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a b s t r a c t

In the paper, an identification approach based on a Genetic Algorithm (GA) is applied
d heal
structures and bridges represent a topic
researchers, owners and users. Existing
assessed according the prescriptions of modern building codes; for base-isolated bridges, for example, resulted in a satis

1

Keywords:
Dynamic and static identification

a base-isolated, post-tensioned concrete bridge investigated in earlier contributions of literature. It is
known that bearing isolators greatly influence the overall response of small- and medium-span bridges
under dynamic loads, but in previous works it was seen that the characterisation of their elastic stiffness
under small displacements may be inaccurate. In this work, based on in-situ test measurements obtained
under static and dynamic loading conditions, inverse techniques based on GAs are successfully applied to
the examined structural system, providing an efficient and well-calibrated structural identification of its
Genetic Algorithms
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Bearing isolators
Bridges
Sensitivity analysis

1. Introduction

The maintenance, safeguard an
main properties. Compared to other identification tools and classical correlation techniques, the main
advantage deriving from the use of inverse approaches based on GAs typically manifests in the possibility
to estimate a greater number of material parameters (e.g. properties of concrete as well as stiffness of the
bearing isolators, etc.), and to critically assess the accuracy of the identification. Based on rather good
correlation between test measurements and finite element (FE) model updating, it is expected that the
same technique could be applied to various structural typologies and systems.

th monitoring of civil
of large interest for

structures need to be

dynamic tests carried out on bridge structures could induce in
them maximum deformations markedly lower than their expected
ultimate performances, hence resulting in difficult estimation and
assessment of the effective in-plane horizontal stiffness provided
by the isolation system. Structural identifications discussed in [7]
factory

new constructions can benefit from the possibility of detecting
any damage or loss of performance offered by continuous monitor-

behaviour of the seismic isolators, but in identified bearing stiff-
nesses significantly higher than the reference experimental values.
ing. In both cases, the analysis generally involves accurate numer-
ical modelling of the structure, which must be calibrated according
to the actual response (model updating) when it is excited by
dynamic or static loads. A crucial step in the mechanical calibration
of FE-models could derive, for example, from uncertainties on the
actual boundary conditions, hence resulting in improper mechani-
cal description of materials and inaccurate numerical investiga-
tions. This is the case of base-isolated structures, and specifically
base-isolated bridges, where bearing-isolators are usually used to
provide appropriate ultimate displacements under seismic events
[1–5]. While the mechanical characterisation of these isolators
under high-strain loads is typically provided by producers
(e.g. [6]), however, it is well-known that ‘‘in-situ’’ static and
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The lack of correlation between identified and experimental stiff-
ness (and damping parameters) was justified in that case both by
the application of low-strains only (e.g. magnified friction mecha-
nisms and uncertainty in their estimation), and by the interference
of non-structural components on the response of the whole
structural systems or structural anomalies not taken into account
during the design stage.

The calibration of material parameters and boundary conditions
in numerical models can be performed by using the results from
dynamic and static tests. The experimental modal analysis can be
accomplished with three major testing procedures: ambient vibra-
tion [8], forced vibration [9] and free vibration [10]. A review of
these three approaches may be found in [11]. Whichever testing
procedure is used, some responses are measured and then used as
input for the parameter calibration. Three basic types of data are
used in dynamic identification: time domain, frequency domain
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and modal model. During experimental modal analysis, the sampled
time-series data are processed into the frequency response function
(FRF) data. These frequency data are then further processed by curve
fitting to obtain the modal model, namely the natural frequencies,
damping ratios and mode shapes. Data from each of these steps

– The analytical form of the discrepancy function xðpÞ must take
into account different precision of instrumentation when differ-
ent types of measured variables are considered (loads, displace-
ments, strains, frequencies, etc.). In the simplest form, it reads:

i

some of the most widely used approaches are gradient-based
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may be used in the identification: see for example [12]
(time-domain data), [13] (FRF data) and [14] (modal data). Static
tests have comparatively less variety in the post-processing, since
the measured responses are directly used in the calibration [15].

The identification process is carried out by inverting the for-
ward operator, which links some parameters of the numerical
model to the measured response. Since the explicit analytical
inversion is not always possible, the solution is usually attained
by solving an optimisation problem in which a discrepancy
between experimental and computed data is minimised. In the lit-
erature, this approach is widely used in the field of deterministic
inverse problems: differences exist in the formulation of the
discrepancy (or cost) function to be minimised [16] and in the
minimisation algorithm.

In this work, an approach for the characterisation of the main
model parameters of an existing post-tensioned concrete,
base-isolated bridge, based on the minimisation of a discrepancy
function by means of a Genetic Algorithm (GA), is proposed. It
makes use of the experimental data from the static tests and the
dynamic properties (frequencies and modes) extracted via experi-
mental modal analysis previously described in [17]. It is shown
how different sources of information may be embedded within
the same procedure for both dynamic and static identification.
Unlike [17], where a simplified analytical procedure was proposed
in order to estimate the stiffness of the isolators, here the set of
unknown parameters is enlarged as to include Young modulus
of the concrete constituting piers and deck, and the identifiability
of all parameters is assessed by studying the relationship between
the discrepancy function value and each parameter. Different
formulations for the dynamic discrepancy function are proposed
and critically discussed, and the differences in the results reason-
ably explained.

2. The identification process

Let us be given a physical system and a mathematical model
describing it. The identification process consists of finding some
parameters (constitutive parameters, boundary conditions, etc.) p
of the mathematical model that give a ‘‘computed’’ response as
close as possible to the experimental one. The ‘‘closeness’’ is made
explicit by the definition of a discrepancy (or cost) function which
measures the discrepancy between the two responses. Thus, the
problem can be seen as an optimisation problem, in which the
discrepancy function must be minimised in the process.

Some aspects are worth to be pointed out:

– The mathematical (numerical or analytical) model must be as
representative as possible of the real behaviour of the structure.
Any important feature affecting the response must be properly
represented: anisotropy, nonlinear behaviour, boundary condi-
tions, position and magnitude of masses, etc. A usual choice in
engineering identification problems is to model the structure
using a finite element (FE) discretization.

– The experimental setup must significantly involve the sought
parameters, i.e. the sensitivity of the response to the variation
of the parameters must be sufficiently high.

– All experimental data are affected by errors, and this must be
accounted for in the definition of the response to be measured,
in their post-processing (if needed) and in the accuracy of the
results of the identification process.

2

xðpÞ ¼ RT WR ð1Þ

with R = yc(p) � ym being the residual vector between some
measured variables ym

i , with i = 1, . . ., N (N number of measure-
ments) and the computed counterparts yc, that are obtained for a

chosen set of trial parameters p. W is a weight matrix that
accounts for the correlation between response variables and
the measurement scattering.

– Finally, the optimisation algorithm influences the accuracy of
the results since, according the well-known ‘‘no free lunch the-
orem’’ [18], no algorithm is suitable for all problems. The pres-
ence of local optima, discontinuities in the function or in its
derivatives can make the problem not solvable for some of
them.

Each of these points will be exploited in this work. In particular,
the optimisation algorithm is described in Section 3; the
experimental setup and the FE model describing the structure
are described in Sections 4.1 and 4.2, and a discussion about the
sensitivity of the response on the sought parameters, the use of dif-
ferent discrepancy functions, the role of errors in the recorded data
is presented together with the numerical application in Section 4.3.

3. The Genetic Algorithm

In order to solve the identification problem by minimising
Eq. (1), a numerical iterative procedure must be used. To this aim,
methods, such as Line Search [19] or Trust Region [20], which solve
the problem by finding a stationary point of the discrepancy func-
tion. This strategy involves the computation of the Jacobian matrix
of a solution candidate at each iteration and updating the point in
the iterative process. Although computationally appealing, since
the number of forward evaluations is generally rather low, these
methods are local in scope, and can fail when the continuity and
even the convexity of the cost function are not strictly satisfied
in the search space. In this respect, global methods as Genetic
Algorithms [21] are more general and they have been effectively
employed in identification problems in previous research
[22–25]. In addition to overcoming the mentioned drawbacks of
gradient-based methods (by escaping local optima and not making
use of derivatives), in this paper it will be shown that, in the GA
framework, it is possible to qualitatively assess the identifiability
of a parameter by studying the convergence process and the
parameter–discrepancy function plots.

The main idea of this well-known approach is to let a population
of several candidate solutions (individuals) evolve in the search of
the optimum, throughout a certain number of generations. Com-
pared to gradient-based algorithms, in which a single solution is
updated in the search for the optimum, the use of populations of
candidate solutions completely changes the perspective of the
optimisation process. Clearly, the computational effort is usually
higher in the GA approach, since one iteration consists of the
evaluation of the discrepancy function for each individual in
the population instead of a single candidate. On the other hand,
the convergence may be seen as a process in which the population
reduces its size in the parameter and fitness spaces, being
distributed in the last generation around the best individuals
[26]. The converged population distribution, thus, carries some
information about the well-posedness of the problem, the number



of optima and the shape of the discrepancy function, allowing for
considerations which are not possible using a gradient-based
method. This will be shown in the following sections.

The first step of the procedure consists of the chromosome
definition for the problem under study; it collects the parameters

decreases towards zero. Termination criteria are needed to end
the process. In this work, the process has been stopped when a pre-
defined number of generations has been processed.

The Genetic Algorithm has been implemented in ad-hoc soft-
ware called TOSCA (Tool for Optimisation in Structural and Civil
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to be sought during the process. Each parameter xi (called gene)
is represented by a double-precision decimal varying between a
lower and upper bound. The initial population can be generated
randomly or with quasi-random techniques. In this work, a Sobol
sequence [27] has been used, which allows for a more uniform
exploration of the solution space than a simply random generation.

Processing a generation consists of evaluating the discrepancy
value (fitness in the GA jargon) for each individual. After that, GA
operators (selection, crossover and mutation) are applied to create
a new generation of individuals. Selection is responsible of prepar-
ing the intermediate population for the crossover and mutation
operators. Its basic function is choosing the parent couples; then,
a new generation can be created through the application of cross-
over (or recombination) operator, with a probability pc. In this
work, the BLX-a Crossover [28] has been used. Furthermore, in
order to improve convergence, an elitist approach has been applied
[29], in which the best individual among parents and offspring is
always placed (without undergoing the recombination operator)
in the subsequent generation. Once the new population has been
created, mutation is applied to some individuals according to a
probability pm, to prevent the loss of diversity of the population.

The process, schematically displayed in Fig. 1, continues with
the evaluation of the created generation. From one generation to
the next, the most promising genetic material spreads, the
population fitness standard deviation decreases, and, if only one
global optimum is found, also the parameter standard deviation

Acquisition of the experimental data

Definition of the discrepancy function
Setting variation ranges for input variables

Tuning GA parameters

Creation of the first population

Termination 

criterion satisfied?

Application of the GA 

operators

New population

Evaluation of the population

no

Fig. 1. Flow chart of the id
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engineering Analyses) [30], successfully used in previous research
for the estimation of model parameters for masonry structures
[31].

4. A case study: The Dogna bridge

4.1. Description of the bridge and finite-element numerical modelling

A practical application of the aforementioned GA solving
approach is proposed for a bridge recently investigated in
[17,32]. The examined structural system, specifically, is located
in the Municipality of Dogna (UD, Italy) a mountain area charac-
terised by high level of seismic hazard and – based on the reference
seismic design national standard [33] – a design peak of ground
acceleration for a reference return period of 475 years equal to
ag = 0.35 g. The corresponding ground level is ‘B’, e.g. stiff soil,
while the bridge is classified as strategic infrastructure.

The structure consists of a continuous, two-span post-tensioned
reinforced concrete (RC) deck (C35/45 concrete, with fck = 35 MPa
the cylindrical characteristic strength) with total length of 75 m,
supported by a single mid-span elliptical, 4 m-width and about
10 m-height RC pier (C30/37 concrete, fck = 30 MPa) and two RC
abutments (C30/37 concrete) able to provide lateral rigid supports
at the deck ends.

The pier is supported by a fully rigid RC foundation block,
namely consisting of a 2.5 m thick, hexagonal RC plate (8 m the
Optimal solution

Assessment of the results

yes

entification approach.



base dimension) supported by 18 m long RC bored piles (1.5 m the
diameter of each one) and a stone ballast.

The transversal cross-section of the deck – characterised by a
longitudinal 3% slope – is kept almost uniform along the bridge
length, with the exception of the region near the central pier. An

In these hypotheses, the typical model consisted of 4-node,
quadrilateral, stress/displacement shell elements (S4R) with
reduced integration and large-strain formulation. A regular mesh
pattern, composed of 0.5 m long � 0.25 m wide rectangular ele-
ments, was used for both the deck and the pier. In accordance with
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overview of the bridge is provided in Fig. 2, in the form of plan view
and typical cross sections. For further technical details the reader is
referred to [17,32].

The main characteristic of this bridge is given by the presence of
six multi-directional cylindrical elastomeric bearing isolators –
two for each support on pier and abutments – currently produced
by FIP Industriale (type SI-N-1200/112 [6]).

These elastomeric isolators, having nominal diameter /isolator =
1200 mm and total thickness hisolator = 112 mm, consist of a
series of steel laminates and hot-vulcanized rubber layers. Their
main characteristics are given by large vertical stiffness
(Kz = 7631 MN/m), as well as by high flexibility and damping capa-
bilities under shear loads, hence resulting in nominal dynamic
shear modulus Gdin = 0.8 MPa, equivalent viscous damping coeffi-
cient n = 10–15%, and maximum allowable lateral displacement
umax � 200 mm [6]. The choice of this specific typology of elas-
tomeric isolators was suggested, at the time of the bridge design,
by the reference peak ground acceleration for the Dogna area.
Despite their structural capabilities under extreme events such as
high-level seismic events, however, the effective mechanical char-
acterisation of these devices is rather complex to properly estimate
at low strains [17].

In order to numerically investigate the Dogna bridge, a simpli-
fied but computationally efficient and accurate finite element
(FE) model was carried out by means of the ABAQUS/Standard
software package [34]. In it, careful consideration was devoted to
the geometrical description of the bridge components, as well as
their reciprocal interaction. At the same time, the use of a geomet-
rically refined, full 3D solid FE-model was avoided, since inevitably
associated to extremely onerous optimisation procedures.
Fig. 2. Dogna bridge: (a) plan; (b) cross-section on the pier a
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the available technical drawings, the pier was described by means
of shell elements with middle plane lying in the (x, y) plane (see
Fig. 3) and total thickness comprised between 0.95 and 2.4 m. At
the same time, the typical transversal cross-section of the deck
was described by means of shell elements lying on three separate
planes (Fig. 3). In this manner, the effective transversal geometry
as well as the longitudinal slope of the deck along its total span
(3%) was properly accounted for. For the same reason, shell ele-
ments with variable thickness through the width and length of
the deck (minimum 0.2 m, maximum 1.1 m) were then accordingly
defined.

All the shell elements representative of the central portion of
the deck were connected to the adjacent external portions by mean
of ‘‘tie’’ rigid connectors able to provide a full rigid interaction
between the interested nodes. Post-tensioning effects were
neglected, since insignificant for dynamic identification purposes.

Material density for concrete elements was set equal to
2500 kg/m3. At the same time, lumped masses were properly dis-
tributed along the bridge, in order to rationally take into account
the inertial effects of footways (Fig. 3).

Concerning the mechanical characterisation of concrete, an
isotropic, indefinitely linear elastic material was taken into
account, with qc = 2500 kg/m3 the density, mc = 0.2 the Poisson’
coefficient. Different nominal Young’s modula Ec were assigned
to the pier and to the deck respectively, and their values were
assumed as two of the unknowns in the identification problems
(see Section 4.3)

Careful consideration was finally given to the mechanical
description of the seismic bearing devices. The structural interac-
tion between the deck and the pier was guaranteed, specifically,
nd (c) typical deck cross-section. Dimensions in meters.



by representing the elastomeric isolators in the form of assembled
translational (slide plane) and rotational (cardan) connectors
available in the ABAQUS library. Cardan connectors were used to
take into account the rotational stiffness Ku offered by the
elastomeric isolators. Their rotational stiffness Ku was estimated

was used, to improve the detection of higher modes. The applied
excitation forces generally resulted in maximum displacements
of the bridge deck in the order of few millimetres.

The main dynamic parameters of the bridge – e.g. frequencies,
damping ratios and related mode shapes – were then estimated

Fig. 3. Schematic view of the ABAQUS FE-model, axonometric view. In evidence, the lumped masses and the ‘‘slide plane + cardan’’ connectors representative of the
elastomeric isolators.

Fig. 4. Instrumental layout for the dynamic experiments. Position of the accelerom-
eters for the measurement of the deck deformations along the vertical (V),
transversal (T) and longitudinal (L) directions.
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as Ku = (p R4/4) Kz, with R = 0.6 m the radius of the circular basis
of the actual isolators and Kz = 7631 MN/m their nominal vertical
stiffness [6]. At the same time, slide plane connectors able to pro-
vide infinitely rigid vertical stiffness Kz, and specific translational
stiffnesses in the longitudinal and transversal directions Ky, Kx

respectively were used. The same modelling approach was used
both for the isolators on the pier and on the abutments.

The so assembled numerical model was used both for the
dynamic and the static identification. In the first case, linear modal
analyses were performed on a wide series of models having various
mechanical properties, as discussed in Section 4.3. In the case of
the static identification process, based on past static experiments
performed on the studied bridge (Section 4.2.2), static incremental
simulations were performed in ABAQUS/Standard.

4.2. Description of past experimental methods and results

Both dynamic and static experiments were performed on the
mentioned bridge. Detailed discussion about methods and results

of these past tests is provided in [17,32], while in this work only

tic scheme and two flexural schemes were considered. During the
part of these experimental data will be taken into account for iden-
tification purposes.

4.2.1. Dynamic experiments
Harmonic, forced-vibration tests with low levels of excitation

were performed, and steady-state harmonic vibrations were
induced on the bridge by means of the stepped-sine technique.

The exciter was mounted on the bridge deck approximately at Mode order r Description Natural frequency pr (Hz)

1 1st B 2.022 ± 0.001
2 RB Transversal 3.053 ± 0.003
3 2nd B 3.180 ± 0.002
4 RB Longitudinal 3.605 ± 0.002
5 RB Torsional 4.831 ± 0.011
6 3rd B 6.887 ± 0.046
7 1st T 6.934 ± 0.015
8 2nd T 7.995 ± 0.005
9 4th B 9.107 ± 0.020

10 Coupled B-T 12.910 ± 0.025
11 Coupled B-T 14.228 ± 0.081
12 Coupled B-T 14.433 ± 0.100

5

one third of the span of the Dogna side, near the downstream side-
walk (Fig. 4). Dynamic investigations were carried out by the appli-
cation of forces with maximum amplitude up to 19.5 kN. The range
of exciting frequency comprised between 1 Hz and 15 Hz was
examined and three separate dynamic experiments were per-
formed, in order to excite the bridge along the transversal (T), lon-
gitudinal (L), and vertical (V) directions.

In all these tests, the dynamic structural response of the bridge
was simultaneously measured by eighteen seismic accelerometers
ICP (Series 393B12). Data sampling rate during testing was set
equal to 0.05 Hz. For few cases only, a smaller step of 0.02 Hz
by means of Experimental Modal Analysis (EMA) techniques based
on multiple curve-fitting. Dynamic experiments and interpretation
of measurements manifested in vibration modes with well sepa-
rated resonance frequencies, with the exception of few modes only
(modes (2, 3) and (6, 7)). The 12 identified vibration modes are
listed in Table 1 [17].

4.2.2. Static experiments
Further static experiments were successively performed on the

same bridge [17] by means of static truck-loads applied to the
deck. Three different loading configurations, e.g. one torsional sta-
Table 1
Experimental modal analysis results: mean value of natural frequencies pr, with their
maximum deviations. T = Torsional; B = Bending; RB = (almost) rigid-body motion
[17].



experiments, vertical displacements of the deck were measured at
17 different locations (Fig. 5), (i) immediately after the application
of the truck loads, (ii) after half an hour of loading and (iii) after the
complete unloading of the bridge. As stated in [17], almost negligi-
ble discrepancies were generally found between the vertical

attempt was based on the discrepancy between the computed and
measured periods. The cost function to be minimised is, thus:

XNM Ti;compðpÞ � Ti;exp
� �2

Table 2
Variation range of the sought parameters.

Parameter Lower bound Upper bound Step

Kx (MN/m) 7.5 800 0.01
Ky (MN/m) 7.5 800 0.01
Ec,pier (GPa) 20 60 1
Ec,deck (GPa) 20 60 1
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deflections monitored at conditions (i) and (ii). In addition, the
unloading of the bridge (iii) typically manifested null residual
deformations.

4.3. The parameter identification

4.3.1. Introduction
In the following subsections, the inverse approach for the iden-
tification of the main material properties for the model previously
x1;dynðpÞ ¼ Texp;max

ð2Þ
described is applied. Three analyses are described:

1. Dynamic analysis 1 (D1): Dynamic identification based on
the fundamental periods.

2. Dynamic analysis 2 (D2): Dynamic identification based on
fundamental periods and modal shapes.

3. Static identification (S).

The analyses differ for the discrepancy function utilised, that
will be described in each paragraph. The sought parameters are
the transversal (Kx) and longitudinal (Ky) stiffnesses of the isola-
tors, the pier and deck Young modulus, respectively Ec,pier, Ec,deck.
The variation range for each parameter is displayed in Table 2.
Since high uncertainty exists for the isolator stiffnesses, they are
allowed to vary largely in the optimisation process. The values
declared by the manufacturer and those estimated in [17] are con-
tained in the range. The variability of the Young modulus for pier
and deck is minor, since the class of concrete is known in advance.

The choice of the parameters used in the GA is very
problem-dependent. In general, some of the parameters control
the exploration capabilities of the algorithm (population size,
crossover parameters, mutation probability); others govern the
evolution and thus the convergence (scaling pressure, number of
generations). Tuning such parameters depends on the shape of
the function to minimise and the computation budget available,
since for non-trivial discrepancy functions as those proposed in
this work each individual evaluation implies running a FE analysis.
For the problem under study, it was found that the following
parameters were a sufficient trade-off between exploration and
convergence:

– Population size: 50 individuals.
– Number of Generations: 50.
– Crossover probability: 0.85.
– Mutation Probability: 0.02.
– Scaling pressure: 1.7.
– Parameter a for BLX: 2.0.

4.3.2. Dynamic identification based on fundamental periods (D1)
As described before, dynamic tests allow for the determination

of the basic dynamic properties of the structures, basically modal
shapes and periods. For the analysed bridge, the first identification
Fig. 5. Plan view of the instrumental layout for the static experiments. Position of
control points for the measurements of the deck vertical deflections.

6

i¼1

where NM ¼ 12 is the number of modes utilised; Ti;compðpÞ is the ith
computed period; Ti;exp is the ith experimental period and p is the
vector of the sought parameters.

In Fig. 6 the mean and the best discrepancy value in the popu-
lation are plotted against the generation number. It is possible to
see that the mean value of the discrepancy becomes stable (despite
some peaks due to mutated elements at some generations) at
about generation 21, and it is clear that even in terms of best indi-
viduals the analysis finds the optimum at the same generation.

The material parameters identified so far (best individual) are
shown in Table 3. Some comparisons may be done with the solu-
tion of the identification problem described in [17]. In the men-
tioned work, the authors set the concrete Young modulus to the
value Ec;pier ¼ Ec;deck ¼ 43:20 GPa, which is in good agreement with
the deck value found in the optimisation analysis. The isolator stiff-
nesses were obtained by means of an analytical formulation based
on the comparison between the measured and computed frequen-
cies for the fundamental rigid-body modes along longitudinal and
transversal direction. The so found values were Kx ¼ 151:2 MN=m
and Ky ¼ 172:4 MN=m, with difference with respect to the opti-
mised values obtained in this study equal to about 18.7% and 0%
respectively.

In this context, it should be noticed that the elastic stiffness of
the used rubber bearing isolators is rather complex to correctly
estimate. While experiments are generally performed by producers
to certify the structural behaviour of seismic isolators under large
lateral displacements, their basic mechanical properties under
small displacements are often neglected, hence resulting in a pos-
sible improper calibration of numerical models. The nominal val-
ues of the stiffness supplied by the manufacturer for this class of
isolators were Kx ¼ Ky ¼ 89:7 MN=m, about 50% less than the val-
ues estimated in this study.
Fig. 6. Mean and best discrepancy value in the population against the generation
number for dynamic analysis based on periods (D1).



A comparison between the solution of the identification prob-
lem using Genetic Algorithm and the experimental data in terms
of periods in displayed in Table 4, where the discrepancy between
the periods is called D. It is clear than the discrepancies for the
higher modes are larger in percentage, and it is an obvious conse-

It can be seen that the consistency between the modes is very high
for the first five modes (MAC indices greater than 80%) and mode 9.
Experimental modes 10, 11 and 12 do not have a numerical
counterpart (all MAC indices are less than 30%), while some
switches occur for modes in the range 6–8. In particular, experi-

Table 3
Solution of the analysis D1.

Parameter Value

Kx (MN/m) 186
Ky (MN/m) 172.9
Ec,pier (GPa) 39.1
Ec,deck (GPa) 44.9

Table 4
Comparison between identified model frequencies and experimental outcomes of the
first identification problem.

Mode
number

Experimental period
(s)

Numerical period
(s)

D (s) D (%)

1 0.495 0.496 0.002 0.39
2 0.328 0.332 0.005 1.48
3 0.314 0.310 �0.004 �1.29
4 0.277 0.277 0.000 �0.01
5 0.207 0.208 0.001 0.42
6 0.145 0.141 �0.004 �2.81
7 0.144 0.130 �0.014 �10.02
8 0.125 0.115 �0.010 �7.86
9 0.110 0.107 �0.003 �2.85

10 0.077 0.102 0.024 31.61
11 0.070 0.071 0.001 1.57
12 0.069 0.067 �0.002 �2.70

n pr
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quence of the discrepancy function adopted. However, considering
that experimental data for the higher modes are affected by a sen-
sibly smaller accuracy, it may be considered acceptable.

It is common practice to use the Modal Assurance Criterion
(MAC) [35] to determine the consistency between two modal
shapes, i.e. a computed and a measured one. It is defined as:

MACij ¼
/T

i � /j

� �2

/2
i /

2
j

¼ cos2a ð3Þ

where /i and /j are the two modal vector to be compared, and a is the
angle between them. This value is independent of the scaling
adopted, that may be different between the computed modal shape
and the experimental one; it assumes value equal to 1 in the case of
perfect consistency (parallel vectors) and zero for orthogonal vectors.

Table 5 presents the MAC matrix of the experimental versus
numerical modes, whose modal shapes are proposed in Fig. 7.

Table 5
MAC (%) matrix between experimental and numerical modes for the first identificatio

Experimental modes Numerical modes
1 2 3 4 5

1 99.04 0.02 8.13 0.41 0.00
2 0.00 83.47 0.19 0.00 5.88
3 21.77 0.16 88.62 0.08 0.00
4 0.21 0.00 0.00 99.20 0.03
5 0.00 3.89 0.01 0.01 94.08
6 3.54 2.97 0.34 0.04 0.02
7 0.12 0.01 5.80 0.40 0.00
8 2.08 0.72 0.06 0.01 0.23
9 0.46 0.07 8.26 0.24 0.00

10 0.26 0.38 21.84 0.05 0.00
11 0.66 0.09 1.30 0.09 0.01
12 8.08 0.08 0.07 0.00 0.07

7

mental mode 6, 7, 8 are consistent respectively with numerical
mode 8, 6 and 10.

It is interesting to see how the population parameters are dis-
tributed in their variation range when the minimum mean discrep-
ancy in the population is approximately attained (as said, at
generation 21). The results are displayed in the histograms of
Fig. 8. It is immediately noticeable that while three parameters,
namely Kx, Ky and Ec,deck clearly converge towards a limited subset
of the initial variation range, Ec,pier is instead rather dispersed. It
means that its influence on the overall discrepancy function is sen-
sibly less important than the other parameters, and thus, its iden-
tification is less accurate.

It is confirmed by the parameter–discrepancy plot displayed in
Fig. 9. Going towards the minimum values of discrepancy (ordi-
nates), Kx, Ky and Ec,deck (abscissa) converge towards the solution
value. On the other hand, Ec,pier remains undetermined, since the
sensitivity of the discrepancy function to the variation of the
parameter is quite small.

4.3.3. Dynamic identification based on fundamental periods and modal
shapes (D2)

Some aspects of the identification analysis based on fundamen-
tal periods D1 may be pointed out:
1. Some switches between experimental and computed modal
shapes sometimes occur. In the previous analysis a sequential
mode pairing was used, in which the ith computed period
was compared with the ith experimental period. Another possi-
ble choice is pairing periods corresponding to the same modal
shape.

2. Based on the experimental response, uncertainty in the deter-
mination of the experimental periods is always present, and it
is not the same for all modes.

3. No information about mode consistency was considered in the
discrepancy function.

4. The higher modes, beyond the difficulty in the determination,
have less influence in the global response when the structure
is subjected to dynamic loads, because they are associated to
smaller participating masses and modal amplitudes.

Because of all these considerations, a different discrepancy
approach is proposed here, in which two objectives (period and
modal shape discrepancy, respectively) are minimised. It is sum-
marised by the following flow:

oblem.
6 7 8 9 10 11 12

0.27 0.00 0.01 0.01 0.07 0.01 13.31
0.00 11.81 0.79 0.03 0.05 0.87 0.00
0.04 0.02 0.02 11.86 0.05 0.00 9.96
1.15 0.00 0.00 0.00 0.00 0.01 0.14
0.00 0.70 0.06 0.01 0.00 15.65 0.01
1.13 17.54 83.40 7.52 6.48 0.28 0.01

96.05 0.05 0.62 56.07 0.00 0.00 0.05
0.01 4.58 23.24 3.10 89.94 1.62 0.20

50.29 0.80 2.74 88.54 0.87 0.02 4.41
17.24 1.75 15.96 10.31 0.02 0.19 0.15
15.79 0.18 0.01 28.31 7.49 0.06 11.94

7.26 0.35 0.40 4.06 25.81 0.83 19.36



Mode 1

Mode 3

Mode 5

Mode 7

Mode 9

Mode 11

Mode 2

Mode 4

Mode 6

Mode 8

Mode 10

Mode 12

Fig. 7. Numerical modal shapes for the first 12 vibration modes obtained from the first identification problem (ABAQUS).
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1. For the analysed individual the MAC matrix is evaluated as in
Table 5.

2. For the ith row (experimental mode), the kth computed mode
such that MACik ¼maxjMACij (j = 1, . . .,NM) is identified.

3. If the MACik P 50% (minimum consistency) and i – k

4. Two discrepancy terms are then evaluated as (see Appendix A):

x2;TðpÞ ¼
XNM

i¼1

f ref

Df i

Ti;compðpÞ � Ti;exp

Texp;max

� �2

ð4Þ

Fig. 8. Distribution of sought parameters in the population at generation 21 (Analysis D1).

Fig. 9. Parameter–discrepancy plots for dynamic analysis D1.
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(switch), the ith and kth computed fundamental periods are
exchanged.
x2;MACðpÞ ¼
XNM

i¼1

Ti;exp

Texp;max
1�max

j
ðMACijðpÞÞ

� �2



where f ref ¼ 1 Hz is the normalising factor; Dfi is the uncertainty for
ith frequency and NM; Ti;compðpÞ; Ti;exp; Texp;max;MACijðpÞ are described
in Section 4.3.2.

x2;T and x2;MAC respectively measure the period and the modal
shape discrepancy: the single-objective optimisation problem has

x2;T value, close to the maximum in its range. On the contrary, the
minimisation of the period term x2;T (analysis D2a) only involves a
slight increment in x2;MAC compared to the minimum. In other
words, the best solution in terms of modal shape is not acceptable
as far as the period discrepancy is concerned; the best solution in

Table 6
Analyses with different objective weights for building Pareto Front in analysis D2.

Analysis w2,T w2,MAC

D2a 1 0
D2b 1 1
D2c 1 10
D2d 1 100
D2e 1 500
D2f 1 1000
D2g 0 1

Kx (MN/m) 186.9
Ky (MN/m) 181.5
Ec,pier (GPa) 38.8
Ec,deck (GPa) 44.7

Fig. 11. Static identification analysis S.
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thus been replaced by a multi-objective problem. In general, the
solution of a multi-objective optimisation problem is represented
by a set of nondominated alternatives, called Pareto Front [36],
for which none of the objective functions can be improved in value
without degrading some of the other objectives. Most methods for
solving a multi-objective optimisation problem, such as the
Weighted Sum Method (WSM), convert it into a simpler problem,
in which a scalar function of the objectives is minimised or max-
imised. The WSM transforms multiple objectives into an aggre-
gated scalar objective function by multiplying each objective
function xi by a weighting factor wi and then summing up all
the contributions. If all weighting factors are positive, then it is
guaranteed that the solution of the scalar problem belongs to the
Pareto Front of the original multi-objective problem [37].

In the problem described in this section, no prior evidence sug-
gests which weights are best suited. For this reason, it is interesting
to track the whole Pareto Front, allowing the Decision Maker to
choose the best solution a posteriori. This was achieved by per-
forming different optimisation analyses with different weights
w2,T and w2,MAC, multiplying respectively x2;T and x2;MAC (Table 6).

The individuals processed in all analyses and the Pareto Front
are shown in Fig. 10a and b, where the solutions of the
(single-objective) optimisation problems involving only x2;T

(analysis D2a) and x2;MAC (analysis D2g) are also highlighted. It is
possible to notice that while, when varying the input parameters
p, the period discrepancy term x2;T changes its value by several
orders of magnitude, the variation range of x2;MAC is much more
limited, being comprised between 0.22 and 1.0. The Pareto
Front (represented in Fig. 10b with limited x-range for a better
visualisation) clearly shows that the solution of analysis D2g
(minimisation of the modal shape discrepancy) implies a very high
Fig. 10. Multi-objective optimisation D2: (a) all

10
terms of period is near-optimal even for the modal shape.
For this reason, the point identified as ‘‘Optimal x2;T ’’ in Fig. 10b

can be chosen as the solution of the identification problem D2. Its
properties are shown in Table 7. It must be noted that the values
slightly diverge from the solution reported in Table 3 (in particular
Ky increased by less than 5%) for analysis D1 because, in construct-
ing the discrepancy function, the periods are now coupled based on
the modal shape consistency, whereas in D1 they were sequen-
tially paired. The differences are nevertheless negligible.

The closeness between Kx and Ky values confirms that the isola-
tor may be considered isotropic in the two horizontal directions, as
can also be assumed for constructive reasons. Being the values
reported in Table 7 only slightly different from those shown in
Table 3, the comparisons between experimental and computed
periods and MACs are not reported for the sake of brevity. The

Table 7
Solution of the dynamic identification problem D2.

Parameter Value
individuals processed, and (b) Pareto Front.



solution still presents some modes which are not consistent with
the experimental data (mode pairs 6–8, 7–6, 8–10), and the appli-
cation of the rule pairing modes according to the modal shape in
the discrepancy function does not resolve the switch. Although
the approach based on periods and modal shapes in principle

considered, and the vertical displacements were recorded respec-
tively in 17 and in 10 points (Fig. 5). The discrepancy function to
be minimised is:

XNL XNP;i
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allows one to account for a number of factors (uncertainty of mea-
sures, influence of lower modes, mode pairing, modal shapes), the
results are very close to the ones obtained using a simpler discrep-
ancy function based on sequentially paired periods. Whereas in
this specific case the first approach can be used without notable
loss of accuracy, nothing can be inferred in general, and since the
second approach is more powerful, it is recommended for different
situations.

4.3.4. Static identification (S)
Compared to the dynamic analyses, static identification is less

complex in the definition of the objective to be minimised.
As described in Section 4.3, two loading conditions were
Fig. 12. Parameter–discrepancy plots

Fig. 13. Comparison between measured and computed displacements (a) in the transver
The sensor numbers correspond to the ones displayed in Fig. 5.

11
xsðpÞ ¼
i¼1 j¼1

ðuj;i;compðpÞ � uj;i;expÞ2 ð5Þ

where NL = 2 is the number of the load conditions, NP,i is the number
of measurements for the ith loading condition, uj;i;exp and uj;i;comp are
respectively the experimental and the computed displacements at
point j in loading condition i. The results in terms of population
mean and best individual are shown in Fig. 11.

It may be seen from the parameter–discrepancy plots (Fig. 12)
that the discrepancy is minimally affected by the isolator stiff-
nesses and the pier concrete Young modulus, and so they should
be considered as not identifiable by means of the studied static
tests. The discrepancy function can basically be considered as a
function of Ec,deck only, and its minimum is attained at
for static identification analysis S.

se cross-section in load condition 1 and (b) along the bridge axis in load condition 2.



Ec;deck ¼ 34:1 MPa. A comparison between measured and computed
vertical displacements in the deck for two load conditions is
displayed in Fig. 13.

According to Model Code 2010 [38], the concrete Young modu-
lus E at 28 days can be estimated from the specified characteristic

Appendix A

Let i be the mode under consideration. The period discrepancy
between the numerical model and the experimental outcome is:
� �
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ci

strength f ck:

Eci ¼ Ec0 � aE �
f ck þ Df

10

� �1=3

ð6Þ

where Ec0 ¼ 21:5 � 103 MPa; aE ¼ 1:0 for quartzite aggregates and
Df ¼ 8 MPa.

For the C35/45 concrete utilised for the deck, in absence of fur-
ther information, using Eq. (6), we obtain Eci ¼ 34:96 MPa which is
in good agreement with the solution of the identification analysis.
On the contrary, the solution of the dynamic identification
problems D1 (Table 3) reads Ec;deck ¼ 44:9 MPa. In [39] it has been
reported that ratio Edyn=Estatic (where Edyn and Estatic are respectively
the dynamic and the static concrete Young modulus) is generally
included in the range 1.2–1.4 depending on the concrete strength.

This is confirmed in the analysed case, where Edyn

Estatic
¼ 1:29.

5. Conclusions

In this work, an inverse approach based on GA was applied for
the identification of the main material properties of a base-isolated

bridge, based on past static and dynamic test measurements

[2] Boroschek RL, Moroni MO, Sarrazin M. Dynamic characteristics of a long span
seismic isolated bridge. Eng Struct 2003;25:1479–90.

2

reported in the literature. The identification process took into
account both types of experimental data, and as far as dynamic
data are concerned, different possibilities were considered for the
discrepancy function to be minimised, accounting for several fac-
tors (importance of lower modes, accuracy of period estimation,
etc.). The use of Genetic Algorithms proved successful, and a criti-
cal approach to the solution provided gave an interesting insight
on the sensitivity of the solution on the sought parameters. In
particular:

– The study of the parameter distribution when convergence is
achieved and the parameter–discrepancy plot, clearly show
which parameter affects more the discrepancy function and
thus may be considered correctly estimated (namely deck
Young modulus for both types of tests, and isolator stiffnesses
for dynamic identification only).

– Some well-known effects, such as the high stiffness of isolators
for small displacements and the ratio between dynamic and sta-
tic concrete Young modulus were correctly highlighted by the
analyses. Although in the current work some further possible
influencing parameters have been fully neglected (e.g. friction
phenomena or possible contribution of expansion joints), find-
ings obtained for the elastomeric isolators resulted in close
agreement with other literature research studies.

– The importance of modal shapes as far as the dynamic
identification process is concerned is negligible with respect
to the period discrepancy. However, if it is not the case it is
possible to consider two objectives to minimise, namely period
discrepancy and modal shape consistency and track the Pareto
Front of the multi-objective optimisation problem.

– It is not possible to assess isolator stiffnesses by means of static
tests.

The generality of the proposed approach makes it suitable for a
wide range of material estimation, given that a detailed mathemat-
ical or numerical model is available. Further research will exploit
the possibilities offered by the method for different structures
and materials.

1

Ti;compðpÞ � Ti;exp

Texp;max

2

ðA:1Þ

The experimental data consider different uncertainties for the
modal frequencies Df i: they are described in the third column of
Table 1, where the ith fundamental frequency is reported as
f i � Df i. Since we want to give smaller weight to more uncertain

modes (greater Df i), the term (1) is multiplied by the weight f ref

Df i
,

where f ref ¼ 1 Hz is a normalising factor needed to make the weight
dimensionless. Summing up the contributions of NM modes, the
period term to minimise is thus:

x2;TðpÞ ¼
XNM

i¼1

f ref

Df i

Ti;compðpÞ � Ti;exp

Texp;max

� �2

ðA:2Þ

Let us consider modal shapes now. maxjðMACijðpÞÞ is the maximum
MAC coefficient between the experimental mode i and the numer-
ical modes and thus identifies the best match among modal shapes.
Perfect consistency implies maxjðMACijðpÞÞ ¼ 1, so the term to
insert in the discrepancy function is:

ð1�maxjðMACijðpÞÞÞ2 ðA:3Þ

In order to give larger weight to the lowest modes (largest periods),

this term is multiplied by the factor Ti;exp

Texp;max
, where the denominator

Texp;max acts as a normalising constant.
Summing up the contribution of NM modes the second objective

to minimise is:

x2;MACðpÞ ¼
XNM

i¼1

Ti;exp

Texp;max
ð1�maxjðMACijðpÞÞÞ2 ðA:4Þ
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