U-check: Model Checking and Parameter
Synthesis under Uncertainty

123 45%x

Luca Bortolussi , Dimitrios Milios***, and Guido Sanguinetti

! Modelling and Simulation Group, University of Saarland, Germany
2 Department of Mathematics and Geosciences, University of Trieste
3 CNR/ISTI, Pisa, Italy
4 School of Informatics, University of Edinburgh
® SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh

Abstract. Novel applications of formal modelling such as systems bi-
ology have highlighted the need to extend formal analysis techniques to
domains with pervasive parametric uncertainty. Consequently, machine
learning methods for parameter synthesis and uncertainty quantifica-
tion are playing an increasingly significant role in quantitative formal
modelling. In this paper, we introduce a toolbox for parameter synthe-
sis and model checking in uncertain systems based on Gaussian Process
emulation and optimisation. The toolbox implements in a user friendly
way the techniques described in a series of recent papers at QEST and
other primary venues, and it interfaces easily with widely used modelling
languages such as PRISM and Bio-PEPA. We describe in detail the ar-
chitecture and use of the software, demonstrating its application on a
case study.

1 Introduction & Motivation

Tools and methodologies from formal analysis are increasingly playing a central
role in science and engineering. Recent years have seen a veritable explosion in
the number of novel application domains for quantitative analysis of dynami-
cal systems, from systems biology, to smart cities, to epidemiology. A common
feature of these novel application domains is the presence of uncertainty: while
expert opinion may inform modellers about the presence of specific interactions
(the structure of the model), it seldom is sufficient to quantify precisely the
kinetic parameters underpinning the system dynamics. Extending formal anal-
ysis methods to handle models with parametric uncertainty is therefore rapidly
becoming a major area of development in formal modelling.

Unsurprisingly, the trend towards modelling uncertain systems has led to a
convergence between ideas from machine learning and formal modelling. While
most efforts are focussing on the problem of identifying parameter values that

* Work partially supported by EU-FET project QUANTICOL (nr. 600708) and by
FRA-UniTS.
** Work supported by European Research Council under grant MLCS 306999.

may match particular specifications in terms of observations or global proper-
ties (parameter synthesis, [1,12,4,8,10]), more recent efforts aim at characterising
and exploiting the dependence of system properties on the parametrisation, and
embedding the concept of uncertainty in formal modelling languages [7,9,15].
Despite the considerable interest such approaches are generating, user-friendly
implementations of machine learning methodologies for formal analysis are cur-
rently lacking.

In this paper, we present U-check, a toolkit for formal analysis of models with
parametric uncertainties based on Gaussian Processes (GPs), a flexible class of
prior distributions over functions underpinning many Bayesian regression and
optimisation algorithms [21]. GPs are at the core of several novel developments in
formal analysis [8,7,2,9,3,18]; here we focus on three particular tasks: estimating
the parametric dependence of the truth probability of a linear temporal logic
formula; synthesising parameters from logical constraints on trajectories, and
identifying parameters that maximise the robustness (quantitative satisfaction
score [13,2]) of a formula. Our tools are based on Java and interface with popular
formal modelling programming languages such as PRISM [17] and Bio-PEPA
[11]; we also offer support for hybrid models specified in the SimHyA modelling
language (for stochastic hybrid systems) [5]. U-check is available to download at
https://github.com/dmilios/U-check.

The problems tackled by U-check. U-check is a tool to perform model
checking, parameter estimation, and parameter synthesis for uncertain stochas-
tic models. We consider a parametric family of stochastic processes My, indexed
by parameters € in a bounded subset D C R™, usually a hyperrectangle. The
parametric dependence is introduced to reflect the impossibility of removing
uncertainty from model specification. We will refer to the pair (Mg, D) as un
uncertain stochastic model. Given a model Mg, we are often interested in un-
derstanding some features of its global behaviour, which can be specified as a
set of formal properties, for instance using a linear temporal logic formalism as
MiTL or STL [20,19]. U-check solves one of the following problems:

— Smoothed Model Checking. Given an uncertain stochastic model (Mg, D),
and a linear property ¢, smoothed model checking provides a statistical es-
timate of the satisfaction probability of the formula as a function of the
model parameters (satisfaction function), p,(0); the tool also returns point-
wise confidence bounds. The estimate is obtained in a Bayesian framework
combining simulation to generate trajectories, a monitoring routine to very
 on the so obtained trajectories, and Gaussian Process-based statistical
inference; details are provided in [7].

— Parameter estimation from qualitative observations. This algorithm
takes as input an uncertain stochastic model (Mg, D), n linear time prop-
erties ¢1,...,pn, and N observations of the joint satisfaction value of such
properties. Then, using an active learning optimisation algorithm based on
Gaussian Processes [22], it computes the maximum likelihood (or the maxi-

https://github.com/dmilios/U-check

mum a-posteriori) estimate 0 of parameters 6 that best explain the observed
dataset [8].

— Robust parameter synthesis. Given an uncertain stochastic model (Mg, D)
and a property ¢, the algorithm identifies the parameters set ™ that max-
imises the expected robustness (satisfaction score) of p, again exploiting a
Gaussian Process-based optimisation algorithm [2].

2 Background material

U-check takes as input an uncertain stochastic model (Mg, D) specified as a
stochastic model M and of a range of values for (a subset of) its parameters.
The primary focus of U-check is on Continuous-Time Markov Chain models [14],
that are simulated by the standard stochastic simulation algorithm [16].

2.1 Population CTMC

A Continuous time Markov Chain (CTMC) M is a Markovian (i.e. memoryless)
stochastic process defined on a finite or countable state space S and evolving in
continuous time [14]. We will specifically consider population models of interact-
ing agents [6], which can be easily represented by

— a vector of population variables X = (X1,...,X,,), counting the number of
entities of each kind, and taking values in S C N";

— a finite set of reaction rules, describing how the system state can change.
Each rule 7 is a tuple n = (7, 8, f). 7y, (respectively s,) is a vector encod-
ing how many agents are consumed (respectively produced) in the reaction,
so that v, = s, — r;, gives the net change of agents due to the reaction.
fn = fr(X,0) is the rate function, associating to each reaction the rate of
an exponential distribution, depending on the global state of the model and
on a d dimensional vector of model parameters, 8. Reaction rules are easily
visualised in the chemical reaction style, as

f(X.0)

T1X1 +Tan —_— 81X1 +San

2.2 Property Specification

In this work, properties systems are expressed as properties of their trajectories
via Metric Interval Temporal Logic (MiTL) [20]. Formally, the syntax of a MiTL
formula ¢ is given by the following grammar:

pu=tt | p| oo | o1 A2 | 01U 102 (1)

where tt is the true formula, conjunction and negation are the standard boolean
connectives, and there is only one temporal modality, the time-bounded until
U1, 1,)- Further connectives can be easily derived from the terms of the gram-
mar above. For example, temporal modalities like time-bounded eventually and
always can be defined as: Fi1, 1,)¢ = ttUp 1,19 and Gip, 1,190 = —F (1, 100

Given a system with n population variables, a trajectory will be a real-valued
function x(t), x : [0,7] — R™. An atomic proposition y transforms a function
x(t), to a boolean signal s, () = p(x(t)), where s : [0,T] — {tt,f£}. The truth
of a formula ¢ with respect to a trajectory x at time ¢ is given by the standard
satisfiability relation @,t = . For instance, the rule for the temporal modality
states that x,t = 01 Ujp, 192 if and only if 3ty € [t + T1,t + T3] such that
x,t1 = 2 and Vig € [t,t1], ,to = 1, while @, t |= 1 if and only if s,(t) = tt.

A CTMC My is characterised by a distribution of random trajectories. In
this context, a MiTL formula ¢ can be associated with the probability Pr(x,0 =
©|My), which is the probability that the formula is satisfied at time zero by a
trajectory a sampled from MC.

We also offer evaluation of MiTL formulae under quantitative semantics,
which returns a measure of robustness for a given trajectory [2]. The quantitative
specification function p returns a value p(¢, x,t) € RU{—o00, +00} that quantifies
the robustness degree of ¢ by the trajectory x at time ¢ subject to perturbations.
In the stochastic setting, the robustness will be a real-valued random variable R,
which captures the distribution of robustness degrees over the trajectory space.

2.3 Statistical methodologies

We provide here a very brief intuition about the statistical methodologies em-
ployed by U-check. A full discussion is provided in the cited papers [7,8] and is
beyond the scope of this tool paper.

The fundamental idea behind U-check is that the (intractable) functional
dependence of a formula’s truth probability on the model parameters can be
abstracted through the use of statistical methods. We leverage the fact that the
satisfaction probability of a temporal logic formula over an uncertain CTMC is
a smooth function of the parameters, which was proved in [7]. Smoothness has
important practical repercussions: knowing the value of a smooth function at
a point x is informative about the value of the function in a neighbourhood of
the point x through the Lipschitz property implied by smoothness. Intuitively,
U-check exploits this transfer of information between neighbouring points to
devise effective algorithms to explore (and optimise) the parametric dependence
of truth probabilities.

More formally, the starting point for U-check is to obtain estimates of a truth
probability at a set of initial points x1,...,xy via a standard simulation-based
statistical model checking algorithm. These values are treated as moisy obser-
vations of the unknown function (the truth probability). We then proceed in
a Bayesian framework, place a Gaussian Process (GP) prior over the function
values at all parameter values and combine this with the observations to obtain
a posterior estimate. GPs are infinite dimensional generalisations of Gaussian
distributions [21]; crucially, they can easily encode smoothness and inherit many

5 We assume implicitly that T is sufficiently large so that the truth of ¢ at time 0 can
always be established from .

favourable computational properties from the finite dimensional case. GPs there-
fore enable us to construct a statistical surrogate of the satisfaction function; this
is the central idea behind all of the techniques implemented in U-check. The spe-
cific algorithms used for optimisation and smoothed model checking are different,
and are described in detail in the main references of the paper.

3 Software Architecture

One of the main requirements of U-check is to be a multi-platform tool, which can
also be easily incorporated as a library in other software projects. For this reason,
the entire system has been implemented in Java. U-check depends on separate
projects that have been developed independently, namely the PRISM project,
the Bio-PEPA project, and the SimHyA project, which offer functionality to
load models written in the respective languages. Other external libraries that
our tool depends on are jJBLAS, which is a linear algebra library for Java, and
Apache Commons Math, which we use for local optimisation routines.

The software components of U-check, along with their dependencies are sum-
marised in Figure 1. The main functionality of the tool is implemented by two
main components: Learning From Formulae and Smoothed Model Checking.
The former depends on the GP optimisation component which implements the
non-convex optimisation algorithms required. Both components depend on the
Gaussian Process framework and the Model Checking component, which offers
routines to perform statistical model checking for CTMCs. Finally, the U-check
CLI component offers the functionality of all of the components involved in a
common command line interface.

Model Checking
Framework

GP Optimisation

1HH

U-check CLI

Fig. 1. Component Diagram for U-check

3.1 Gaussian Processes Framework

This module is responsible for the GP regression tasks, on which the main
methodologies that we cover rely. Regular GP Regression assumes that the
data are noisy observations of the latent function, which is then analytically
approximated by a series of linear algebra calculations. We offer two ways of
handling the observation noise either as a constant defined by the user, or using
an automatically calibrated heteroskedastic noise model. Probit Regression is
used in the case of smoothed model checking, where the objective is to emulate
satisfaction probability as a function of the parameters. The output of the emu-
lated function has to be strictly in the interval [0, 1], hence regular regression is
no longer appropriate and has to be combined with a probit transformation.
Both regression approaches require the specification of a covariance function;
we use the Radial Basis Function (RBF) kernel due to its theoretical properties
[7]. For the RBF kernel, there is an isometric version labelled as rbfiso, and
a version that supports a different lengthscale parameter for each dimension
of the input space. The latter is labelled as rbfard and it can be combined
with hyperparameter optimisation to achieve automatic relevance determination.
To automatically determine the hyperparameters of the kernel, we offer two
alternatives: a heuristic that relies on the range of the training observations,
or a local hyperparameter optimisation using the marginal likelihood of the
observed data. For this local optimisation task (using the heuristic as default
initialisation), we use the optimisation toolkit of Apache Commons.

3.2 GP Optimisation Framework

This module constitutes an implementation of the GP optimisation algorithm,
which is described in [8], as a generic framework for non-convex optimisation
of noisy objective functions. The module depends on the GP framework, as it
utilises regular GP regression to emulate a given objective function.

GP Optimisation is initialised with a random grid of points, that is used
as training set in a GP model. The GP posterior is calculated over a random
set of test points; for each test point we calculate the estimated value of the
objective function and its associated variance. The emulated value, along with
the corresponding variance, serves as an indicator whether there is a potential
maximum nearby. The GP regression model is used to direct the search towards
areas of the search-space that have not been explored adequately. The strategy
is that the test point that maximises an upper quantile of the GP posterior is
selected to be added to the training set. This step is repeated for a number
of iterations, and therefore the training set is progressively updated with new
potential maxima, until a certain convergence criterion is satisfied. For more
details see [8].

3.3 Model Checking Framework

This component is responsible for parsing and evaluating MiTL properties. The
successful parsing of a MiTL formula will result in an abstract syntax tree which

can be evaluated over a specified trajectory. A trajectory can be either a random
sample from a CTMC model, or a solution to a system of ordinary differential
equations (ODEs). The formulae can be evaluated either in terms of the standard
boolean semantics, which is used for smoothed model checking and parameter
inference from qualitative data, or the quantitative semantics, which is used for
robust parameter synthesis.

The module also involves stochastic simulation routines for CTMCs, which
are used by default to evaluate the satisfaction probabilities of MiTL formulae.
The simulation capabilities can be overridden, if the model checking module
is used as a library. Regarding the modelling component, we have defined an
interface that accepts different implementations; in the current version we offer
implementations based on PRISM, Bio-PEPA and SimHyA.

3.4 Smoothed Model Checking

This component combines the Gaussian process framework with the model check-
ing capabilities, in order to construct analytic approximations to the satisfac-
tion probability as a function of the model parameters. The structure is out-
lined in the UML class diagram of Figure 2. The specification of the model and
the properties to be verified is responsibility of Mit1ModelChecker class. The
ModelInterface specifies the method signatures for loading models, setting the
model parameters, and generating trajectories. The model checking framework
is agnostic of the modelling and simulation details; it is therefore easily expand-
able to different kinds of implementations. The form of the trajectories to be
generated is part of the interface (the Trajectory class), so that these are com-
patible with the MiTL class, which implements an abstract syntax tree of MiTL
expressions.

The SmoothedModelChecker class is responsible for the main functionality
of the module, which makes use of MitlModelChecker and GPEP to construct
an analytic approximation of the satisfaction function. The respective class, i.e.
AnalyticApproximation, is essentially a trained probit regression GP model.
The performSmoothedModelChecking method uses this analytic result to esti-
mate the satisfaction probability for a number of points in the parameter space.
The ranges of the parameters to be explored are specified by the Parameter class,
while the SmmcOptions class controls the configuration options of a smoothed
model checking experiment, further discussed in Section 4.

3.5 Learning From Formulae

This module depends on the model checking and the GP optimisation framework.
The module is responsible for the application of the GP optimisation algorithm
to parameter synthesis, which is achieved by appropriate objective functions.
The structure of the module is outlined in Figure 3. The GPOptimisation
class implements the GP optimisation algorithm; it relies on RegressionGP,

Modelinterface Trajectory
>

+loadModel () - - -
+setParameters () A

+generateTrajectories(): Trajectory(l | == === |

1
MiTL
+evaluate(): boolean
- +evaluateValue () : double
MitIModelChecker
Parameter +performMC () : boolean(][]
+performMCRobust () : double[] = = -
—name: String - AnalyticApproximation
—lowerBound: double 1
~upperbound: double 1 +getValuesAt (points:double(][])
1
A 1
. — SmoothedModelChecker |
P |
+getAnalyticApproximation () PEP
______ +performSmoothedModelChecking () F--- G
1
" L = = =>>[+setTrainingset ()
!.> SmmcOptions +doTraining ()
+getGpPosterior ()

Fig. 2. UML class diagram for the Smoothed Model Checking component

while its options are controlled by GpoOptions. As already discussed in Sec-
tion 3.4, Mit1lModelChecker is responsible for the specification of models, prop-
erties and the simulation algorithms. The LearnFromFormulae class performs
the actual parameter synthesis. It has to be initialised with an object of type
MitlModelChecker, a set of parameters and their corresponding prior distri-
butions. The latter are represented by the abstract Prior class, whose imple-
mentations offer different options, including uniform, exponential, Gaussian and
gamma distributions. Other options are specified by LFFOptions, which involve
options regarding the simulation algorithms used, and the entire set of options
in GpoOptions. The GpoResult class contains the result of the optimisation pro-
cess; that involves the optimal solution found, along with a covariance matrix
that captures the uncertainty of the approximated optimum. In a Bayesian set-
ting, this is interpreted as a Gaussian approximation of the posterior distribution
of the parameters.

3.6 U-check CLI

This module is the implementation of the command-line tool for model checking
and parameter synthesis under uncertainty. It offers a common API to provide
the functionality of both Learning From Formulae and Smoothed Model Check-
ing components. It is responsible for linking the other components of U-check
with the PRISM, SimHyA and Bio-PEPA libraries, providing implementations
to the specified interfaces. It also provides functionality of reading the required
experiment options from a configuration file, whose structure is outlined in the
next section.

MitiIModelChecker RegressionGP GpoResult

+performiC () : boolean(] [] tsetTrainingSet ()

+performMCRobust () : double[] +getGpPosterior () A
1
-1
1
GPOptimisation

LearnFromFormulae

T
1
L]
1

Parameter

+performInference (observations:boolean(][]) v

+robustSystemDesign ()

GpoOptions

name: String

-lowerBound: double

~upperbound: double

Prior

LFFOptions

+1ogProbability () : double

Fig. 3. UML class diagram for the Learning From Formulae component

4 Configuration Options

We describe the practical usage of U-check on an example in the next section.
Here we summarise the configuration options of the program, avoiding excessive
details for readability; a comprehensive description of the options is given in the
user manual associated to the code release. The command line interface of our
tool dictates that the program is provided with a configuration file, which lists
a number of options in the form of assignments as follows:

OPTION = VALUE

where VALUE can be either a number, a truth value, or a string, depending
on the nature of the option. Only a few configuration options are necessary to
produce results, while the rest are optional and their corresponding default value
will be used if no explicit assignment is made.

4.1 Experiment Configuration

The following options control the main setting of each experiment, which involves
the definition of the model, the properties and the mode of operation.

— modelFile: A file that contains the specification of a population CTMC
described either in PRISM, Bio-PEPA or the SimHyA language.

— propertiesFile: A file that contains the specification of one or more MiTL
properties.

— observationsFile: A file that contains a n X m matrix, whose rows corre-
spond to n independent observations of the system in question. A row is a
single observation and contains m values (0 or 1), one for each one of the
MiTL formulae specified in the properties file.

— mode: It can be either inference, robust or smoothedmc.

Parameter uncertainty is expressed as a range of possible parameter values,
which is provided by the user in addition to model specification. Each parameter
has to be associated with an interval, which is specified with an assignment of
the form:

parameter NAME = [A, B]

Optionally, each parameter can be associated with a prior distribution using an
assignment of the form:

prior NAME = uniform(A, B) | exponential (MU)
| gamma(ALPHA, BETA) | gaussian(MU, S2)

Only independent univariate priors are supported. If no prior is explicitly de-
clared, then a uniform prior will be assumed. The prior information is only
utilised in the parameter inference scenario.

In order for an experiment to progress, modelFile, propertiesFile, mode
and at least one parameter are required to be specified in the configuration file.
In the case of parameter inference from qualitative data, observationsFile is
also required to be specified.

4.2 Simulation Options

The options in this category control the parameters of the simulation process.
The most important of these are endTime, which sets the time up to which the
system will be simulated, and runs which controls the number of the independent
simulation runs per parameter value.

It is also possible to use simulation engines other than stochastic simulation
via the simulator option. This can take one of three values: ssa for Gille-
spie’s stochastic simulation algorithm, odes for mean-field approximation, and
hybrid. The odes and the hybrid simulation are based on the implementation
of SimHyA [5], and they support SimHyA models only. Moreover, the mean-field
approximation by ODEs can only be used for robust parameter synthesis.

4.3 GP Options

The options in this category determine the properties of the GP regression mod-
els used in the tool. The size of the training set for the GP is defined by the
initialObservations option. For the parameter synthesis operations, it affects
the initialisation of the GP optimisation algorithm. For smoothed model check-
ing, it controls the initial evaluations of the satisfaction function via statistical
model checking. In general, increasing this value is expected to increase the ap-
proximation quality for the GP regression model. However, an excessively large
value for this parameter implies that the entire process degenerates to naive
parameter space exploration via statistical model checking. It is recommended
to begin with a relatively small value (for example 100, which is the default
value), and progressively increase until the results are estimated with adequate
confidence.

The numberOfTestPoints option controls the size of the test set for the
GP process. In case of parameter synthesis, that is the set of points where the
GP posterior is estimated at each step, in order to find a new potential global
maximum. Increasing the size of this set will increase the chances of discovering
a new potential maximum. For smoothed model checking, the test set contains
the points at which we explore the satisfaction function. Alternatively, the test
set can be specified via the testPointsFile option: a set of parameter values
is directly specified in a csv file that contains a n x d matrix, each row of which
is a d-dimensional point in the parameter space.

The kernel option defines the kind of the covariance function used: either
rbfiso for isometric RBF kernel, or rbfard for RBF kernel that supports auto-
matic relevance determination. Other options control the hyperparameters of the
kernel; by default these are internally optimised via a local optimisation process.

GP Optimisation Options For the modes of operation that involve parameter
optimisation, there are a number of options available that control the conver-
gence properties of the GP optimisation algorithm. The optimisation process is
considered to have converged, if a certain number of added points with no signif-
icant improvement is reached, defined by the maxAddedPointsNoImprovement
option. An improvement is considered significant if: f,,41 > f, *«a, where « is the
improvement factor, also set by the user. Convergence is alternatively assumed
if a number of failed attempts to find a new local optimum is reached, which is
set via maxFailedAttempts.

5 Case Study

We shall demonstrate the use of U-check on a rumour-spreading model, whose
PRISM specification is outlined in Figure 4. There are three modules that cor-
respond to the population variables of a PCTMC; these are spreaders, ignorants
and blockers. A spreader and an ignorant may interact via the spreading ac-
tion, which means that the ignorant is converted to a spreader. If two spreaders
interact via the stop_spreadingl action, then one of them will become blocker
and therefore stop spreading the rumour. Finally, the stop_spreading2 action
dictates that a blocker may convert a spreader to blocker.

All rates of this model follow the law of mass action, with kinetic constants
k_s and k_r. We shall measure the probability that the rumour has not reached
the entire population, assuming that there has been some initial outbreak. We
consider the following MiTL property, which states that there will be still ig-
norants between time 3 and 5, while the population of spreaders has climbed
above 50% of the population before time 1. Note that the nested globally term
indicates that the spreader population has to remain above 50 for at least 0.02
time units.

o1 = Gyg syignorants >0 A Fg1)(Gio,0.0215preaders > 50) (2)

ctmc
const double k_s=0.05;
const double k_r=0.02;

module spreaders
spreaders : [0..100] init 10;
[spreading] true -> spreaders : (spreaders’=spreaders+1);
[stop_spreadingl] true -> spreaders * (spreaders - 1)
(spreaders ’=spreaders-1);
[stop_spreading2] true -> spreaders
(spreaders ’=spreaders-1);
endmodule

module ignorants

ignorants : [0..100] init 100-10;

[spreading] true -> ignorants : (ignorants’=ignorants-1);
endmodule

module blockers
blockers : [0..100] init O;
[stop_spreadingl] true -> 1 : (blockers’=blockers+1);
[stop_spreading2] true -> blockers : (blockers’>=blockers+1);
endmodule

module base_rates
[spreading] true -> k_s : true;
[stop_spreadingl] true -> k_r : true;
[stop_spreading2] true -> k_r : true;
endmodule

Fig. 4. PRISM model specification for a rumour-spreading system

An example of property specification as used in U-check is shown in Figure 5.
A property file contains a list of constant declarations, followed by one or more
modal expressions.

5.1 Smoothed Model Checking

We demonstrate the application of smoothed model checking, considering un-
certain parameters k_s and k_r. The performance of the approach in terms of
approximation quality and efficiency compared to naive parameter exploration
has been analysed in [7]. Given a model file specification rumour.sm, and a
property file rumour .mtl that contains the formula in (2), the contents of the
configuration file to perform smoothed model checking will be the following:
modelFile = rumour.sm

propertiesFile = rumour.mtl
mode = smoothedmc

const int threshold = 3.75

G[3,5] ignorants > 0 & F[0,1] (G<=0.02 spreaders>=threshold)

Fig. 5. An example of a properties file

|| parameter k_s = [0.0001, 2]
parameter k_r = [0.0001, 0.5]
endTime = 5
runs = 10
initialObservtions = 100
number0fTestPoints = 625

According to the initialObservtions option, U-check will evaluate the sat-
isfaction probability on a grid of 100 regularly distributed parameters values
between 0.0001 and 2 for k_s and between 0.0001 and 0.5 for k_r correspond-
ingly. The number0fTestPoints option means that the GP posterior will be
evaluated on a grid of 625 points.

The results are written in a text file named MODEL. csv, where MODEL is the
name of the input model. The output file contains the grid of input points
along with the associated predictions and confidence intervals. The program
also produces a script file named load MODEL.m, that allow easy manipulation
of the results under either matlab or octave. The tool also supports limited
plotting capabilities via the gnuplot program. If only one parameter is explored,
the satisfaction function is plotted along with the confidence bounds obtained by
the GP. In the two dimensional case, the satisfaction function is depicted as a 2-
D map. Out-of-the-box visualisation of higher-dimensional data is not currently
supported. An example of plots produced automatically by U-check can be seen
in Figure 6.

5.2 Robust Parameter Synthesis

We next use U-check to maximise the robustness of the property in (2). In this
case, the initialObservations and the numberOfTestPoints options control
the GP training and test sets in the optimisation context.

modelFile = rumour.sm
propertiesFile = rumour.mtl
mode = robust

[0.0001, 2]
[0.0001, 0.5]

parameter k_s
parameter k_r
endTime = 5
runs = 100
initialObservations = 100
number0fTestPoints = 50

We quote the part of the program output that contains information regarding
the solution obtained. For k_s, the most robust value is 0.341, while for k_r we

0.55 0.6

0.5
o8 " Fstmate 0.5
Confidence bounds 0.45 ’
0.4
0.35 0.4
£ . 03 03
8 ! .
2 ~0.25
g 0.2 0.2
2 0.15
0.1 0.1
0.05
0 0

02 04 06 08 1.2 14 16 18 2.2 0 02040608 1 12141618 2
ks ks

Fig. 6. Emulated satisfaction probability of ¢1 as function of the parameters. Left: We
vary k_s only, while k_r is fixed to 0.2. Right: We vary both k_s and k_r.

have optimal value equal to 0.107. Note however that the standard deviations
calculated are significantly large compared to the estimates. This is an indication
that the optimum obtained is unstable. In this case, this is due to the fact that
the robustness of the property in question is not very sensitive to the parameters.
Gaussian Process Optimisation --- Results

Solution: [0.3410609996706949, 0.10736369126944924]

|

Standard Dev: [3.6248813872572243, 0.7830513406533174]
Covariance matrix:

|

|

[13.13976507168386, 2.838061284295024;
2.838061284295024, 0.6131694020989578]

5.3 Inference from Qualitative Data

Finally, we present an example of performing parameter inference from qualita-
tive data. We consider two additional MiTL properties:

2 = Fg q)blockers > spreaders
w3 = Gyy.4,918preaders < 25

The @9 property states that at some point before time 1 the population blockers
surpasses the spreader population, while (3 states that the spreaders are always
fewer that 25 between time 1.4 and 2. We have considered the rumour-spreading
model with parameters k_s= 0.05 and k_r= 0.02, and we have produced a syn-
thetic file of observations named rumour.dat, by performing model checking on
random trajectories of the original model. U-check then requires the following
input:

modelFile = rumour.sm

propertiesFile = rumour.mtl

observationsFile = rumour.dat
mode = inference

[0.0001, 2]
parameter k_r = [0.0001, 0.5]

|| parameter k_s
|
|| prior k_s = exponential(0.5)

prior k_r = exponential(0.1)
endTime = 5
runs = 100

As for robust parameter synthesis, the results of the optimisation process
involve the optimal value obtained for each parameter and the corresponding
standard deviation. Note that we have a particularly good fit for both parame-
ters; the estimate for k_s is 0.050, and for k_r is 0.0243, which are very close to
the original values, with a low standard deviation.

|| # Gaussian Process Optimisation --- Results

|| Solution: [0.05098993039106938, 0.02430176520400998]

HStandard Dev: [0.007751880832319672, 0.0019051431370011513]
Covariance matrix:

|| [6.009165643848513E-5, 0.0;

[0.0, 3.629570372462587E-6]

6 Conclusions

Uncertainty is increasingly recognised as an unavoidable companion in many ap-
plications of formal methods. This has motivated an increasing cross-fertilisation
of ideas between machine learning and quantitative formal modelling. In this pa-
per we describe U-check, a novel tool which implements a number of Gaussian
Process based methods for formal analysis of uncertain stochastic processes. Our
aim is to offer a set of tools that can be used by modellers without an in-depth
knowledge of statistical machine learning. To our knowledge, U-check is the first
such tool available; to further facilitate adoption of the tool, U-check can take
as input models formulated in widely used modelling languages such as PRISM
and Bio-PEPA.

The principal conceptual innovation of the methods implemented in U-check
is the smoothness of the satisfaction function for a MiTL formula as a func-
tion of the model parameters. This enables us to transfer information across
neighbouring observations, yielding potentially very significant computational
savings: while we cannot comprehensively review results here, Smoothed Model
Checking was shown in [7] to yield computational savings of an order of mag-
nitude on non-trivial systems biology models. Similarly, the smoothness of the
satisfaction function enables us to deploy a provably convergent algorithm for
(robust) parameter synthesis, with both theoretical guarantees and computa-
tional advantages, as shown in non-trivial case studies in [8,2].

While in our work we primarily focus on examples from biology, uncertain
stochastic processes are the norm in many other areas of application of formal
methods, from smart cities to cyber-physical systems. Future work will explore
increasing support for hybrid systems, as well as supporting other formal analysis
methodologies such as reachability computations [9] and property synthesis [3].

References

1.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

A. Andreychenko, L. Mikeev, D. Spieler, and V. Wolf. Approximate maximum
likelihood estimation for stochastic chemical kinetics. EURASIP Journal on Bioin-
formatics and Systems Biology, 2012(1):1-14, 2012.

. E. Bartocci, L. Bortolussi, L. Nenzi, and G. Sanguinetti. On the robustness of

temporal properties for stochastic models. In Proc. of HSB, volume 125, pages
3-19, 2013.

. E. Bartocci, L. Bortolussi, and G. Sanguinetti. Data-driven statistical learning of

temporal logic properties. In Proc. of FORMATS, pages 23-37, 2014.

. E. Bartocci, R. Grosu, P. Katsaros, C. R. Ramakrishnan, and S. A. Smolka. Model

repair for probabilistic systems. In Proc. of TACAS, pages 326-340. 2011.

. L. Bortolussi, V. Galpin, and J. Hillston. Hybrid performance modelling of oppor-

tunistic networks, pages 106-121. Number 85 in EPTCS. 2012.

. L. Bortolussi, J. Hillston, D. Latella, and M. Massink. Continuous approximation

of collective systems behaviour: a tutorial. Performance Fvaluation, 70:317-349,
2013.

. L. Bortolussi, D. Milios, and G. Sanguinetti. Smoothed model checking for uncer-

tain continuous time Markov chains. CoRR, abs/1402.1450, 2014.

. L. Bortolussi and G. Sanguinetti. Learning and designing stochastic processes from

logical constraints. In Proc. of QEST, pages 89-105. 2013.

. L. Bortolussi and G. Sanguinetti. A statistical approach for computing reachability

of non-linear and stochastic dynamical systems. In Proc. of QEST, pages 41-56,
2014.

M. Ceska, F. Dannenberg, M. Kwiatkowska, and N. Paoletti. Precise parameter
synthesis for stochastic biochemical systems. In Proc. of CMSB, pages 86-98, 2014.
F. Ciocchetta and J. Hillston. Bio-PEPA: A framework for the modelling and
analysis of biological systems. Theoretical Computer Science, 410(33-34):3065—
3084, 2009.

R. Donaldson and D. Gilbert. A model checking approach to the parameter esti-
mation of biochemical pathways. In Proc. of CMSB, pages 269—287, 2008.

A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued
signals. In Proc. of FORMATS, pages 92-106. 2010.

R. Durrett. FEssentials of Stochastic Processes. Springer, 2012.

A. Georgoulas, J. Hillston, D. Milios, and G. Sanguinetti. Probabilistic program-
ming process algebra. In Proc. of QEST, pages 249264, 2014.

D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340-2361, 1977.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In Proc. of CAV, pages 585-591, 2011.

A. Legay and S. Sedwards. Statistical abstraction boosts design and test efficiency
of evolving critical systems. In Proc. of ISOLA, pages 425, 2014.

O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals.
In Proc. of FORMATS, pages 152166, 2004.

J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. In Proc.
of FORMATS, pages 1-13, 2008.

C. Rasmussen and C. Williams. Gaussian processes for machine learning. MIT
Press, 2006.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Information-theoretic regret
bounds for Gaussian process optimisation in the bandit setting. IEEE Trans. Inf.
Th., 58(5):3250-3265, 2012.

	U-check: Model Checking and Parameter Synthesis under Uncertainty
	Introduction & Motivation
	Background material
	Population CTMC
	Property Specification
	Statistical methodologies

	Software Architecture
	Gaussian Processes Framework
	GP Optimisation Framework
	Model Checking Framework
	Smoothed Model Checking
	Learning From Formulae
	U-check CLI

	Configuration Options
	Experiment Configuration
	Simulation Options
	GP Options
	GP Optimisation Options

	Case Study
	Smoothed Model Checking
	Robust Parameter Synthesis
	Inference from Qualitative Data

	Conclusions

