈ R\{0}, imply that the function θ is strictly increasing, or equivalently
that the rotation number is positive for any non-trivial solution z in any compact time
interval.

Lemma 3.2. Assume (h0), (h1), (h2). For any k ∈ N0, there exist τ∗k > 0 and r∗k ∈
]0,min{ 1

k , δ}[, such that, for any interval J = [t0, t1], with |t0 − t1| > τ∗k , any solution z of
(13), with z(t0) = z0 for some |z0| = r∗k, satisfies

Rot(z; J) > k. (15)

Proof. By condition (h2) we can find two continuous functions g, h : R→ R such that

0 < g(s)s ≤ h(s)s, for all s ∈ R \ {0}, (16)
g(s)s ≤ f̄(t, s)s ≤ h(s)s, for all t ∈ [0, T ], s ∈ R, (17)

and
lim

|s|→+∞
G(s) = lim

|s|→+∞
H(s) = +∞, (18)

where
G(s) =

∫ s

0

g(ξ) dξ, H(s) =
∫ s

0

h(ξ) dξ.

Let us introduce the planar autonomous systems{
u′ = −ψ̄(v)
v′ = g(u)

(19)

and {
u′ = −ψ̄(v)
v′ = h(u).

(20)

The energy functions associated with (19) and (20) are, respectively,

EG(x, y) = Ψ̄(y) +G(x), EH(x, y) = Ψ̄(y) +H(x),

with
Ψ̄(s) =

∫ s

0

ψ̄(ξ) dξ,

for any s ∈ R. By definition of ψ̄ and by conditions (16) and (18), the only equilibrium
point of (19) and (20) is (0, 0) and all level curves of EG and EH are closed curves around
(0, 0). Hence global existence and uniqueness of solution hold for every Cauchy problem
associated with (19) and (20).

Let us introduce two auxiliary functions M∓ : R2 \ {0} → R, defined by

M−(x, y) =

{
g(x)y−ψ̄(y)x

g(x)x+ψ̄(y)y
, if xy ≥ 0,

h(x)y−ψ̄(y)x

h(x)x+ψ̄(y)y
, if xy ≤ 0
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and

M+(x, y) =

{
g(x)y−ψ̄(y)x

g(x)x+ψ̄(y)y
, if xy ≤ 0,

h(x)y−ψ̄(y)x

h(x)x+ψ̄(y)y
, if xy ≥ 0

and consider the equations

dr

dθ
= rM−(r cos θ, r sin θ) (21)

and

dr

dθ
= rM+(r cos θ, r sin θ). (22)

Trajectories associated with non-trivial solutions of (21) and (22) parametrize spirals, sur-
rounding the origin, obtained by alternating the level curves of EG and EH . We see that, for
all (θ0, ρ0) with θ0 ∈ R and ρ0 > 0, uniqueness and global continuability of solutions hold
for any Cauchy problem associated with (21) and with (22). Let r−(· ; θ0, ρ0), r+(· ; θ0, ρ0)
(in the sequel, sometimes denoted by r∓ for simplicity) be the solutions of (21) and (22),
respectively, satisfying r∓(θ0) = ρ0. Note, in particular, that any non-trivial solution r∓ of
(21) and (22) satisfies r∓(θ) > 0 for all θ ∈ R.

Let us fix k ∈ N0. For any ρ0 > 0, set

m∗k(ρ0) = inf
θ0∈[0,2π]

θ∈[θ0,θ0+2kπ]

r−(θ; θ0, ρ0) > 0

and

M∗k (ρ0) = sup
θ0∈[0,2π]

θ∈[θ0,θ0+2kπ]

r+(θ; θ0, ρ0).

As lim
ρ0→0+

M∗k (ρ0) = 0, there exists r∗k > 0 such that

0 < m∗k(r∗k) ≤ r∗k ≤M∗k (r∗k) < min{ 1
k , δ}.

Pick rk, rk > 0 such that

0 < rk < m∗k(r∗k) ≤ r∗k ≤M∗k (r∗k) < rk < min{ 1
k , δ}.

Define a continuous function G : R2 \ {0} → R by

G(x, y) =
g(x)x+ ψ̄(y)y

x2 + y2
.

Let A = {(x, y) ∈ R2 : rk ≤
√
x2 + y2 ≤ rk} and δ∗k = min

A
G > 0. Set τ∗k = 2kπ

δ∗k
and take

any interval J = [t0, t1], with τ = t1 − t0 > τ∗k and a solution z of (13) with z(t0) = z0, for
some z0 ∈ R2 such that |z0| = r∗k. We want to prove that (15) holds, i.e.,

Rot(z; J) > k.

Without loss of generality, we can assume that θ(t0) = θ0 ∈ [0, 2π[. Therefore the thesis
amounts to proving that

θ(t1)− θ(t0) > 2kπ. (23)
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Set
σ = sup{s ∈ [t0, t1] : rk ≤ ρ(t) ≤ rk in [t0, s]}.

For all t ∈ [t0, σ], we have
|u(t)| ≤ ρ(t) < δ. (24)

Two cases may occur: either σ = t1, or σ < t1.
If σ = t1, by (24) and (17), we have

Rot(z; J) =
1

2π

∫ σ

t0

ψ̄
(
v(t)

)
v(t) + f̄(t, u(t)

)
u(t)

u(t)2 + v(t)2
dt

≥ 1
2π

∫ t1

t0

G
(
u(t), v(t)

)
dt ≥ τ

2π
min
A
G > δ∗kτ

∗
k

2π
= k

and hence (15) follows.
If σ < t1, the maximality of σ implies that rk ≤ ρ(t) ≤ rk for all t ∈ [t0, σ] and

ρ(σ) ∈ {rk, rk}. Assume that ρ(σ) = rk, the other case being treated similarly. In order to
prove (23), we only need to show that

θ(σ)− θ(t0) > 2kπ,

since, as already observed, the function θ is strictly increasing. By contradiction, assume
that θ(σ)− θ(t0) ≤ 2kπ. The monotonicity of θ also implies

θ(t) ∈ [θ0, θ0 + 2kπ], (25)

for all t ∈ [t0, σ].
On the other hand, ζ = (ρ, θ) satisfies

ρ′(t) = f̄
(
t, ρ(t) cos θ(t)

)
sin θ(t)− ψ̄

(
ρ(t) sin θ(t)

)
cos θ(t),

θ′(t) =
ψ̄
(
ρ(t) sin θ(t)

)
sin θ(t) + f̄

(
t, ρ(t) cos θ(t)

)
cos θ(t)

ρ(t)
, (26)

for all t ∈ R. In this regard, we introduce some more functions S,U : J × R2 \ {0} → R,
defined by

S(t, x, y) =
f̄(t, x)y − ψ̄(y)x

x2 + y2
,

U(t, x, y) =
ψ̄(y)y + f̄(t, x)x

x2 + y2
,

and R,Θ : J × ]0,+∞[× R→ R, defined by

R(t, ρ, θ) = ρS(t, ρ cos θ, ρ sin θ),
Θ(t, ρ, θ) = U(t, ρ cos θ, ρ sin θ).

By definition there holds

ρS(t, ρ cos θ, ρ sin θ)
U(t, ρ cos θ, ρ sin θ)

=
R(t, ρ, θ)
Θ(t, ρ, θ)

,



14

for all (t, ρ, θ) ∈ J × ]0,+∞[× R. Moreover we easily see that

S(t, x, y)
U(t, x, y)

≤M+(x, y) (27)

is satisfied for all t ∈ [t0, σ] and (x, y) ∈ R2 \ {0}.
Let γ : R → ]0,+∞[ be the solution of (22) satisfying γ(θ0) = r∗k. From the definition

of M∗k , we have
γ(θ) ≤M∗k (r∗k) < rk,

for all θ ∈ [θ0, θ0 + 2kπ]. By continuity of γ, there exists ε > 0 such that γ(θ) < rk for all
θ ∈ ]θ0 − ε, θ0 + 2kπ + ε[. From (27) and the positivity of γ,

γ′(θ) = γM+(γ cos θ, γ sin θ) ≥ γS(t, γ cos θ, γ sin θ)
U(t, γ cos θ, γ sin θ)

=
R(t, γ, θ)
Θ(t, γ, θ)

holds for all t ∈ [t0, σ] and θ ∈ R. Consider again the function (ρ, θ): when restricted to the
interval [t0, σ] and thanks to condition (25), it takes values in ]0,+∞[
×]θ0 − ε, θ0 + 2kπ + ε[. Moreover it is a solution of{

ρ′ = R(t, ρ, θ)
θ′ = Θ(t, ρ, θ)

with ρ(t0) = r∗k = γ(θ0) = γ(θ(t0)). We know that θ′(t) > 0 for all t ∈ [t0, σ], so that the
function θ : [t0, σ] → [θ(t0), θ(σ)] is a C1-diffeomorphism, with inverse s : [θ(t0), θ(σ)] →
[t0, σ]. If we set %(θ) = ρ(s(θ)), so that ρ(t) = %(θ(t)), we find

d%(θ)
dθ

=
ρ′(t)
θ′(t)

∣∣∣
t=s(θ)

=
R(s(θ), ρ(s(θ)), θ)
Θ(s(θ), ρ(s(θ)), θ)

.

Hence, %(θ) satisfies, for θ ∈ [θ(t0), θ(σ)], the differential inequality

%′ ≤ %M+(% cos θ, % sin θ)

and, moreover, %(θ0) = ρ(t0) = γ(θ0). As uniqueness of solutions holds for any Cauchy
problem associated with (22), by a classical result on differential inequalities (see, e.g., [27,
Section I.6, Theorem 6.1]), we conclude that %(θ) ≤ γ(θ), for all θ ∈ [θ(t0), θ(σ)], and hence
ρ(t) ≤ γ(θ(t)), for all t ∈ [t0, σ]. In particular, we have

rk = ρ(σ) ≤ γ(θ(σ)) < rk,

which leads to a contradiction.

Lemma 3.3. Assume (h0), (h1), (h2). Let J ⊂ R be a compact interval. Then there exists
r0 = r0(J) > 0 such that

Rot(z; J) < 1, (28)

for any solution z of (13), with 0 < min
J
|z| ≤ r0.
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Proof. Assumptions (h1) and (h2) imply in particular that, for any fixed ε > 0, there exists
δε ∈ ]0, δ[ such that, for all t ∈ R and s ∈ [−δε, δε],

f̄(t, s)s ≤ εs2.

Let J = [t1, t2] and z = (u, v) be a non-trivial solution of (13) such that, for all t ∈ J ,

|u(t)| ≤ δε (29)

Denote as usual by (ρ, θ) the polar coordinates of z and set θ1 = θ(t1) and θ2 = θ(t2). We
want to prove that

θ2 − θ1 < 2π. (30)

Assume by contradiction that
θ2 − θ1 ≥ 2π.

As we have, by (29),

f̄(t, ρ(t) cos θ(t))ρ(t) cos θ(t) ≤ ε(ρ(t) cos θ(t))2

and
ψ̄
(
ρ(t) sin θ(t)

)
ρ(t) sin θ(t) ≤ ψ′(δ)

(
ρ(t) sin θ(t)

)2
,

we obtain, from (26),
θ′(t)

ψ′(δ)
(
sin θ(t)

)2 + ε
(
cos θ(t)

)2 ≤ 1,

for all t ∈ [t1, t2]. Setting c = ψ′(δ) and integrating over [t1, t2] yield

|J | = t2 − t1 ≥
∫ θ2

θ1

1
c(sin s)2 + ε(cos s)2

ds

≥
∫ 2π

0

1
c(sin s)2 + ε(cos s)2

ds = 4
∫ π

2

0

1
c(sin s)2 + ε(cos s)2

ds

=
4
ε

∫ π
2

0

1
(cos t)2

1

1 +
(√

c
ε tan t

)2 dt =
4√
cε

∫ +∞

0

1
1 + t2

dt =
2π√
cε
.

A contradiction is achieved taking ε ∈ ]0, 4π2

c|J|2 [. Hence (30) follows.
In order to conclude, we use Lemma 3.1: choosing r0 > 0 small enough, any solution z,

with 0 < min
J
|z| ≤ r0, by (14) satisfies

max
J
|u| ≤ max

J
|z| ≤ δε.

Hence (30) holds, implying the validity of (28).

Remark 3.1 Lemma 3.3 is still valid replacing assumption (h1) with

lim
s→0+

f(t, s)
s

= 0, uniformly in t ∈ [0, T ]

or

lim
s→0−

f(t, s)
s

= 0, uniformly in t ∈ [0, T ].

The proof requires just few minor modifications, as in [22, Lemma 3.4].
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Theorem 3.4. Assume (h0), (h1), (h2). For every k ∈ N0 there exists m∗k ∈ N0 such that
for any integer m > m∗k, which is coprime with k, equation (1) has a classical subharmonic
solution uk of order m with precisely 2k zeroes in [0,mT [.

Proof. Fix k ∈ N0 and let m∗k ∈ N0, with m∗kT > k τ∗k , and r∗k be as in Lemma 3.2. Take
m ∈ N0 such that m > m∗k and r0 = r0([0,mT ]) < r∗k as in Lemma 3.3. The two results
just mentioned guarantee, on the one hand, that

Rot(z; [0,mT ]) > k,

for any solution z with initial value z0 such that |z0| = r∗k, and, on the other hand, that

Rot(z; [0,mT ]) < k,

for any solution z with initial value z0 such that |z0| = r0. Since solutions of the Cauchy
problems associated with (13) are globally defined, we can apply the Poincaré-Birkhoff
theorem, in the version of [23, Theorem 8.2]: there exists in particular a point z∗k ∈ R2 such
that r0 < |z∗k| < r∗k and a corresponding solution zk = (uk, vk) of (13) which is mT -periodic
and satisfies

Rot(zk; [0,mT ]) = k.

By the previous discussion we know that, denoting by (ρk, θk) the polar coordinates of
zk, the angular displacement θk is strictly increasing, and thus uk has exactly 2k zeroes
in [0,mT [. Moreover, since m, k are coprime, mT is the minimum period of uk among
T, 2T, . . . , (m− 1)T,mT . Finally, Lemma 3.2 and Lemma 3.3 imply that zk satisfies

r0 < |zk(t)| < r∗k

for all t ∈ R. This condition assures that uk is a classical subharmonic solution of (1) of
order m, with precisely 2k zeroes in [0,mT [.

Remark 3.2 Taking k = 1 in Theorem 3.4 we conclude that, for any m > m∗1 there exists
at least one subharmonic solution having minimum period mT .

We are now in position of proving Theorem 1.1.

Proof of Theorem 1.1. We keep the same notations as in the proof of Theorem 3.4.
Fix any k ∈ N0 and take mk ∈ N0, coprime with k, such that mk > max{k2,m∗k}. From
the proof of Theorem 3.4 we know that there exists at least one point z∗k ∈ R2 such that
r0 < |z∗k| < r∗k and a corresponding solution zk = (uk, vk) of (13) which is mkT -periodic
and satisfies

Rot(zk; [0,mkT ]) = k.

The minimum period τk of zk, and hence of uk, satisfies τk ≥ mk
k T > kT. This estimate

obviously yields
lim

k→+∞
τk = +∞.

The proof of Theorem 3.4 also guarantees that, for any k ∈ N0,

max{‖uk‖∞, ‖(ψ̄)−1(u′k)‖∞} ≤ ‖zk‖∞ < r∗k.

As we chose r∗k <
1
k in Lemma 3.2, we get

lim
k→+∞

‖uk‖C1 = 0.

This concludes the proof of Theorem 1.1.
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4 Large bounded variation subharmonic solutions

We start by proving some auxiliary results.

Lemma 4.1. Let σ > 0 and u ∈ BVloc(R) be σ-periodic. Then u is a σ-periodic solution of
(1) if and only if f(·, u) ∈ L1(0, σ) and the inequality

Jσ(v)− Jσ(u) ≥
∫ σ

0

f(t, u)(v − u) dt (31)

holds for all v ∈ BV (0, σ), where

Jσ(v) =
∫ σ

0

√
1 + |Dv|2 + |v(0+)− v(σ−)|. (32)

Proof. For any φ ∈ BV (0, σ), let us define Tφ : R→ R by

Tφ(s) = Jσ(u+ sφ)−
∫ σ

0

f(t, u)(u+ sφ) dt.

The function Tφ is convex. Let us also set Kσ : BV (0, σ)→ R by

Kσ(v) =
∫ σ

0

√
1 + |Dv|2.

By [28, Theorem 3.6] the functional Kσ is differentiable in the direction φ ∈ BV (0, σ) if and
only if |Dφ|s is absolutely continuous with respect to |Du|s and, under this assumption,

d

ds
Kσ(u+ sφ)|s=0 =

∫ σ

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dt+
∫ σ

0

sgn
(
Du

|Du|

)
Dφ

|Dφ|
|Dφ|s. (33)

Fix now φ ∈ BV (0, σ) as required in [28, Theorem 3.6]. Then Tφ is differentiable at s = 0
and the following holds

Tφ′(0) =
d

ds
Jσ(u+ sφ)|s=0 −

d

ds

(∫ σ

0

f(t, u)(u+ sφ) dt
)
|s=0

=
d

ds
Kσ(u+ sφ)|s=0 +

d

ds

∣∣(u+ sφ)(0+)− (u+ sφ)(σ−)
∣∣
s=0

−
∫ σ

0

f(t, u)φdt

=
d

ds
Kσ(u+ sφ)|s=0 +

d

ds

∣∣u(0+)− u(σ−) + s
(
φ(0+)− φ(σ−)

)∣∣
s=0

−
∫ σ

0

f(t, u)φdt

=
d

ds
Kσ(u+ sφ)|s=0 + sgn

(
u(0+)− u(σ−)

)(
φ(0+)− φ(σ−)

)
−
∫ σ

0

f(t, u)φdt. (34)
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From (33) and (34) we obtain

Tφ′(0) =
∫ σ

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dt+
∫ σ

0

sgn
(
Du

|Du|

)
Dφ

|Dφ|
|Dφ|s

+ sgn
(
u(0+)− u(σ−)

)(
φ(0+)− φ(σ−)

)
−
∫ σ

0

f(t, u)φdt. (35)

Assume now that f(·, u) ∈ L1(0, σ) and (31) holds for all v ∈ BV (0, σ). Then, for any
given φ ∈ BV (0, σ), the function Tφ has a minimum at s = 0. Fix φ ∈ BV (0, σ) as required
in [28, Theorem 3.6] and such that φ(0+) = φ(σ−) if u(0+) = u(σ−). Since s = 0 is a
minimum of Tφ, we have T ′φ(0) = 0, or equivalently using (35)∫ σ

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dt+
∫ σ

0

sgn
(
Du

|Du|

)
Dφ

|Dφ|
|Dφ|s

+ sgn
(
u(0+)− u(σ−)

) (
φ(0+) − φ(σ−)

)
=
∫ σ

0

f(t, u)φdt.

This means that u is a σ-periodic solution of (1).
Conversely, let us assume that u is a σ-periodic solution of (1) and fix v ∈ BV (0, σ).

According to [12, Corollary 2.2], there exists a sequence (vn)n in W 1,1(0, σ) such that
vn(0+) = vn(σ−) for all n,

lim
n→+∞

vn = v

in L1(0, σ) and a.e. in [0, σ], and

lim
n→+∞

Jσ(vn) = Jσ(v).

For each n, set φn = vn − u. We have that φn ∈ BV (0, σ), with |Dφn|s = |Du|s and
φn(0+) − φn(σ−) = u(0+) − u(σ−). As, by assumption, u satisfies the Euler equation (2),
we have T ′φn(0) = 0; moreover, by convexity of Tφn , there holds

Tφn(1) ≥ T ′φn(0) · 1 + Tφn(0) = Tφn(0),

that is,

Jσ(u+ φn)−
∫ σ

0

f(t, u)(u+ φn) dt ≥ Jσ(u)−
∫ σ

0

f(t, u)u dt,

or equivalently

Jσ(vn)−
∫ σ

0

f(t, u)vn dt ≥ Jσ(u)−
∫ σ

0

f(t, u)u dt. (36)

As by Lebesgue convergence theorem we have

lim
n→+∞

∫ σ

0

f(t, u)(vn) dt =
∫ σ

0

f(t, u)v dt,

we can pass to the limit in (36), as n goes to +∞, obtaining

Jσ(v)− Jσ(u) ≥
∫ σ

0

f(t, u)(v − u) dt,

that is (31).
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Lemma 4.2. Let u ∈ BVloc(R) be a non-constant σ-periodic function, for some σ > 0.
Then u has a minimum period τ > 0 and σ

τ ∈ N0.

Proof. We first prove that u cannot have arbitrarily small periods. Assume by contradiction
that there exists a sequence (σn)n, with 0 < σn <

σ
n , of periods of u. As u is σn-periodic,

we have by [12, Proposition 2.9]

0 < 2( ess sup
R

u− ess inf
R

u) = 2( ess sup
[0,σn]

u− ess inf
[0,σn]

u)

≤
∫ σn

0

|Du|+ |u(σ−n )− u(0+)| ≤ 1
n

(∫ σ

0

|Du|+ |u(σ−)− u(0+)|
)
,

which yields a contradiction by letting n→ +∞.
Let us denote by T the set of all (positive) periods of u and set τ = inf T . We know

from the previous step that τ > 0. Let us show that τ is the minimum period. Let (σn)n be
a sequence in T converging to τ , with σn > τ for all n . Let ur denote the right continuous
representative of the bounded variation function u. As there exists a set E ⊆ R, with zero
Lebesgue measure, for which ur(t + σn) = ur(t) for every n and each t ∈ R \ E, we infer
that ur(t+ τ) = ur(t) for each t ∈ R \ E, that is, τ ∈ T .

It is finally clear from the previous steps that, σ > 0 being a period of u, there exists
N ∈ N0 such that σ = Nτ .

Lemma 4.3. Let u ∈ BVloc(R) be a non-constant σ-periodic solution of (1) and let τ > 0
be the minimum period of u. Then u is a τ -periodic solution of (1).

Proof. Suppose that σ > τ . By definition of σ-periodic solution of(1), u satisfies∫ σ

0

(Du)aφ′√
1 + |(Du)a|2

dt =
∫ σ

0

f(t, u)φdt (37)

for every φ ∈ C∞0 (]0, σ[).
Let us prove that the function f(·, u) ∈ L1

loc(R) is τ -periodic. As τ is the minimum
period of u, there exists N ∈ N, with N ≥ 2, such that σ = Nτ . Assume by contradiction
that, e.g., f(t, u(t)) 6= f(t + τ, u(t + τ)) for all t in a subset of [0, τ ] of positive measure.
Take φ1 ∈ C∞0 (]0, τ [) and φ2 ∈ C∞0 (]τ, 2τ [), with φ1(t) = φ2(t+ τ) in [0, τ ], such that∫ τ

0

f(t, u)φ1 dt 6=
∫ 2τ

τ

f(t, u)φ2 dt.

As (Du)a = (Du(· − τ))a a.e. in R and φ′2 = φ′1(· − τ) in [τ, 2τ ], we get from (37)∫ τ

0

f(t, u)φ1 dt =
∫ τ

0

(Du)aφ′1√
1 + |(Du)a|2

dt

=
∫ 2τ

τ

(Du)aφ′2√
1 + |(Du)a|2

dt =
∫ 2τ

τ

f(t, u)φ2 dt,

which is a contradiction.
We next prove that u is a τ -periodic solution of (1). Pick any w ∈ BV (0, τ) and let

vi ∈ BV ((i− 1)τ, iτ) be such that vi(t+ (i− 1)τ) = w(t) for a.e. t ∈ [0, τ ], for i = 1, . . . , N .
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Define v ∈ BV (0, σ) by v(t) = vi(t) for a.e. t ∈ [(i− 1)τ, iτ ], for i = 1, . . . , N . We have∫ σ

0

√
1 + |Dv|2 + |v(σ−)− v(0+)| −

∫ σ

0

f(t, u)v dt

=
N∑
i=1

∫ iτ

(i−1)τ

√
1 + |Dvi|2 +

N−1∑
i=1

|v
(
(iτ)+

)
− v
(
(iτ)−

)
|+ |v(σ−)− v(0+)|

−
N∑
i=1

∫ iτ

(i−1)τ

f(t, u)vi dt

= N

∫ τ

0

√
1 + |Dw|2 +N |w(τ−)− w(0+)| −N

∫ τ

0

f(t, u)w dt

and∫ σ

0

√
1 + |Du|2 + |u(σ−)− u(0+)| −

∫ σ

0

f(t, u)u dt

= N

∫ τ

0

√
1 + |Du|2 +N |u(τ−)− u(0+)| −N

∫ τ

0

f(t, u)u dt.

Hence we conclude that∫ τ

0

√
1 + |Du|2 + |u(τ−)− u(0+)| −

∫ τ

0

f(t, u)u dt

≤
∫ τ

0

√
1 + |Dw|2 + |w(τ−)− w(0+)| −

∫ τ

0

f(t, u)w dt.

Therefore u is a τ -periodic solution of (1).

The following result guarantees the existence of a sequence of arbitrarily large kT -
periodic solutions of (1).

Theorem 4.4. Assume (k0), (k2),

(k′1) lim
s→±∞

F (t, s)
|s|

= 0 uniformly a.e. in [0, T ],

(k′3) there exists R > 0 such that f(t, s) s ≥ 0 for a.e. t ∈ [0, T ] and every s with |s| ≥ R.

Then there exists a sequence (uk)k of kT -periodic solutions of (1), satisfying

lim
k→+∞

ess sup
[0,kT ]

uk = +∞ or lim
k→+∞

ess inf
[0,kT ]

uk = −∞. (38)

Proof. For any fixed k ∈ N0, define a functional IkT : BV (0, kT )→ R by setting

IkT (v) = JkT (v)−
∫ kT

0

F (t, v) dt,

where JkT is defined in (32) with σ = kT . We also set

WkT =
{
w ∈ BV (0, kT ) :

∫ kT

0

w dt = 0
}
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and, for every v ∈ BV (0, kT ),

r =
1
kT

∫ kT

0

v dt,

so that w = v − r ∈ WkT .
Step 1. IkT has a mountain-pass geometry.
Assumptions (k0) and (k′1) imply that for every ε > 0 there exists a T -periodic function
cε ∈ L1

loc(R) such that
F (t, s) ≤ ε|s|+ cε(t), (39)

for a.e. t ∈ R and every s ∈ R. For every w ∈ WkT , we have, using (39) and [12, Corollary
2.7],

IkT (w) = JkT (w)−
∫ kT

0

F (t, w) dt

≥
∫ kT

0

|Dw|+ |w
(
(kT )−

)
− w(0+)| − ε

∫ kT

0

|w| dt−
∫ kT

0

cε dt

≥
(

1− εkT
4

)(∫ kT

0

|Dw|+ |w
(
(kT )−

)
− w(0+)|

)
−
∫ kT

0

cε dt.

This implies that
inf
WkT

IkT > −∞.

On the other hand, by assumption (k2) there exists Ak ∈ R+
0 such that

kT −
∫ kT

0

F (t, Ak) dt < inf
WkT

IkT .

According to [12, Lemma 2.13], there exist sequences (vn)n in BV (0, kT ) and (εn)n in R
such that lim

n→+∞
εn = 0,

JkT (v)− JkT (vn) ≥
∫ kT

0

f(t, vn)(v − vn) dt− εn ‖v − vn‖BV (0,kT ) , (40)

for every v ∈ BV (0, kT ), and

lim
n→+∞

IkT (vn) = ck = inf
γ∈Γk

max
ξ∈[−Ak,Ak]

IkT
(
γ(ξ)

)
, (41)

where
Γk =

{
γ ∈ C0

(
[−Ak, Ak], BV (0, kT )

)
: γ(±Ak) = ±Ak

}
. (42)

Step 2. The sequence (vn)n is bounded in BV (0, kT ).
Let us write, for each n ∈ N, vn = wn + rn, with wn ∈ WkT . Assume by contradiction that,
possibly passing to a subsequence that we still denote by (vn)n,

lim
n→+∞

‖vn‖BV (0,kT ) = +∞. (43)
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Using (39), (41) and [12, Corollary 2.7] again, we get for all large n

ck + 1 ≥ IkT (vn) = JkT (wn)−
∫ kT

0

F (t, wn + rn) dt

≥
∫ kT

0

|Dwn|+ |wn
(
(kT )−

)
− wn(0+)| − ε

∫ kT

0

|wn| dt− εkT |rn| −
∫ kT

0

cε dt

≥
(

1− εkT
4

)(∫ kT

0

|Dwn|+ |wn
(
(kT )−

)
− wn(0+)|

)
− εkT |rn| −

∫ kT

0

cε dt.

Hence we deduce that for every η > 0, there exists cη > 0 such that for all large n

1
2

(∫ kT

0

|Dwn|+ |wn
(
(kT )−

)
− wn(0+)|

)
≤ η|rn|+ cη

and, by [12, Corollary 2.10],

‖wn‖L∞(0,kT ) ≤ η|rn|+ cη. (44)

By (43) and (44), we infer that
lim

n→+∞
|rn| = +∞.

Possibly passing to a further subsequence that we still denote by (vn)n, we can suppose that
either

lim
n→+∞

rn = +∞ or lim
n→+∞

rn = −∞.

Assume that the former case occurs. From (44) we get

lim
n→+∞

ess inf
[0,kT ]

vn = +∞ (45)

and hence, by (k′3), for all large n

f
(
t, vn(t)

)
≥ 0,

for a.e. t ∈ [0, kT ]. Testing (40) against v = vn ± 1, we obtain

0 ≥ ±
∫ kT

0

f(t, vn) dt− εnkT

and then, for all large n,∫ kT

0

|f(t, vn)| dt =
∣∣∣∣∫ kT

0

f(t, vn) dt
∣∣∣∣ ≤ εnkT. (46)

Now, test (40) against v = rn. We get, using (46) and [12, Corollary 2.7, Corollary 2.10],

JkT (wn) ≤ JkT (rn) +
∫ kT

0

f(t, vn)wn dt+ εn ‖wn‖BV (0,kT )

≤ kT + ‖f(·, vn)‖L1(0,kT ) ‖wn‖L∞(0,kT ) + εn ‖wn‖BV (0,kT )

≤ εn
(

1 +
3
4
kT

)(∫ kT

0

|Dwn|+ |wn
(
(kT )−

)
− wn(0+)|

)
+ kT.



23

Hence we can easily conclude that there exists a constant c > 0 such that for all large n∫ kT

0

|Dwn|+ |wn
(
(kT )−

)
− wn(0+)| ≤ c

and
JkT (wn) ≤ c.

Therefore, using (k′3), we get for all large n

IkT (vn) = JkT (wn)−
∫ kT

0

F (t, vn) dt

= JkT (wn)−
∫ kT

0

(∫ ess inf
[0,kT ]

vn

0

f(t, s) ds
)
dt−

∫ kT

0

(∫ vn(t)

ess inf
[0,kT ]

vn

f(t, s) ds
)
dt

≤ c−
∫ kT

0

F
(
t, ess inf

[0,kT ]
vn
)
dt.

Then a contradiction follows, using (45) and (k2), as we have by (41)

inf
n
IkT (vn) > −∞.

Step 3. For each k ∈ N0, there exists a kT -periodic solution uk of (1), with IkT (uk) = ck.
Let k ∈ N0 be fixed. Since by Step 2 the sequence (vn)n is bounded in BV (0, kT ), there
exists a subsequence, that we still denote by (vn)n, and a function uk ∈ BV (0, kT ) such
that

lim
n→+∞

vn = uk,

in L1(0, kT ) and a.e. in [0, kT ], and

sup
n
‖vn‖L∞(0,kT ) < +∞.

Hence, using (k0), [12, Proposition 2.4] and Lebesgue convergence theorem, we get

lim
n→+∞

f(·, vn) = f(·, uk), in L1(0, kT ),

lim
n→+∞

∫ kT

0

F (t, vn) dt =
∫ kT

0

F (t, uk) dt,

lim inf
n→+∞

JkT (vn) ≥ JkT (uk),

lim
n→+∞

∫ kT

0

f(t, vn)(v − vn) dt =
∫ kT

0

f(t, uk)(v − uk) dt,

lim
n→+∞

εn ‖v − vn‖BV (0,kT ) = 0,

for every v ∈ BV (0, kT ). Accordingly, we obtain from (40)

JkT (v)−
∫ kT

0

f(t, uk)(v − uk) dt = JkT (v)− lim
n→+∞

∫ kT

0

f(t, vn)(v − vn) dt

+ lim
n→+∞

εn ‖v − vn‖BV (0,kT ) ≥ lim inf
n→+∞

JkT (vn) ≥ JkT (uk),
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i.e., uk is a kT -periodic solution of (1). Moreover, testing (40) against v = uk, we get

JkT (uk)−
∫ kT

0

f(t, uk)(uk − vn) dt+ εn ‖uk − vn‖BV (0,kT ) ≥ JkT (vn).

Letting n→ +∞, we have
JkT (uk) ≥ lim sup

n→+∞
JkT (vn).

As
JkT (uk) ≤ lim inf

n→+∞
JkT (vn),

we conclude that
JkT (uk) = lim

n→+∞
JkT (vn)

and
IkT (uk) = lim

n→+∞
IkT (vn) = ck.

Step 4. The following limits hold

lim
k→+∞

1
k
IkT (uk) = −∞, (47)

lim
k→+∞

1
k
‖uk‖L1(0,kT ) = +∞,

lim
k→+∞

‖uk‖L∞(0,kT ) = +∞.

For each k ∈ N0, let φk : [0, kT ]→ R be defined by φk(t) = k sgn
(
t− kT

2

)
. Note that φk is

an eigenfunction associated with the second eigenvalue kT
4 of the 1-Laplace operator with

periodic boundary condition on [0, kT ] (cf. [29]). Define a path γk : [−Ak, Ak]→ BV (0, kT )
by

γk(ξ) = ξ +
(

1− |ξ|
Ak

)
φk.

Clearly, we have γk ∈ Γk, where Γk is defined in (42). Let us compute, for each ξ ∈
[−Ak, Ak],

JkT
(
γk(ξ)

)
= JkT

((
1− |ξ|

Ak

)
φk

)
= 4k

(
1− |ξ|

Ak

)
+ kT ≤ (4 + T )k.

Hence we obtain, for each ξ ∈ [−Ak, Ak],

IkT
(
γk(ξ)

)
≤ (4 + T )k −

∫ kT

0

F
(
t, γk(ξ)

)
dt. (48)

Now we want to estimate the last integral for all large k. Note that we can assume, without
restriction, that Ak ≥ k ≥ max{4, R}. Hence, we see that, for each ξ ∈ [−Ak, Ak], there
exists an interval [ak, bk] ⊆ [0, kT ] with ak = ak(ξ), bk = bk(ξ) and bk − ak ≥

⌊
k
2

⌋
T , such

that
|γk
(
ξ
)
(t)| ≥ k,

for a.e. t ∈ [ak, bk]. Indeed, the following statements hold:
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• if ξ = 0, then

|γk
(
0
)
(t)| =

∣∣∣∣k sgn
(
t− kT

2

)∣∣∣∣ ≥ k,
a.e. in [ak, bk] = [0, kT ];

• if ξ ∈]0, Ak], then

|γk
(
ξ
)
(t)| =

∣∣∣∣ξ + k

(
1− ξ

Ak

)
sgn
(
t− kT

2

)∣∣∣∣ = k + ξ

(
1− k

Ak

)
≥ k,

a.e. in [ak, bk] =
[⌈
k
2

⌉
T, kT

]
.

• if ξ ∈ [−Ak, 0[, then

|γk
(
ξ
)
(t)| =

∣∣∣∣ξ + k

(
1 +

ξ

Ak

)
sgn
(
t− kT

2

)∣∣∣∣ = −ξ
(

1− k

Ak

)
+ k ≥ k,

a.e. in [ak, bk] =
[
0, bk2 cT

]
.

As we assumed Ak ≥ k ≥ R, we have, using (k′3),

F (t, s) ≥ F (t, k),

for a.e. t ∈ R and every s ∈ R with |s| ≥ k. Moreover, by (k0), there exists a T -periodic
function h ∈ L1

loc(R) such that
F (t, s) ≥ −h(t),

for a.e. t ∈ R and every s ∈ R. Therefore we obtain, for every ξ ∈ [−Ak, Ak],∫ kT

0

F
(
t, γk(ξ)

)
dt =

∫ bk

ak

F
(
t, γk(ξ)

)
dt+

∫
[0,kT ]\[ak,bk]

F
(
t, γk(ξ)

)
dt

≥
∫ bk

ak

F (t, k) dt−
∫

[0,kT ]\[ak,bk]

h dt

≥
∫ bk

ak

F (t, k) dt− k ‖h‖L1(0,T ) . (49)

Note that, for any ξ ∈ [−Ak, Ak], we have∫ bk

ak

F (t, k) dt ≥
⌊
k

2

⌋∫ T

0

F (t, k) dt

and then, by (k2)

lim
k→+∞

1
k

∫ bk

ak

F (t, k) dt = +∞.

Therefore we can conclude, from (48) and (49), that

lim
k→+∞

1
k

max
ξ∈[−Ak,Ak]

IkT
(
γk(ξ)

)
≤ lim
k→+∞

(
4 + T + ‖h‖L1(0,T ) −

1
k

∫ bk

ak

F (t, k) dt
)

= −∞,
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which in turn implies that

lim
k→+∞

1
k
IkT (uk) = −∞, (50)

as
IkT (uk) = inf

γ∈Γk
max

ξ∈[−Ak,Ak]
IkT

(
γ(ξ)

)
.

We finally observe that, as

1
k
IkT (uk) ≥ −1

k

∫ kT

0

F (t, uk) dt,

from (50) it follows

lim
k→+∞

1
k

∫ kT

0

F (t, uk) dt = +∞.

Using (39) with ε = 1, we have

1
k

∫ kT

0

F (t, uk) dt ≤ 1
k

∫ kT

0

|uk| dt+
1
k

∫ kT

0

|c1| dt

=
1
k
‖uk‖L1(0,kT ) + ‖c1‖L1(0,T ) ≤ T ‖uk‖L∞(0,kT ) + ‖c1‖L1(0,T ) ,

and hence both
lim

k→+∞

1
k
‖uk‖L1(0,kT ) = +∞

and
lim

k→+∞
‖uk‖L∞(0,kT ) = +∞

hold true.

Remark 4.1 Under the assumptions of Theorem 4.4 we cannot exclude that all the so-
lutions uk are constant. This cannot happen we slightly strengthen assumption (k′3) by
replacing it with (k3), in that case the obtained solutions, if classical, would be subhar-
monic solutions in the sense, e.g., of [30, p. 426]. This is the content of Theorem 4.5.

Theorem 4.5. Assume (k0), (k′1), (k2) and (k3). Then there exists a sequence (uk)k∈N0 of
kT -periodic solutions of (1), satisfying

lim
k→+∞

( ess sup
[0,kT ]

uk − ess inf
[0,kT ]

uk) = +∞. (51)

Moreover, for each N ∈ N0, there exists k̄ such that, for every k ≥ k̄, ukN is not a NT -
periodic solution of (1).

Proof. Theorem 4.4 guarantees the existence of a sequence (uk)k of kT -periodic solutions
of (1) for which (38) holds. Let us prove the validity of (51). Indeed, otherwise from (38)
we deduce, possibly passing to a subsequence of (uk)k, still denoted by (uk)k, that

lim
k→+∞

ess inf
[0,kT ]

uk = +∞ or lim
k→+∞

ess sup
[0,kT ]

uk = −∞.
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Assume that the former case occurs. Hence condition (k3) implies that, for all large k,

f(t, uk(t)) > 0, (52)

for a.e. t ∈ [0, kT ]. By Lemma 4.1, testing (31), with σ = kT and u = uk, against v = uk±1,
we infer ∫ kT

0

f(t, uk) dt = 0.

A contradiction then follows from (52).
Next, in order to prove the last conclusion, we suppose by contradiction that, for some

N ∈ N0, there exists a subsequence (ukjN )j of (ukN )k, such that, for every j, ukjN is NT -
periodic. Let us denote this subsequence by (ukN )k for simplicity. From condition (47) and
the NT -periodicity of ukN , we have

lim
k→+∞

1
N
INT (ukN ) = lim

k→+∞

1
kN
IkNT (ukN ) = −∞.

This implies that
sup
k
INT (ukN ) = M < +∞.

The same argument employed in Step 2 in the proof of Theorem 4.4 yields the existence of
a further subsequence of (ukN )N , which we still denote by (ukN )N , such that

lim
k→+∞

ess inf
[0,NT ]

ukN = +∞ or lim
k→+∞

ess sup
[0,NT ]

ukN = −∞.

Now we proceed as above in order to get a contradiction by means of condition (k3).

Remark 4.2 By a diagonal argument, we see that there exists a sequence (kj)j of positive
integers, with kj ≥ j for every j ∈ N0, such that the corresponding solutions (ukj )j are
kjT -periodic, but not hT -periodic for h = 1, . . . , j.

Finally, if both assumptions (k′1) and (k′3) are strengthened into (k1) and (k3), respec-
tively, then the obtained solutions exhibit large-amplitude oscillations and have arbitrarily
large minimum periods, as stated in Theorem 1.2.

Proof of Theorem 1.2. Theorem 4.5 guarantees the existence of a sequence (uk)k of
kT -periodic solutions of (1) for which (51) holds. Since, for all large k, uk is a non-constant
kT -periodic solution of (1), Lemma 4.2 and Lemma 4.3 imply that uk has a minimum period
τk > 0 and it is a τk-periodic solution of (1), i.e., for every v ∈ BV (0, τk),

Jτk(v)− Jτk(uk) ≥
∫ τk

0

f(t, uk)(v − uk) dt. (53)

We want to prove that
lim

k→+∞
τk = +∞.

Assume by contradiction that there exists a subsequence (τkj )j of (τk)k such that

sup
j
τkj = τ < +∞.
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Let us denote (τkj )j simply by (τk)k. Assumptions (k0) and (k1) imply that, for every ε > 0,
there exists cε ∈ L1

loc(R) such that

f(t, s)s ≤ ε|s|+ cε(t), (54)

for a.e. t ∈ R and every s ∈ R. Testing (53) against v = 0 and using (54), we get

Jτk(uk) ≤
∫ τk

0

f(t, uk)uk dt+ τk

≤ ε
∫ τk

0

|uk| dt+
∫ τk

0

cε dt+ τk

≤ ετ ‖uk‖L∞(0,τk) + ‖cε‖L1(0,τ) + τ.

Set rk = 1
τk

∫ τk
0
uk dt and wk = uk − rk. By [12, Corollary 2.10], we obtain

2 ‖wk‖L∞(0,τk) ≤
∫ τk

0

|Duk|+ |uk(τ−k )− uk(0+)|

≤ ετ ‖wk‖L∞(0,τk) + ετ |rk|+ ‖cε‖L1(0,τ) + τ.

Hence we conclude that, for every η > 0, there exists cη > 0, which is independent of k,
such that

‖wk‖L∞(0,τk) ≤ η|rk|+ cη.

This relation is the counterpart of (44) in Step 2 in the proof of Theorem 4.4. We can then
proceed as there and obtain, possibly passing to a subsequence of (uk)k, still denoted by
(uk)k, that

lim
k→+∞

ess inf
[0,τk]

uk = +∞ or lim
k→+∞

ess sup
[0,τk]

uk = −∞.

Arguing as in the first part of the proof of Theorem 4.5 we finally get a contradiction by
means of condition (k3). This concludes the proof of Theorem 1.2.
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