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Abstract—A large class of entity extraction tasks from text that is either semistructured or fully unstructured may be addressed by
regular expressions, because in many practical cases the relevant entities follow an underlying syntactical pattern and this pattern may
be described by a regular expression. In this work we consider the long-standing problem of synthesizing such expressions
automatically, based solely on examples of the desired behavior.
We present the design and implementation of a system capable of addressing extraction tasks of realistic complexity. Our system is
based on an evolutionary procedure carefully tailored to the specific needs of regular expression generation by examples. The
procedure executes a search driven by a multiobjective optimization strategy aimed at simultaneously improving multiple performance
indexes of candidate solutions while at the same time ensuring an adequate exploration of the huge solution space.
We assess our proposal experimentally in great depth, on a number of challenging datasets. The accuracy of the obtained solutions
seems to be adequate for practical usage and improves over earlier proposals significantly. Most importantly, our results are highly
competitive even with respect to human operators. A prototype is available as a web application at http://regex.inginf.units.it.
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1 INTRODUCTION

A REGULAR EXPRESSION is a means for specifying string
patterns concisely. Such a specification may be used by

a specialized engine for extracting the strings matching the
specification from a data stream. Regular expressions are a
long-established technique for a large variety of application
domains, including text processing, and continue to be a
routinely used tool due to their expressiveness and flexi-
bility. A large class of entity extraction tasks, in particular,
may be addressed by regular expressions, because in many
practical cases the relevant entities follow an underlying
syntactical pattern and this pattern may be described by
a regular expression. However, the construction of regular
expressions capable of guaranteeing high precision and high
recall for a given extraction task is tedious, difficult and
requires specific technical skills.

In this work, we consider the problem of synthesizing
a regular expression automatically, based solely on exam-
ples of the desired behavior. This problem has attracted
considerable interest, since a long time and from different
research communities. A wealth of research efforts con-
sidered classification problems in formal languages [1], [2],
[3], [4], [5], [6]—those results are not immediately useful
for text extraction. Essentially, the problem considered by
those efforts consisted in inferring an acceptor for a regular
language based on positive and negative sample strings,
i.e., of strings described by the language and of strings
not described by the language. Learning of deterministic
finite automata (DFA) from examples was also a very active
area, especially because of competitions that resulted in
several important insights and algorithms, e.g. [7], [8]. Such
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research, however, usually considered problems that were
not inspired by any real world application [8] and the
applicability of the corresponding learning algorithms to
other application domains is still largely unexplored [9]. For
example, the so-called Abbadingo competition was highly
influential in this area and considered short sequences of
binary symbols, with training data drawn uniformly from
the input space. Settings of this sort do not fit the needs
of practical text processing applications, which have to
cope with much longer sequences of symbols, from a much
larger alphabet, not drawn uniformly from the space of all
possible sequences. Furthermore, regular expressions used
in modern programming languages allow specifying more
various extraction tasks than those which can be specified
using a DFA.

A text extraction problem was addressed by researchers
from IBM Almaden and the University of Michigan, which
developed a procedure for improving an initial regular
expression to be provided by the user based on examples
of the desired functioning [10]. The cited work is perhaps
the first one addressing entity extraction from real text of
non trivial size and complexity: the entities to be extracted
included software names, email addresses and phone num-
bers while the datasets were unstructured and composed of
many thousands of lines. A later proposal by researchers
from IBM India and Chennai Mathematical Institute still
required an initial regular expression but was more robust
toward initial expressions of modest accuracy and noisy
datasets [11]. Refinement of a given regular expression
was also considered by an IBM Research group, which
advocated involvement of a human operator for providing
feedback during the process [12]. The need of an initial
solution was removed by researchers from SAP AG that
demonstrated the practical feasibility of inferring a regular
expression from scratch, based solely on a set of examples
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derived from enterprise data, such as, e.g., a product catalog
or historical invoices [13]. A more recent proposal of ours
has obtained further significant improvements in this area,
in terms of precision and recall of the generated solutions
as well as in terms of smaller amount of training data
required [14], [15]. Regular expressions for text extraction
tasks of practical complexity may now be obtained in a
few minutes, based solely on a few tens of examples of the
desired behavior.

In this work we present a system that aims at improving
the state-of-the-art in this area. Our proposal is internally
based on Genetic Programming (GP), an evolutionary com-
puting paradigm which implements a heuristic search in
a space of candidate solutions [16]. We execute a search
driven by a multiobjective optimization strategy aimed at
simultaneously improving multiple performance indexes of
candidate solutions while at the same time ensuring an ad-
equate exploration of the huge solution space. Our proposal
is a significant improvement and redesign of the approach
in [15], resulting in a system that generates solutions of
much better accuracy. The improvements include: (a) a rad-
ically different way of quantifying the quality of candidate
solutions; (b) inclusion, in the starting points of the search,
of candidate solutions built based on an analysis of the
training data, rather than being fully random; (c) a strategy
for restricting the solution space by defining potentially
useful “building blocks” based on an analysis of the training
data; and (d) a simple mechanism for enforcing structural
diversity of candidate solutions.

Furthermore, the redesign features several novel proper-
ties which greatly broaden the scope of extraction tasks that
may be addressed effectively:
• Support for the or operator. In many cases learning a

single pattern capable of describing all the entities to
be extracted may be very difficult—e.g., dates may be
expressed in a myriad of different formats. Our system
is able to address such scenarios by generating several
regular expressions that are all joined together with or
operators to form a single, larger regular expression.
We implement this functionality by means of a separate-
and-conquer procedure [17], [18], [19]. Once a candidate
regular expression provides adequate accuracy on a
subset of the examples, the expression is inserted into
the set of final solutions and the learning process con-
tinues on a smaller set of examples including only those
not yet solved adequately [20]. The key point is that
the system is able to realize automatically how many
regular expressions are needed.

• Context-dependent extraction. It is often the case that a
text snippet must or must not be extracted depending
on the text surrounding the snippet—e.g., an email
address might have to be extracted only when follow-
ing a Reply-To: header name. Modern regular expression
engines provide several constructs for addressing these
needs but actually taking advantage of those constructs
is very challenging: the more the available constructs,
the larger the search space. Our system is able to gener-
ate regular expressions which exploit lookaround opera-
tors effectively, i.e., operators specifying constraints on
the text that precedes or follows the text to be extracted.

• No constraints on the size of training examples. We place

no constraints on the size of training examples: the
training data may consist of either a single, potentially
very large, file with an annotation of all the desired
extractions, or of a set of lines with zero or more
extractions in each one. This seemingly minor detail
may in fact be quite important in practice: the cited
work [15] was not able to exploit training examples
including multiple extractions correctly (this point will
be discussed in detail later), thus the training data
had to be segmented in units containing at most one
extraction and in such a way that desired extractions
did not span across adjacent units. The need for such
a tricky operation is now removed. Accommodating
the possibility of multiple extractions in each training
example has required significant changes in the search
strategy internally used by the system.

We assess our proposal experimentally in great depth,
on a number of challenging datasets of realistic complexity
and with a very small portion of the dataset available for
learning. We compare precision and recall of the regular
expressions generated by our system to significant baseline
methods proposed earlier in the literature. The results in-
dicate a clear superiority of our proposal and the obtained
accuracy values seem to be adequate for practical usage.
Our results are highly competitive also with respect to a
pool of more than 70 human operators, both in terms of
accuracy and of time required for building a regular expres-
sion. Indeed, we are not aware of any proposal for automatic
generation of regular expressions in which human operators
were used as a baseline.

We made publicly available the source code of our
system (https://github.com/MaLeLabTs/RegexGenerator)
and deployed an implementation as a web app (http://
regex.inginf.units.it).

2 RELATED WORK

In this section we discuss further proposals that, beyond
those already discussed in the introduction, may be useful
to place our work in perspective with respect to the existing
literature. As pointed out by [10], the learning of regular
expressions for information extraction prior to the cited
work focused on scenarios characterized by alphabet sizes
much smaller than those found in natural language text.
Rather than attempting to infer patterns over the text to be
extracted, the usual approach consisted on learning patterns
over tokens generated with various text processing tech-
niques, e.g., POS tagging, morphological analysis, gazetteer
matching [21], [22], [23].

An attempt at learning regular expressions over real text
was proposed in [24]. The cited work considered reduced
forms of regular expressions (a small subset of POSIX rules)
and, most importantly, considered a simple classification
problem consisting in the detection of HTML lines with a
link to other web documents. Text classification and text
extraction are related but different problems, though. The
former assumes an input stream segmented in units to be
processed one at a time; one has to detect whether the
given input unit contains at least one interesting substring.
The latter requires instead the ability to identify, in the
(possibly very long) input stream, the boundaries of all
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the relevant substrings, if any. Furthermore, text extraction
usually requires the ability to identify a context for the
desired extraction, that is, a given sequence of characters
may or may not have to be extracted depending on its
surroundings. Interestingly, the approach in [15] was devel-
oped for extraction but delivered better results than in [24]
also in classification.

Further proposals for addressing classification problems
have been developed but tailored to very specific scenarios,
recent examples include email spam campaigns [25], [26]
and clinical symptoms [27].

There have been other proposals for regular expression
learning aimed at information extraction from real text,
specifically web documents [28]. The cited work provides an
accuracy in URL extraction from real web documents that is
quite low—the reported value for F-measure being 27% (on
datasets that are not public). In this respect, it is useful to
observe that the latest proposal [15] obtained accuracy well
above 90% in the 12 datasets considered; moreover, two of
those datasets were used also in [10], [13] and in those cases
it obtained similar or much better accuracy with a training
set smaller by an order of magnitude.

The problem of learning a regular expression by exam-
ples of the desired extraction behavior could be seen as a
very specific problem in the broader category of program-
ming by examples, where a program in a given programming
language is to be synthesized based on a set of input-
output pairs [29]. In particular, the problem is an under-
specified task [30] in the sense that there may usually be
many different solutions whose behavior on the training
data is identical while their behavior on unseen data is
different. The cited work considers the generation of regular
expressions for classification tasks on phone numbers, dates,
email addresses and URLs—tasks that are considered to be
tricky even for expert developers and to lack an easy-to-
formalize specification. It advocates the writing of solutions
by several expert developers based on some examples, an
assessment of their behavior on unseen data made in crowd-
sourcing, and an evolutionary optimization of the available
solutions based on the feedback from the crowd. Our pro-
posal generates a regular expression in a fully automatic
way. Furthermore, we assess our work on datasets that are
orders of magnitude larger than those considered in [30] and
on tasks that seems fair to define much more challenging.
Of course, we make these observations in the attempt of
clarifying our proposal and by no means we intend to criti-
cize the cited work: besides, the cited work investigates the
possibility of crowd-sourcing difficult programming tasks
and is not meant to propose a method for the automatic
generation of regular expressions from examples. It is useful
to observe, though, that the authors of the cited work were
not aware of any approach suitable for learning regular
expressions capable of handling the large alphabet sizes
occurring in real-world text files, while such functionality
was demonstrated in [13], [14], [15].

As pointed out above, learning a program from ex-
amples of the desired behavior is an intrinsically under-
specified task—there might be many different solutions
with identical behavior over the examples. Furthermore,
in practice, there is usually not even any guarantee that a
solution which perfectly fits all the examples actually exists.

The common approach for addressing this issue, which is
also our approach, aims at an heuristic balance between
generalization and overfitting: we attempt to infer from
the examples what is the actual desired behavior, without
insisting on obtaining perfect accuracy on the training set. It
may be worth mentioning that coding challenges exist (and
occasionally become quite popular in programming forums)
which are instead aimed at overfitting a list of examples [31],
[32]. The challenge1 consists in writing the shortest regular
expression that matches all strings in a given list and does
not match any string in another given list. Our proposal
is not meant to address these scenarios. From the point of
view of our discussion, scenarios of this sort differ from
text extraction in several crucial ways. First, they are a
classification problem rather than an extraction problem.
Second, they place no requirements on how strings not
listed in the problem specification should be classified—e.g.,
strings in the problem specification followed or preceded
by additional characters. Text extraction requires instead a
form of generalization, i.e., the ability of inducing a general
pattern from the provided examples.

Finally, we mention a recent proposal for information
extraction from examples [33]. The cited work describes
a powerful and sophisticated framework for extracting
multiple different fields automatically in semi-structured
documents. As such, the framework encompasses a much
broader scenario than our work. A tool implementing this
framework has been publicly released as part of Windows
Powershell2. The tool does not generate a regular expres-
sion; instead, it generates a program in a specified algebra
of string processing operators that is to be executed by a
dedicated engine. We decided to include this tool in our
experimental evaluation in order to obtain further insights
into our results.

3 SCENARIO

We are concerned with the task of generating a regular
expression which can generalize the extraction behavior
represented by some examples, i.e., by strings annotated
with the desired portions to be extracted. In this section
we define the problem statement in detail along with the
notation which will be used hereafter.

We focus on the regular expression implementation
which is provided by the Java standard libraries. A deep
comparison of different flavours of regular expressions is
beyond the scope of this paper [34], yet it is worth to
mention that Java regular expressions provide more con-
structs than POSIX extended regular expressions (ERE)—
e.g., lookarounds (see Section 4.1.1)—which allow to define
patterns in a more compact form.

3.1 Definitions
A snippet xs of a string s is a substring of s, identified by
the starting and ending index in s. For readability, we refer
to snippets using their textual content followed by their
starting index as subscript—e.g., ex5, extra5 and traction7, are
three different snippets of the string text extraction. We denote

1. https://www.google.it/search?q=regex+golf
2. Windows Management Framework 5.0 Preview, November 2014.
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by Xs the set of all the snippets of s. Let xs, x
′
s ∈ Xs. A

total order is defined among snippets in Xs based on their
starting index: xs precedes x′s if the starting index of the
former is strictly lower than the starting index of the latter.
We say that xs is a supersnippet of x′s if the indexes interval
of xs strictly contains the indexes interval of x′s: in this case,
x′s is a subsnippet of xs. Finally, we say that xs overlaps x′s
if the intersection of their index intervals is not empty. For
instance, ex1, ex5, extra5 and traction7, are snippets of the string
text extraction: extra5 is a supersnippet of ex5 (but not of ex1),
extra5 precedes and overlaps traction7.

A regular expression r applied on a string s determin-
istically extracts zero, one or more snippets. We denote the
(possibly empty) set of such snippets, that we call extractions,
by [Xs]r.

3.2 Problem statement
The problem input consists of a set of examples, where an
example (s,Xs) is a string s associated with a (possibly
empty) set of non-overlapping snippets Xs ⊂ Xs. String
s may be, e.g., a text line, or an email message, or a log file
and so on. Set Xs represents the desired extractions from s,
whereas snippets in Xs \Xs are not to be extracted.

Intuitively, the problem consists in learning a regular
expression r̂ whose extraction behavior is consistent with
the provided examples—r̂ should extract from each string
s only the desired extractions Xs. Furthermore, r̂ should
capture the pattern describing the extractions, thereby gen-
eralizing beyond the provided examples. In other words,
the examples constitute an incomplete specification of the
extraction behavior of an ideal and unknown regular ex-
pression r?. The learning algorithm should aim at inferring
the extraction behavior of r? rather than merely obtaining
from the example strings exactly the desired extractions. We
formalize this intuition as follows.

Let E and E? be two different sets of examples, both
representing the extraction behavior of a target regular
expression r?. The problem consists in learning, from only
the examples in E, a regular expression r̂ which maximizes
its F-measure on E?, i.e., the harmonic mean of precision
and recall w.r.t. the desired extractions from the examples in
E?:

Prec(r̂, E?) :=

∑
(s,Xs)∈E? |[Xs]r̂ ∩Xs|∑

(s,Xs)∈E? |[Xs]r̂|

Rec(r̂, E?) :=

∑
(s,Xs)∈E? |[Xs]r̂ ∩Xs|∑

(s,Xs)∈E? |Xs|

The greater the F-measure of r̂ on E?, the more similar the
extraction behaviour of r̂ and r?.

We call the pair of sets of examples (E,E?) a problem
instance. In our experimental evaluation we built several
problem instances starting from quite complex target ex-
pressions r? and strings consisting of real world datasets
(e.g., logs, HTML lines, Twitter posts, and alike). Of course,
in a practical deployment of the system set E? is not
available because the target expression r? is not known.

3.2.1 Observations on the problem statement
We point out that characterizing the features of a problem
instance which may impact the quality of a generated

solution is beyond the scope of this paper. Assessing the
difficulty of a given problem instance, either in general
or when solved by a specific approach, is an important
theoretical and practical problem. Several communities have
long started addressing this specific issue, e.g., in infor-
mation retrieval [35], [36] or in pattern classification [37],
[38]. Obtaining practically useful indications, though, is
still a largely open problem, in particular, in evolutionary
computing [39] as well as in more general search heuristics
[40], [41].

A notable class of problem instances is the one which we
call with context. Intuitively, these are the problem instances
in which a given sequence of characters is the textual content
of snippet to be extracted and also the textual content of a
snippet which is not to be extracted. For example, consider
a problem instance with the two examples (I have 12 dogs, ∅)
and (Today is 7-12-11, {1211}). This problem instance is with
context because the sequence of characters 12 is not to
be extracted from the first example but is to be extracted
from the second example. The discriminant between the two
cases is in the portion of the string surrounding the sequence
12, that is, in its context. Of course, similar scenarios could
occur with respect to sequences of characters in the same
example rather than in different examples—e.g., assuming
an email message is an example, one might want to extract
only the email addresses following a Reply-To: header name.

4 OUR APPROACH

Our approach is based on Genetic Programming (GP) [16].
GP is an evolutionary computing paradigm in which can-
didate solutions for a target problem, called individuals, are
encoded as trees. A problem-dependent numerical function,
called fitness, must be defined in order to quantify the ability
of each individual to solve the target problem. This function
is usually implemented by computing a performance index
of the individual on a predefined set of problem instances,
called the learning set. A GP execution consists of an heuristic
and stochastic search in the solution space, looking for a so-
lution with optimal fitness. To this end, an initial population
of individuals is built, usually at random, and an iterative
procedure is performed which consists in (i) building new
individuals from existing ones using genetic operators (usu-
ally crossover and mutation), (ii) adding new individuals to
the population, and (iii) discarding worst individuals. The
procedure is repeated a predefined number of times or until
a predefined condition is met (e.g., a solution with perfect
fitness is found).

We carefully adapted the general framework outlined
above to the specific problem of regular expression genera-
tion from examples. Our GP procedure is built upon our ear-
lier proposal [15]—the numerous improvements were listed
in the introduction. We describe this procedure in detail in
the next sections: encoding of regular expressions as trees
(Section 4.1.1), fitness definition (Section 4.1.2), construction
of the initial population and its evolution for exploring
the solution space (Section 4.1.3). Next, we describe our
separate-and-conquer strategy (Section 4.1.4) and the overall
organization of GP searches (Section 4.2).
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4.1 GP search
We designed a GP search which takes a training set T as
input and outputs a regular expression r̂. The training set
is composed of tuples (s,Xd

s , X
u
s ), the components of each

tuple being as follows: (i) a string s; (ii) a set of snippets
Xd

s representing the desired extractions from s; (iii) a set of
snippets Xu

s representing the undesired extractions from s,
i.e., no snippet of s overlapping a snippet in Xu

s should be
extracted. The training set T must be constructed such that
∀s ∈ T (i) Xd

s ∩Xu
s = ∅, and, (ii) snippets in Xd

s ∪Xu
s must

not overlap each other. The goal of a GP search is to generate
a regular expression r such that ∀s ∈ T , Xd

s = [Xs]r . We
recall that, from a broader point of view, the generated
regular expression r should generalize beyond the examples
in T (see Section 3.2).

4.1.1 Tree representation
In our proposal an individual is a tree which represents a
regular expression r. Each node in a tree is associated with
a label, which is a string representing basic components of a
regular expressions that are available to the GP search (dis-
cussed in detail below). Labels of non-leaf nodes include the
placeholder symbol A: each children of a node is associated
with an occurrence of symbol A in the label of that node.
The regular expression represented by a tree is the string
constructed by means of a depth-first post-order visit of the
tree. In detail, we execute a string transformation of the root
node of that tree. The string transformation of a node is a
string obtained from the node label where each A symbol
is replaced by the string transformation of the associated
child. Figure 1 shows two examples of tree representations
of regular expressions.

Available labels are divided in two sets: a set of prede-
fined labels which represent regular expression constructs,
and a set of T -dependent labels constructed as described
below. In other words, the GP search explores a space
composed of candidate solutions assembled from general
regular expression constructs and from components con-
structed before starting the GP search by analyzing the
provided examples—this procedure was not present [15].
The rationale for T -dependent labels consists in attempting
to shrink the size of the solution space by identifying those
sequences of characters which occurs often in the desired
extractions (or “around” them) and making these sequences
available to the GP search as unbreakable building blocks.
For instance, in the task of generating a regular expression
for extracting URLs, the string http could be an useful such
block.

Predefined labels are the following: character classes (\d,
\w), predefined ranges (a-z, A-Z), digits (0, . . . , 1), predefined
characters (\., :, ,, ;, , =, ”, ’, \\, /, \?, \!, \}, \{, \(, \), \[, \], <, >,
@, #, ), concatenator (AA), set of (un)possible matches ([A],
[ˆA]), possessive quantifiers (A*+, A++, A?+, A{A,A}+), non-
capturing group ((?:A)), and lookarounds ((?<=A), (?<!A),
(?=A), (?!A)). We include possessive quantifiers and we do
not include greedy and lazy quantifiers3 because greedy
and lazy quantifiers have worst-case exponential complex-
ity, which results in execution times for fitness evaluation

3. Greedy quantifiers: A*A+ A? A{A,A}. Lazy quantifiers: A*? A+? A??
A{A,A}?

too long to be practical [15]. We include lookarounds for
addressing problem instances with context, i.e., scenarios
where a given sequence of characters has or has not to be
extracted depending on its surroundings (Section 3.2.1)—
lookarounds were not used in [15]. Lookaround is a short-
hand for regular expression constructs which allow defining
constraints on the text that either precedes or follows the
snippet to be extracted, in the form of text that must or must
not be present (see [34] for details). For instance, the regular
expression r = (?<=\d\d-\d\d-)\d++ contains a lookaround
operator, the positive lookbehind operator, that specifies which
text must precede the snippet to be extracted. Given the
string s = born: 02-03-1979, graduated: 21-07-04, age: 35, the set
of extractions [Xs]r contains 197912 and 0437, but not 3544.
Some notable regular expression implementations (namely
JavaScript) does not work with lookbehind.

The set of T -dependent labels contains token labels and
partial range labels.

Token labels are generated as follows. A multiset T d of
candidate tokens is built by applying the regular expres-
sion \w+|\s+|[ˆ\w\s]+ to each desired extraction in T : that
is, T d contains all the extractions obtained by that regular
expression on each element of

⋃
(s,Xd

s ,X
u
s )∈T Xd

s . Then, the
occurrency rate of each candidate token is computed as its
multiplicity in T d divided by |

⋃
(s,Xd

s ,X
u
s )∈T Xd

s |. Finally,
candidate tokens with an occurrency rate which is greater
than 80% are retained as token labels. The same procedure
is executed with respect to candidate tokens obtained from
undesired extractions (only in tuples (s,Xd

s , X
u
s ) for which

Xd
s 6= ∅).

Partial range labels are obtained as the largest intervals
of alphanumeric characters whose elements occur in the
desired extractions (i.e., in

⋃
(s,Xd

s ,X
u
s )∈T Xd

s ). For instance,
a-c and l-n are two partial ranges labels obtained from the
strings cabin and male.

4.1.2 Fitness
The fitness definition, i.e., how to quantify the quality of
a candidate solution for the problem being solved, is a
fundamental design decision in GP. Several practical appli-
cations are based on a multiobjective approach, where the
quality of a candidate solution is assessed by means of two
fitness indexes: one for quantifying performance, the other
for quantifying a complexity index of the solution, typically
its size. Such an approach has proven to be very effective
at preventing bloat, i.e., the proliferation of candidate solu-
tions that grow bigger in size without any corresponding
improvement in performance [42].

We developed a fitness definition in which the perfor-
mance of the solution is taken into account by two perfor-
mance indexes (differently from the single one used in [15]):
one considers examples at the level of full extractions;
the other considers instead each example as a character
sequence where each character, specified by its value and po-
sition, is to be classified between extracted vs. non extracted.
The aim of the latter is to rewards small improvements at
the character level in the extraction behavior, even when
they do not result in new full snippets correctly extracted.
The same aim motivated the fitness definition of [15], but
here we accomodate a scenario with multiple extractions
for each example, which was not tailored by the cited paper.
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We couple the two performance indexes with length of the
regular expression, thereby resulting in three fitness indexes.

Our fitness definition requires comparing the actual ex-
tractions generated by a regular expression to the desired
extractions. To this end, we define two operators over sets
of snippets. Let Xs and X ′s be two sets of snippets of s. The
snippet set difference Xs 	 X ′s is the set composed of each
snippet in Xs which satisfies the following conditions: (i) is
a subsnippet of, or is equal to, one or more snippets in Xs,
(ii) does not overlap any snippet in X ′s, (iii) is not a subsnip-
pet of any snippet which meets the two previous conditions.
For instance, consider string s = I said I wrote a ShortPaper
and the sets of snippets Xs = {I0, I7, ShortPaper17}, and
X ′s = {I0, Pap22}. It will be Xs 	X ′s = {I7, Short17, er25}. The
snippet set intersection Xs u X ′s is defined in the same way
except that condition ii requires to be a subsnippet of, or
to be equal to, one or more snippets in X ′s. In the previous
example it will be Xs uX ′s = {I0, Pap22}.

Each individual r is associated with a fitness tuple
f(r) := (Prec(r, T ),Acc(r, T ), `(r)). The first component
Prec(r, T ) of the fitness is the precision on the tuples in T :

Prec(r, T ) :=

∑
(s,Xd

s ,X
u
s )∈T

∣∣[Xs]r ∩Xd
s

∣∣∑
(s,Xd

s ,X
u
s )∈T |[Xs]r u (Xd

s ∪Xu
s )|

The second component Acc(r, T ) is the average of the
True Positive Character Rate (TPCR) and True Negative
Character Rate (TNCR):

TPCR(r, T ) :=

∑
(s,Xd

s ,X
u
s )∈T

∥∥[Xs]r uXd
s

∥∥∑
(s,Xd

s ,X
u
s )∈T ‖Xd

s ‖

TNCR(r, T ) :=

∑
(s,Xd

s ,X
u
s )∈T ‖({s0} 	 [Xs]r) uXu

s ‖∑
(s,Xd

s ,X
u
s )∈T ‖Xu

s ‖

where ‖X‖ is the sum of the length of all the snippets in X
and s0 is the snippet consisting of the whole string s.

Finally, the latter component `(r) is the length of the
regular expression r (this index has to be minimized, unlike
the other two indexes which have to be maximized).

We rank individuals based on their fitness tuples as
follows. An individual a Pareto-dominates another individual
b if a is better than b on at least one fitness element and
not worse on the other elements. An individual belongs to
the ith frontier if and only if it is Pareto-dominated only by
individuals belonging to jth frontier, with j < i (individuals
in the first frontier are not Pareto-dominated by any other
individual). Based on these definitions, we first sort indi-
viduals based on the Pareto frontier they belong to. Second,
we establish a total order among individuals belonging to
the same Pareto frontier based on a lexicographic ordering
among fitness indexes.

4.1.3 Initialization and evolution
Our GP search operates on a fixed-size population of npop
individuals. We build the initial population basing on the
training set T , unlike the usual approach in GP which
consists of building the entire population at random (as
in [15]). We generate 4 individuals from each snippet in
each example, all generated so as to extract that snippet.
The rationale is to provide a sort of good starting point and
useful genetic material for the search.

In detail, for each snippet xs in
⋃

(s,Xd
s ,X

u
s )∈T Xd

s , we
generate 4 individuals as described below—Figure 1 shows
an example of the procedure applied to a single snippet.

a) A tree is generated from the textual content of xs using,
whenever possible and with decreasing priority, (i) nodes
with token label to represent the corresponding tokens,
(ii) nodes with the label \d to represent digits, (iii) sub-
trees corresponding to [a-zA-Z] to represent alphabetic
characters, (iv) nodes with predefined characters labels to
represent corresponding characters, and (v) nodes with
the label . for all other characters.

b) A tree is generated as in a, then subtrees composed only
of nodes with two labels, one being the concatenator AA
and the other a generic label l, are replaced by the subtree
corresponding to l++.

c) Two snippets xbehind
s and xahead

s are considered such that
their length is at most 10`(xs) and they immediately
precede (xbehind

s ) or succeed (xahead
s ) xs in the correspond-

ing tuple—they are not considered if xs stays at the
beginning or at the end of the string, respectively. Then,
a tree for each snippet xbehind

s , xs, and xahead
s is built as

in a. Finally, a tree is built such that it corresponds to
the concatenation of (i) a lookbehind node whose child is
the tree obtained from xbehind

s , (ii) the tree obtained from
xs, and (iii) a lookahead node whose child is the tree
obtained from xahead

s .
d) A tree is generated as in c and then modified as in b, by

compacting subtrees of repeated leaf nodes. For lookbe-
hind trees, subtrees are replaced by l{1,m}+, rather than
l++, where l is the repeated label and m is the number
of its occurrences in the subtree. This change is made to
accommodate a limitation of common regular expression
libraries which do not allow for ++ and *+ to occur within
lookbehinds.

If the number of individuals generated from the train-
ing set T is greater than npop, exceeding individuals are
removed at random; otherwise, missing individuals are gen-
erated at random with a Ramped half-and-hald method [16],
each one with a tree depth chosen randomly within the
interval 2–15. Whenever an individual is generated whose
string transformation is not a valid regular expression, it is
discarded and a new one is generated.

Once the initial population is built, it is evolved itera-
tively as follows. At each iteration (called generation), npop
new individuals are generated: 80% by crossover of pairs
of individuals of the current population, 10% by mutation
of individuals of the current population, 10% generated
randomly with a Ramped half-and-half method. Crossover
is a genetic operator which takes two individuals and out-
puts two new individuals that are identical to the input
individuals except for two randomly selected subtrees that
are swapped. Mutation is a genetic operator which takes
an individual and outputs a new individual identical to
the input inividual except for a randomly selected subtree
that is replaced by a new randomly generated subtree.
The choice of an individual (or a pair of individuals) to
undergo mutation (or crossover) is made with a tournament
selection: 7 individuals are randomly picked in the current
population and the one with the best fitness is selected. A
new population is built from the resulting 2npop individuals,
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s1 = height: 174.5cm s2 = height: n.a.
xs1 = 174.58
ra = \d\d\d\.\d
rb = \d++\.\d
rc = (?<=height: )\d\d\d\.\d(?=[A-Za-z][A-Za-z])
rd = (?<=height: )\d++\.\d(?=[A-Za-z]{1,2}+)

(a) Individuals generated for xs.

AA

\dAA

AA

\.\d

AA

\d\d

(b) Tree for ra.

AA

AA

(?=A)

A{A,A}+

21[A-Za-z]

AA

AA

\d\.

A++

\d

(?<=A)

AA

AA

:

height

(c) Tree for rd.

Fig. 1: Example of the population initialization from a training set of 2 examples: 4 individuals ra, rb, rc, rd are generated
from the only desired extraction xs1 . The trees corresponding to 2 of them are shown: note that, in rd, height is a token label
(see Section 4.1.1). The subscript of the individuals (a–d) corresponds to the specific points described in Section 4.1.3.

by retaining only the best npop of them.
The above procedure includes a genotypic diversity en-

forcement criterion which was not present in [15] (a very
similar mechanism is used in [43]): whenever an individual
r1 is generated whose string transformation is the same as
one of an existing individual r2 (i.e., one in the current pop-
ulation or one previously generated in the current iteration),
r1 is discarded and a new one is generated.

The iterative procedure is repeated until one of the two
following conditions is met: (i) a number of ngen iterations
have been performed, or (ii) the fitness tuple of the best
individual has remained unchanged for nstop consecutive
iterations. The string transformation of the best individual
of the population at the end of the last iteration is the
outcome of the GP search.

4.1.4 Separate-and-conquer
A problem instance may include desired extractions which
are structurally very different from each other. For example,
dates may be expressed in a myriad of different formats
and learning a single pattern capable of expressing all
these formats may be very difficult. While problem instance
of this sort could be theoretically addressed by including
the or operator | among the building blocks available to
the GP search for building candidate solutions, in practice
such a design choice is ineffective. As it turned out from
our analyses, that we omit for brevity, inclusion of the or
operator generally leads to poor solutions, probably because
of the much increased size of the solution space along with
the difficulty of figuring out when such operator is actually
needed and at which exact point of a candidate solution.

To address this important practical problem we designed
a separate-and-conquer search procedure (which we previ-
ously sketched in [20]) that does not require the or operator
yet is able to realize automatically whether multiple patterns
are required and, in that case, to actually generate such
patterns with an appropriate trade-off between specificity
and generality.

A separate-and-conquer search consists of an iterative
procedure in which, at each iteration, a GP search is per-
formed and the snippets correctly extracted by the set of
regular expressions generated so far are removed from the
training set for the next iteration. This general scheme [17]
is useful to cope with scenarios in which several problem
sub-instances that are not explicitly delimited could be

identified, such as in various forms of rule inference [18],
[19], [44]. In detail, initially the target regular expression r̂ is
set to the empty string, then the following sequence of steps
is repeated:

1) Perform a GP search on T and obtain r.
2) If Prec(r, T ) = 1, then assign r̂ := r̂|r (i.e., concatenate

r̂, the regular expression or operator |, and r), otherwise
terminate.

3) For each (s,Xd
s , X

u
s ) ∈ T , assign Xd

s := Xd
s \ [Xs]r̂ ;

4) If
⋃

(s,Xd
s ,X

u
s )∈T Xd

s is empty, then terminate.

In other words, at each iteration we require the currently
generated regular expression r to have perfect precision
(step 2): i.e., r must extract only snippets which are indeed
to be extracted, but it might miss some other snippets. Since
r̂ is built up with the or operator, it extracts every snippet
which is extracted by at least one of its components: it
follows that r̂ will have perfect precision and a recall greater
than each of its components. The constraint on perfect
precision of step 2 is indeed the reason for which we chose
to favor the precision among individuals of the same Pareto
frontier (see Section 4.1.2): the most prominent objective is
exactly to maximize Prec(p, T ). Subsequent iterations will
target the snippets still missed by r̂ (step 3).

The GP search at step 1 is performed with nstop � ngen,
so as to leave “difficult” examples for subsequent iterations
of the separate-and-conquer procedure (by allowing an early
termination of the search) and to avoid to over-focus on a
training set when no significant improvements appear to be
achievable.

4.2 High level organization of GP searches

Since a GP execution is a stochastic procedure, we follow a
common approach in evolutionary algorithms which con-
sists in executing multiple independent searches on the
same training set and then selecting one of the solutions
according to a predefined criterion.

In detail, we proceed as follows.

1) We partition the set E of examples available for learn-
ing in two sets Et and Ev .

2) We build the training set T of the GP search based on
Et (see below) and keep Ev not available to the search.

3) We execute 2njob independent GP searches, all with the
same T but each with a different random seed. We call
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each such search a job. Execution of this step generates
a pool of 2njob solutions.

4) We compute the F-measure of each of the 2njob solutions
on the full set of learning examples E = Et ∪ Ev and
select the solution with best F-measure.

In other words, we use Ev as a validation set for assessing the
generalization ability of a proposed solution on examples
that were not available to the learning process —i.e., to
prevent overfitting while promoting generalization.

The partitioning of E is made randomly so that the
number of the snippets in Et and Ev are roughly the same,
i.e.,

∑
(s,Xs)∈Et

|Xs| ≈
∑

(s,Xs)∈Ev
|Xs|. The training set

T for jobs is built simply: for each (s,Xs) ∈ Et, a triplet
(s,Xs, {s0} 	 Xs) is inserted in T (i.e., Xd

s := Xs and
Xu

s := {s0} 	Xs).
In order to broaden the spectrum of problem instances

that can be addressed effectively, we do not execute all the
2njob jobs in the same way. Instead, we execute njob jobs
according to separate-and-conquer, while each of the other
njob jobs consist of a single GP search where all the available
generations (i.e., nstop = ngen) are devoted to learning a
single pattern on the full training set T .

5 EXPERIMENTAL EVALUATION

We carried out a thorough experimental evaluation for ad-
dressing the following questions: 1) How does our method
perform on realistic problem instances, even w.r.t. manual
authorship of regular expressions? 2) How do other relevant
methods perform compared to ours? 3) What is the role of
some of the key features of our proposal? We analyze each
question in the following subsections.

We implemented the method here proposed as a Java
application4 in which jobs are executed in parallel. The im-
plementation includes some significant optimizations aimed
at speeding up executions: a full description can be found
in our technical report [45]. We tuned the values for the
parameters njob, npop, ngen and nstop (the latter actually
matters only in separate-and-conquer jobs) after exploratory
experimentation and taking into account the abundant state
of the art about GP. We set njob = 16 (4 for the web version),
npop = 500, ngen = 1000 and nstop = 200.

5.1 Extraction tasks and datasets
We considered 20 different extraction tasks defined by rel-
evant combinations of 17 entity types to be extracted from
12 text corpora. We made available5 part of the extraction
tasks: we excluded those previously used in other works
and those which cannot be included for privacy issues (e.g.,
those containing email addresses).

Table 1 (four leftmost columns) shows salient infor-
mation about the 20 extraction tasks: number of exam-
ples |E0|, their overall length (in thousands of char-
acters)

∑
(s,Xs)∈E0

`(s), and overall number of snippets∑
(s,Xs)∈E0

|Xs|. The name of each extraction task is com-
posed of the name of the corpus (see below) followed by

4. The source code is available on https://github.com/MaLeLabTs/
RegexGenerator. A web-based version of the application is available on
http://regex.inginf.units.it.

5. http://machinelearning.inginf.units.it/data-and-tools/
annotated-strings-for-learning-text-extractors

the name of the entity type to be extracted. Entity names
should be self-explanatory: Username corresponds to ex-
tracting only the username from Twitter citations (e.g., only
MaleLabTs instead of @MaleLabTs); Email-ForTo corresponds to
extracting email addresses appearing after the strings for: or
to: (possibly capitalized). It seems fair to claim that these
extraction tasks are quite challenging and representative
of real world applications. Names ending with a ∗ suffix
indicate extraction tasks with context (Section 3.2.1).

The text corpora are listed below. Some of them have
been used in previous works about text extraction with the
same (or similar) entity types to be extracted—all corpora
but the last three ones have been used also in [15].
ReLIE-Web: portions of several web pages from the publicly

available University of Michigan Web page collection.
Used in [10].

ReLIE-Email: portions of the body of several emails from
the publicly available Enron email collection. Used
in [10], [13].

Cetinkaya-HTML: lines of the HTML source of 3 web
pages. Used in [24].

Cetinkaya-Web: lines of plain text taken from 3 web pages
after rendering. Used in [24].

Twitter: 50 000 Twitter messages collected using the Twitter
Streaming API.

Log: 20 000 log entries collected from our lab gateway
server running the vuurmuur firewall software.

Email-Headers: 101 headers obtained from several emails
collected from personal mail boxes of our lab staff.

NoProfit-HTML: lines of the HTML source of the address
book web page of a local nonprofit association.

Web-HTML: lines of the HTML source of several pages.
CongressBills: 600 US Congress bills from the THOMAS

online database. In order to vary the format of the
dates, we changed the format of the dates as to obtain
9 different formats—including 3 formats in which the
month is expressed by name rather than by number.

BibTeX: 200 bibliographic references in the form of BibTeX
elements obtained with Google Scholar.

Reference: 198 bibliographic references (the same of the
BibTeX corpus with two removals) formatted according
to the Springer LNCS format.

5.2 Proposed method effectiveness

We evaluated our method as follows. For each extraction
task we built several problem instances (E,E?) differing
in the overall number of snippets

∑
(s,Xs)∈E |Xs| available

for learning. In each problem instance we partitioned the
set of examples E0 in a learning set E and a testing set
E? = E0 \ E. We experimented with the values 24, 50, 100
for the number of snippets in E. We applied our method
5 times for each of those values, by randomly varying the
composition of E and hence E?, and averaged the obtained
figures of precision and recall over the 5 repetitions. Hence,
we analyzed 300 problem instances—5 repetitions for each
of the 60 different combinations of extraction task and
number of snippets for learning.

Table 1 summarizes our main results. The table has
60 rows, one for each combination of extraction task and
number of snippets for learning. Sixth and seventh columns
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contain the number of snippets for learning and the learn-
ing ratio (LR) defined as the ratio between the number
of snippets for learning and the number of snippets in
the full extraction task E0. The remaining columns on the
left illustrate performance indexes of the learned regular
expression r̂: F-measure on the learning data E and, most
importantly, precision, recall, and F-Measure on the testing
data E?. The two last columns provide indexes for assess-
ing the computational effort: EC is the overall number of
characters which have been evaluated by candidate regular
expressions—e.g., a population of 100 individuals applied
to a set E including strings totaling 1000 characters for 100
generations corresponds to EC = 107. Figures in the table
are expressed in multiples of 1010. TtL is the time required
for solving a problem instance: we used a machine powered
with a 6 core Intel Xeon E5-2440 (2.40 GHz) equipped with
32 GB of RAM.

The key outcome of this experimental campaign is that F-
measure on testing data is very high in nearly all scenarios
analyzed. This result is particularly relevant in itself and
becomes even more relevant in light of the very low LR
values of our experimental setting, which indicate that our
method is indeed able to find solutions that generalize
effectively. It can also be seen that, in many extraction tasks,
F-measure is very high also when the learning information
includes only 24 snippets. This suggests that the proposed
method can be very effective even with few examples.

The only extraction task in which F-measure is defi-
nitely unsatisfactory—in the range 35.8–48.3%—is ReLIE-
Email/Phone-Number. This task was executed with LR
in the range 0.5–1.9%. We executed this task again with
LR ≈ 80%, a value much closer to the values usually
used in machine learning literature and obtained a much
higher F-measure on the testing data E?:≈ 85%. We believe
that this result demonstrates the quality of our approach
even for this task. We carefully analyzed the results for
ReLIE-Email/Phone-Number and we believe that this task
is unlikely to be solved effectively with a very low LR. In
particular, it can be seen from Table 1 that the generated
regular expressions exhibit a rather high recall (92.6–98.3%)
and a low precision (37.1–22.7%) on E?—i.e., they tend to
extract all the relevant snippets but also unrelevant portions
of the strings in E?. We manually inspected the learning
data E and verified that they are not adequately repre-
sentative of the data that are not to be extracted: they did
not contain substrings which look like, but are not, phone
numbers.

Concerning the impact of the number of snippets avail-
able for learning, results of Table 1 generally confirm that
the more information available for learning, the better the
obtained F-measure. There are indeed a few anomalies to
this trend which, we believe, are due to the very low LR
values and the highly challenging nature of the extraction
tasks.

With respect to the computational effort (i.e., EC and TtL),
our experimental evaluation shows that the time needed to
learn a regular expression for a problem instance is often
in the order of a few tens of minutes. We also found, as
expected, that TtL depends approximately linearly from
EC, which itself strongly depends on the aggregate “size”
of the learning information in terms of characters, i.e.,

∑
(s,Xs)∈E `(s). While the absolute value of TtL would

seem to discourage the on-the-fly usage of our method, our
experience with its web-based implementation suggests that
TtLs do not hamper the practicality of our tool. Moreover,
we believe that TtL should be assessed from a relative point
of view: a user highly skilled in regular expression writing
probably would not even use our tool, while a user mod-
erately skilled or unskilled at all may solve problems that
would otherwise be unable to solve—see also Section 5.3.

We found that tasks which may take advantage of mod-
ern regular expression constructs (lookarounds, possessive
quantifiers) tend to require a longer execution time. We
think this finding is motivated by the fact that our tool
operates with a real-world regular expression engine (the
one included in the Java platform): that engine cannot guar-
antee that the processing time of every regular expression
grows linearly with the input string length, because the
previously mentioned constructs cannot be implemented
using automata; it follows that tasks in which the evolution
tends to favor regular expressions with modern constructs,
take much longer times to be solved.

A list of the generated regular expressions is available in
our technical report [45].

5.3 Comparison with human operators

In order to assess the ability of our method to compete with
human operators, we executed an experiment using a web
application which we crafted ad hoc.

The web app presented concise instructions about the
experiment (“write a regular expression for extracting text
portions which follow a pattern specified by examples”)
and then asked the user to indicate the level of familiarity
with regular expressions—one among novice, intermediate,
and experienced. The web app then proposed a sequence
of extraction tasks: for each task the web app showed a
text on which the snippets to be extracted were highlighted;
the user could write and modify a regular expression in an
input field at will; the web app immediately highlighted
the snippets actually extracted by the current expression
along with the corresponding extraction mistakes (if any).
The web app also showed the F-measure and the user was
informed that a value of 100% meant a perfect score on
the task. The user was not required to obtain a perfect F-
measure before going to the next task—i.e., he could give
up on a task. In the limit, he could also not write any
regular expression for a task (unanswered task). The web
app recorded, for each task and for each user, the authored
regular expression and the overall time spent.

We included in the web app 9 of the extraction tasks
presented in the Section 5.1. For each task, we chose exactly
the E set we used while experimenting with our method
for repetition 1 and

∑
E |Xs| = 24. We spread a link to the

web app among CS graduate and undergraduate students
of our University. Each user interacted with the web app
autonomously and in an unconstrained enviroment—in par-
ticular, users were allowed to (and not explicitly instructed
not to) refer to any knowledge base concerning regular
expressions.

We gathered results from 73 users—60% novice, 20%
intermediate, and 20% experienced. Several tasks were left
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TABLE 1: Results and salient information about the extraction tasks. The overall length
∑

(s,Xs)∈E0
`(s) of examples is

expressed in thousands of characters. EC is expressed in 1010 evaluated characters; TtL is expressed in minutes.

On E On E?

Extraction task E0 |E0|
∑

E0
`(s)

∑
E0
|Xs|

∑
E |Xs| LR Fm Prec Rec Fm EC TtL

ReLIE-Web/All-URL 3877 4240 502
24 5.0 99.2 90.0 91.9 90.9 2.6 15
50 10.0 99.2 92.1 95.0 93.5 6.4 35

100 19.9 98.9 94.8 96.5 95.6 13.7 71

ReLIE-Web/HTTP-URL 3877 4240 499
24 5.0 99.2 86.3 89.0 87.6 2.5 11
50 10.0 99.0 91.0 93.3 92.2 5.8 32

100 20.0 98.8 92.9 96.8 94.8 13.1 66

ReLIE-Email/Phone-Number 41 832 8805 5184
24 0.5 97.7 37.1 92.6 48.3 3.4 8
50 1.0 99.0 29.9 96.6 43.3 6.0 16

100 1.9 98.9 22.7 98.3 35.8 14.4 39

Cetinkaya-HTML/href 3425 154 214
24 11.7 100.0 98.7 99.2 98.9 2.5 12
50 23.4 100.0 98.1 98.7 98.4 4.9 26

100 46.7 99.8 98.4 99.1 98.8 9.0 59

Cetinkaya-HTML/href-Content∗ 3425 154 214
24 11.7 98.4 74.9 98.7 80.6 2.4 16
50 23.4 98.5 85.1 98.8 88.2 4.8 29

100 46.7 98.5 83.2 96.8 86.2 10.5 67

Cetinkaya-Web/All-URL 1234 39 168
24 14.9 99.2 99.4 98.8 99.1 1.7 3
50 29.8 100.0 95.5 98.6 96.9 3.2 8

100 59.5 99.5 98.8 98.8 98.8 5.2 16

Twitter/Hashtag+Citation 50 000 4344 56 994
24 0.1 100.0 98.8 100.0 99.4 1.2 3
50 0.1 99.6 99.2 100.0 99.6 2.2 4

100 0.2 99.8 99.0 100.0 99.5 4.6 7

Twitter/All-URL 50 000 4344 14 628
24 0.2 100.0 94.7 98.5 96.6 1.8 3
50 0.3 100.0 96.2 98.3 97.2 3.4 8

100 0.7 99.4 96.1 98.0 97.0 7.7 16

Twitter/Username∗ 50 000 4344 42 352
24 0.1 100.0 99.3 100.0 99.7 1.2 2
50 0.1 100.0 99.2 100.0 99.6 2.2 2

100 0.2 99.9 99.3 100.0 99.7 4.6 2

Log/IP 20 000 4126 75 958
24 0.1 100.0 99.8 100.0 99.9 1.3 2
50 0.1 100.0 99.7 100.0 99.8 2.3 2

100 0.2 100.0 99.8 100.0 99.9 4.6 3

Log/MAC 20 000 4126 38 812
24 0.1 100.0 100.0 100.0 100.0 2.0 2
50 0.1 100.0 100.0 99.4 99.7 4.3 3

100 0.3 100.0 100.0 99.4 99.7 8.3 6

Email-Headers/IP 101 261 848
24 2.9 97.5 86.7 87.9 86.9 5.9 18
50 5.9 92.7 90.9 82.2 86.0 14.0 56

100 11.8 94.5 95.2 84.9 89.6 28.5 89

Email-Headers/Email-ForTo∗ 101 261 331
24 7.6 78.5 70.7 52.5 59.3 17.9 131
50 15.1 71.5 76.4 52.8 62.0 33.7 398

100 30.2 79.8 90.4 66.6 76.4 65.5 429

NoProfit-HTML/Email 25 590 860 1094
24 2.3 100.0 83.2 100.0 85.5 0.9 2
50 4.6 100.0 100.0 100.0 100.0 1.9 3

100 9.1 100.0 100.0 100.0 100.0 3.7 7

Web-HTML/Heading 49 026 4541 1083
24 2.3 99.2 93.1 89.4 91.2 7.6 30
50 4.6 96.2 93.3 90.2 91.7 15.3 83

100 9.2 99.2 98.2 96.2 97.2 29.7 256

Web-HTML/Heading-Content∗ 49 026 4541 1083
24 2.3 93.6 95.5 80.1 86.6 6.6 76
50 4.6 95.9 99.1 85.8 91.8 13.6 168

100 9.2 98.9 99.4 96.1 97.7 28.0 379

CongressBill/Date 600 16 511 3085
24 0.8 64.5 57.1 52.3 50.0 2.1 30
50 1.6 72.1 55.4 81.3 64.1 6.9 584

100 3.2 76.1 62.7 81.4 69.7 11.3 513

BibTeX/Title 200 54 200
24 12.5 89.6 79.1 65.1 70.7 5.1 43
50 25.0 90.3 82.6 74.3 78.0 11.1 141

100 50.0 82.0 84.8 63.4 72.1 21.5 218

BibTeX/Author 200 54 589
24 4.2 92.9 90.5 78.1 83.1 2.0 8
50 8.5 93.9 89.9 86.1 87.7 4.1 20

100 17.0 90.7 91.9 81.6 86.2 7.5 34

References/First-Author∗ 198 30 198
24 12.6 99.0 99.7 96.0 97.8 2.8 12
50 25.3 96.3 99.6 93.6 96.5 5.4 26

100 50.5 100.0 100.0 100.0 100.0 12.4 56
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TABLE 2: F-measure for
∑

E |Xs| = 24 obtained by human
operators (novice (SN), intermediate (SI), and experienced
(SE)) and our approach (O).

Extraction task SN SI SE O
ReLIE-Web/All-URL 74.7 90.2 80.6 95.5
ReLIE-Web/HTTP-URL 77.3 83.0 76.6 82.3
ReLIE-Email/Phone-Number 70.2 84.7 91.0 34.6
Cetinkaya-HTML/href 91.6 98.8 98.8 100.0
Cetinkaya-Web/All-URL 95.2 98.3 98.6 99.0
Log/IP 91.0 100.0 100.0 100.0
Log/MAC 87.6 91.7 100.0 100.0
Web-HTML/Heading 82.3 90.9 95.6 90.0
BibTeX/Author∗ 64.6 50.1 81.4 90.3

unanswered: 42% for novice, 40% for intermediate, and 12%
for experienced. The average time for solving the answered
tasks was 16.1 min, 4.8 min, and 4.7 min, respectively. As a
comparison, our method on the very same data required
TtL = 10.4 min on the average.

The key finding is in Table 2, which shows the F-measure
on E? for each task. It can be seen that the F-measure
obtained by our method is almost always greater than or
equal to the one obtained by human users (on the average).
The only exceptions are: the ReLIE-Email/Phone-Number
task (whose peculiarity has been analyzed in Section 5.2);
the Web-HTML/Heading task, in which our method im-
proves over novice users and is only sligthly worse than
intermediate users. We believe this result is remarkable
and highly encouraging. Indeed, we are not aware of any
proposal for automatic generation of regular expressions
in which human operators were used as a baseline. A full
description of the results can be found in the companion
report [45].

5.4 Comparison with other methods

The previous section considered a baseline in terms of
human operators. In this section we consider a baseline in
terms of other approaches for learning text extractors from
examples: Smart State Labeling DFA Learning (SSL-DFA) [46],
FlashExtract [33], and GP-Regex [15]. These methods are
representative of the state of the art for learning syntactical
patterns (see also Section 2), but differ in the actual nature
of the learned artifact: SSL-DFA produces Deterministic
Finite Automata (DFA), FlashExtract produces extraction
programs expressed in a specific language, and GP-Regex
produces regular expressions. Results obtained with SSL-
DFA were significantly worse than those of the other meth-
ods, hence we chose to not describe them in this paper: full
details can be found in our technical report [45]. We remark
that GP-Regex was compared against the approaches of [10],
[13] on two datasets used by the latter and exhibited better
accuracy, even with a learning set smaller by more than
one order of magnitude [15]; and, that the authors of [10],
[13] showed that their approaches exhibited performance
similar to Conditional Random Fields (CRFs). We did confirm
the superiority of our approach w.r.t. CRFs, in terms of both
F-measure and TtL, with a brief experimental comparison
(we omit here the results due to space constraints).

FlashExtract is a powerful and sophisticated framework
for extracting multiple different fields automatically in semi-
structured documents [33]. It consists of an inductive syn-

TABLE 3: F-measure for
∑

E |Xs| = 100 with FlashExtract
(F), GP-Regex (G), and our approach (O).

Extraction task F G O
ReLIE-Web/All-URL 21.5 93.0 95.6
ReLIE-Email/Phone-Number − 90.2 35.8
Cetinkaya-HTML/href 32.3 89.6 98.8
Cetinkaya-Web/All-URL 61.8 94.9 98.8
Twitter/Hashtag+Citation − 100.0 99.6
Web-HTML/Heading-Content∗ − 10.2 97.7
CongressBill/Date − 38.0 70.7

thesis algorithm for synthesizing data extraction programs
from few examples, in which programs are expressed in any
underlying domain-specific language supporting a prede-
fined algebra of few core operators. The cited work presents
also a language designed to operate on text which perfectly
fits the extraction problem considered in this paper. The
findings of [33] resulted in a tool included in the Windows
Powershell as the ConvertFrom-String command: we used
this tool to perform the experiments. The current FlashEx-
tract implementation does not allow reusing a program
induced by a given set of examples. Thus, in our experi-
mentation the two phases of learning and testing were not
separated: we invoked the tool by specifying as input the ex-
amples in E and the strings in E?; we obtained as output a
set of substrings extracted from E? based on the description
in E (which we had to recast in the syntax required by the
tool). In many cases the tool crashed, thereby preventing the
extraction to actually complete. We highlighted these cases
in the results.

GP-Regex is the method we proposed in [15] and the
base for the research here presented. The numerous differ-
ences between our method and GP-Regex were listed in the
introduction. We emphasize again that in GP-Regex each
example consists of a string and at most one single snippet
to be extracted from that string. In order to build learning
examples suitable for GP-Regex, we considered for each
(s,Xs), only the leftmost snippet in Xs, if any.

We selected 7 extraction tasks including tasks with con-
text and tasks in which snippets exhibit widely differing
formats. We exercised all methods with the same experimen-
tal settings described in Section 5.1, thereby obtaining 105
problem instances—5 repetitions for each of the 21 different
combinations of extraction task and number of snippets for
learning.

Table 3 shows the results in terms of F-measure for∑
E |Xs| = 100—results for other values for

∑
E |Xs| are

omitted due to space constraints. The foremost outcome of
this comparison is that our method clearly outperforms all
the other methods (except for ReLIE-Email/Phone-Number,
discussed below). The performance gap with FlashExtract is
substantial—at the expense of a much longer TtL, though.
We are not able to provide any principled interpretation
for this result. We may only speculate that our approach
is perhaps more suitable for coping with loosely structured
or unstructured datasets than FlashExtract. We also noticed
that, for many problem instances, the ConvertFrom-String
tool crashed, thereby preventing the extraction to actually
complete. For the extraction tasks for which at least one
on 5 repetition completed without errors, Table 3 shows
the F-measure averaged across the completed executions.
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TABLE 4: F-measure for
∑

E |Xs| = 100 with our fitness
(O) and with the F-measure based fitness (F).

Extraction task O F ∆Fm
ReLIE-Web/All-URL 95.6 11.7 83.9
ReLIE-Web/HTTP-URL 94.8 14.8 80.0
Cetinkaya-HTML/href 98.8 98.6 0.2
BibTeX/Title∗ 72.1 3.3 68.8
BibTeX/Author∗ 86.2 24.9 61.3
References/First-Author∗ 100.0 NaN NaN

In the other cases, we were not able to obtain any extraction
program, neither splitting the testing set in small chunks:
those cases are denoted with an en dash (−) in the table.

Concerning GP-Regex, we should isolate two groups
of extraction tasks: (i) those that requires either a con-
text (Web-HTML/Heading-Content∗) or the ability to learn
widely differing patterns (CongressBill/Date), (ii) all the
other tasks. The key observation is that our current proposal
improves over GP-Regex in all cases (except for ReLIE-
Email/Phone-Number), the improvement being substantial
in case i. Indeed, our current proposal makes it possible to
handle both Web-HTML/Heading-Content∗ and Congress-
Bill/Date with good accuracy, while GP-Regex does not. It is
also interesting to observe that in case ii GP-Regex provides
much better accuracy than FlashExtract, while in case i GP-
Regex is either comparable to those methods or worse.

Finally, concerning the ReLIE-Email/Phone-Number ex-
traction task, we observe that this is the same task with a sort
of anomalous behavior already discussed in the previous
section. In particular, we remark that when executing our
method on this task with LR ≈ 80% we obtained ≈ 85% F-
measure on the testing data. We could not execute FlashEx-
tract in those conditions because it always crashed: the only
result that we could obtain is in Table 3, where F-measure
(with very few examples available for learning) is 69%. The
reason why GP-Regex happens to deliver better accuracy
on this task is because it tends to overfit the snippets to
be extracted more than the method here presented. As
discussed in the previous section, processing this task with
a very small LR value incurs in a poor representativeness of
the text that is not to be extracted; as it turns out, thus, the
slightly overfitting behavior exhibited by GP-Regex in this
case turns out to be a pro.

5.5 Assessment of specific contributions

In order to gain further insights into our proposal, we
executed a further suite of experiments on a subset of the
extraction tasks aimed at assessing the effect of: (i) choice of
the fitness, (ii) initialization of the population from E, and
(iii) separate-and-conquer jobs.

5.5.1 Fitness
We built a variant of our method in which the fitness tuple
of a solution consists in the F-measure on the examples in
the training set and the length of the corresponding regular
expression: f(r) := (Fm(r, T ), `(r)). In other words, we
replace snippet-level precision and character-level accuracy
(see Section 4.1.2 for the exact definition) by snippet-level
F-measure, i.e., by the main performance index desired by
the solution.

TABLE 5: F-measure with
∑

E |Xs| = 100 with and without
initialization.

Extraction task w/ w/o ∆Fm
ReLIE-Web/All-URL 95.6 73.6 22.0
ReLIE-Web/HTTP-URL 94.8 82.6 12.2
Cetinkaya-HTML/href 98.8 48.8 50.0
BibTeX/Title∗ 72.1 65.1 7.0
BibTeX/Author∗ 86.2 67.2 19.0
References/First-Author∗ 100.0 78.7 21.3

Table 4 presents the results. The rightmost column shows
the improvement ∆Fm obtained by our proposal w.r.t. the
method with the fitness modified as above. It can be seen
that the modified method leads to a much worse F-measure,
despite F-measure being exactly the index optimized by that
method: our proposal leads to an improvement, on the aver-
age, around ∆Fm ≈ 60% (

∑
E |Xs| = 100 ∈ {24, 50, 100}).

In other words, driving the evolutionary search by the key
index of interest is not the optimal fitness choice. This
finding corroborates some arguments made in [15] and
augments them with an experimental evaluation.

It is worth to note that for the References/First-Author∗

task, the modified method is simply unable to produce a
solution which can correctly extract at least one snippet. Our
explanation is that the solving regular expression for that
task is rather complex, since it includes multiple lookaround
operators: light modifications to a regular expression which
includes operators of this kind may result in very different
extraction behaviors. In such a case, a fitness based on
full snippets rather than individual characters does not ac-
knowledge for small improvements and is not hence able to
drive the evolution—in other words, it imposes an excessive
evolutionary pressure.

5.5.2 Initialization
We built a variant of our method in which the initial pop-
ulation is totally built at random, instead of being partially
generated using the snippets of the training set.

Table 5 shows the comparison results, which clearly
indicate that the unmodified version is much more effective
(∆Fm ≈ 25%, on the average for

∑
E |Xs| ∈ {24, 50, 100}).

The rationale of the population initialization from the ex-
amples was to start the evolutionary search from a “good”
point in the solution space. For this reason we inserted in the
initial population individuals which fitted the snippets to be
extracted while at the same time generalizing beyond them,
e.g., we insert the regular expression \d++-\d++-\d++ from the
snippet 07-02-2011 (see Section 4.1.3).

5.5.3 Separate-and-conquer
We built a variant of our method in which all the 2njob jobs
are executed without the separate-and-conquer strategy, i.e.,
all jobs consist of a single GP search for which nstop = ngen.

Table 6 shows the comparison results. For this com-
parison, we considered also an extraction task (Congress-
Bill/Date) in which the snippets to be extracted exhibit
widely differing formats. As expected, the unmodified
method clearly outperforms the modified one on Congress-
Bill/Date (∆Fm ≈ 30% for

∑
E |Xs| ∈ {24, 50, 100}). On

the other hand, it can be seen that some not negligible
improvement can be obtained also for other tasks, namely
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TABLE 6: F-measure with
∑

E |Xs| = 100 with and without
separate-and-conquer.

Extraction task w/ w/o ∆Fm
ReLIE-Web/All-URL 95.6 89.5 6.1
ReLIE-Web/HTTP-URL 94.8 87.6 7.2
Cetinkaya-HTML/href 98.8 95.3 3.5
CongressBill/Date 69.7 32.7 37.0
BibTeX/Title∗ 72.1 62.0 10.1
BibTeX/Author∗ 86.2 71.5 14.7
References/First-Author∗ 100.0 97.3 2.7

BibTeX/Title∗ and BibTeX/Author∗. We think that the moti-
vation is in that those tasks are more difficult and hence the
possibility, enabled by the separate-and-conquer strategy,
to split a problem in smaller subproblems may allow the
method to better cope with such difficulty.

6 CONCLUSIONS

We have described a system for synthesizing a regular
expression automatically, based solely on examples of the
desired behavior. The regular expression is meant to be used
for extraction problems of practical complexity, from text
streams that are either loosely structured or fully unstruc-
tured. As such, our approach is able to handle potentially
large alphabets effectively, thereby overcoming one of the
principal limitations of much existing work in this area,
and has been designed to address such practical needs
as context-dependent extractions, widely different formats,
and potentially large and unsegmented input streams.

We have analyzed our proposal experimentally in depth,
by applying it on 20 challenging extraction tasks of realistic
size and complexity, with a very small portion of the dataset
available for learning. The results have been very good and
compared very favorably with significant baseline methods.
Most importantly, the results are highly competitive also
with respect to a pool of more than 70 human operators.

We made publicly available the source code of our
system (https://github.com/MaLeLabTs/RegexGenerator)
and deployed an implementation as a web app (http://
regex.inginf.units.it).

While our work may certainly be improved and enriched
in several ways—faster learning, interactive learning pro-
cedures capable of starting with a very small number of
snippets, even better accuracy, just to name a few—we do
believe that our work may constitute a useful solution to a
practically relevant and highly challenging problem.
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