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Abstract—With the wide diffusion of smartphones and
their usage in a plethora of processes and activities, these
devices have been handling an increasing variety of sensitive
resources. Attackers are hence producing a large number of
malware applications for Android (the most spread mobile
platform), often by slightly modifying existing applications,
which results in malware being organized in families.

Some works in the literature showed that opcodes are
informative for detecting malware, not only in the An-
droid platform. In this paper, we investigate if frequencies
of ngrams of opcodes are effective in detecting Android
malware and if there is some significant malware family
for which they are more or less effective. To this end,
we designed a method based on state-of-the-art classifiers
applied to frequencies of opcodes ngrams. Then, we experi-
mentally evaluated it on a recent dataset composed of 11120
applications, 5560 of which are malware belonging to several
different families.

Results show that an accuracy of 97% can be obtained on
the average, whereas perfect detection rate is achieved for
more than one malware family.

I. INTRODUCTION

In recent years, mobile phones have become the main
computing and communication devices. With the increas-
ing number of capabilities these devices have been ac-
quiring, they represent now the most used way to access
to the web and cloud resources. The growth rate in new
mobile malware is far greater than the growth rate of new
malware targeting PCs [8].

New kinds of malware continuously emerge at a very
fast pace, refining more and more the method of the attack
and the system for obtaining a tangible gain (money, most
of times) from the attack. A malware that is plaguing
devices in recent days is the ransomware [5], which
encrypts data stored on the device and holds it for ransom.
The information is then released only after the victim pays
the required amount, in bitcoin.

Protecting smartphones is getting more and more im-
portant, as these devices are used for accessing sensitive
resources: for instance, with the diffusion of the bring-
your-device policy [3], enterprise infrastructures will likely
become a sensible target for mobile malware. Moreover,
the smartphones will be the access point for controlling
intelligent houses and cars, making electronic payments,
and operating with the personal bank account.

In the mobile threat landscape, malware writers are
focusing on the Android platform. This is not surprising:
Android holds 84.4% of the total market share [4] in
smartphones and tablets, and Gartner [7] shows that the

worldwide sales of smartphones to end users totaled
301 million units in the third quarter of 2014. A recent
survey [2] reports that Android in 2014 was the favourite
target for mobile threats with 294 new families and
variants discovered (trojan represents the main malware
type).

The mechanisms employed by attackers to diffuse mal-
ware can be grouped basically in three categories [40, 41]:
repackaging, attack upgrade, and drive-by downloads.

With repackaging, malware authors locate and down-
load popular applications, disassemble them, enclose ma-
licious payloads, re-assemble and then submit the new
applications to official and/or alternative Android markets.
Users could be vulnerable by being enticed to download
and install these infected applications.

A second technique, the so-called update attack, was
introduced to make harder the detection of malicious
payload. Specifically, it may still repackage popular appli-
cations, but instead of enclosing the payload as a whole,
it only includes an update component which will fetch
or download the malicious payloads at runtime. As a
result, static scanning of host applications to capture the
malicious payloads may fail.

The third technique applies the traditional drive-by
download attacks to mobile. Though they are not directly
exploiting mobile browser vulnerabilities, they are essen-
tially enticing users to download “interesting” or “feature-
rich” applications.

Unfortunately, current solutions to protect users from
new threats are still inadequate [1]. Current antimalware
are mostly signature-based: this approach requires that the
vendor be aware of the malware, in order to identify the
signature and send out updates regularly. Signatures have
traditionally been in the form of fixed strings and regular
expressions.

Using signature-based detection, a threat must be
widespread for being successfully recognized. In addition
to this, there exist several techniques to allow the mobile
malware to evade signature detection [34, 33], for instance
trivial changes in the code are usually enough, e.g., the
variables renaming into the malware code, as a study
demonstrated [26].

In the meantime, simple forms of polymorphic attacks
(i.e., malware that mutates at each infection) targeting
Android platform have already been seen in the wild [13].

There is another problem affecting the ability to detect
malware on Android platform. Antimalware software on



desktop operating system has the possibility of monitoring
the file system operations. In this way, it is possible to
check whether some applications assume a suspicious
behavior: for example, if an application starts to down-
load malicious code, it will be detected immediately by
the antimalware responsible for scanning the disk drive.
Android does not allow an application to monitor the file
system: any application can only access its own disk space;
resource sharing is allowed only if expressly provided by
the developer of the application: this allows applications
to download updates and run the new code without any
control by the operating system and by antimalware.

Google, with the introduction of Bouncer [27], tried to
mitigate the problem but attackers write malware which
becomes increasingly aggressive and is able to evade
easily the mechanism. Bouncer executes the application
in a sandbox for a fixed-time window before publish it on
the official market [6]: it is clear that if the malware action
happens over this interval time Bouncer can not detect the
malicious event.

As empirical experience reveals, attackers use to modify
some existing malware, by adding new behaviors or merg-
ing together parts of different existing malware codes. This
explains also why Android malware is usually grouped in
families: in fact, given this way of generating Android
malware, the codes belonging to the same family share
common parts of code and behaviors.

Starting from these considerations, it urges to study new
techniques in order to mitigate the problem.

In this paper, we investigate whether short sequences
of opcodes (i.e., opcode ngrams) are informative for
detecting Android malware. In particular, we focus on
the current scenario in which partitions of the malware
exist within which the applications share common parts
of code. We focus on opcodes because they are closely
related to the application code. Indeed, several works in
literature showed that opcodes frequency can discriminate
a malware software from a trusted one. Bilar [14] obtained
evidence that malware opcodes frequency distribution de-
viates significantly from trusted applications. While Han
et al. [21] show that malware classification using instruc-
tions frequency can be a useful technique for speeding up
malware detection. Rad and Masrom [31] used opcodes for
detecting obfuscated versions of metamorphic viruses. The
sequences of opcodes could represent a sort of signature
of the malware, which is always available and easily
extractable from the application to be analyzed. Moreover,
as this is a static technique, the analysis has the advantage
to be fast and easy to implement.

We designed a method for classifying Android appli-
cations as malware or trusted. Our method is built using
state-of-the-art classifiers and operates on frequencies of
opcode ngrams extracted from the applications. We ex-
perimentally applied the method to a dataset composed
of 5560 real mobile malware grouped in 179 families
and 5560 mobile trusted applications. We varied method
parameters in order to investigate about the method effec-
tiveness with respect to:1) how many consecutive opcodes

should be a ngram consists, and 2) how many different
ngrams should be considered.

The technique proposed in this paper seems to be
much more effective than the existing techniques of static
analysis discussed in literature, as we obtained perfor-
mances that are significantly better than those obtained
by the other techniques, that is 96.88% in the recognition
of malware. The detection rate among the most spread
Android malware families range from 88.6% to 100%.

The paper proceeds as follows: Section II discusses
related work; Section III describes and motivates our
detection method; Section IV illustrates the results of ex-
periments; finally, conclusions are drawn in the Section V.

II. RELATED WORK

In this section we review related literature in two areas:
use of opcodes to detect malware; and approaches specific
to the Android platform.

Five recent papers investigate the effectiveness of op-
codes for detecting malware or characterizing malware.

Bilar [14] proposes a detection mechanism for malicious
code through statistical analysis of opcodes distributions.
This work compares the statistical opcodes frequency
between malware and trusted samples, concluding that
malware opcode frequency distribution seems to deviate
significantly from trusted applications. Han et al. [21]
show that malware classification using instructions fre-
quency can be a useful technique for speeding up malware
detection. The major weakness of their method is the
rate of false positives. In this paper we investigate the
effectiveness of sequences of opcodes, instead of opcodes
frequency, in detecting malware.

In references [31, 32] the histograms of opcodes are
used as a feature to find whether a file is a morphed ver-
sion of another. Using a threshold-based method, authors
of [31] correctly classify different obfuscated versions of
metamorphic viruses; in reference [32] the authors obtain
a 100% detection rate using a dataset of 40 malware in-
stances of NGCVK family, 40 benign files and 20 samples
classified by authors as other virus files. Compared with
our technique, this two works cope with metamorphic
malware, while our domain of investigation is Android
malware.

Jerome and colleagues [22] proposed a detection mecha-
nism relying on opcode sequences combined with machine
learning techniques. They obtain lower performances of
detection than our technique and with sequences longer
than bi-grams.

Santos et al. [35] propose opcode mgrams to detect
malware using a dataset composed by 1000 malware and
1000 trusted computer applications. They conclude that
using 2gram the detection ratio is quite low, achieving a
maximum value of 69.66%, thus 2-grams do not seem
to be appropriate for malware detection. They achieved
best results for detection ratio using 4grams, getting a
maximum detection ratio of 91.25%. For the following
n values, detection ratio is lower than for n = 4, however,
the second best results are achieved with n = 8.



Also Liangboonprakong and colleagues [24] perform a
study on the effectiveness of using ngram to discriminate
malicious computer applications. They extract four dif-
ferent sizes of ngrams (with n € {1,2,3,4}) and study
three classification models (decision tree, artificial neural
network, and support vector machine). Using a malware
dataset of 12199 binary files, grouped into 10 families,
they obtain the best result in terms of accuracy with
4grams (96.64%).

In the realm of static analysis, further techniques have
been recently proposed for detecting Android malware.

Canfora et al. [15] propose a method for detecting
mobile malware based on three metrics, which evaluate:
the occurrences of a specific subset of system calls, a
weighted sum of a subset of permissions that the appli-
cation requires, and a set of combinations of permissions.
They obtain a precision of 74% using a balanced dataset
composed by 200 trusted and 200 real malware applica-
tions.

Droid Detective [23] discriminates an Android applica-
tion by using a technique based on permission combina-
tion. The evaluation with a dataset of 1260 malware and
741 benign produces a detection rate respectively of 96%
and 88% for malware and benign recognition.

Liu and Liu [25] propose another permission-based
approach: they extract requested and used permissions and
make combinations of them to build a J48 classifier to test
their dataset containing 28 548 benign and 1563 malicious
applications. Their evaluation obtains a precision equal to
89.8%. The latter technique shows a rate of false positive
too high, while the former produce performances that are
much poorer than ours.

Sarma et al. [36] investigate the possibility of using both
the permissions an application requests, the category of the
application, and which permissions are requested by other
applications in the same category in order to inform users
about the risks of installing a mobile application.

Arp et al. [11] propose a method to perform a static
analysis of Android applications based on features ex-
tracted from the manifest file and from the disassembled
code (suspicious API calls, network addresses and other).
Their approach uses support vector machines to produce a
detection model, and the dataset used is composed by 5560
malware applications and 123 453 trusted ones obtaining
a detection rate equal to 93.9%.

Yerima et al. [39] present Bayesian classification models
obtained from static analysis. They extract 20 features
from 2000 application (1000 malware and 1000 trusted)
to build the models, obtaining a precision rate equal to
94.4%.

AndroSimilar [17] aims to find regions of statistical
similarity starting from the .dex files. Authors obtain
an accuracy of 72.3% using a dataset of 101 malicious
applications.

DroidLegacy [16] classifies Android malware extracting
families signatures with a precision rate of 87% from their
dataset formed by 1052 malicious applications and 48
benign ones.

Apposcopy [19] identifies class of Android malware us-
ing a semantic-based approach, it uses static taint analysis
and a call graph inter components; authors evaluate their
solution with 1027 malware obtaining an accuracy of 90%.

DroidDolphin [38] performs a static and a dynamic
analysis in order to extract features from network access,
api calls, achieving a prediction accuracy of 86.1% with a
balances dataset composed by 32000 trusted and 32000
malicious applications using an SVM classifier. The api
calls trace requires the application instrumentation.

Fazeen and Dantu [18] propose a framework to identify
potential Android malware applications by extracting the
intention and the permission requests. They evaluate the
solution using a dataset consisting of 1730 benign appli-
cations and 273 malware samples, obtaining an accuracy
of 89% in detecting potential malware samples.

Peng et al. [29] introduce the notion of risk scoring
and risk ranking derived by the number of permissions
requested by an application. They use probabilistic gener-
ative models for risk scoring schemes.

Authors of reference [28] focus on permissions for a
given application and examine whether the application
description provides any indication for why the application
needs a permission. They implemented a framework using
Natural Language Processing (NLP) techniques to identify
sentences that describe the need for a given permission in
an application description, achieving a average precision
of 82.8%, and a recall of 81.5%.

AutoCog [30] assesses description-to-permission fi-
delity of applications using NLP techniques to implement
a learning-based algorithm to relate description with per-
missions. On an evaluation of eleven permissions, they
achieve an average precision of 92.6% and an average
recall of 92%.

III. DETECTION METHOD

We consider a binary classification problem in which
an input application a has to be classified as malware
or trusted. We propose a supervised classification method
for solving this problem in which the features are the
frequencies of opcode sequences in the application.

Our method consists of two phases: a learning phase, in
which the classifier is trained using a labelled dataset of
applications, and the actual classification phase, in which
an input application is classified as malware or trusted. In
both cases, each application is pre-processed in order to
obtain numeric values (frequences of opcode sequences)
suitable to be processed by the classifier.

A. Pre-processing

The pre-processing of an application consists of trans-
forming an application a packed as an . apk file in a set of
numeric values, as follows. We first use apktool to extract
from the .apk the .dex file, which is the compiled
application file of a (Dalvik Executable); then, with the
smali! tool, we disassemble the application .dex file and
obtain several files (i.e., smali classes) which contains the

Thttps://code.google.com/p/smali/



machine level instructions, each consisting in an opcode
and its parameters. From these files, we obtain a set of
opcode sequences where each item is the sequence of
opcodes corresponding to the machine level instructions
of a method of a class in a.

We compute the frequency of opcodes ngrams as fol-
lows. Let O be the set of possible opcodes, and let
O = |JZ] O" the set of ngrams, i.e., sequences of
opcodes whose length is up to n—n being a parameter
of our method. We denote with f(a,0) the frequency
of the ngram o € O in the application a: f(a,o0) is
hence the number of occurrences of o divided by the
total length of the opcode sequences in a. Finally, we set
the feature vector f(a) € [0,1]!°! corresponding to a to
f(a) = (f(a,01), f(a,02),...) with 0; € O.

In general, the size |O| of the feature vector f can be
large, being |O] = ;=" |O|"; however, not all possible
ngrams could be actually observed. We remark that we
split the application code in chunks corresponding to class
methods, since we want to avoid inserting meaningless
ngrams obtained by considering together instructions cor-
responding to different methods: in that case, indeed, we
would wrongly consider as subsequent those instructions
which belong to different methods.

B. Learning phase

The learning phase consists of obtaining a trained binary
classifier C' from two sets A,s, A7 of malware and trusted
applications (the learning sets), respectively. The learning
phase is divided into a feature selection phase and the
actual classifier training phase.

The aim of the feature selection phase is two-fold: on
the one hand, we want to reduce the dimension of the
input—with n = 5, the size |O| of each feature vector
f can be up to =~ 10'2. On the other hand, we want to
retain only the more informative ngrams, with respect to
the output label, while removing noisy features.

We proceed as follows. We first compute the average
frequencies fyr(0) and fr(o) for each ngram o € O
respectively on the malware and trusted applications:

1
fu(o) = m Z f(a,0)

a€An

- 1
fr(o) = m Z f(a,0)

acAr

We then compute the relative difference d(o) between the

two average values:
d(O) — abs(f]\/{(o) — fT(O))
max(fp(0), fr(o))
The relative difference d(o) is high if the ngram o is fre-
quent among malware applications and infrequent among
trusted applications (and vice versa).

Then, we build the set O’ C O of ngrams composed
of the h ngrams with the highest values of d(o0), where
h is a parameter of our method. We do not include in
O’ the ngrams for which d(o) = 1, i.e., we purposely do
not consider those ngrams which occur only in the trusted

(malware) applications of the learning sets: this way, we
strive to avoid building a classifier which works well on
seen applications but fails to generalize.

We then discard from (O’ each ngram o, for which
another ngram o, exists in O such that o, is a su-
persequence of o,: we perform this step in order to
avoid considering redundant information, i.e., frequency of
sequences of opcodes which largely overlap. For instance,
suppose that the ngram o, = (const,iput,move)
exhibits a high relative difference d(o,); then, we want
to avoid considering the information corresponding to the
frequency of o, = (const, iput) if it also exhibits a
high relative difference.

Finally, we retain in O’ only the remaining & < h
ngrams with the greatest value for d(o)—Fk being a param-
eter of the method. Accordingly, we set the reduced feature
vector f'(a) corresponding to a using only the frequences
of the ngrams in @', i.e., f'(a) = (f(a,01), f(a,02),...)
with o; € O'.

The second step of the learning phase consists of train-
ing the actual classifier C' using the reduced feature vectors
obtained from the applications in the learning sets and the
corresponding labels. In this work, we experimented with
two classifiers: Support Vector Machines (SVM) and Ran-
dom Forest (RF). We chose these classifiers because they
have proven to be effective in a large set of application
scenarios [20]. For SVM we used a Gaussian kernel with
the cost ¢ = 1, whereas for RF we set nge. = 500.

C. Classification phase

The classification phase consists of determining if an
application a is malware or trusted, according to a learnt
classifier C'.

To this end, we repeat the pre-processing on a in order
to obtain the reduced feature vector f’(a). Then, we input
f'(a) to C and obtain a label in {malware, trusted}.

Note that, when pre-processing a, only the frequencies
of ngrams in @’ have to be actually computed: in other
words, some practical benefit can be obtained by building
an effective classifier which works on a low number of
features.

IV. EXPERIMENTAL EVALUATION
A. The Dataset

We built a dataset composed of 5560 trusted and 5560
malware Android applications: we denote with A/, and
A’ the two partitions of the dataset, respectively.

The trusted applications were automatically collected
from Google Play [6], by using a script which queries
an unofficial python API [9] to search and download
applications from Android official market. The applica-
tions retrieved were among the most downloaded from
different categories (call & contacts, education, entertain-
ment, GPS & travel, internet, lifestyle, news & weather,
productivity, utilities, business, communication, email &
SMS, fun & games, health & fitness, live wallpapers,
personalization) were downloaded from Google Play [6]
(and then controlled by Google Bouncer [27]) from July



Family Inst.  Attack Activation Apps
Fakelnstaller S t,b 925
DroidKungFu r t boot,batt,sys 667
Plankton s,u t,b 625
Opfake r t 613
GinMaster r t boot 339
BaseBridge r,u t boot,sms,net,batt 330
Kmin S t boot 147
Geinimi r t boot,sms 92
Adrd r t net,call 91
DroidDream r b main 81

Table 1
NUMBER OF SAMPLES FOR THE TOP 10 FAMILIES WITH
INSTALLATION DETAILS (STANDALONE, REPACKAGING, UPDATE),
KIND OF ATTACK (TROJAN, BOTNET) AND EVENTS THAT TRIGGER
MALICIOUS PAYLOAD.

2014 to September 2014, while malware applications of
different nature and malicious intents (premium call &
SMS, selling user information, advertisement, SMS spam,
stealing user credentials, ransom) from Drebin Dataset
[11, 37].

We analysed the trusted dataset with the VirusTotal ser-
vice [10]. This service run 52 different antivirus software
(e.g., Symantec, Avast, Kasperky, McAfee, Panda, and
others) on each application: the output confirmed that the
trusted applications included in our dataset did not contain
malicious payload.

Malware dataset is also partitioned according to the
malware family: each family contains samples which have
in common several characteristics, like payload installa-
tion, the kind of attack and events that trigger malicious
payload [40]. Table I shows the 10 malware families with
the largest number of applications in our malware dataset
with installation type, kind of attack and event activating
malicious payload.

We briefly describe the malicious payload action for the
top 10 populous families in our dataset.

1) The samples of Fakelnstaller family have the main
payload in common but have different code imple-
mentations, and some of them also have an extra
payload. Fakelnstaller malware is server-side poly-
morphic, which means the server could provide dif-
ferent .apk files for the same URL request. There
are variants of Fakelnstaller that not only send SMS
messages to premium rate numbers, but also include a
backdoor to receive commands from a remote server.
There is a large number of variants for this family,
and it has distributed in hundreds of websites and
alternative markets. The members of this family hide
their malicious code inside repackaged version of
popular applications. During the installation process
the malware sends expensive SMS messages to pre-
mium services owned by the malware authors.

2) DroidKungFu installs a backdoor that allows attack-
ers to access the smartphone when they want and
use it as they please. They could even turn it into a
bot. This malware encrypts two known root exploits,
exploit and rage against the cage, to break out of the
Android security container. When it runs, it decrypts

these exploits and then contacts a remote server
without the user knowing.

3) Plankton uses an available native functionality (i.e.,
class loading) to forward details like IMEI and
browser history to a remote server. It is present in
a wide number of versions as harmful adware that
download unwanted advertisements and it changes
the browser homepage or add unwanted bookmarks
to it.

4) The Opfake samples make use of an algorithm that
can change shape over time so to evade the antimal-
ware. The Opfake malware demands payment for the
application content through premium text messages.
This family represents an example of polymorphic
malware in Android environment: it is written with
an algorithm that can change shape over time so to
evade any detection by signature based antimalware.

5) GinMaster family contains a malicious service with
the ability to root devices to escalate privileges,
steal confidential information and send to a re-
mote website, as well as install applications without
user interaction. It is also a trojan application and
similarly to the DroidKungFu family the malware
starts its malicious services as soon as it receives
a BOOT_COMPLETED or USER_PRESENT intent.
The malware can successfully avoid detection by
mobile anti-virus software by using polymorphic
techniques to hide malicious code, obfuscating class
names for each infected object, and randomizing
package names and self-signed certificates for appli-
cations.

6) BaseBridge malware sends information to a remote
server running one ore more malicious services in
background, like IMEI, IMSI and other files to
premium-rate numbers. BaseBridge malware is able
to obtain the permissions to use Internet and to kill
the processes of antimalware application in back-
ground.

7) Kmin malware is similar to BaseBridge, but does not
kill antimalware processes.

8) Geinimi is the first Android malware in the wild that
displays botnet-like capabilities. Once the malware
is installed, it has the potential to receive commands
from a remote server that allows the owner of that
server to control the phone. Geinimi makes use of
a bytecode obfuscator. The malware belonging to
this family is able to read, collect, delete SMS, send
contact informations to a remote server, make phone
call silently and also launch a web browser to a
specific URL to start files download.

9) Adrd family is very close to Geinimi but with less
server side commands, it also compromises personal
data such as IMEI and IMSI of infected device.
In addiction to Geinimi, this one is able to modify
device settings.

10) DroidDream is another example of botnet, it gained
root access to device to access unique identification
information. This malware could also downloads ad-



ditional malicious programs without the user’s knowl-
edge as well as open the phone up to control by
hackers. The name derives from the fact that it was
set up to run between the hours of 11pm and 8am
when users were most likely to be sleeping and their
phones less likely to be in use.

B. Experimental procedure and results

We present here the results of a set of experiments
we performed in order to assess the effectiveness of our
proposal. The experimental procedure was as follows. We
built the learning sets Ay and Aj; by randomly choosing
the 90% of the applications in A’. and A’,,. The remaining
10% of the applications were used as testing set. We
performed the learning phase described in section III-B
using Ar and A); to obtain a classifier C.

After the learning phase, we applied C' to each appli-
cation in the testing set and we measured the accuracy
of the classifier, i.e., its detection rate of malware and
trusted applications. We repeated the above procedure 5
times, every time by changing the composition of Ay and
A

We experimented with different values for £ and n, with
n varying from 1 to 5 and k in 25-2000. Since the number
of different opcodes is 252, we limited the experiment
with n = 1 to a maximum k equal to 250. We used 2
different kind of classifier—i.e., SVM and Random Forest.
We always used h = 5000 for the features selection.

Table II reports the results obtained training both an
SVM based and a Random Forest based classifier. The
table shows the accuracy on training and testing with
all the combinations of n and k values. The results are
averaged over the 5 repetitions. It emerges that we obtain
the best results with n = 2 and & = 1000. Besides, the
Random Forest classifier is better than the SVM one and
it reached an accuracy of 96.88%.

Moreover, the table shows that, in order to achieve the
same accuracy value, greater values of n need greater
values of k. This aspect is consistent with the findings
of [22]. A possible interpretation of this finding is that
ngrams greater than 2 may be too specific and thus the
classifier tends to overfit. Using larger values of k£ can
reduce the overfit. It is important to note, however, that
using of greater values of k£ and n may make the approach
unfeasible in some scenarios.

In order perform the experiments, we used a machine
equipped with a 6 core Intel Xeon E5-2440 (2.40 GHz)
and 32 GB of RAM. The time spent to perform the features
selection with n = 2 is about 2063.4s, where most of
the time is needed to compute the ngrams. This time
grows linearly with n. Moreover, the training of an SVM
classifier with n = 2 and k£ = 1000 took about 239.4s
whereas a Random Forest classifier took about 1054.8s.
These values are averaged over the 5 repetitions.

Table III shows the detection rate for the 10 families
which are most represented in our dataset: the figures
appear promising. In particular, we obtain a malware
detection rate close to or greater than 90% for most

SVM Random Forest

k n | Training  Testing | Training  Testing
1 85.36 81.77 99.51 93.51
2 84.78 85.52 87.79 86.64
25 3 81.46 85.52 84.75 84.27
4 81.39 82.77 83.26 83.15
5 79.25 80.15 80.04 80.27
1 86.35 84.39 99.93 93.51
2 86.90 88.51 91.23 90.14
50 3 83.61 84.27 87.29 86.77
4 82.48 83.15 85.25 84.77
5 79.55 80.65 81.53 82.02
1 89.47 87.14 99.97 93.63
2 89.26 90.64 94.53 93.38
100 3 86.37 86.27 88.79 87.52
4 83.37 82.90 85.93 85.02
5 84.55 84.52 85.58 85.02
1 93.30 90.89 99.99 95.13
2 92.99 91.89 97.49 95.13
250 3 88.65 86.77 91.15 89.39
4 85.00 84.89 87.32 86.77
5 85.25 84.27 87.75 86.02

1 N N N _
2 94.62 92.38 97.54 95.51
500 3 90.28 89.64 92.10 90.51
4 87.40 86.77 90.51 89.39
5 86.37 84.89 89.78 88.01

1 N N N _
2 95.14 93.01 97.44 96.38
750 3 90.78 89.89 93.15 91.14
4 87.91 87.14 91.39 90.39
5 86.29 86.14 89.87 88.39

1 N N N -
2 96.35 94.26 97.35 96.88
1000 3 91.18 90.01 93.49 90.51
4 88.32 87.64 91.82 90.39
5 86.79 86.52 89.97 88.51

1 N N N _
2 95.83 94.13 97.42 94.63
2000 3 92.60 91.01 95.62 93.01
4 92.57 89.89 95.89 93.51
5 91.42 95.67 90.26 94.13

Table II

RESULTS IN TERMS OF ACCURACY (%) ON TRAINING AND TESTING

Detection Rate

SVM Random Forest
Family o o o o
Malware-Fakelnstaller 92.65  2.22 89.71 5.38
Malware-Plankton 88.57 7.80 91.43 2.01
Malware-DroidKungFu 93.23 2.83 88.37 4.79
Malware-GinMaster 91.18 4.91 91.18 3.48
Malware-BaseBridge 93.10 297 89.66  2.47
Malware-Adrd 100.00 0.00 | 100.00 0.00
Malware-Kmin 90.01 3.61 100.00 0.00
Malware-Geinimi 99.28 1.91 100.00 0.00
Malware-DroidDream 100.00 0.00 | 100.00 0.00
Malware-Opfake 91.67 3.81 94.45 1.53
Malware-Average 94.69  3.35 94.69  2.56
Trusted 93.83 2.53 99.07 0.96

Table III

MEAN AND STANDARD DEVIATION VALUES OF THE DETECTION RATE
(%) ON DIFFERENT FAMILIES, WITH n = 2 AND k = 1000



families. We also highlight that the ability to recognize
a malware is similar using SVM or Random Forest, but
the second clearly outperforms the first in recognizing
trusted applications. This high value is really interesting
in a scenario in which it is important to generate a low
number of false positives.

V. CONCLUDING REMARKS AND FUTURE WORK

Since previous works showed that opcodes are in-
formative for discriminating a malware from a trusted
application, we here investigate the effectiveness of a
method operating on opcodes sequences in recognizing the
malware targeting Android platform. The experimentation
revealed that the sequences of opcodes are a very effective
method for detecting Android malware, as this technique
produced an accuracy of 96.88%. Moreover, we found
that the best accuracy of classification can be obtained by
considering just bigrams (i.e., n = 2): in that condition,
our method needs to take into account 1000 opcodes
which, depending on the specific scenario considered, may
make feasible the implementation of our method.

Metamorphic malware could escape the proposed tech-
nique, but at the moment there are no samples of meta-
morphic malware in the wild for the Android platform.
However polymorphic malware, able to change shape over
time so to evade detection by antivirus, is represented in
our dataset by Opfake family (613 samples) with a high
detection rate: 94% using the Random Forest algorithm.

As future work we are going to compare the perfor-
mance of opcodes sequences with that of system calls
sequences in detecting malware. System calls sequences
represent another form of malware signature at a lower
level of abstraction, thus in many facets they could provide
an information to describe malware that is complementary
to that obtained by the sequences of opcodes. Additionally
we would apply the opcodes sequences to track the
philogenesys of malware in order to characterize which
are the known malware an unknown malware descends
from. Finally, despite the fact that our findings seem to
suggest that long sequence of opcodes are not so infor-
mative, it could be interesting to explore the possibility of
automatically building pattern-like signatures of opcodes
from examples and use corresponding frequencies for
detection of malware: indeed, the inference of patterns
from examples for security purposes has already been
explored (e.g., for intrusion detection [12]).
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