
Qualitative and Quantitative Monitoring of
Spatio-Temporal Properties⋆

Laura Nenzi1, Luca Bortolussi2,3,4, Vincenzo Ciancia4, Michele Loreti5,1, and Mieke
Massink4

1 IMT, Lucca, Italy
2 MOSI, Saarland University, Germany

3 DMG, University of Trieste, Italy
4 CNR-ISTI, Pisa, Italy

5 DiSIA, University of Firenze, Italy
laura.nenzi@imtlucca.it

Abstract. We address the specification and verification of spatio-temporal be-
haviours of complex systems, introducing Signal Spatio-Temporal Logic (SSTL).
This modal logic extends the Signal Temporal Logic with spatial operators capa-
ble of specifying topological properties in a discrete space. The latter is modelled
as a weighted graph, and provided with a boolean and a quantitative semantics.
Furthermore, we define efficient monitoring algorithms for both the boolean and
the quantitative semantics. These are implemented in a Java tool available online.
We illustrate the expressiveness of SSTL and the effectiveness of the monitoring
procedures on the formation of patterns in a Turing reaction-diffusion system.
Keywords: Signal Spatio-Temporal Logic, Boolean Semantics, Quantitative Se-
mantics, Monitoring Algorithms, Weighted Graphs, Turing Patterns.

1 Introduction

There is an increasing interest in the introduction of smart solutions in the world around
us. A huge number of computational devices, located in space, is interacting in an open
and changing environment, with humans and nature in the loop that form an intrinsic
part of the system. Yet, science and technology are still struggling to tame the chal-
lenges underlying the design and control of such systems. In this paper, in particular,
we focus on the challenge of spatially located systems, for which the spatial and tempo-
ral dimensions are strictly correlated and influence each other. This is the case in many
Cyber-Physical Systems, like pacemaker devices controlling the rhythm of heart beat,
and for many Collective Adaptive Systems, like the guidance of crowd movement in
emergency situations or the improvement of the performance of bike sharing systems
in smart cities.

Controlling and designing spatio-temporal behaviours requires proper formal tools
to describe such properties, and to monitor and verify whether, and to which extent
⋆ Work partially funded by the EU-FET project QUANTICOL (nr. 600708), by the German

Research Council (DFG) as part of the Cluster of Excellence on Multimodal Computing and
Interaction at Saarland University and the IT MIUR project CINA. We thank Diego Latella
and Ezio Bartocci for the discussions and EB for sharing the code to generate traces of the
example.

and how robustly, they are satisfied by a system. Formal methods play a central role,
in terms of formal languages to specify spatio-temporal models and properties, and
in terms of algorithms for the verification of such properties on such models and on
monitored systems.

Related work. Logical specification and monitoring of temporal properties is a well-
developed area. Here we mention Signal Temporal Logic (STL), an extension of Metric
Interval Temporal Logic describing linear-time properties of real-valued signals. STL
has monitoring routines both for its boolean and quantitative semantics, the latter mea-
suring the satisfaction degree of a formula [7, 8, 14].

Much work has been done also in the area of spatial logic [1], yet focussing more on
expressivity and decidability, often in continuous space. Less attention has been placed
on more practical aspects, like model checking routines in discrete space. An excep-
tion is the work of some of the authors [4], in which the spatial logic SLCS (Spatial
Logic for Closure Spaces) is proposed for a discrete and topological notion of space,
based on closure spaces [10]. The spatial modal operator considered is the spatial until
or surround, for which an efficient model checking routine is proposed. First applica-
tions of that work in the context of smart transportation can be found in [6]. Another
spatial logic equipped with practical model checking algorithms, and with learning pro-
cedures, is that of [11, 12], in which spatial properties are expressed using ideas from
image processing, namely quad trees. This allows them to capture very complex spatial
structures, but at the price of a complex formulation of spatial properties, which are in
practice only learned from some template image.

In this work, we will also focus on a notion of discrete space. The reason is that
many applications, like bike sharing systems or metapopulation epidemic models [15],
are naturally framed in a discrete spatial structure. Moreover, in many circumstances
continuous space is abstracted as a grid or as a mesh. This is the case, for instance, in
many numerical methods to simulate the spatio-temporal dynamics of Partial Differen-
tial Equations (PDE). Hence, this class of models is naturally dealt with by checking
properties on such a discretisation.

The combination of spatial and temporal operators is even more challenging [1], and
few works exist with a practical perspective. In [3], some of the authors proposed an
extension of STL with a “somewhere” spatial modality, which can be arbitrarily nested
with temporal operators, proposing a monitoring algorithm for both the boolean and the
quantitative semantics. An extension of SLCS with temporal aspects can be found in [5]
where the logic has been applied in the context of smart public transportation. In [13],
instead, the authors merge the spatial logic of [12] within linear temporal logic, by
considering atomic spatial properties. They also provide a qualitative and quantitative
semantics, and apply it to smart grids and to the formation of patterns in a reaction
diffusion model.

Contributions. In this work, we present a novel Spatio-Temporal logic, Signal Spatio-
Temporal Logic (SSTL), that combines and extends the works of [3] and [4]. Our logic
integrates the temporal modalities of STL, with the topological spatial surround and the
somewhere modalities, imposing metric bounds on spatial distances and on temporal
operators. We provide the logic with a qualitative and quantitative semantics, and we
define monitoring algorithms for both of them. The major challenge is to monitor the

2

surround operator, for which we propose two fixed point algorithms, one for the boolean
and one for the quantitative semantics, discussing their correctness and computational
cost. The monitoring algorithms have been implemented in Java, and applied and tested
on a case study of pattern formation in a Turing reaction-diffusion system modelling a
process of morphogenesis [13].
Paper structure. The paper is organised as follows: Section 2 introduces some back-
ground concepts on STL and on discrete topologies. Section 3 presents the syntax and
the semantics of SSTL. Section 4 introduces the monitoring algorithms. Section 5 is
devoted to the example of pattern formation, while conclusions are drawn in Section 6.

2 Background material

Weighted undirected graphs. We will consider discrete models of space that can be
represented as a finite undirected graph. Edges of the graph are equipped with a posi-
tive weight, giving a metric structure to the space, in terms of shortest path distances.
The weight will often represent the distance between two nodes. This is the case, for
instance, when the graph is a discretization of continuous space. However, the notion
of weight is more general, and may be used to encode different kinds of information.
As an example, in a model where nodes are locations in the city and edges represent
streets, the weight could represent the average travelling time, which can be different
between two paths with the same physical length, but different levels of congestion or
different number of traffic lights.

We represent a weighted undirected graph with a tuple G = (L,E,w), where:
● L is the finite set of locations (nodes), L /= ∅
● E ⊆ L ×L is a symmetric relation, namely the set of connections (edges),
● w ∶ E → R>0 is the function that returns the cost/weight of each edge.

Furthermore, we denote by E∗ the set containing all the pairs of connected locations,
i.e. the transitive closure of E. We will also use an overloaded notation and extend w
to the domain E∗, so that for arbitrary nodes x, y (not necessarily connected by an
edge) we let w(x, y) be the cost of the shortest path between two different locations.
Finally, for all ` ∈ L and w1,w2 > 0, we let L`

[w1,w2]
be the set of locations `′ such that

w1 ≤ w(`, `′) ≤ w2.
Closure spaces and the boundary of a set of nodes. In this work, we focus on graphs
as an algorithmically tractable representation of space. However, spatial logics tradi-
tionally use more abstract structures, very often of a topological nature (see [1] for an
exhaustive reference). We can frame a generalised notion of topology on graphs within
the so called Cech closure spaces, a superclass of topological spaces allowing a clear
formalisation of the semantics of the spatial surround operator on both topological and
graph-like structures (see [4] and the references therein). What is really relevant for this
work, due to the restriction to finite (weighted and undirected) graphs, is the notion of
external boundary of a set of nodes A, i.e. the set of nodes directly connected with an
element of A but not part of it.

Definition 1. Given a subset of locations A ⊆ L, we define the boundary of A as:

B+(A) ∶= {` ∈ L∣` ∉ A ∧ ∃`′ ∈ A s.t. (`′, `) ∈ E}.

3

Signal Temporal Logic. Signal Temporal Logic (STL) is a linear dense time-bounded
temporal logic that extends Metric Interval Temporal Logic (MITL) with a set of atomic
propositions {µ1, ..., µm} that specify properties of real valued traces, therefore map-
ping real valued traces into boolean values.

Let x ∶ T → D a trace that describes an evolution of our system, where T = R≥0

is the time set and D = D1 × ⋯ × Dn ⊆ Rn is the domain of evaluation; then each
µj ∶ D → B is of the form µj(x1, . . . , xn) ≡ (fj(x1, . . . , xn) ⩾ 0), where fj ∶ D → R is
a (possibly non-linear) real-valued function and B = {true, false} are boolean values.
The projections xi ∶ T → Di on the ith coordinate/variable are called the primary
signals and, for all j, the function sj ∶ T→ R defined by point-wise application of fj to
the image of x, namely sj(t) ∶= fj(x1(t), ..., xn(t)), is called a secondary signal [8].

The syntax of STL is given by

ϕ ∶= µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 U[t1,t2] ϕ2

where conjunction and negation are the standard boolean connectives, [t1, t2] is a real
positive dense intervals with t1 < t2, U[t1,t2] is the bounded until operator and µ is an
atomic proposition. The eventually operator F[t1,t2] and the always operator G[t1,t2]
can be defined as usual: F[t1,t2]ϕ ∶= ⊺U[t1,t2]ϕ, G[t1,t2]ϕ ∶= ¬F[t1,t2]¬ϕ.

3 SSTL: Signal Spatio-Temporal Logic

Signal Spatio-Temporal Logic (SSTL) is an extension of Signal Temporal Logic [7,14]
with two spatial modalities. The first one, the bounded somewhere operator �[w1,w2]

is taken from [3], while the second one, the bounded surround operator S[w1,w2], is
inspired by the Spatial Logic for Closure Spaces [4]. In the following, we first introduce
spatio-temporal signals, and then present the syntax and the boolean and quantitative
semantics of SSTL.

Spatio-Temporal Signals. SSTL is interpreted on spatio-temporal, real-valued signals.
Space is discrete and described by a weighted graph G = (L,E,w), as in Section 2,
while the time domain T will usually be the real-valued interval [0, T], for some T > 0.
A spatio-temporal trace is a function x ∶ T×L→ D, where D ⊆ Rn is the domain of the
trace. As for temporal traces, we write x(t, `) = (x1(t, `),⋯, xn(t, `)) ∈ D, where each
xi ∶ T ×L→ Di, for i = 1, ..., n, is the projection on the ith coordinate/variable.

Spatio-temporal traces can be obtained by simulating a stochastic model or a de-
terministic model, i.e. specified by a set of differential equations. In previous work [3],
some of the authors discussed the framework of patch-based population models, which
generalise population models and are a natural setting from which both stochastic
and deterministic spatio-temporal traces of the considered type emerge. An alternative
source of traces are measurements of real systems. For the purpose of this work, it is
irrelevant which is the source of traces, as we are interested in their off-line monitoring.

Spatio-temporal traces are then converted into spatio-temporal boolean or quanti-
tative signals. Similarly to the case of STL, each atomic predicate µj is of the form
µj(x1, . . . , xn) ≡ (fj(x1, . . . , xn) ≥ 0), for fj ∶ D → R. Each atomic proposition
gives rise to a spatio-temporal signal. In the boolean case, one may define function

4

sj ∶ T×L→ B; given a trace x, this gives rise to the boolean signal sj(t, `) = µj(x(t, `))
by point-wise lifting. Similarly, a quantitative signal is obtained as the real-valued func-
tion sj ∶ T ×L→ R, with sj(t, `) = fj(x(t, `)).

When the space L is finite, as in our case, we can represent a spatio-temporal signal
as a finite collection of temporal signals. More specifically, the signal s(t, `) can be
equivalently represented by the collection {s`(t) ∣ ` ∈ L}. We will stick mostly to this
second notation in the following, as it simplifies the presentation.

Syntax. The syntax of SSTL is given by

ϕ ∶= µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 U[t1,t2] ϕ2 ∣ �[w1,w2] ϕ ∣ ϕ1 S[w1,w2]ϕ2.

Atomic predicates, boolean operators, and the until operator U[t1,t2] are those of STL.
The spatial operators are the somewhere operator, �[w1,w2], and the bounded surround
operator S[w1,w2], where [w1,w2] is a closed real interval with w1 < w2. The spatial
somewhere operator �[w1,w2]ϕ requires ϕ to hold in a location reachable from the
current one with a total cost greater than or equal to w1 and less than or equal to w2.
The surround formula ϕ1 S[w1,w2]ϕ2 is true in a location `, for the trace x, when `
belongs to a set of locations A satisfying ϕ1, such that its external boundary B+(A)
(i.e., all the nearest neighbours of locations in A) contain only locations satisfying ϕ2.
Furthermore, locations in B+(A) must be reached from ` by a shortest path of cost
between w1 and w2. Hence, the surround operator expresses the topological notion of
being surrounded by a ϕ2-region, with additional metric contraints. We can also derive
the everywhere operator �[w1,w2]ϕ ∶= ¬ �[w1,w2] ¬ϕ requiring ϕ to hold in all the
locations reachable from the current one with a total cost between w1 and w2.

Semantics. We now define the boolean and the quantitative semantics for SSTL. The
boolean semantic, as customary, returns true/false depending on whether the observed
trace satisfies the SSTL specification.

Definition 2 (Boolean semantics). The boolean satisfaction relation for an SSTL for-
mula ϕ over a spatio-temporal trace x is given by:

(x, t, `) ⊧ µ ⇔ µ(x(t, `)) = 1

(x, t, `) ⊧ ¬ϕ ⇔ (x, t, `) /⊧ ϕ
(x, t, `) ⊧ ϕ1 ∧ ϕ2 ⇔ (x, t, `) ⊧ ϕ1 and (x, t, `) ⊧ ϕ2

(x, t, `) ⊧ ϕ1 U[t1,t2]ϕ2 ⇔ ∃t′ ∈ [t + t1, t + t2] s.t. (x, t′, `) ⊧ ϕ2

and ∀t′′ ∈ [t, t′], (x, t′′, `) ⊧ ϕ1

(x, t, `) ⊧ �[w1,w2]ϕ ⇔ ∃`′ ∈ L s.t. (`′, `) ∈ E∗,

w1 ⩽ w(`′, `) ⩽ w2 and (x, t, `′) ⊧ ϕ
(x, t, `) ⊧ ϕ1 S[w1,w2]ϕ2 ⇔ ∃A ⊆ L`[0,w2]

s.t. ` ∈ A and ∀`′ ∈ A, (x, t, `′) ⊧ ϕ1

and B+(A) ⊆ L`[w1,w2]
and ∀`′′ ∈ B+(A), (x, t, `′′) ⊧ ϕ2.

A trace x satisfies ϕ in location `, denoted by (x, `) ⊧ ϕ, if and only if (x,0, `) ⊧ ϕ.

5

The quantitative semantics returns a real value that can be interpreted as a measure
of the strength with which the specification is satisfied or falsified by an observed tra-
jectory. More specifically, the sign of such a satisfaction score is related to the truth of
the formula (positive stands for true), while the absolute value of the score is a measure
of the robustness of the satisfaction or dissatisfaction. This definition of quantitative
measure is based on [7, 8], and it is a reformulation of the robustness degree of [9].

Definition 3 (SSTL Quantitative Semantics). The quantitative satisfaction function
ρ(ϕ,x, t) for an SSTL formula ϕ over a spatio-temporal trace x is given by:

ρ(µ,x, t, `) = f(x(t, `)) where µ ≡ (f ≥ 0)
ρ(¬ϕ,x, t, `) = − ρ(ϕ,x, t, `)
ρ(ϕ1 ∧ ϕ2,x, t, `) = min(ρ(ϕ1,x, t, `), ρ(ϕ2,x, t, `))
ρ(ϕ1 U[t1,t2]ϕ2,x, t, `) = sup

t′∈t+[t1,t2]
(min{ρ(ϕ2,x, t

′, `), inf
t′′∈[t,t′]

(ρ(ϕ1,x, t
′′, `))}

ρ(�[w1,w2]ϕ,x, t, `) = max{ρ(ϕ,x, t, `′) ∣ `′ ∈ L, (`′, `) ∈ E∗

and w1 ⩽ w(`′, `) ⩽ w2}
ρ(ϕ1 S[w1,w2]ϕ2,x, t, `) = max

A⊆L`[0,w2]
,`∈A,B+(A)⊆L`[w1,w2]

(min(min
`′∈A

ρ(ϕ1,x, t, `
′),

min
`′′∈B+(A)

ρ(ϕ2,x, t, `
′′))).

The satisfaction score has some fundamental properties: if ρ(ϕ,x, t) > 0, then (x, t, `) ⊧
ϕ, and similarly if ρ(ϕ,x, t) < 0, then (x, t, `) /⊧ ϕ. The absolute value ∣ρ(ϕ,x, t)∣, in-
stead, gives a measure of the strength of the truth value. The definition for the surround
operator is essentially obtained from the boolean semantics by replacing conjunctions
and universal quantifications with the minimum and disjunctions and existential quan-
tifications with the maximum, as done in [7, 8] for STL.

4 Monitoring Algorithms

In this section we present the monitoring algorithms to check the validity of a for-
mula ϕ on a trace x(t, `). The monitoring procedure, which is similar to the ones for
STL [8,14], works inductively bottom-up on the parse tree of the formula. In the case of
the boolean semantics, for each subformula ψ, it constructs a signal sψ s.t. sψ(`, t) = 1
iff the subformula is true in position ` at time t. In the case of the quantitative seman-
tics, for each subformula ψ, the signal sψ corresponds to the value of the quantitative
satisfaction function ρ, for any time t and location `. In this paper, we discuss the al-
gorithms to check the bounded surround operator. The procedures for the boolean and
temporal operators are those of STL [7, 8, 14], while the methods for the somewhere
spatial modality have been previously discussed in [3], and are a simple extension of
the procedure for the boolean operators. The treatment of the bounded surround modal-
ity ψ = ϕ1S[w1,w2]ϕ2, instead, deviates substantially from these procedures. In the
following, we will present two recursive algorithms to compute the boolean and the
quantitative satisfaction, taking inspiration from [4] and assuming the knowledge of the
boolean/quantitative signals of ϕ1 and ϕ2.

6

Preliminary notions on boolean signals. Before describing the algorithm 1, we need
to introduce the definition of minimal interval covering Is1,...,sn consistent with a set
of temporal signals s1, . . . sn, see also [14].

Definition 4. Given an interval I , and a set of temporal signals s1, . . . sn with si ∶
I → B, the minimal interval covering Is1,...,sn of I consistent with the set of signals
s1, . . . , sn is the shortest finite sequence of left-closed right-open intervals I1, ..., Ih
such that ⋃j Ij = I , Ii⋂ Ij = ∅, ∀i ≠ j, and for k ∈ {1, . . . , n}, sk(t) = sk(t′) for
all t, t′ belonging to the same interval. The positive minimal interval covering of s is
I+s = {I ∈ Is∣∀t ∈ I ∶ s(t) = 1}.

Monitoring the Boolean semantics of the bounded surround. Algorithm 1 presents
the procedure to monitor the boolean semantics of a surround formulaψ = ϕ1S[w1,w2]ϕ2

in a single location ˆ̀, returning the boolean signal sψ,ˆ̀ of ψ at location ˆ̀. The algorithm

first computes the set of locations Lˆ̀

[0,w2]
that are at distance w2 or less from ˆ̀, and

then, recursively, the boolean signals sϕ1,` and sϕ2,`, for ` ∈ Lˆ̀

[0,w2]
. These signals pro-

vide the satisfaction of the sub-formula ϕj at each point in time, and for each location of
interest. Then, a minimal interval covering consistent to all the signals sϕ1,` and sϕ2,`

is computed, and to each such interval, a core procedure similar to that of [4] is applied.
More specifically, we first compute the set of locations T in which both ϕ1 and ϕ2 are
false, and that are in the external boundary of the locations that satisfy ϕ1 (V) or ϕ2

(Q). The locations in T are “bad” locations, that cannot be part of the external boundary
of the set A of ϕ1-locations which has to be surrounded only by ϕ2-locations. Hence,
the main loop of the algorithm removes iteratively from V all those locations that have
a neighbour in T (set N , line 13), constructing a new set T containing only those loca-
tions in N that do not satisfy ϕ2, until a fixed point is reached. As each location can be
added to T and be processed only once, the complexity of the algorithm is linear in the
number of locations and linear in the size of the interval covering. Correctness can be
proven in a similar way as in [4].

Piecewise constant approximation of quantitative signals. The quantitative seman-
tics for STL is defined for arbitrary signals, but algorithms are provided for piecewise
linear continuous ones [7, 8], considered as the interpolation of continuous functions.
In this paper, we deviate from this interpretation, and consider instead a simpler inter-
polation based on piecewise constant signals. In particular, we discretise time with step
h > 0, so that our signals in each location `, s` ∶ [0, T] ×L → R, are represented by the
finite set {s`(0), s`(h),m . . . , s`(mh)}, where mh = T . Then the piecewise constant
approximation of s`(t) is the signal ŝ`(t) = s`(kh) for t ∈ [kh, (k + 1)h). We fur-
ther assume, without loss of generality6, that all time bounds appearing in the temporal
operators of a SSTL formula are multiples of h.

Under the assumption that secondary signals are Lipschitz continuous7, and letting
K be the maximum of their individual Lipschitz constants, we have that the following
properties hold: (a) s`(kh) = ŝ`(kh); and (b) ∥s`(t) = ŝ`(t)∥ ≤Kh/2, uniformly in t.6 Time bounds can be restricted to rational numbers, hence there always exists an h > 0 satisfy-

ing all assumptions.
7 The assumption of Lipschitz continuity holds whenever the primary signal is the solution of

an ODE with a locally Lipschitz vector field, as usually is the case.

7

Algorithm 1 Boolean monitoring for the surround operator

1: input ˆ̀, ψ = ϕ1S[w1,w2]
ϕ2

2: for all ` ∈ Lˆ̀

[0,w2]
do

3: compute recursively sϕ1,`, sϕ2,`,
4: end for
5: compute Is

ψ,ˆ̀
{the minimal interval covering consistent with sϕ1,`, sϕ2,`, ` ∈ L

ˆ̀

[0,w2]
}

6: for all Ii ∈ Is
ψ,ˆ̀

do

7: V = {` ∈ L
ˆ̀

[0,w2]
∣sϕ1,`(Ii) = 1}

8: Q = {` ∈ L
ˆ̀

[w1,w2]
∣sϕ2,`(Ii) = 1}

9: T = B+
(Q⋃V)

10: while T /= ∅ do
11: T ′ = ∅
12: for all ` ∈ T do
13: N = pre(`)⋂V = {`′ ∈ V ∣`E`′}
14: V = V /N
15: T ′ = T ′⋃(N/Q)

16: end for
17: T = T ′

18: end while

19: sψ,ˆ̀(Ii) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if ` ∈ V,
0 otherwise.

20: end for
21: merge adjacent positive interval Ii, i.e. Ii s.t. sψ,ˆ̀(Ii) = 1
22: return sψ,ˆ̀

Monitoring the quantitative semantics. We now turn to the monitoring algorithm for
the quantitative semantics, assuming the input is a piecewise constant signal, where the
time domain has been discretised with step h. Monitoring boolean operators is straight-
forward, we just need to apply the definition of the quantitative semantics pointwise
in the discretisation. Monitoring the somewhere operator �[w1,w2]ϕ is also immediate:
once the location ˆ̀of interest is fixed, we can just turn into a disjunction of the signals
sϕ,` for each location ` ∈ Lˆ̀

[w1,w2]
, see [3] for further details. The time bounded until

operator, instead, can also be easily computed by replacing the min and max over dense
real intervals in its definition by the corresponding min and max over the corresponding
finite grid of time points. In this case, however, we can introduce an error due to the
discrete approximation of the Lipschitz continuous signal in intermediate points, yet
this error accumulates at a rate proportional to Kh, where K is the previously defined
Lipschitz constant.

The only non-trivial monitoring algorithm is the one for the spatial surround oper-
ator, which will be discussed below. However, as the satisfaction score is computed at
each time point of the discretisation and depends on the values of the signals at that
time point only, this algorithm introduces no further error w.r.t. the time discretisation.
Hence, we can globally bound the error introduced by the time discretisation:

8

Proposition 1. Let the primary signal x be Lipschitz continuous, as the functions defin-
ing the atomic predicates. Let K be a Lipschitz constant for all secondary signals, and
h be the discretisation step. Given a SSTL formula ϕ, let u(ϕ) counts the number of
temporal until operators in ϕ, and denote by ρ(ϕ,x) its satisfaction score over the
trace x and by ρ(ϕ, x̂) the satisfaction score over the discretised version x̂ of x with
time step h. Then ∥ρ(ϕ,x) − ρ(ϕ, x̂)∥ ≤ u(ϕ)Kh.

Monitoring the quantitative semantics of the bounded surround. The quantitative
monitoring procedure for the bounded surround operator is shown in Algorithm 2. Sim-
ilarly to the boolean case, the algorithm for the surround formula ψ = ϕ1S[w1,w2]ϕ2

takes as input a location ˆ̀and returns the quantitative signal sψ,ˆ̀, or better its piecewise
constant approximation with time-step h (an additional input, together with the signal
duration T). As a first step, it computes recursively the quantitative satisfaction signals
of subformula ϕ1 for all locations ` ∈ Lˆ̀

[0,w2]
and of subformula ϕ2 for all locations

` ∈ Lˆ̀

[w1,w2]
. Furthermore, it sets all the quantitative signals for ϕ1 and ϕ2 for the other

locations to the constant signal equal to minus infinity. The algorithm runs a fixpoint
computation for each time instant in the discrete time set {0, h,2h, . . . ,mh}. The pro-
cedure is based on computing a function X , with values in the extended reals R∗, which
is executed on the whole set of locations L, but for the modified signals equal to −∞
for locations not satisfying the metric bounds for `. The function X is defined below.

Definition 5. Given a finite set of locations L and two functions s1 ∶ L → R∗, s2 ∶ L →
R∗. The function X ∶ N ×L→ R is inductively defined as:

1. X(0, `) = s1(`)
2. X(i + 1, `) =min(X(i, `),min`′∣`E`′(max(X(i, `′), s2(`′))))

The algorithm then computes the function X iteratively, until a fixed-point is reached.

Theorem 1. Let be s1 and s2 as in Definition 5, and

s(`) = max
A⊆L,`∈A

(min(min
`′∈A

s1(`′), min
`′∈B+(A)

s2(`′))),

then
lim
i→∞
X(i, `) = s(`), for all ` ∈ L.

Moreover, there exists K > 0 such that X(j, `) = s(`) for all j ≥K.

The following corollary provides the correctness of the method. It shows that, when X
is computed for the modified signals constructed by the algorithm, it returns effectively
the quantitative satisfaction score of the spatial surround.

Corollary 1. Given an ˆ̀∈ L, let ψ = ϕ1S[w1,w2]ϕ2 and

s1(`) =

⎧
⎪⎪
⎨
⎪⎪
⎩

ρ(ϕ1,x, t, `) if 0 ≤ w(ˆ̀, `) ≤ w2

−∞ otherwise.
s2(`) =

⎧
⎪⎪
⎨
⎪⎪
⎩

ρ(ϕ2,x, t, `) if w1 ≤ w(ˆ̀, `) ≤ w2

−∞ otherwise.

Then ρ(ψ,x, t, ˆ̀) = s(ˆ̀) =maxA⊆L,ˆ̀∈A (min(min`∈A s1(`),min`∈B+(A) s2(`))).

9

Algorithm 2 Quantitative monitoring for the surround operator

1: inputs: ˆ̀, ψ = ϕ1S[w1,w2]
ϕ2 , h, T

2: for all ` ∈ L do
3: if 0 ≤ w(ˆ̀, `) ≤ w2 then
4: compute sϕ1,`

5: if w(ˆ̀, `) ≥ w1 then
6: compute sϕ2,`,
7: else sϕ2,` = −∞

8: else sϕ1,` = −∞, sϕ2,` = −∞

9: end for
10: for all t ∈ {0, h,2h, . . . , T} do
11: for all ` ∈ L do
12: Xprec(`) = +∞
13: X(`) = sϕ1,`(t)
14: end for
15: while ∃` ∈ L, s.t. Xprec(`) /= X(`) do
16: Xprec = X

17: for all ` ∈ L do
18: X(`) =min(Xprec(`),min`′ ∣`E`′(max(sϕ2,`′(t),Xprec(`

′
))))

19: end for
20: end while
21: sψ,ˆ̀(t) = X(ˆ̀)
22: end for
23: return sψ,ˆ̀

In order to discuss the complexity of the monitoring procedure, we need an upper
bound on the number of iterations of the algorithm. This is given by the following

Proposition 2. Let dG be the diameter of the graph G and X(`) the fixed point of
X(i, `), then X(`) = X(dG + 1, `) for all ` ∈ L.

It follows that the computational cost for each location is O(dG∣L∣m), where m is the
number of sampled time-points. The cost for all locations is therefore O(dG∣L∣2m).

4.1 Implementation
To support qualitative and quantitative monitoring of SSTL properties, a Java library
has been developed. This library, named jSSTL8, consists of three main packages:
core, util and io. Package core provides the classes used to represent SSTL formulas.
These classes mimic the abstract syntax tree of formulas. This package also includes
the implementations of the monitoring algorithms presented in this section and of those
previously introduced in [3].

Monitoring algorithms are implemented following the visitor pattern. Hence, mon-
itoring is performed via a visit of a formula that implements a bottom-up evaluation. It
is important to remark that the use of this pattern simplifies the integration of possible
alternative monitoring algorithms. Each monitoring algorithm is rendered in terms of

8 jSSTL is available on-line at https://bitbucket.org/LauraNenzi/jsstl

10

a class that is parametrised with respect to a weighted graph and provides the method
check. The former represents the topology of the considered locations, while the lat-
ter takes as parameters an SSTL formula and a list of piecewise constant signals (one
for each location) and returns a list of piecewise constant signals providing monitor-
ing evaluation. The classes used to represent and manage piecewise constant signals
are provided within package util. The implementation of weighted graphs relies on
JGraphT9. This is a free Java graph library that provides mathematical graph-theory
objects and algorithms.

Package io provides a set of classes that can be used to read graph models and input
signals from an input stream and to write monitoring results to an output stream. Spe-
cific interfaces are also provided to simplify the integration of new specific input/output
data formats. Currently, CSV and tabular based ascii files are supported for both input
and output of signals.

5 Example: pattern formation in a reaction-diffusion system

In this section we show how SSTL can be used to identify the formation of patterns in a
reaction-diffusion system. From the point of view of formal verification, the formation
of patterns is an inherently spatio-temporal phenomenon, in that the relevant aspect is
how the spatial organisation of the system changes over time. Alan Turing theorised
in [16] that pattern formation is a consequence of the coupling of reaction and diffusion
phenomena involving different chemical species, and can be described by a set of PDE
reaction-diffusion equations, one for each species.

Our model, inspired by [11, 13], describes the production of skin pigments that
generate spots in animal furs. The reaction-diffusion system is discretised, according
to a Finite Difference scheme, as a system of ODEs whose variables are organised in
a K ×K rectangular grid. More precisely, we treat the grid as a weighted undirected
graph, where each cell (i, j) ∈ L = {1, . . . ,K} × {1, . . . ,K} is a location (node), edges
connect each pairs of neighbouring nodes along four directions (so that each node as
at most 4 adjacent nodes), and the weight of each edge is always equal to the spatial
length-scale δ of the system10. We consider two species A and B in a K × K grid,
obtaining the system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dxAi,j
dt

= R1x
A
i,jx

B
i,j − xBi,j +R2 +D1(µAi,j − xAi,j) i = 1..,K, j = 1, ..,K,

dxBi,j
dt

= R3x
A
i,jx

B
i,j +R4 +D2(µBi,j − xBi,j) i = 1..,K, j = 1, ..,K,

(1)

where: xAi,j and xBi,j are the concentrations of the two species in the cell (i, j); Ri,
i = 1, ...,4 are the parameters that define the reaction between the two species; D1 and
D2 are the diffusion constants; µAi,j and µBi,j are the inputs for the (i, j) cell, that is

µni,j =
1

∣νi,j ∣
∑
ν∈νi,j

xnν n ∈ {A,B}, (2)

9 http://jgrapht.org
10 For simplicity, here we fix δ = 1. However, note that using a non-uniform mesh, for instance

obtained by a Finite Elements approach in PDE integration, the weights of the edges of the
resulting graph will not be uniform.

11

 0

2

4

6

Fig. 1. Value of xA for the system (1) for t = 0,5,7,12,20,50 time units with parameters K =

32,R1 = 1,R2 = −12,R3 = −1,R4 = 16,D1 = 5.6 and D2 = 25.5. The initial condition has
been set randomly. The colour map for the concentration is specified in the legend on the right.

where vi,j is the set of indices of cells adjacent to (i, j). The spatio-temporal trace
of the system is the function x = (xA, xB) ∶ [0, T] × L → RK×K × RK×K where
each xA and xB are the projection on the first and second variable, respectively. In
Fig. 1, we report the concentration of A for a number of time points, generated by the
numerical integration of System 1; at time t = 20 and t = 50, the shape of the pattern
is apparent. Some regions can be identified, having a very low concentration of A (the
spots) surrounded by regions with a very high concentration of A. The opposite happens
for the concentration of B (high density regions surrounded by low density regions).

We will see now how we can use the surround operator to characterise the behaviour
of this system. In order to classify spots, one should identify the sub-regions of the grid
that present an high (or low) concentration of a certain species, surrounded by a low
(high, respectively) concentration of the same species. Formally, one can e.g., capture
the spots of the A species using the formula

ϕspot ∶= (xA ≤ h)S[w1,w2](xA > h). (3)

A trace x satisfies ϕspot at time t, in the location (i, j), (x, t, (i, j)) ⊧ ϕspot, if and only
if there is a subset L′ ⊂ L, that contains (i, j), such that all elements have a distance less
than w2 from (i, j), and xA, at time t, is less or equal to h. Furthermore, each element
in the boundary of this region has a concentration of A, at time t, greater than h, and
its distance from (i, j) is between the interval [w1,w2]. Note that the use of distance
bounds in the surround operator allows us to constrain the size/ diameter of the spot
to [w1,w2]. Finally, combining the spatial property with temporal operators we can
identify the insurgence time of the pattern and if it remains stable in the time:

ϕpattern ∶= F[Tpattern,Tpattern+δ]G[0,Tend](ϕspot); (4)

ϕ means that eventually in a time between Tpattern and Tpattern + δ the property sur-
round remains true for at least Tend time units. In Fig. 2 we show the validity of the
property ϕ in each cell (i, j) ∈ L, for both the boolean and the quantitative semantics.
Recalling that (x, `) ⊧ ϕ, if and only if (x,0, `) ⊧ ϕ, the plots show the satisfaction
at time t = 0. It is evident how well the procedure is able to identify which locations
belong to the spots or not. If we make the distance constraint stricter, by reducing the
width of the interval [w1,w2], we are able to identify only the “centre” of the spot, as
it is visible in Fig. 2 (d). However, in this case we may fail to identify spots that have
an irregular shape (i.e., that deviate too much from a circular shape).

12

10 20 30

10

20

30

(a)

 0

2

4

6

10 20 30

10

20

30
(b)

10 20 30

10

20

30

(c)

−6

−4

−2

0

10 20 30

10

20

30
(d)

Fig. 2. Validity of the formula (4) with parameters h = 0.5, Tpattern = 19, δ = 1, Tend = 30,w1 =

1,w2 = 6 for (b), (c) and w2 = 4 for (d) . (a) Concentration of A at time t = 50; (b) (d) Boolean
semantics of the property ϕ; the cells (locations) that satisfy the formula are in red, the others are
in blue; (c) Quantitative semantics of the property ϕ; The value of the robustness is given by a
colourmap as specified in the legend on the right of the figure.

Formula ϕpattern describes the persistence of a spot in specific location. To describe
a global spatial pattern, i.e. that every location has a nearby spot, we can express this in
SSTL by the following formula:

ϕST−pattern ∶= �[0,w] �[0,w′] ϕpattern, (5)

where � and � are the everywhere and somewhere operators, w is chosen to cover all
space, and w′ measures the distance between spots. Checking this formula in a random
location of our space is enough to verify the presence of the pattern.

Changing the diffusion constants D1 and D2 affects the shape and size of the spots
or disrupts them (Fig. 3 (a)). In this case, we expect formula (5) to be false, and this is
indeed the case. Formula (4), instead, is still true in some locations, due to particular
boundary effects on the border of the grid (where fractions of spots still remain, as in
Fig. 3 (a) right), or due the irregularity of the patterns (where, as Fig. 3 (a) left, some
spots can have a shape similar to the model in Fig. 2 (a)).

A strength of spatio-temporal logics is the possibility to nest the temporal and spatial
operators. We illustrate this in the following scenario. We assume as initial conditions
of the system (1) its stable state, i.e. the concentrations of A and B at time 50 (see
Fig. 2 (a)). However, we introduce a small perturbation, by changing a single value
in a specific location in the centre of a spot. The idea is to study the effect of this
perturbation, i.e. checking if it will disrupt the system or not. Specifically, we perturb
the cell (6,6), setting xA6,6(0) = 10. Dynamically, the perturbation is quickly absorbed
and the system returns to the previous steady state. We formally investigate this scenario
by checking the following property:

ϕp ∶= (xA ≥ hp) ∧ (ϕ1S[wm,wM]ϕ2); (6)

A trace x satisfies ϕp, in the location (i, j), if and only if xAi,j(0) > hp (the location is
perturbed) and if there is a subset L′ ⊆ L that contains (i, j) such that all its elements
have a distance less than wM from (i, j) and satisfy ϕ1 = F[0,Tp]G[0,Td](xA < h′);
ϕ1 states that the perturbation of xA is absorbed within Tp units of time, stabilising
back to a value xA < h′ for additional Td time units. Furthermore, within distance
[wm,wM] from the original perturbation, where wM is chosen such that we are within
the spot of the non-perturbed system, ϕ2 ∶= G[0,T](xA < h′) is satisfied; i.e. no effect
is observed, the value of xA stably remains below h′. The meaning of ϕp is that the

13

(a)

0

10

20

 0
2
4
6
8

5 10 15

5

10

15
(b)

5 10 15

5

10

15

−3
−2
−1
0

Fig. 3. (a) Snapshots at time t = 50 of xA for the model (1) with parameters D = [1.5,23.6]
(on the left) and D = [8.5,40.7] (on the right). (b) Boolean and quantitative semantics for the
formula ϕp with parameters wm = 1, wM = 2, Tp = 1, Td = 10 and h′ = 3.

induced perturbation remains confined inside the original spot. In Fig. 3 (b) we report
the evaluation of the quantitative semantics for ϕp, zooming in the 15 × 15 lower left
corner of the original grid. All the locations that are not plotted have been evaluated and
do not satisfy the property. As shown in the figure, the only location that satisfies this
property is the perturbed one, (6,6).

The model (1) has been coded in Matlab/ Octave, and the monitoring has been per-
formed by our Java implementation. Monitoring property ϕpattern took 29.01 seconds
for the boolean semantics and 67.85 seconds for the quantitative one (all locations and
100 time points), while property ϕp took 28,19 and 55,31 seconds, respectively. All the
experiments were run on a Macbook Pro, OS X 10.9.5, Intel Core i5 processor with 2.6
GHz, 8GB 1600 MHz memory.

6 Discussion

We introduced the Signal Spatio-Temporal Logic, a spatio-temporal extension of STL
[8], in which space is a finite metric structure represented by an undirected weighted
graph. SSTL has the same temporal operators as STL, plus two spatial operators: the
somewhere operator and the spatial surround operator. In SSTL, spatial and tempo-
ral operators can be arbitrarily nested. We provided the logic with a boolean and a
quantitative semantics in the style of STL [8], and defined monitoring algorithms to
evaluate such semantics on spatio-temporal trajectories. The monitoring procedures,
implemented in Java, have been tested on a Turing reaction-diffusion system modelling
a process of morphogenesis [16] in which spots are formed over time.

This work can be extended in several directions. First of all, we plan to perform
a more thorough investigation of the expressivity of the logic, and to apply it on fur-
ther case studies. In particular, we remark that SSTL can also be applied to describe
properties of stochastic spatio-temporal systems, and the monitoring algorithms can
be plugged in seamlessly into statistical model checking routines. Secondly, we plan
to extend the definition of the logic itself to more general quasi-discrete metric spatial
structures, exploiting the topological notion of closure spaces [4] and extending it to the
metric case. Note that the current monitoring algorithms work already for more general
spatial structures, like finite directed weighted graphs, but we plan to provide a more
precise characterisation of the class of discrete spatial structures on which they can be
applied. We will also optimise the implementation to improve performance, and addi-
tionally investigate if and how directionality can be expressed in SSTL. Finally, we plan

14

to exploit the quantitative semantics for the robust design of spatio-temporal systems,
along the lines of [2].

References

1. Marco Aiello, Ian Pratt-Hartmann, and Johan van Benthem, editors. Handbook of Spatial
Logics. Springer, 2007.

2. E. Bartocci, L. Bortolussi, L. Nenzi, and G. Sanguinetti. System design of stochastic models
using robustness of temporal properties. Theoretical Computer Science, 2015.

3. L. Bortolussi and L. Nenzi. Specifying and monitoring properties of stochastic spatio-
temporal systems in signal temporal logic. In Proceedings of VALUETOOLS, 2014.

4. V. Ciancia, D. Latella, M. Loreti, and M. Massink. Specifying and verifying properties of
space. In Proceedings of IFIP-TCS, number 8705 in LNCS, pages 222–235, 2014.

5. Vincenzo Ciancia, Stephen Gilmore, Gianluca Grilletti, Diego Latella, Michele Loreti, and
Mieke Massink. Spatio-temporal model-checking of vehicular movement in public transport
systems. Submitted, 2015.

6. Vincenzo Ciancia, Stephen Gilmore, Diego Latella, Michele Loreti, and Mieke Massink.
Data verification for collective adaptive systems: Spatial model-checking of vehicle location
data. In Proceedings of SASOW, 2014.

7. A. Donzé, T. Ferrer, and O. Maler. Efficient robust monitoring for stl. In Proc. of CAV’13,
volume 8044 of LNCS, pages 264–279, 2013.

8. A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued signals. In
Proc. of FORMATS, volume 6246, pages 92–106, 2010.

9. Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications
for continuous-time signals. Theoretical Computer Science, 410(42):4262–4291, September
2009.

10. Antony Galton. The mereotopology of discrete space. In Christian Freksa and DavidM.
Mark, editors, Spatial Information Theory. Cognitive and Computational Foundations of
Geographic Information Science, volume 1661 of Lecture Notes in Computer Science, pages
251–266. Springer Berlin Heidelberg, 1999.

11. E. Aydin Gol, E. Bartocci, and C. Belta. A formal methods approach to pattern synthesis in
reaction diffusion systems. In Proceedings of CDC, 2014.

12. R. Grosu, E. Bartocci, F. Corradini, E. Entcheva, S. A. Smolka, and A. Wasilewska. Learn-
ing and detecting emergent behavior in networks of cardiac myocytes. In Proceedings of
HSCC’08, pages 229–243, 2008.

13. I. Haghighi, A. Jones, J. Z. Kong, E. Bartocci, Grosu R., and C. Belta. SpaTeL: A Novel
Spatial-Temporal Logic and Its Applications to Networked Systems. In Proceedings of
HSCC, 2015.

14. O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Pro-
ceedings FORMATS 2004, volume 3253, pages 152–166, 2004.

15. L. Mari, E. Bertuzzo, L. Righetto, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe, and A. Ri-
naldo. Modelling cholera epidemics: the role of waterways, human mobility and sanitation.
Journal of The Royal Society Interface, 9(67):376–388, February 2012.

16. A. M. Turing. The Chemical Basis of Morphogenesis. Philosophical Transactions of the
Royal Society of London B: Biological Sciences, 237(641):37–72, August 1952.

15

A Proofs

In this appendix, we present the proofs of Proposition 1 and 2, Theorem 1 and Corollary
1.

Proposition 1. Let the primary signal x be Lipschitz continuous, as the functions defin-
ing the atomic predicates. Let K be a Lipschitz constant for all secondary signals, and
h be the discretisation step. Given a SSTL formula ϕ, let u(ϕ) counts the number of
temporal until operators in ϕ, and denote by ρ(ϕ,x) its satisfaction score over the
trace x and by ρ(ϕ, x̂) the satisfaction score over the discretised version x̂ of x with
time step h. Then

∥ρ(ϕ,x) − ρ(ϕ, x̂)∥ ≤ u(ϕ)Kh

Proof. We first observe that the monitoring algorithm for boolean and spatial operators
preserve the error of the input quantitative signals. This means that if ∥sϕj ,`− ŝϕj ,`∥ ≤ ε,
then ∥sψ,` − ŝψ,`∥ ≤ ε, for ψ one of ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1S[w1,w2]ϕ2, �[w1,w2]ϕ1. Hence,
temporal discretisation introduces errors only for temporal operators.

Now, let I = [t1, t2] be such that tj = kjh, and denote the Minkowski sum by ⊕,
so that t ⊕ I = [t + t1, t + t2]. Denote by Î the discretised version of I , with step h,
Î = {k1h, (k1 + 1)h, . . . , k2h}. We observe two facts for the maximum, with identical
statements holding for the minimum.

– Let f(t) be Lipschitz with constant K. Let g(t) = maxt′∈t⊕I f(t) and ĝ(t) =
maxt′∈t⊕Î f(t). Then ∥g(t) − ĝ(t)∥ ≤ Kh/2. This holds by applying the Lipschitz
property between a generic point in t⊕ I and the closest point in t⊕ Î , and noting
that the maximum distance between such points is h/2.

– If f̃ is such that ∥f̃(t) − f(t)∥ ≤ ε uniformly in t, and we let g, ĝ as above, and
g̃(t) =maxt′∈t⊕Î f̃(t), then

∥g(t) − g̃(t)∥ ≤ ∥g(t) − ĝ(t)∥ + ∥ĝ(t) − g̃(t)∥ ≤Kh/2 + ε.

Hence, the second property implies that the additional error we introduce by evaluating
a time bounded until is an additive term no larger than Kh, as in the definition of the
quantitative semantics of the until, there are a nested minimum and a maximum over
dense time intervals. Hence the total error will be bounded by Kh times the number of
temporal operators. ∎

Theorem 1. Let s1 and s2 be as in Definition 5, and

s(`) = max
A⊆L,`∈A

(min(min
`′∈A

s1(`′), min
`′∈B+(A)

s2(`′)))

then
lim
i→∞
X(i, `) = s(`), for all ` ∈ L.

Moreover, there exists K > 0 such that X(j, `) = s(`) for all j ≥K.

16

Note that s is equivalent to the quantitative semantics of the surround operator
ϕ1Sϕ2, with si denoting the robustness of ϕi, without the distance constraints. We
first present two lemmas, followed by the proof of Theorem 1.

Lemma 1. If X(k + 1, `) = X(k, `) for all ` ∈ L then, ∀i > k, X(i, `) = X(k, `).

Proof. By induction.

– (basis step) i=k +1 is true by hipothesis,
– (inductive step) suppose the assert holds for i > k, i.e. X(i, `) = X(k, `) (I.H.),

then we have to prove that it holds for i + 1.

X(i + 1, `) =min(X(i, `), min
`′∣`E`′

(max(X(i, `′), s2(`′)))) {by Def. of X}

=min(X(k, `), min
`′∣`E`′

(max(X(k, `′), s2(`′)))) {by I.H.}

= X(k + 1, `) = X(k, `). {by Def. of X}

∎

Lemma 2. Let A` be the subregion that maximizes s(`), then, ∀`′ ∈ A`, s(`′) ≥ s(`).

Proof. If A` is the subregion that maximizes s(`) then

s(`) =min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′)))

Suppose by contradiction that ∃ˆ̀ ∈ A` s.t. s(ˆ̀) < s(`). Let Q = {A ⊆ L, ˆ̀ ∈ A}. This
means that

s(ˆ̀) < s(`)
≡

maxA∈Q(min(min`′∈A s1(`
′
),min`′∈B+(A) s2(`

′
))) < min(min`′∈A` s1(`

′
),min`′∈B+(A`) s2(`

′
)))

But A` is a subset of L and ˆ̀∈ A` therefore A` ∈ Q, thus the inequality can not hold. ∎

Proof (of Theorem 1). We have to prove that (1) X(i, `) converges in a finite number
of steps, in each location `, to X(`) ∈ R∗ and that (2) ∀` ∈ L, X(`) = s(`).

1. Convergence of X .
First note that X(i, `) ≥ min(X(i, `),min`′∣`E`′(max(X(i, `′), s2(`′)))) = X(i +
1, `), thus X∣` is a monotonic decreasing function. Second, note that X(i, `) ∈
{sj(`) ∣ j ∈ {1,2}, ` ∈ L} is a finite set of sortable values. So, in every step, X
takes a value of a sortable finite set. Finally, if it happens that for a step, for all
` ∈ L, X(i, `) does not change then, from Lemma 1, it will remain the same for
all the next steps. The convergence of X to the maximum fixed point follows then
from Tarsky’s theorem.

17

2. We have to prove that ∀`, X(`) = s(`).
Let A` be the subregion that maximizes s(`) then

s(`) =min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′))).

First we prove that ∀`, X(`) ≥ s(`) (2a) and then that they are equal (2b).
2a) To prove that X(`) ≥ s(`) it suffices to prove that, for a generic `, ∀i ∈

N, X(i, `) ≥ s(`), and for the convergence of X that ∃j ∈ N s.t. X(`) =
X(j, `),∀`,∀j ≥ i. The proof is by induction.

– (basis step)

X(0, `) = s1(`) ≥ min
`′∈A`

s1(`′) ≥min(min
`′∈A`

s1(`′), min
`′∈B+(A`)

s2(`′))) = s(`)

– (inductive step) Assume X(i, `) ≥ s(`), to prove that X(i + 1, `) ≥ s(`);

X(i + 1, `) =min(X(i, `), min
`′∣`E`′

(max(X(i, `′), s2(`′)))) (7)

≥min
`′R`

(min
`′∈A`

(maxX(i, `′), s2(`′)), min
`′∈B+(A`)

(maxX(i, `′), s2(`′)))

(8)

≥min
`′R`

(min
`′∈A`

X(i, `′), min
`′∈B+(A`)

s2(`′)) (9)

● if `′ ∈ A`, then X(i, `′) ≥ s(`′) ≥ s(`). The first inequality is true due
to the I.H., the second because of Lemma 2;

● if `′ ∈ B+(A`), then s2(`′) ≥ s(`) because of the definition of s;
2b) Suppose by contradiction that ∃ˆ̀ ∈ L s.t. X(ˆ̀) > s(ˆ̀). At the fixed point we

have that
X(ˆ̀) =min(X(ˆ̀),min

`∣ˆ̀E`
(max(X(`), s2(`))))

This means that the inequality

min
`∣ˆ̀E`

(max(X(`), s2(`))) > s(ˆ̀) (10)

has to be true.
Let A ⊆ L, we define:

– C(A) ∶= {` ∈ L∣∃`′ ∈ A s.t. `′E` ∧ X(`) ≥ s2(`)}
– Ci(A) = C(Ci−1(A))

We can then define the closure of C, as C∗(A) = A⋃∞i=0Ci(A).
Because of the definition of C and the inequality (10) we have that ∀` ∈
C∗({ˆ̀}), s1(`) ≥ X(`) > s(ˆ̀) and that ∀` ∈ B+(C∗({ˆ̀})), s2(`) > s(ˆ̀),
so

min(min
`∈C∗({ˆ̀})

s1(`), min
`∈B+(C∗({ˆ̀}))

s2(`))) > s(ˆ̀)

18

i.e.

min(min
`∈C∗({ˆ̀})

s1(`), min
`∈B+(C∗({ˆ̀}))

s2(`))) >min(min
`∈Aˆ̀

s1(`), min
`′∈B+(Aˆ̀)

s2(`′)))

but this contradicts the assumption of maximality of Aˆ̀. ∎

In the following the distance constraints are addressed.

Corollary 2. Given an ˆ̀∈ L, let ψ = ϕ1S[w1,w2]ϕ2 and

s1(`) =
⎧⎪⎪⎨⎪⎪⎩

ρ(ϕ1,x, t, `) if 0 ≤ w(ˆ̀, `) ≤ w2

−∞ otherwise.

s2(`) =
⎧⎪⎪⎨⎪⎪⎩

ρ(ϕ2,x, t, `) if w1 ≤ w(ˆ̀, `) ≤ w2

−∞ otherwise.

Then ρ(ψ,x, t, ˆ̀) = s(ˆ̀) =maxA⊆L,ˆ̀∈A (min(min`∈A s1(`),min`∈B+(A) s2(`))).

Proof. We recall that

ρ(ψ,x, t, ˆ̀) = max
A⊆L

ˆ̀

[0,w2]
,`∈A,B+(A)⊆L

ˆ̀

[w1,w2]

(min(min
`∈A

ρ(ϕ1,x, t, `), min
`∈B+(A)

ρ(ϕ2,x, t, `))).

where Lˆ̀

[w1,w2]
∶= {` ∈ A∣w1 ⩽ w(`, ˆ̀) ≤ w2}. This means that ` ∈ A iff w(`, ˆ̀) ≤ w2

and, for all `′E`, w1 ⩽ w(`′, ˆ̀) ≤ w2.
So, we consider a restricted number of subsets of L for ρ and all the possible subsets

of L for s. Furthermore, the value of the locations considered by both are always the
same, i.e. the value of s1 and s2 differ only in the locations considered by s and not by
ρ. For this reason s(`) ≥ ρ(`).

Let Aρ be the subset that maximizes ρ of ˆ̀and As the subset that maximizes s of ˆ̀.
And suppose by contradiction that

min(min
`∈As

s1(`), min
`′∈B+(As)

s2(`))) >min(min
`∈Aρ

ρ(ϕ1,x, t, `), min
`∈B+(Aρ)

ρ(ϕ2,x, t, `))),

but the values considered by s and not by ρ are all equal to −∞ (see line 8 of Alg. 2),
so if As has a location that cannot be considered by ρ it means that

min(min
`∈As

s1(`), min
`′∈B+(As)

s2(`))) = −∞

but minus infinity cannot be bigger than any number. ∎

Proposition 2. Let dG be the diameter of the graph G and X(`) the fixed point of
X(i, `), then X(`) = X(dG + 1, `) for all ` ∈ L.

19

Proof. The graph diameter of G is equal to dg =max`,`′∈L d(`, `′). Recall thatX(dg, `) ∈
{sj(`) ∣ j ∈ {1,2}, ` ∈ L} is a finite set of sortable values. At step zero the value of X
is equal to s1 in all the locations. At each next step, the value of X(i, `) depends only
on the value of X in the same location at the previous step and the value of s2 and X
in the previous step in the direct neighbours of `, `′E`. This means that, after a number
of steps equal to the diameter of the graph, i.e. the longest shortest path of the network,
X , for all nodes `, has taken into account the values s1 and s2 of all the nodes. ∎

20

