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ABSTRACT: The interaction of carbon monoxide with an ordered array of copper nanoclusters 

was investigated under ultra-high vacuum conditions by means of in situ X-Ray Photoelectron 

Spectroscopy in combination with Density Functional Theory calculations. The Cu clusters were 

supported on an alumina template grown on the Ni3Al(111) termination. Adsorption and 

dissociation of carbon monoxide occur at the copper clusters, yielding accumulation of carbidic 

carbon at the metal particles through the Boudouard process. The involved mechanisms are 

investigated at the atomic level, unveiling the effects of cluster finite size, reconstruction, 

support, and of local CO coverage. It is found that the high coverage of CO at the cluster surface, 

which considerably exceeds that achievable on single crystal surfaces, facilitates the metal 

restructuring and the reaction, yielding carbon incorporation into the bulk of the particles. 

 

1. INTRODUCTION 

The interaction of carbon monoxide with copper is a widely investigated topic due to its role in 

many technologically relevant synthesis processes. An important example is the water gas shift 

reaction (WGSR),1,2 where CO and H2O react to produce hydrogen. The WGSR process, as well 

as its reverse, are involved in several catalytic technologies like methanol synthesis,3–6 methanol 

steam reforming, ammonia synthesis, coal gasification and many others.1 One of the elementary 

sub-processes is the Boudouard reaction, which converts carbon monoxide into carbon dioxide 

and atomic carbon (2CO�CO2+C). Carbon obtained from the Boudouard process can then 

either take part to the reaction or contribute to the formation of carbidic or even graphenic and 

graphitic poisoning phases, depending on the catalyst and reaction conditions.7 Both in model 

and applicative contexts, the reaction steps yielding carbon accumulation have a crucial impact 

Page 2 of 28

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3

in the definition of the actual catalyst’s behavior in different contexts, i.e. high pressure reactors,8 

fuel cells,9 liquid electro-catalytic environments,10 and pure model systems.11,12 In the framework 

of surface science, CO interaction with low-index single crystal surfaces has been studied since 

the early stages of ultra-high vacuum (UHV) investigations and subsequently also at higher 

pressures.13 For long, indeed, the CO-metal systems have been considered as a benchmark for 

atomic-level investigations by means of many structural and reactivity techniques. More 

recently, along the way towards the transferability of surface science results to more realistic 

systems, CO interaction with catalytic surfaces has been elected as a main topic where the 

progressive development of microscopy and spectroscopy techniques working at higher pressure 

was exploited.14–17 In parallel, in the attempt of bridging the material gap, novel model systems 

acting as templates for active metal cluster deposition were introduced to mimic applicative 

dispersed catalysts.18–21
 

Concerning CO chemistry on catalytic surfaces, it is well known that the direct dissociation 

process is strongly endothermic and very unfavorable, with C-O bond energies and breaking 

barriers typically much higher than the CO binding energy to the surface. Many studies were 

devoted to investigate the role of surface coordination e.g. in the case of steps,22,23 and of finite 

size in both free24–26 and supported cluster systems.27–30 Only very recently, it has been observed 

on ruthenium and platinum that there is an interplay between low surface coordination and CO 

coverage, both affecting the CO dissociation process.29,30 In particular, a Pt surface undergoes 

extensive and reversible restructuring when exposed to carbon monoxide at near-ambient 

pressures,30 observing the creation of low-coordination edge reaction sites in the formed 

nanoclusters. CO coverage that can reach the supra-monolayer limit in clusters affects adsorption 

energies, heats of reaction, and activation energies on Ru clusters.29 Thus, to understand catalytic 
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processes at the atomic level, it is crucial to explore the structural and chemical evolution of 

catalysts in situ and in operando and to account for the effects of curved and crowded 

nanostructured surfaces.29,30
 

We chose copper clusters supported on an alumina template grown on the Ni3Al(111) 

termination as a model system to further investigate this fundamental topic. Copper/alumina 

catalysts (modified with Pd) have recently been investigated for the selective acetylene 

hydrogenation process showing interesting behavior.31 Alumina supports, obtained by high-

temperature oxidation of single crystal terminations of Ni-Al alloys,32,33 have already been 

largely characterized.32–41 An ultra-thin non-stoichiometric alumina film was shown to be an 

optimal template for the growth of metallic nanoclusters.32,39,42–44 The peculiar structure of 

Al2O3/Ni3Al(111) is described by a (√67×√67)R12.2° unit cell with a side of 4.15 nm, resulting 

in the so-called network and dot structures.32 The latter is characterized by one hole site per unit 

cell where hot metal atoms impinging from a chemical vapor phase and diffusing at the alumina 

surface can stick and generate metallic seeds. These seeds act as preferred anchoring sites for the 

subsequent nucleation and growth of clusters, which are therefore hooked and stabilized by the 

ordered template, thereby preventing sintering. Although this is not a general rule, since for 

example Ag and Rh do not grow at these sites,40,45 selective or preferential nucleation following 

the dot-structure was observed for many metals like Pd,32,46,47 V,40,42 Fe,43,47 Co,47 and, precisely, 

Cu.40,42 In order to investigate the CO reaction mechanism on copper clusters, we therefore chose 

the ultrathin alumina film grown on Ni3Al(111) as an optimal template for ordered and stable 

anchoring of the reactive metallic particles. Unexpected results were obtained, indicating that CO 

dissociation is a complex process driven by several factors including local coverage, support, 

finite size effects, and cluster reconstruction. 
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 5

 

2. METHODS 

2.1 Experimental 

The Ni3Al(111) single crystal was treated under UHV by standard sputtering and annealing 

recipes in order to clean the surface and recover both order and stoichiometry, yielding a sharp 

(2×2) LEED diffraction pattern. The alumina ultra-thin film was grown by thermal oxidation of 

the sample at 1000 K in 10-7 mbar O2, following well known procedures from the literature.32,35 

The quality of the alumina film was checked both by LEED,37 and by comparing the O 1s and Al 

2p core level spectra to literature data.35 Core-level X-ray photoelectron spectroscopy (XPS) 

experiments were performed at the SuperESCA beamline of Elettra, the 3rd generation 

synchrotron radiation source in Trieste (Italy).48 In particular, C 1s spectra were measured at 

normal emission using 400 eV photons. A Phoibos (SPECS GmbH) hemispherical electron 

energy analyzer equipped with an in-house developed detector was used to collect the spectra. A 

time resolution of about 30 s and a heating rate of 0.15 K/s were chosen for the time-resolved 

temperature programmed experiments. After normalization and subtraction of a Shirley 

background,49,50 core level spectra were analyzed by least squares fitting methods using a 

Doniach-Šunjić function,51 convoluted with a Gaussian envelope in order to account for 

experimental resolution, inhomogeneity, and temperature-induced broadening. Binding energies 

were calibrated with respect to the Fermi level. Cu atoms were deposited on the sample at room 

temperature from a chemical vapor phase, obtained by sublimation from a pure Cu rod in a 

resistively heated tungsten crucible. The actual Cu sample coverage was obtained by correlating 
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 6

the evaporation flux (measured by means of a quartz balance), the Cu 2p3/2 XPS signal, and the 

decay of the Al 2p3/2 and O 1s signals as a function of the exposure. 

 

2.2 Theoretical 

Theoretical calculations were performed within the Density Functional Theory (DFT) 

approach implemented in the Quantum-Espresso package,52 with ultrasoft pseudopotentials.53 

For exchange and correlation the spin unrestricted Generalized Gradient Approximation in the 

Perdew-Burke-Ernzerhof implementation was used.54 Periodic boundary conditions and a slab 

geometry were applied for the description of the systems with supported clusters.  For the 

selection of the plane waves, energy cutoffs of 35 and 280 Ry to describe the wave function and 

the electronic density, respectively, were shown to assure convergence of the results. 

Considering two layers of Ni3Al(111) under the oxide, the whole cell contains 1257 atoms 

already for the substrate (268 atoms in each layer of the alloy and four oxide layers consisting of 

132 Al, 188 O, 188 Al, and 213 O, respectively). The Cu clusters and the CO molecules have 

then to be added, yielding an extraordinary large cell at the very limit of the computational 

capabilities. Due to this reason, most of the calculations have been performed using a reduced 

model containing only a portion of the Al2O3/Ni3Al(111) unit cell around the dot site, plus a Cu13 

cluster (with two additional atoms constituting the anchoring seed) and vacuum in all three 

spatial directions, for a total of about 150 atoms. To check the validity of this model, a test was 

performed also using a larger cell size for the support (330-atom model), and no meaningful 

variations were found. The supported Cu13+2 cluster has been chosen as an upper limit to the size 

of the system to comply with the computational limits, and because the corresponding free-
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 7

standing icosahedron Cu13 cluster is the most stable structure in vacuum, compared to clusters of 

similar size. However, the presence of the support affects the shape of the cluster, and all the 

structures used in the calculations have been fully optimized.55 The sampling of the first 

Brillouin zone was performed using a (3×3×1) k-point grid for the calculations of the Cu(111) 

surface, and the Γ point was used in the cases of free-standing clusters. Despite the reduced 

models, evaluation of the reaction barriers and paths was not affordable. 

 

3. RESULTS AND DISCUSSION 

The evolution of the C 1s core level signal on the alumina template decorated with Cu clusters 

was followed in situ and in real time during a CO uptake from the gas phase at liquid nitrogen 

(LN2) temperature and upon subsequent annealing of the sample in a constant CO background 

(pCO =  5×10-9 mbar). The results obtained for Cu coverage values (with respect to the clean 

Ni3Al surface) of 0.11, 0.36, and 0.68 ML are reported in Figure 1. Since it is known that Cu 

clusters nucleate, anchor, and grow at the hole sites of the alumina dot structure,40,42 the average 

Cu cluster size can be easily calculated as follows. The unit cell side of the Ni3Al(111) surface is 

2.45 Å,39,56 yielding a coverage of 3.5×10-3 ML of nucleation (hole) sites of the dot structure. 

Therefore, assuming that all nucleation centers are occupied, 0.11, 0.36, and 0.68 ML of Cu 

correspond to average cluster sizes of about 30, 100, and 200 atoms, respectively. In the bottom 

panels (a-c) of Figure 1, the XPS signal intensity in the C 1s region is reported in color scale as a 

function of CO exposure at LN2 temperature. In the central panels (d-f), the C 1s spectra of the 

surface at saturation are shown, together with the best fit and the peak deconvolution. The peaks 

(black) at 283.5-283.9 eV (depending on the Cu cluster size) are attributed to atomic carbon 
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 8

species (carbide), while the peaks at 286.3-286.9 eV (filled magenta) are due to molecular 

carbon monoxide adsorbed at the Cu clusters.57 Also the remaining peaks (magenta lines) are 

related to the same carbon monoxide species and originate from inelastic photoemission 

processes. Indeed, it is well known that when a core electron is extracted from the CO molecule 

adsorbed at Cu, a previously unoccupied valence orbital in the molecule is pulled down below 

the Fermi energy by the attractive core-hole potential.58–60 The different time-scale of the photo-

ionization and relaxation phenomena make the wave function of the remaining electrons not an 

eigen-state of the final-state Hamiltonian, and the filling of this level increases the relaxation 

energy, thus giving origin to distinct satellites intensities. CO/Cu is a peculiar system from this 

point of view, and it has therefore been largely investigated in the literature. Both the shape and 

energy shift of the losses that we observe in our spectra are in agreement with previous data.58–60 

As it can be observed in Figure 1, however, for small cluster sizes (panel d), the elastic peak is 

almost not contributing to the spectrum, whereas the inelastic satellites predominate. This effect 

modulates with cluster size (from left to right). Switching back to the CO interaction with the 

clusters, it can readily be noticed that during the uptake at LN2 temperature (bottom panels of 

Figure 1) the molecule undergoes dissociation and that atomic carbon accumulates at the 

clusters. When no further evolution of the C 1s intensities is observed, saturation or equilibrium 

with the CO background pressure (5×10-9 mbar) are actually achieved. Upon heating, (in 

constant CO background pressure) the CO residence time diminishes and desorption is observed, 

while in parallel the intensity related to the atomic C species increases up to a plateau, which is 

reached when the CO coverage drops (250-300 K). It therefore appears that CO dissociation may 

be influenced by the local CO coverage. Both processes, i.e. adsorption and dissociation, are 

influenced by the sample temperature, by the gas pressure, and likely by the progressive carbon 
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 9

accumulation at the clusters. The latter phenomenon may indeed lead to a progressive 

deactivation of the cluster due to carburization effects. To further investigate this point, we 

collected the C 1s core level spectra after saturating the Cu clusters with CO at LN2 temperature 

(Figure 2) in equilibrium with the CO background pressure (panel a). We then switched off the 

gas flux and collected the spectrum again after about three minutes (panel b). What is observed is 

that in the latter case the CO density at the cluster surface is lower due to spontaneous (or photon 

induced) desorption, while the C coverage remains unaltered (see the difference spectrum in 

blue), thus excluding at least on this time-scale a contribution from photon-induced CO 

dissociation. Interestingly, Cu 2p core level spectra (not shown) collected after copper deposition 

and at the end of the reaction show no significant differences and no relative core level shift, 

indicating both stability of the clusters up to 370 K and no Cu oxidation. Concerning the role of 

the cluster size, in Figure 3 we report the C/CO coverage ratios estimated from the corresponding 

XPS peak areas at two temperatures (LN2 and room temperature) as a function of the number of 

atoms in the clusters. A clear size-dependence can be observed, showing that the smaller the 

cluster, the more reactive it is with respect to CO dissociation. 

In order to thoroughly understand the mechanisms involved in the observed phenomena, we 

performed an extensive set of DFT calculations with the aim of elucidating the different factors 

affecting the reaction. With concern to the Boudouard reaction in the gas phase (2CO�CO2+C) 

we naturally obtain that it is highly endothermic (+5.32 eV). Regarding the catalyst, the main 

DFT results are illustrated in Figures 4 and 5. We focused on the role of the clusters finite size, 

of the support, and of the local surface coverage with respect to candidate reaction mechanisms. 

We analyzed the energy differences for initial, final, and intermediate states of feasible processes 

occurring in different Cu-based substrates. Energies and optimized stick-and-ball models are 
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 10

reported in Figure 4. In particular, we considered as a possible initial state the Cu model catalyst 

with both adsorbed and gas phase CO (blue energy levels in all panels of Figure 4). Further CO 

adsorption would lead to the intermediate state for Langmuir-Hinshelwood (LH) mechanisms 

(orange levels). The decomposition of CO adsorbed on the surface into C(ads)+O(ads) (grey 

levels) could be both the final state of the direct decomposition or an intermediate state for the 

whole Boudouard reaction (black levels), yielding C(ads) and CO2(gas). In all cases energies are 

referred to the corresponding initial configuration. In panel a, it is shown that on a flat Cu(111) 

single crystal surface at low coverage direct C-O dissociation is unlikely to occur. If no Cu 

mobility or only surface reconstruction are allowed, in analogy to previous calculations,61,62 high 

energy states are obtained (3.09 and 2.57 eV, respectively – not shown). However, when 

allowing for C incorporation into subsurface sites, the energy cost lowers to 2.05 eV (panel a). 

Further CO adsorption is instead favorable (-0.77 eV). The full Boudouard reaction yields a 

strongly less stable system by as much as 0.48 eV and is therefore highly unfavorable on the 

Cu(111) surface. This is in agreement with experimental findings, where low temperature 

adsorption of CO yields a maximum saturation coverage of 0.5 ML (0.33 ML for the 

(√3×√3)R30° structure),63 and dissociation is not observed unless alkali metals are co-adsorbed 

on the surface.64 Going to the free-standing cluster system (panel b, Cu13), thus introducing 

finite-size contributions, in the small coverage limit the energy cost for direct CO(ads) 

dissociation is already almost half than in the former case. However, the Boudouard reaction is 

almost equally endothermic (+0.43 eV). Concerning the spin, with one CO molecule attached the 

system is in a high spin state, while upon adsorption of the second CO molecule the system 

adopts a low spin state. In order to consider the presence of the support, we then anchor the Cu13 

cluster to a Cu2 seed (Cu13+2) fixed in the hole defining the dot structure of the ultra-thin alumina 
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layer (panel c). These are precisely the cluster anchoring seeds proposed in the literature for 

several metals on this alumina template.32,40,42 Upon adsorption of a CO molecule in the zero 

coverage limit on the latter system, again the energy loss for the Boudouard reaction is still high 

(+0.63 eV). Therefore, neither the finite size, nor the presence of a support seem to favor the C-O 

breaking process, since both the Boudouard reaction and, even more, the direct CO dissociation, 

remain highly endothermic. 

The experimental results strongly suggest that coverage effects play an important role here. 

Indeed, when adding also this contribution in the calculations, the picture changes remarkably. 

On a free-standing Cu cluster with a CO coverage of 1 monolayer (ML, one molecule per surface 

Cu atom, panel d), there is almost no cost in energy to directly dissociate one of the adsorbed 

molecules yielding C(ads) and O(ads) atoms (+0.07 eV), while when considering the full 

Boudouard-like process yielding C(ads) and CO2(gas), an energy gain is actually obtained (-0.62 

eV). On a supported Cu cluster with the same initial CO coverage of 1 ML (panel e), the energy 

gain for the full Boudouard reaction has a similar value (-0.69 eV), with a final state that is more 

stable than the co-adsorbed configuration (orange level), characterized by an energy gain of only 

-0.59 eV with respect to the initial state (blue level). It is important to mention that the higher the 

CO coverage, the smaller the energy gain upon further CO adsorption, up to saturation, when 

sticking of an additional molecule from the gas phase is no longer favored: DFT gives -1.05 eV 

(-1.51 eV) for the 12th (2nd) CO molecule added to a free-standing Cu13 cluster, and -0.59 eV (-

0.88 eV) when the cluster is supported. However, as discussed also in the literature,29 on nano-

sized systems it is easy to reach and overcome the ML coverage, going well beyond the 

saturation value typical of single-crystal surfaces. In the case of small clusters as the one 

presented here, increasing the coverage may also lead to distortion and restructuring of the 
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cluster. The saturation coverage is different for free-standing and supported clusters; nevertheless 

for direct comparison we have chosen the same coverage of 1 ML for both cases and in 

configurations where important distortions are not produced. It can be observed that at high CO 

coverage the CO-Cu interaction weakens the Cu-Cu bonds making the cluster more malleable 

and favoring restructuring after CO breaking, yielding incorporation of the carbon atom 

originating from CO dissociation (panels d and e), at variance with the low-coverage limit where 

carbon remains at the surface (panels a, b, and c). Since direct C-O breaking is energetically 

costly, two-molecule disproportionation processes involving Eley-Rideal (ER) or LH 

mechanisms with formation of CO2 are likely to occur. Moreover, by means of Bader charge 

analysis (red and blue numbers in Figure 4, in units of |e|), we can see that favorable final 

configurations for the C atom after C-O dissociation yield negative values, thus confirming the 

formation of a carbide state. In Figure 5 we plot the DFT density of states projected on the C 

atom stemming from CO dissociation and on the surrounding Cu neighbors. While no relevant 

effects can be observed for size and support contributions (top to bottom), the CO coverage is 

instead found to significantly change the density of states (left to right). The strong hybridization 

(arrows) between the C 2p and the Cu 4d states at -5.5 and -8.0 eV could explain the energy gain 

of carbidic C at high CO coverage, thus favoring CO decomposition in parallel with other 

coverage-induced effects like cluster distortion and relaxation. 

On the basis of the results obtained by means of the calculations performed in the DFT 

framework, we can therefore explain the observed phenomenon, where CO dissociation occurs 

already at LN2 temperature, even if a higher conversion is observed for increasing temperature. 

Indeed, when considering all the contributing effects of the catalyst’s size, of the support, and 

specifically the effect of coverage, the Boudouard reaction becomes exothermic. Still, kinetic 
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limitations may play a role in practice, since the reaction barriers were not calculated, mainly due 

to the large number of relevant degrees of freedom. The experimental evidence suggests small 

activation energies of the order of few tenths of eV. The size effects of the cluster translate into 

the higher saturation coverage for CO (1 ML or even larger, as shown in Figure 4, panels d and 

e) with respect to the single crystal termination (0.5 ML).63 In this sense, finite size effects 

contribute indirectly to the reaction since the high density of the ad-layer favors CO dissociation. 

We observe that both the increase of the CO coverage (Figure 4, compare panels b and d) and the 

interaction with the oxide surface (from panels b to c and d to e) yield restructuring of the metal 

cluster, with changes in its shape. Size effects can be more complex than what described here,as 

for example reported for bimetallic nanoparticles, where the variation in activity with particle 

size is also shape-dependent.65 Breaking of CO and distortion of the cluster crystalline structure, 

occur when the CO-Cu interactions become competitive with the Cu-Cu bond energy, making 

carbon inclusion into the bulk of the copper cluster energetically favorable. It is indeed widely 

recognized that defective adsorption sites (steps, kinks, low-coordinated defects) show peculiar 

catalytic activity.30 In addition, thanks to the contribution of the support (Figure 4, panel e) the 

final state, i.e. the carbidic phase, becomes the lowest in energy with respect to both initial and 

intermediate states, thus making the Boudouard reaction an exothermic process. Concerning the 

Cu-O interaction, in the case of low CO coverage we investigated the adsorption and dissociation 

of CO in different sites of the supported Cu13+2 nanocluster (including interfacial sites), finding 

that the energies of the different initial and final configurations can vary up to 0.6 eV. Changes 

also in the kinetic barriers of the dissociation process cannot be excluded, as reported in the 

literature, but we could not tackle this point due to the large size of the system.66,67 However, we 
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recall that the cluster does not wet the surface,55 and that CO does not stick onto the oxide 

surface. 

 

4. CONCLUSIONS 

 By comparing experimental evidence with results obtained within the DFT framework, 

we have shown that the Boudouard reaction is taking place efficiently at small copper clusters 

supported on an ordered ultra-thin film alumina template. Remarkably, it is found that the 

reaction occurs already at LN2 temperature, indicating a low activation barrier (of a few tenths of 

eV), and that the reaction is made possible by the combined contribution of support, finite size 

effects, cluster reconstruction, and local coverage. The latter is the leading factor for driving the 

Boudouard reaction, but in turn it is allowed only by the finite size of the clusters. The presence 

of the support does not change the scenario, but it is essential for making the clusters more 

malleable and favors the Boudouard process with respect to further adsorption of CO. Among 

many intermediate configurations related to different reaction steps, direct C-O dissociation is 

always energy demanding, thus suggesting that disproportionation processes involving ER or LH 

mechanisms may significantly contribute. Our findings are obviously not directly transferable to 

systems under applicative working conditions since the pressure gap is significant. In this 

respect, when leaving the model environment adopted in this study, the temperature-pressure 

dependent phase diagram of the CO coverage at the clusters should be considered, together with 

the temperature-driven cluster restructuring and stability. Nevertheless, a thorough insight into 

this strategically important reaction was obtained at the single-atom level, thus providing useful 

information for further investigation of more realistic systems. 
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FIGURE CAPTIONS 

Figure 1. C 1s core level spectra measured in situ upon exposure to CO of alumina-supported Cu 

for different cluster sizes corresponding to 0.11 (panels a, d, g), 0.36 (panels b, e, h), and 0.68 

ML (panels c, f, i) of Cu, respectively. Signal intensities are mapped into a color scale and are 

reported as a function of CO exposure at LN2 temperature (bottom panels a-c) and of annealing 

temperature (upper panels g-i). Core level spectra at saturation at LN2 temperature are depicted 

in panels d-f together with the peak deconvolution for atomic carbon (black) and carbon 

monoxide (magenta). Annealing was performed in a constant CO background of 5×10-9 mbar (hν 

= 400 eV). 

 

Figure 2. C 1s core level spectra (hν = 400 eV) from Cu clusters (0.36 ML) supported on 

alumina, saturated with CO at LN2 temperature and measured with (panel a) and without (panel 

b) CO background (5×10-9 mbar). Deconvolution of the C (filled black) and CO (filled magenta) 

adiabatic signals, and of the CO losses (magenta lines), are shown. The blue curve represents the 

(b)-(a) difference spectrum. 

 

Figure 3. Carbide coverage with respect to CO saturation coverage after exposure of the Cu 

clusters to CO at LN2 temperature (filled markers) and at room temperature upon annealing 

(empty circles) in CO background (5×10-9 mbar). 
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Figure 4. DFT energy diagram for CO reaction pathways on Cu(111) (panel a), unsupported 

Cu13 cluster (panels b and d), and Cu13+2 (with a 2-atom seed) cluster supported on an ultra-thin 

alumina film grown on Ni3Al(111) (panels c and e). The diagram puts in evidence the role of 

finite size, support, and coverage effects on the direct CO dissociation, disproportionation, and 

on the complete Boudouard reaction through ER and LH mechanisms. Bader charges in units of 

|e| for C atoms are reported (blue – negative, red – positive). 

 

Figure 5. DFT projected density of states on the carbon atom after CO dissociation (red) and on 

the surrounding Cu atoms (average, blue) as a function of CO coverage (left/right) for the 

Cu(111) surface, the free standing Cu cluster, and the supported Cu cluster (from top to bottom). 

 

  

Page 21 of 28

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 22

 

TOC graphics 

 

Page 22 of 28

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 1 - 600x600 dpi  

120x81mm (300 x 300 DPI)  

 

 

Page 23 of 28

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 2 - 600x600 dpi  

117x172mm (300 x 300 DPI)  

 

 

Page 24 of 28

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 3 - 600x600 dpi  

62x49mm (300 x 300 DPI)  

 

 

Page 25 of 28

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 5 - 600x600 dpi  

77x37mm (300 x 300 DPI)  

 

 

Page 26 of 28

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 4 - 600x600 dpi  

211x276mm (300 x 300 DPI)  

 

 

Page 27 of 28

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

 

38x17mm (300 x 300 DPI)  

 

 

Page 28 of 28

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


