
Contents lists available at ScienceDirect

Renewable Energy 90 (2016) 501e512
A novel fault diagnosis technique for photovoltaic systems based on
artificial neural networks

W. Chine a, A. Mellit a, b, V. Lughi c, A. Malek d, G. Sulligoi c, A. Massi Pavan c, *

a Renewable Energy Laboratory, Faculty of Sciences and Technology, Department of Electronics, University of Jijel, Ouled-Aissa, P.O. Box .98, Jijel, 18000,
Algeria
b The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera, 11, 34151, Trieste, Italy
c Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 6/A, 34127 Trieste, Italy

on Artificial Neural
oltaic (PV) module's
eaks in the current
odel. The simulated
ents, leading to the
then developed in
d Centre de D�eveloppement des Energies Renouvelables BP. 62 Route de l'Observatoire, Bouzareah 16340 Alger, Algeria

a r t i c l e i n f o

Accepted 6 January 2016

a b s t r a c t

This work proposes a novel fault diagnostic technique for photovoltaic systems based
Networks (ANN). For a given set of working conditions - solar irradiance and photov
temperature - a number of attributes such as current, voltage, and number of p
evoltage (IeV) characteristics of the PV strings are calculated using a simulation m
attributes are then compared with the ones obtained from the field measurem
identification of possible faulty operating conditions. Two different algorithms are
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order to isolate and identify eight different types of faults. The method has been validated using an
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1. Introduction

Over the past few years, the num
tems has increased rapidly at the gl

plants with size varying from a few kWp
hundreds of MWp (commercial/industria

r tech
Energy Laboratory (REL) of the University of Jijel (Algeria). The obtained results show that the proposed
technique can accurately detect and classify the different faults occurring in a PV array. This work also
shows the implementation of the developed method into a Field Programmable Gate Array (FPGA) using
a Xilinx System Generator (XSG) and an Integrated Software Environment (ISE).

photovoltaic (PV) sys-
vel. Grid-connected PV
(domestic systems) to

l and utility-scale sys-

location, is presented in Ref. [4]. The proposed technique leads to
the detection of four different categories of failures. 1) Constant
energy losses due, for example, to the degradation of PV modules,
to the soiling effect, to PV module or string failures, etc. 2) Variable
energy losses due, for example, to shading phenomena [5], to
soiling effects [6e8], to mismatch effects [9e11], to disconnections
nology with the highest of the PV system from the electrical grid, to inverter's power limi-
tems) represent worldwide the powe
growth rate. As reported in Refs. [1]
, at the end of 2014 the total
installed PV capacity was 177GWp. This result is not only related to

tation, to Maximum Power Point Tracker (MPPT) failures, to the
temperature effect, etc. 3) Losses due to the presence of snow. 4)
the incentives given by governments during the past years but also
to the recent attainment of the grid-parity in key countries such as
Germany and Italy [2,3].

The need for higher performance, efficiency, and reliability is
linked to the recent interest in fault diagnosis techniques that are
today more and more proposed in the literature. A remote moni-
toring and fault detection method, which relies on a satellite-based
systems to generate the necessary climate data at the desired
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Losses due to blackouts [12]. The proposed technique leads to a
reduction of the computational and simulation costs but, on the
other hand, the costs for data loggers and communication systems
are high. Nowadays, as the overnight capital cost of PV plants has
dramatically decreased, the development of cheap monitoring
systems is necessary.

Amonitoring circuit measuring the operating voltage (Vmpp) and
current (Impp), the open circuit voltage (Voc), and the short circuit
current (Isc) of PV modules is proposed in Ref. [13]. The circuit can
detect the shadow propagation along a PV string, the number of
shaded subpanels, as well as the efficiency of theMPPT. In Refs. [14],
the authors proposed a low-cost on-board monitoring device that
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improves the system's reliability and efficiency. The method takes
as an input the measure of the PV panel's current, voltage, and
temperature. A novel technique for the transmission of the current,
voltage, and temperature quantities based on a low cost smart
monitoring system is proposed in Ref. [15]. A data acquisition board

is the line-to-line fault occurring in PV arrays equipped with
blocking-diodes [34]. An equivalent circuit model was proposed in
Refs. [35] and [36] for the calculation of the PV generator's insu-
lation resistance and leakage current. This model can be used to
analyse the risk of electric shock and for the design of protections.
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sends the data to a central control system using the Power Line
Carriers (PLC) communications technology, avoiding additional
installations costs.

In general, fault detection methods for PV systems can be
grouped as visual (browning, discolouration, surface soiling, and
delamination), thermal (hot spot), and electrical (transmittance
line diagnosis, dark/illuminated currentevoltage measurement,
and RF measurement) [16]. In this paper we focus on an electrical
method. Fault detection based electrical methods for photovoltaic
systems are based on:

- Methods that do not require climate data (such as solar irradi-
ance and temperatures): in Ref. [17] the authors developed a
method based on the Earth Capacitance Measurement (ECM) to
detect the disconnection of a PV module. The Time-Domain
Reflectometry (TDR) technique proposed in Ref. [18] was used
to detect the disconnection of a PV string as well as the
impedance change due to degradation. In Refs. [19], a statistical
approach based on the Analysis of Variance (ANOVA) and on the
non-parametric Kruskale Wallis (KW) tests was investigated;

- Methods based on the analysis of the current voltage charac-
teristic (IeV characteristic): in Refs. [20], the (dI/dV) - V char-
acteristic is used to detect the partial shadow interesting a PV
array. In Refs. [21], the authors calculate the Fill Factor (FF), the
series resistance (Rs), and the shunt resistance (Rsh) starting
from the IeV characteristic and provide some performance in-
dicators. A method based on the evaluation of some current and
voltage indicators is introduced in Ref. [22] as automatic fault
detection for Grid-Connected Photovoltaic (GCPV) systems;

- Methods that use a Maximum Power Point Tracking (MPPT)
approach: an automatic supervision and fault detection proce-
dure based on the analysis of the power losses was proposed in
Ref. [23]. The method leads to the identification of three groups
of faults (faulty module, faulty string, and a group of different
faults such as partial shadow, ageing, and MPPT failure) and of a
false alarm. The method presented in Ref. [24] detects faults
occurring in both the PV array and in the inverter on the base of
a power losses analysis. The technique developed in Ref. [25] is
based on the relation between the simulated and the measured
string powers. This method determines the number of open and
short-circuited PV modules in a string;

- Methods based on Artificial Intelligence (AI) techniques: a
learning method based on Expert Systems is developed in
Ref. [26] to identify two types of fault (due to the shading effect
and to the inverter's failure). The effectiveness of Artificial
Neural Network (ANN) based techniques was shown in Ref. [27].
A method for the identification of short-circuited PV modules is
presented in Ref. [28]. In Refs. [29], an ANN is used in order to
classify different types of faults occurring in a PV array. In this
case, the ANN takes as inputs the current and the voltage at
maximum power point, and the temperature of the PV module.
Differentmethods based on the Takagie Sugeno Kahn Fuzzy Rule
(TSKFRBS) have been described in Refs. [30,31].

Other strategies comprise: a method based on the extended
correlation function and on the matter element model was pre-
sented in Ref. [32]. In Refs. [33], a Decision Tree (DT) technique was
used to examine two different types of faults using an Over-Current
Protection Device (OCPD). The first type of fault is the line-to-line
fault that occurs under low irradiance conditions, and the second
Sources of failure and PV modules diagnostics are reviewed in
Ref. [37].

The main contribution of this work is to present a new tech-
nique for the isolation and identification of the faults occurring in a
PV system and its implementation into a FPGA. In particular, the
technique is able to localize and identify faults occurring in: PV
cells, PV modules, PV strings, and bypass-diodes. The proposed
technique is based on the analysis of a set of attributes (such as
current, voltage and number of peaks) of the IeV characteristic that
indicate the normal and the faulty operations. The analysis is per-
formed using two different Algorithms:

- Algorithm 1 implements a signal threshold approach and iso-
lates the faults that have a different combination of attributes;

- Algorithm 2 consists of an ANN-based approach to identify the
faults that are characterized by the same combination of
attributes.

The paper is organized as follows: the next section presents the
main types of faults occurring in a PV array. The proposed fault
diagnosis technique is provided in Section 3. Results and discussion
are given in Section 4.

2. Faults in photovoltaic arrays

The faults occurring in a PV system are mainly related to the PV
array, the inverter, the storage system, and the electrical grid. This
work aims at detecting the faults occurring in the PV array and,
with reference toTable 1, eight different faults are investigated. This
type of faults are usually connected to: the failure of a solar cell or a
PV module, a line disconnection, the degradation effect, corrosion
and manufacturing defects, the presence of snow, the effect of
soiling, and etc.

3. The proposed fault diagnosis technique

The fault diagnosis technique developed in this work is able to
identify one normal and eight faulty modes. As shown in Fig. 1,
firstly the difference between the measured and the simulated PV
array output power is compared with a threshold (Th) in order to
detect the possible presence of a fault. Then, the analysis of the
main attributes in the IeV characteristic of each string forming the
PV array leads to the faults identification and localization. The
schematic of the developed fault diagnosis system that is based on
two different Algorithms, is depicted in Fig. 2.

3.1. Attributes identification

In order to understand what changes can affect the attributes of
an IeV characteristic, a number of simulations have been carried
out considering both normal operation and different fault condi-
tions. The simulations have been performed using a MatLab/Sim-
scape™ tool. As an example, Fig. 3a shows the Simscape™ based
model for a PV string formed by four series-connected modules, in
case of connection fault [38]. Standard blocks representing the PV
modules, resistances, current and voltage sensors have been used.
A PV module block consists of four series-connected PV modules,
and these are made by 18 series-connected solar cells as depicted in
Fig. 3b. The solar cell block is defined by equation (1) [39] [40],
where Iph is the photo-generated current, I0 is the dark saturation



current, Rs is the module series resistance, Rsh is the module shunt
resistance, a is the diode ideality factor, K is Boltzmann's constant,
and q is the charge of the electron. The five parameters (Iph, I0, Rs,
Rsh, a) are determined by solving the transcendental equation (Eq.
(1)) using the Newton Raphson algorithm based only on the data-

to both the number and type of faults and to the change in the
operating conditions. As an example, Table 2 reports different
possible combinations, here after also named fault signature, of
attributes.

Table 2 Reveals that a fault may be characterized by more than

lated PV strings attributes are calculated and the relative differ-
ences are compared with some thresholds. The simulated IeV

Table 1
Different type of faults occurring in a PV array.

Types of fault Name Symbol

Module Short circuit fault in any bypass diode or (cell or module) F1
Inversed bypass diode fault or (cell or module) F2
Shunted bypass diode fault or (cell or module) F3
Open circuit fault in any cell or (module) F4

Connection fault Connection resistance between PV modules F5
Partial shadow fault Shadow effect in the modules with normal operation of different components of PV string F6
Shadow effect with faulty by pass diode Shadow effect in a group of cells equipped by a faulted bypass diode open F7
Shadow effect with connection fault Shadow effect in a group of module connected by a connected resistance F8
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sheet of PV module [40]. These five parameters as well as the solar
irradiance are inserted in the block parameters of the solar cell, as
shown in Fig. 3c, in order to simulate the IeV characteristic.

I ¼ Iph � I0
�
e
q

�
VþI Rs
K T

�
� 1

�
�
�
V þ IRs
Rsh

�
(1)

Fig. 4aeb presents the IeV characteristics of the PV string for
normal and faulty conditions at the same operating conditions. The
analysis of these simulations led to the identification of the
following situations:

- A reduction in the short circuit current (C1);
- A reduction in the open circuit voltage (V1);
- A reduction or an increase in the output current (C2);
- A reduction or an increase in the output voltage (V2);
- An increased number of MPPs in the IeV characteristic (N).

3.2. Attributes combination
The combination of the changes in the attributes can be related
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one fault signature and also that different faults can have the same
combination of attributes. As an example, the first signature of F3
and F5, and the second signature of F2 and F3 present the same
fault signature.

Nevertheless, Table 3 shows that different faults always lead to
different attributes, even if they present the same signature.

The faults are then classified into two groups:

- Faults characterized by the same fault signature. This type of
faults are isolated using a signal threshold based approach;

- Faults with different fault signatures. These faults are isolated
using an ANN-based approach.

3.2.1. Signal threshold based approach (Algorithm 1)
The first algorithm isolates the faults when these have a

different combination of attributes. First, the measured and simu-
characteristics come from a reference model [37] based on the
values of solar irradiance and module's temperature and
specifications.

The thresholds are calculated on the basis of themaximum error

ameters, 
s (S) and 

Electrical data from 
DAQ (Imeas,Vmeas)
M).

PPsim - MPPmeas

h

Normal operation

No

sed fault detection technique.



introduced by the model uncertainty and the measurement noise.
The sensors used to validate the proposed diagnostic system are
within the specifications required by the IEC 61724 standard [41]
that indicates a relative error of 1%, 1%, and 2% while measuring
current, voltage, and power, respectively. The model uncertainty is

Perceptron (MLP) and the Radial basis function (RBF).
TheMLP architecture consists of three neurons in the input layer

corresponding to the ratio between the measured and the simu-
lated values of the open circuit voltage (Rvoc), themaximumpower
point current (Rimpp), and the maximum power point voltage

Fig. 2. Schematic of the proposed fault diagnosis technique.
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related to the manufacturing tolerance and sensors noise. The
maximum error introduced by this uncertainty is calculated, ac-
cording to [42], by adding a dispersion parameter to the simulation
model parameters. The obtained relative errors associated to cur-
rent, voltage, and power are equal to 3.0%, 2.9%, and 5.9%,
respectively.

Fig. 5 shows the flowchart of Algorithm 1 that allows the
isolation of the following six different situations:

✓ Module open circuited: F4;
✓ Connection fault: F5;
✓ Partial shadow (bypass diodes work correctly): F6;
✓ Partial shadow (when a bypass diode is faulted): F7;
✓ Partial shadow with connection fault: F8;
✓ A group of faults including: F1, F2, F3, and F5.

3.2.2. ANN based approach (Algorithm 2)
With reference to Fig. 5, the first algorithm cannot distinguish

the faults F1, F2, F3, and F4, as these latter have the same signa-

tures; on the other hand the symptoms of the IeV characteristic
under these faults have different amplitudes at the same climatic

4

condition. Thus, in other to isolate these faults, a classification
technique was needed, and an ANN technique has been choose.

The ANN model has been developed as follows:

- Selection of input and output variables;
- Data set normalization;
- Selection of network structure;
- Network training;
- Network test.

A data set of 775 patterns has been generated using a MatLab/
Simscape™ simulation tool. The 80% of the patterns has been used
for the training, while 20% has been used for testing the model.

In order to select the most efficient architecture for the ANN, a
comparison between two architectures widely utilized for the
classification of faults has been performed: the Multilayer
(Rvmpp). One neuron in the output layer corresponds to the fault
class. The number of hidden layers and the number of neurons in
each layer are determined during the training process; the transfer
function used in this layer is the logarithmic sigmoidal function.
The network is trained with the LevenbergeMarquardt (LM)
algorithm.

The RBF architecture consists of three layers. The input layer has
as many neurons as the MLP network, the output layer has four
neurons corresponding to the four fault classes, and the hidden
layer consists of M neurons. Each neuron computes a Kernel
functionwhich is usually a Gaussian function, specified by its center
and width; these two parameters are determined by a K-means
clustering algorithm, while the weights between the middle layer
and the output layer are calculated with a pseudo inverse matrix
method.

4. Results and discussion

This section reports the results of the Simscape™ based model
as well as the performances of the proposed fault diagnosis tech-
nique. The implementation into a Field Programmable Gate Array
(FPGA) is also presented. For the online localization and identifi-
cation of faults, the proposed technique requires a reference solar
cell, a PV module's temperature sensor, a current and a voltage
sensor. The data are collected by a data acquisition system and
transferred to a personal computer where the routine for the
diagnostic procedure is implemented.

4.1. Experimental results

The model used to simulate the IeV characteristics for the
different faults conditions has been experimentally validated using
the data from a PV string installed on the rooftop of the REL at Jijel
University (Algeria). The string consists of four series-connected
Polycrystalline Silicon PV modules with a nominal power of
120Wp. The modules are made of 72 series-connected solar cells,
while groups of 18 cells are equipped with a bypass diode [43].

The experimental set up with the different faults configurations



and the test facility are shown in Fig. 6aef, geh,and 7, respectively.
As an example, Fig. 8aed shows the simulated and the experi-

mental IeV characteristics corresponding to different fault
conditions.

As can be seen, a good agreement between measured and

- output current [1.5e4.7%];
- open circuit voltage [1.0e2.0%];
- output voltage [1.1e3.8%].

Fig. 8ashows that the short circuit current and the open circuit

Fig. 3. (a)The Simscape™ model: case of a connection fault occurring in a PV string. (b). 18 solar cells in series connected. (c). Block parameters of solar cell.
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simulated data is achieved. The relative errors are in the following
ranges:

- short circuit current [1.1e1.6%];

5

voltage decrease when a bypass diode is shunted or inversed; in
this latter case, the phenomenon is more evident. When a bypass
diode is short-circuited, there is only a decrease in the open circuit
voltage while the short circuit current remains the same.



As shown in Fig. 8b, a fault in a PV module leads to a decrease of
both the open circuit voltage and the short circuit current; the open
circuit voltage drop is more evident when the PV module in
inversed. The open circuit voltage varies very slightly in the case of
a connection fault, while the short circuit current decreases

- Case 1: one module was 50% shaded and equipped with four
open-circuited bypass diodes;

- Case 2: two modules were shaded (the shading factor was 50%
for the first module and 75% for the second);

- Case 3: The connection resistance between two modules was
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(Fig. 8c).
Finally, Fig. 8d shows that in the case of shading the open circuit

voltage decreases only when a bypass diode is inversed, while the
short circuit current always decreases.

4.2. Performance evaluation of the proposed technique

4.2.1. Performance evaluation of Algorithm 1

In order to verify the performance of Algorithm 1, a PV array

formed by two strings of nine series-connected PV modules has

6

been considered, and three case studies have been examined in
case of STC:
increased by 15U;

The calculated attributes are reported in Table 4.
The STC power of the considered PV array is 1072.2 W, the STC

short circuit current is 3.87A, and the STC open circuit voltage is
383.6 V. The thresholds used when comparing the measured and
the simulated quantities has thus been calculated as follow:

- Th ¼ 2 � 1072.2 x (2% þ 5.9%) ¼ 169.4 W;
- T1 ¼ 3.87 � (3% þ 1%) ¼ 0.25 A;
- T2 ¼ 383.6 � (2.9% þ 1%) ¼ 14.96 V.

As reported in Table 4, the attributes which exceed the



predetermined thresholds have been indicated in bold. The ob-
tained results show that the algorithm is able to localize and
identify correctly the faults in the examined PV array.

Table 2
Combination of attributes for different faults cases.

String output Current String output Voltage String short Circuit current String open Circuit voltage Number of MPP

F1 No change Decreased No change Decreased 1
F2 No change Decreased No change Decreased 1

No change Decreased No change Decreased 1
F3 Decreased Decreased No change Decreased 1

No change Decresead No change No change 1
F4 Decreased Decreased Decreased Decreased 1
F5 No change Decreased No change No change 1

Decreased Decreased No change No change 1
No change Decreased No change Decreased >1

F6 Decreased Increased No change Decreased >1
Decreased No change No change Decreased >1
Decreased Increased No change No change >1
Decreased Increased Decreased No change 1

F7 Decreased Increased Decreased Decreased 1
Decreased No change Decreased Decreased 1
Decreased Decreased Decreased Decreased 1
No change Decreased No change Decreased 1
Decreased Decreased No change Decreased 1
Decreased Decreased No change Decreased >1

F8 Decreased Decreased No change No change >1
Decreased Decreased Decreased Decreased >1
Decreased Decreased Decreased No change >1

Table 3
Attributes for two different case studies (Operating conditions: G ¼ 700W/m2,
T ¼ 25 �C).

Impp (A) Vmpp (V) Isc (A) Voc (V) Number of MPP

Case 1 No change Decreased No change No change 1
F3 2.4537 119.808 2.709 165.888 1
F5 2.44 101.37 2.709 165.888 1
Case 2 No change Decreased No change Decreased 1
F2 2.5 101.37 2.709 129.024 1
F3 2.44 105 2.709 161.28 1
No fault 2.4672 133.632 2.709 165.888 1
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4.2.2. Performance evaluation of Algorithm 2
The adopted ANN structures have been developed after a

number of experiments, and with reference to Fig. 9aeb the PMC
structure consists of two hidden layers and 13 � 13 hidden nodes.

The minimum Mean Square Errors (MSE) achieved during the

training and test processes are 0.008 and 0.009, respectively. The

e attributes 
litude
Shadow effect 
with faulty bypass 
diode

C2>T1 Yes

C1>T1

No

Yes

Group of faults:
-Cells, diodes, or 
modules are shunted.
-Cells, diodes, or 
modules are short 
circuited.
-Cells, diodes, or 
modules are inversed.
-Connection fault

Noes

Identified by the ANN

No

C1=Isc_sim

it 

No
CC

Yes

isolation technique.



RBF structure consists of 49 hidden nodes, and the minimumMSEs
achieved during the training and test processes are 0.05 and 0.12
respectively. In order to analyse the effectiveness of the proposed
ANN-based approaches, Fig. 10aeb shows the classification

confusion matrix for the four faults considered during the test
phase. The cells of the matrix with red and green colours represent
the percentage of faults correctly and not correctly classified,
respectively.

The classification confusion matrix reveals that the correct and

Fig. 6. Experimental set up.
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Fig. 7. Test facilities at the REL, Jijel University (Algeria).
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the false classification rates obtained with theMLP basedmodel are
90.3% and 9.7%, respectively. False classifications occurred between
F1 and F2, and between F3 and F5. The 28.2% of samples associated
to F2 are classified as F1 and this situation occurred when the
number of inversed cells or bypass diodes was very low. Further-
more, the 10.5% of samples associated to F5 are classified as F3; this
occurred when the connected and shunt resistances had either a
very low or a very high values, respectively. Consequently, the
power loss was not important in either of the two cases. For the RBF
based model, the correct and the false classification rates are 68.4%
and 31.6%, respectively, the false classification rate of each class is as
follow: 85% for class 1, 6.5% for class 2, 27.5% for class 3, and 61.9%
for class 4. The comparison between the results shows that theMLP
network is more efficient for faults classificationwith respect to the
RBF one.



4.3. Comparative study

In order to test the effectiveness of the proposed diagnostic
method, we have compared the obtained results with the ones
from the method presented in Ref. [23]. The comparison between

Fig. 8. (a). PV string IeV characteristics: case of bypass diode fault. (b). PV string IeV characteristics: case of PV module fault. (c). PV string IeV characteristics: case of connection
fault. (d). PV string IeV characteristics: case of shadow effect and possible bypass diode fault.

Table 4
Attributes for the considered case studies.

Case DP C1 C2 V1 V2 DN

1 369.6 1.75 1.46 20.7 31.1 0
2 267.1 0 0.036 0 72.6 2
3 187.3 0 0.15 0 41.5 0

Fig. 9. The adopted A
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the outputs given by the two methods is presented in Table 5 for
four different case studies. As can be noticed, the power losses
analysis method only gives the possible fault locations and cannot
identify the possible fault types.
NN architecture.



4.4. FPGA-based implementation

For a rapid prototyping, the designed fault diagnosis technique
has been implemented into a FPGA using a Xilinx's System Gener-
ator (XSG) with an ISE Ver. 14.3 Design Suite [44]. Fig. 11a shows the

PV array. Moreover, this work also shows the implementation of the
proposed fault diagnosis technique into a Field Programmable Gate
Array (FPGA) showing its effectiveness in real applications.
Different attributes (such as current, voltage and number of peaks)
of the simulated and the measured currentevoltage (IeV) charac-
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Fig. 10. Classification confusion matrix for ANN network.

Table 5
Comparative results between the proposed method and the one presented in Ref. [23].

Case study Method based on power losses analysis Proposed method

Method parameters Decision
method

Method parameters Decision method

String with two shaded modules LC_sim ¼ 0.0037, LC_meas ¼ 0.18, s ¼ 0.05,
RI ¼ 1, RV ¼ 1.33

Faulty
module

ALgorithm1:
N ¼ 2, C2 ¼ 0.01, T1 ¼ 0.1

Partial shadow with any fault
on bypass diode

String with two shaded modules equipped
by open circuit diodes

LC_sim ¼ 0.0037, LC_meas ¼ 0.39, s ¼ 0.05,
RI ¼ 2.7, RV ¼ 0.88

Faulty
string

Algorithm1:
N ¼ 1, C1 ¼ 1.6, T1 ¼ 0.1

Partial shadow with faulty
bypass diode

String with two short circuit modules LC_sim ¼ 0.0037, LC_meas ¼ 0.16, RI ¼ 1.01,
RV ¼ 1.27, s ¼ 0.05

Faulty
module

Algorithm 1:
N ¼ 1, C1 ¼ 0.02, C2 ¼ 0.03, T1 ¼ 0.1

Group of faults not
discriminable

Algorithm 2:
RVoc ¼ 0.5
RVmpp ¼ 0.48
RImpp ¼ 0.97

Cells, diodes, or modules are
short circuited.

String with two shunted modules LC_sim ¼ 0.0037, LC_meas ¼ 0.15, RI ¼ 1.03,
RV ¼ 1.22, s ¼ 0.05

Faulty
module

Agorithm1:
N ¼ 1, C1 ¼ 0.01, C2 ¼ 0.4,
T1 ¼ 0.1,V1 ¼ 13.8, T2 ¼ 11.4

Group of faults not
discriminable

Algorithm 2:
RVoc ¼ 0.95, RVmpp ¼ 0.72,
RImpp ¼ 0.82

Cells, diodes, or modules are
shunted

LC_sim: simulated capture losses, LC_sim: measured capture losses, RI: current ratio, RV: voltage ratio, s: threshold.

W. Chine et al. / Renewable Energy 90 (2016) 501e512510
proposedmethod in the FPGA environment. As an example, Fig. 11b
depicts the XSG design of Algorithm 1, while Fig. 11c presents the
XSG design of the basic elements of the developed ANNs [45]. The
hardware co-simulation using the ISE (synthetize and routing)
creates automatically the bit stream file and programs the FPGA
(type Virtex 5ML501-XC5VLX50).

5. Conclusions

The paper presents a newArtificial Neural Network (ANN) based
approach for the identification of eight types of fault occurring in a
10
teristics of a number of PV strings have firstly been compared. The
development of two different algorithms allows the isolation and
the identification of faults that have and have not the same com-
bination of attributes. Themodel used for the simulations of normal
and faulty conditions has been experimentally validated using the
data from a PV string installed on the rooftop of the Renewable
Energy Laboratory (REL) at the Jijel University (Algeria). The ob-
tained results confirm the ability of the technique to correctly
localize and identify the different type of faults.

The designed diagnostic method, that can easily be generalized
for large-scale PV systems, is cheap as requires as an input only the



Fig. 11. (a)The fault diagnosis configuration using a FPGA environment. (b). XSG design of Algorithm 1. (c). XSG design of the basic elements of Algorithm 2.
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following parameters: solar irradiance, PV module's temperature,
and PV array's current and voltage. Further investigation aims at
experimentally verifying the implemented algorithms into a
reconfigurable FPGA for online fault detection and classification.

[21] S. Kaplanis, E. Kaplani, Energy Performance and degradation over 20 years
performance of BP c-Si PV Modules, Simul. Model. Pract. Theory 19 (2011)
1201e1211.

[22] S. Silvestre, M.A. da Silva, A. Chouder, D. Guasch, E. Karatepe, New procedure
for fault detection in grid connected PV systems based on the evaluation of
current and voltage indicators, Energy Convers. Manag. 86 (2014) 241e249.
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