
DOI 10.1007/s00362-014-0605-7

Clustering of time series via non-parametric tail
dependence estimation
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Abstract We present a procedure for clustering time series according to their tail
dependence behaviour as measured via a suitable copula-based tail coefficient, esti-
mated in a non-parametric way. Simulation results about the proposed methodology
together with an application to financial data are presented showing the usefulness of
the proposed approach.
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1 Introduction

Clustering of time series represents an important tool in finance and economics, since
practitioners are often interested in identifying similarities in financial assets for port-
folio optimization and/or risk management purposes. As such, several methods have
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been developed in the literature (see, for instance, Piccolo 1990; Pattarin et al. 2004;
Otranto 2008; Tola et al. 2008; Brida andAdrián-Risso 2010; Bastos and Caiado 2013)
and the references therein.

In general, procedures for clustering financial time series are based on the choice of
a relevant dissimilarity measure. Traditionally, clustering techniques have been used
to find groups in a portfolio of financial assets from its correlation coefficient matrix:
see, for instance, the book by Kaufman and Rousseeuw (1990) and the works by
Mantegna (1999) and Bonanno et al. (2004). Such studies try to identify sub-groups
of time series by using the linear association (measured by Pearson’s correlation) or
the comovement degree (measured by Spearman’s correlation) of the time series.

Another recent approach consists of finding groups that are similar in the sense that
all time series in a group tend to co-move when they are experiencing large losses.
Such a different viewpoint was proposed, for instance, by De Luca and Zuccolotto
(2011), where a dissimilarity matrix is constructed starting with a parametric estima-
tion of pairwise tail dependence coefficients of the time series. We recall that a tail
dependence coefficient (Joe 1997) is a measure (taking values in [0, 1]) that expresses
the link between two random variables in the upper (lower) tail of their joint distrib-
ution. Similarly, Durante et al. (2013b) have provided a way for grouping time series
according to the values of the conditional Spearman’s correlation, starting with the
seminal ideas by Longin and Solnik (2001) based on exceedance correlations.

It is worth noting that clustering methods that are based on information about the
tail dependence are very useful in the analysis of the risk of a portfolio of assets.
In fact, classical correlation-based clustering procedures should not be used when
there is some contagion effect among the markets under consideration, namely when
the positive association among the markets increases in crisis period with respect to
tranquil periods. In such a situation, diversification may fail to work exactly when it
is needed most (see, for instance, De Luca et al. 2010; Durante and Jaworski 2010;
Durante and Foscolo 2013; Durante et al. 2013a).

Here, developing the ideas presented in De Luca and Zuccolotto (2011) we present
a method for clustering time series according to tail dependence coefficients. Themain
novelty of our approach is that it avoids to specify any parametric model assumption
on the pairwise dependence structure of the involved time series. In fact, it is only
based on the rank statistics derived from the observations. The simulation results show
that its overall performance is quite promising even for large portfolios (dimension
equal to 128), since it allows to group together different variables according to their
tail dependence. In particular, a larger cluster separation in terms of tail dependence
implies better performances of the proposed approach. Moreover, while De Luca
and Zuccolotto (2011) suggested a multidimensional scaling as a preliminary step to
the clustering procedures, our approach may avoid this additional treatment without
deteriorating the overall results.

The paper is organized as follows. Section 2 describes the proposed cluster algo-
rithm, whose performance is checked via a simulation study in Sect. 3. An applica-
tion to the analysis of MSCI Developed Market indices is given in Sect. 4 allowing
a direct comparison with the results by De Luca and Zuccolotto (2011). Section 5
concludes.
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2 The methodology

In this section we present our clustering procedure for grouping time series according
to their tail behaviour. Along the manuscript, we consider a matrix of d financial time
series (xit )t=1,...,T (i = 1, 2, . . . , d) representing the returns of different financial
assets collected in a given period of time (T observations). The proposed procedure
consists of the following steps, which will be described in detail in the subsequent
sections.

1. Choose a suitable copula-based time series model in order to focus the attention
to the link between the variables of interest without any influence of the marginal
behaviour of each variable.

2. Estimate the pairwise lower tail dependence coefficients λL
i j among the different

time series by a non-parametric approach.
3. Define a dissimilarity matrix by using the information contained in the tail depen-

dence coefficients and, hence, apply a clustering algorithm.

2.1 Select a suitable copula-based time series model

In order to provide a convenient representation of the dependence among financial time
series, a copula-approach can be used (see, e.g., Jaworski et al. 2010, 2013; Patton
2012 and the references therein). Specifically, a suitable stochastic model may be built
in two steps: first, the marginals are fitted (means, variances, and distribution of the
standardized residuals), then the standardized residuals of the univariate models are
coupled via a suitable copula model either parametrically or non-parametrically. This
procedure is quite common since it allows to avoid the influence ofmarginal behaviour
on the dependence structure (i.e. the copula) among the variables under consideration.
Following these ideas, in order to analyse the time series (x1t , . . . , x

d
t )t=1,...,T we

proceed in the following way:

1. We fit a suitable ARMA–GARCH model to each univariate time series and we
check for the adequacy of the fit via standard tests of uncorrelatedness and het-
eroscedasticity (e.g., Ljung-Box tests, ARCH tests).

2. We rescale the obtained standardized residuals (Patton 2012 [section 2]) from each
time series to the interval [0, 1] (by means of the univariate empirical cumulative
distribution function) by obtaining the time series (z1t , . . . , z

d
t )t=1,...,T that take

values in [0, 1]d . Actually, these time series represent an empirical version of the
link (i.e. the copula) among the time series under consideration and will be used
for the further steps.

If the marginal model is correctly specified, the so-called pseudo–observations
(z1t , . . . , z

d
t )t=1,...,T (also known as estimated probability integral transform variables)

approximately constitute a random sample generated by the copula C linking the vari-
ables of interest. Moreover, as stressed by Remillard (2010) (see also Patton 2012,
2013), the estimated parameters from the conditional mean and variance do not affect
the asymptotic distribution of estimated dependence measures.

3



F. Durante et al.

2.2 Estimate tail dependence coefficients

Oncewe have obtained the pseudo–observations (z1t , . . . , z
d
t )t=1,...,T from the original

time series, in order to quantify the degree of dependence in the tail of the joint
distribution function of a random pair (X, Y ), we adopt the concept of tail dependence
coefficient (Joe 1997; Durante et al. 2014). We recall that, if (X, Y ) is a continuous
bivariate random vector with copula C , then the lower and upper tail dependence
coefficients (shortly, TDCs) only depend on C and are defined, respectively, by

λL(C) = lim
t→0+

C(t, t)

t
and λU (C) = lim

t→1−
1 − 2t + C(t, t)

1 − t
. (2.1)

For what follows, it is important to notice that

λL(C) = λU (̂C), (2.2)

where ̂C is the survival copula associated with C and given by

̂C(u, v) = u + v − 1 + C(1 − u, 1 − v).

Estimators of tail dependence coefficients have been considered several times in the
literature (see, e.g., Frahm et al. 2005). In particular, they are popular in the class of
extreme value copulas (see, for instance, Beirlant et al. 2004; Gudendorf and Segers
2010; Salvadori et al. 2007).

We recall that a copula C is called an extreme value copula (EVC) if C(ut , vt ) =
Ct (u, v) for all t > 0, u, v ∈ [0, 1] (see, e.g., Gudendorf and Segers 2010). A result
of Pickands (1981) states that C is an EVC if and only if

C(u, v) = (uv)
A
(

log v
log(uv)

)

, (u, v) ∈ [0, 1]2, (2.3)

where A : [0, 1] → [1/2, 1] is continuous, convex and satisfies the constraint
max {t, 1 − t} ≤ A(t) ≤ 1 for all t ∈ [0, 1]. The function A is referred to as the
dependence function associated with C . In particular, if C is an EVC, then

λU (C) = 2 − 2A

(

1

2

)

. (2.4)

In other words, the estimation of the dependence function A provides an estimation for
the upper TDC. Non-parametric estimation procedures of the dependence function A
are quite popular and have different variants (see, for instance, Gudendorf and Segers
2010). Among various possible choices, a good choice is given by the estimator ̂ACFG

proposed by Capéraà et al. (1997), due to the fact that it seems to outperform other
similar estimators (see the discussion by Genest and Segers 2009). The rank-based
version of CFG estimator for A is defined in Genest and Segers (2009)[section 2.2],
and it is recalled here for sake of completeness.
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Consider a random sample {(Xi , Yi )}i=1,...,n from a pair (X, Y ) of continuous ran-
dom variables with joint distribution function H and margins F and G. For every
i ∈ {1, . . . , n}, define the pair (Ûi , V̂i ), whose coordinates are scaled ranks given by

Ûi = 1

n + 1

n
∑

j=1

1(X j ≤ Xi ), V̂i = 1

n + 1

n
∑

j=1

1(Y j ≤ Yi ).

For every i ∈ {1, . . . , n} and t ∈ (0, 1) set

Ŝi = − log Ûi = ξ̂i (0), T̂i = − log V̂i = ξ̂i (1), ξ̂i (t) = Ŝi
1 − t

∧ T̂i
t

.

The non-parametric rank-based CFG estimator ̂ACFG for A is defined implicitly by

log ̂ACFG(t) = −γ − 1

n

n
∑

i=1

log ξi (t), (2.5)

where γ = − ∫ ∞
0 log(x)e−xdx ≈ 0.577 is Euler’s constant. In the sequel, we will

denote bŷλCFG
U the estimator of the upper TDC obtained via formula (2.4) in terms

of the estimator in (2.5).
Now, in order to use an Extreme Value Theory approach for the estimation of lower

TDC of our time series we adopt the procedure described in Frahm et al. (2005)[sec-
tion 3.5]. Let C be the copula associated with the pseudo–observations of the consid-
ered financial returns (as described in Sect. 2.1). Let ̂C be the copula associated with
the pseudo–observations of the corresponding losses (i.e. the opposite of the returns)
given by z̃it = 1 − zit for every i = 1, . . . , d and t = 1, . . . , T .

As a matter of fact, ̂C may not be an EVC; however, under suitable conditions, it
belongs to the so-called domain of attraction of a suitable EVC C∗ (Gudendorf and
Segers 2010). Moreover, it can be proved (Abdous et al. 1999[Lemma 1]) that ̂C and
C∗ have the same upper TDC. Thus, instead of estimating directly the lower TDC
from C (or, equivalently, the upper TDC from ̂C), we may estimate it by using the
estimator̂λCFG

U applied to the EVC C∗. Obviously, C∗ is unknown, but its empirical
version can be obtained by extracting block maxima from the loss observations, as
suggested by Frahm et al. (2005).

Specifically, the pairwise lower TDCof each pair (zit , z
j
t )t=1,...,T , i 	= j , of pseudo–

observations is calculated via the following procedure.

1. First, set z̃it = 1 − zit and z̃ jt = 1 − z jt . Namely, we pass from the copula of the
pseudo-observations to the survival copula of the pseudo–observations.

2. For k = 1, . . . ,m consider the coordinate-wise block maxima

( ˜Mi
k,

˜M j
k ) =

(

max
t=(k−1)l+1,...,kl

z̃it , max
t=(k−1)l+1,...,kl

z̃ jt

)

.

That is,we extract themaxima of observations overm blocks of l = T/m elements.
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3. Estimate the bivariate dependence function ̂Ai j from the m block maxima obser-
vations ( ˜Mi

k,
˜M j
k ) via Eq. (2.5).

4. Then, in view of Eq. (2.4), the lower TDC of (zit , z
j
t )t=1,...,T is equal to

2 − 2̂Ai j (0.5).

Notice that, as usual in the block maxima approach (see, for instance, Embrechts
et al. 1997), a trade-off necessarily takes place in determining the number and size
of blocks: a larger size leads to a more accurate determination of the EVC C∗ in the
domain of attraction; while a large number of blocks givesmore data for the estimation
of the dependence function A of C∗.

2.3 Define a dissimilarity measure and apply a cluster algorithm

A fundamental step in cluster analysis is to obtain a suitable measure of dissimilarity
(respectively, similarity) between each pair of time series. Here, as done, for instance,
in De Luca and Zuccolotto (2011), we have to transform the estimated TDCs through
a monotonic function in such a way that the obtained dissimilarity between two time
series is small when their tail dependence is high, and monotonically increases when
their tail dependence decreases. Thus, for i, j = 1, . . . , d, a matrix � = (

�i j
)

is
defined whose elements are given by

�i j = − log
(

λ̂L
i j

)

, (2.6)

where λ̂L
i j is the lower tail dependence coefficient between time series i and j estimated

non-parametrically through the procedure described in the previous section. Notice
that Eq. (2.6) defines a dissimilaritymeasure between time series i and j (i.e. it satisfies
the properties of non negativity, identity and symmetry) through a log–transformation
multiplied with−1, which gives values of dissimilarities ranging from 0 (i.e. when the
tail dependence is high) to infinity (i.e. when the tail dependence is extremely low).
Hence, the dissimilarity measure in (2.6) is coherent with the idea of similarity we
adopt, in the sense that �i j decreases in a monotone way as time series (xit ) and (x j

t )

are more and more similar in their lower tail behaviour.
The resulting matrix can be directly used in hierarchical clustering algorithms.

When, instead, partitioning methods are used, such a matrix should be further treated
in order to obtain a corresponding distance matrix. In particular, we perform a cluster
analysis of the d time series by following two different approaches:

1. Apply an agglomerative hierarchical algorithm (e.g. single, average, complete
linkage) directly to the matrix � = (

�i j
)

.
2. Perform a non–metric Multidimensional Scaling (MDS) in order to assign Euclid-

ean coordinates to the set of d time series such that the inter-point distances closely
match the input dissimilarities. Then, the points configuration obtained can be used
as an input for classical k-means algorithm. More details about this procedure will
be given below.

The first clustering process is based on the hierarchical classification of the objects
and generates a graphical representation of the results, the so-called dendrogram, that
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shows how clusters are formed at each stage of the procedure. Single, average and
complete linkage schemes refer to a different computation of the distance between
two groups and can be used on data that are not restricted to Euclidean distances.
Then, partitions are obtained by cutting off the dendrogram at an arbitrary height. One
advantage of hierarchical clustering is that the number of clusters is not required as a
parameter.

The second approach consists in applying K -means partitioning method by pro-
viding in input the representation of normalized residuals as points inRq , x1, . . . , xd ,
as obtained from a non–metric MDS algorithm. The general MDS problem refers to
the task of assigning Euclidean coordinates to a set of objects such that given a set
of dissimilarities, similarities, or ordinal relations between the objects, the embedded
points have to fit as closely as possible the original relations. In particular, non–metric
algorithms find an embedding respecting only the relative ordering of the input dis-
similarities. As done by De Luca and Zuccolotto (2011), we consider the Shepard–
Kruskal formulation of non–metric MDS first introduced by Shepard (1962a, b) and
further refined by Kruskal (1964), which has been applied extensively. Given the dis-
similaritymatrix� = (

�i j
)

, i, j = 1, . . . , d , the Shepard–Kruskal algorithm is based
on minimizing the so-called stress function

s =
√

√

√

√

∑

i j (di j − θ(�i j ))
2

∑

i j d
2
i j

,

where di j = ||xi−x j || refers to theEuclidean distance, across all dimensions, between
points i and j , and θ(·) is a weakly monotonic transformation of the input data.
Starting from an initial configuration of points in 2-dimensional space, the distortion
as measured by s can be further minimized by increasing the number of dimensions
q, until the stress function is lower than a certain value of tolerance. This results in
an Euclidean configuration given by q × d coordinates of d points, which provide an
optimal approximation of the original entries. The q-dimensional points configuration
can be used as an input for K -means algorithm, which minimizes the sum of distances
fromeach object to its cluster centroid, over all clusters. Cluster centroids are computed
differently for each distance measure, to minimize the sum with respect to the chosen
measure. The method is faster than hierarchical clustering, but the number of clusters
has to be fixed in advance. The final output is a set of clusters that are as compact and
well separated as possible.

In the following, a simulation study and a practical application show how these two
different procedures work.

3 Simulation study

In this section, we do a simulation study to check the clustering performances of the
proposed methodology. We simulate various dependence structures by using copula
functions of different dimensions d and allowing different degrees of joint tail depen-
dencies. Specifically, the copula models we are considering are the following:
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Model 1 (cluster independence): we suppose that the random variables of inter-
est are divided into groups such that the pairwise tail dependence is non-zero
between the elements within a group, while two elements in different groups are
independent. In particular, the used copula models are specified as follows:

C(u) =
J

∏

j=1

C j (u j1, . . . , u jk j ), (3.1)

for all u = (u11, . . . , u1k1 , u21, . . . , u2k2 , . . . , uJ1, . . . , uJkJ ), with k1 + · · · +
kJ = d, where each C j comes from a Clayton (respectively, survival Gumbel)
family with a fixed lower TDC.
Model 2 (hierarchical dependence): we suppose that the random variables of inter-
est are divided into groups such that the pairwise tail dependence between the
elements within a group is greater than that one between elements belonging to
different groups. In particular, the used copula models are related to the general
class of hierarchical (or nested) Archimedean copulas (Hering et al. 2010; Okhrin
et al. 2013), which is specified as follows:

C(u) = C0(C1(u11, . . . , u1k1), . . . ,CJ (uJ1, . . . , uJkJ )), (3.2)

for all u = (u11, . . . , u1k1 , u21, . . . , u2k2 , . . . , uJ1, . . . , uJkJ ), with k1 + · · · +
kJ = d, where C j comes from an Archimedean copula. Specifically, we consider
two models generated by this framework: the hierarhical Clayton copula (i.e. a
copula of type (3.2) where C0,C1, . . . ,CJ belongs to the Clayton family) and the
survival copula associated with the hierarchical Gumbel copula.
Model 3 (shock-based dependence): we suppose that the random variables of
interest are divided into groups such that the pairwise tail dependence between the
elements within a group is non-zero and the tail dependence among elements in
different groups is driven by a common random factor, that could be interpreted
in terms of a shock. This kind of models is quite advantageous since it allows to
put a singular probability mass in the tail of the joint distribution: for more details,
see Durante et al. (2010). Here, we consider the copula models belonging to this
class that may be expressed via the formula

C(u) = C0(u
1−α
11 , . . . , u1−α

JkJ
) · (min((u11, . . . , uJkJ ))

α, (3.3)

where α ∈ [0, 1] is a parameter that express the between-cluster tail dependence,
while C0 is a copula of type (3.1) where each of its components is a Student
t–copula with a given TDC (Durante et al. 2010[page 685]).

Notice that, recently, other copula models could be used as well to model tail depen-
dence behaviour among groups (Czado 2010; Brechmann 2014). However, the pro-
posed models are quite convenient in this context since they usually give a direct way
to compute the degree of tail dependence within and across groups of variables.

In order to see the performances of our methods in a variety of situations, we
generate N data from the above models by considering the following different values:
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• the sample size N = 500;
• the dimension of the model d = 32, 64, 128;
• the number of different clusters J = 4, 8, 16, with J < d/2;
• the pairwise lower TDC varying according to the different models as specified in
the sequel.

For each model, we create the dissimilarity matrix according to the method
described in Sect. 2 and we apply two clustering procedures (hierarchical and non-
hierarchical), namely:

1. Agglomerative hierarchical algorithm with complete linkage grouping criterion

on the dissimilarity matrix �i j = − log
(

λ̂L
i j

)

;

2. K -means partitioning algorithm on the points in the final configuration returned
by Shepard–Kruskal non–metric MDS.

As explained in the previous section, the Shepard–Kruskal algorithm requires in input
the number of dimensions q of the points in the final configuration. We first set q = 2
and fix the threshold t = 0.025 for the minimum value of the stress function, over
which any configuration cannot be accepted. Hence we choose to limit the amount
of stress (or distortion) to tolerate to 2.5%. To this end, we iterate the algorithm by
increasing q until the minimum stress of the corresponding optimal configuration
satisfies the constraint min(s) < t .

In order to compare clustering results against external criteria, a measure of agree-
ment is needed. To this aim, we consider the Rand Index (RI) (Rand 1971) and the
Adjusted Rand Index (ARI) (Hubert and Arabie 1985). Let P1 and P2 be two parti-
tions of the same set of n objects S = {o1, . . . , on} : P1 ≡ {C1k, k = 1, . . . , r} and
P2 ≡ {C2k, k = 1, . . . , s}. Denote with a the number of pairs of objects that are in
the same set in P1 and in the same set in P2, and with b the number of pairs of objects
that are in different sets in P1 and in different sets in P2, that is

a = |S�|, S� = {

(oi , o j )|oi , o j ∈ C1r1 , oi , o j ∈ C2s1

}

,

a = |S��|, S�� = {

(oi , o j )|oi ∈ C1r2 , o j ∈ C1r3 , oi ∈ C2s2 , o j ∈ C2s3

}

,

for some 1 ≤ i, j ≤ n, i 	= j, 1 ≤ r1, r2, r3 ≤ r, r2 	= r3, 1 ≤ s1, s2, s3 ≤ s, s2 	= s3.
Then the RI is defined by

RI = a + b
(n
2

) .

The RI lies between 0 and 1, where the maximum value is taken when two partitions
agree perfectly. The ARI is the corrected-for-chance version of the RI, so as to ensure
that its maximum value is 1 and its expected value is zero when the partitions are
selected at random:

ARI =
∑r

i=1
∑s

j=1

(ni j
2

) − ∑r
i=1

(ai
2

)∑s
j=1

(b j
2

)/(n
2

)

1
2

[

∑r
i=1

(ai
2

) + ∑s
j=1

(b j
2

)

]

− ∑r
i=1

(ai
2

)∑s
j=1

(b j
2

)/(n
2

)

,
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where ni j denotes the number of objects belonging to both C1i and C2 j , for i =
1, . . . , r , j = 1, . . . , s; ai the number of objects belonging to C1i , for i = 1, . . . , r ;
b j the number of objects belonging to C2 j , for j = 1, . . . , s. The ARI can yield a
value between −1 and 1.

Supposed that the number of clusters to be selected is fixed and equal to J for
each simulation, we calculate the RI and ARI between the obtained cluster structure
(from the sampled data) and the expected cluster structure (as derived from the chosen
model). The calculations are repeated 250 times, and the average index is considered.

Firstly,we consider the simulation results related toModel 1, as reported inTables 1,
2 and 3. Here the number k of clusters is not estimated, but supposed to be equal to
the true value J . The following considerations could be drawn:

• As the dimension d increases, the performance seems to decrease, even if the
changes are not so evident.

• For an increasing number of clusters the ARI seems to decrease (notice that it
make no sense to use in this case the RI since it is highly dependent upon the
number of clusters).

• The different dependence structure (in terms of TDC) matters; in fact, a stronger
cluster separation (as obtained by a larger TDC) increases the performances.More-
over, different copula families used for getting the dependence within each cluster
also seems to influence the results. This is due to a different tail behaviour that
cannot only be captured by the TDC (for more considerations about the tail of a
copula see Jaworski 2010).

• Complete linkage clustering procedure outperforms K -means clustering proce-
dure, which requires an additional step (multidimensional scaling) to convert the
dissimilarity matrix into a distance matrix.

Table 1 Simulation results from Model 1 for N = 500, d = 32

J Copula family λ Complete linkage MDS + K -means Stress

RI ARI RI ARI

4 Clayton 0.25 0.8072 0.4845 0.6422 0.1566 ≤0.024979

0.50 0.9733 0.9264 0.6819 0.2636 ≤0.024991

0.75 1.0000 1.0000 0.7201 0.3725 ≤0.025000

Survival Gumbel 0.25 0.7815 0.4216 0.6398 0.1409 ≤0.024974

0.50 0.9729 0.9253 0.6844 0.2695 ≤0.024946

0.75 0.9998 0.9993 0.7101 0.3665 ≤0.024966

8 Clayton 0.25 0.8792 0.3596 0.8019 0.1115 ≤0.024965

0.50 0.9690 0.8335 0.8268 0.2346 ≤0.024967

0.75 0.9997 0.9983 0.8536 0.3831 ≤0.024999

Survival Gumbel 0.25 0.8710 0.3210 0.8040 0.1016 ≤0.024903

0.50 0.9714 0.8463 0.8255 0.2291 ≤0.024995

0.75 0.9999 0.9997 0.8529 0.3876 ≤0.024987

10



Clustering of time series

Table 2 Simulation results from Model 1 for N = 500, d = 64

J Copula family λ Complete linkage MDS + K -means Stress

RI ARI RI ARI

4 Clayton 0.25 0.7576 0.4263 0.6636 0.2030 ≤0.024994

0.50 0.9710 0.9236 0.7000 0.3066 ≤0.024991

0.75 0.9997 0.9992 0.7129 0.3804 ≤0.024924

Survival Gumbel 0.25 0.7293 0.3752 0.6605 0.1849 ≤0.024993

0.50 0.9750 0.9348 0.6955 0.2936 ≤0.024995

0.75 1.0000 1.0000 0.7090 0.3808 ≤0.024977

8 Clayton 0.25 0.8660 0.3662 0.7978 0.1403 ≤0.024997

0.50 0.9712 0.8617 0.8283 0.2957 ≤0.024988

0.75 0.9993 0.9966 0.8660 0.4722 ≤0.024979

Survival Gumbel 0.25 0.8580 0.3313 0.7959 0.1294 ≤0.024996

0.50 0.9721 0.8669 0.8307 0.2989 ≤0.024997

0.75 0.9997 0.9984 0.8514 0.4344 ≤0.024962

16 Clayton 0.25 0.9278 0.2653 0.9039 0.1054 ≤0.024981

0.50 0.9777 0.7695 0.9203 0.2751 ≤0.024989

0.75 0.9996 0.9963 0.9484 0.5274 ≤0.024998

Survival Gumbel 0.25 0.9236 0.2229 0.9019 0.0865 ≤0.024995

0.50 0.9761 0.7544 0.9193 0.2653 ≤0.024992

0.75 0.9994 0.9940 0.9466 0.5194 ≤0.024980

Notice that we also repeat the same simulation scheme for a sample size N = 1000
(results are not reported here). Obviously, the results improve, but the general consid-
erations do not change.

Moreover, for completeness, we consider the case when the number of cluster is not
fixed. Specifically, for each sample, we can determine the optimal number of clusters
g by the silhouette index (Kaufman and Rousseeuw 1990), which reflects the within-
cluster compactness and between-cluster separation of a clustering. In detail, for g =
1, 2, . . ., the number of clusters is chosen such that the average silhouette width is
maximized over all g. It follows that, if the correct number of clusters is identified, then
it coincides with J . Otherwise, the procedure has misspecified the cluster structure, a
fact that will decrease the performance of our methodology. These results are reported
in Table 4 for Model 1 with dimension d = 32 (the other dimensions give similar
results). As can be seen, setting k unknown does not deteriorate the overall results.

Now, let us repeat the simulation study in the more general case when the within-
cluster dependence is not set equal to zero, as provided by Model 2. The results are
reported in Tables 5, 6, 7 and 8. The following considerations could be made:

• As the dimension d increases, the performance seems to decrease slightly.
• For an increasing number of clusters the ARI seems to decrease.
• The different dependence structure (in terms of TDC) matters; in fact, a stronger
cluster separation (as obtained by larger difference of the TDC’s of the copulas C0
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Table 3 Simulation results from Model 1 for N = 500, d = 128

J Copula family λ Complete linkage MDS + K -means Stress

RI ARI RI ARI

4 Clayton 0.25 0.6472 0.2760 0.6855 0.2482 ≤0.024986

0.50 0.9694 0.9219 0.7293 0.3667 ≤0.024995

0.75 1.0000 1.0000 0.7424 0.4321 ≤0.024996

Survival Gumbel 0.25 0.5927 0.2095 0.6927 0.2527 ≤0.024999

0.50 0.9691 0.9233 0.7235 0.3563 ≤0.024994

0.75 1.0000 0.9999 0.7131 0.3852 ≤0.024984

8 Clayton 0.25 0.8026 0.2880 0.8090 0.2027 ≤0.024997

0.50 0.9688 0.8583 0.8450 0.3702 ≤0.024998

0.75 0.9994 0.9971 0.8621 0.4804 ≤0.024996

Survival Gumbel 0.25 0.8343 0.2807 0.7650 0.0971 ≤0.024990

0.50 0.9721 0.8731 0.8419 0.3629 ≤0.024996

0.75 1.0000 0.9999 0.8639 0.4907 ≤0.024992

16 Clayton 0.25 0.9183 0.2669 0.8991 0.1426 ≤0.024998

0.50 0.9754 0.7770 0.9236 0.3691 ≤0.024990

0.75 0.9993 0.9938 0.9491 0.5930 ≤0.024998

Survival Gumbel 0.25 0.8930 0.0835 0.8702 0.0246 ≤0.024875

0.50 0.9753 0.7780 0.9249 0.3754 ≤0.024996

0.75 0.9994 0.9941 0.9505 0.5996 ≤0.024989

Table 4 Simulation results
from Model 1 for N = 500,
d = 32

The number of clusters k is not
fixed, but selected by the
silhouette index

J Copula family λ Complete linkage

RI ARI

4 Clayton 0.25 0.7648 0.5637

0.50 0.8699 0.8439

0.75 0.9406 0.9715

Survival Gumbel 0.25 0.7484 0.5341

0.50 0.8757 0.8521

0.75 0.9272 0.9512

8 Clayton 0.25 0.7728 0.4541

0.50 0.8959 0.7908

0.75 0.9831 0.9814

Survival Gumbel 0.25 0.7582 0.4187

0.50 0.8942 0.7898

0.75 0.9648 0.9696

and Ci ) increases the performances. Moreover, different copula families used for
getting the dependence within each cluster also seem to influence the results.

• Complete linkage clustering procedure outperforms K -means clustering procedure,
which requires an additional step.

12
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Table 5 Simulation results from Model 2 for N = 500, d = 32

J C0 λC0 λCi Complete linkage MDS + K -means Stress

RI ARI RI ARI

4 Hierarchical Clayton 0.2 0.4 0.7395 0.3278 0.5233 0.0933 ≤0.024854

0.2 0.6 0.9571 0.8855 0.6763 0.3573 ≤0.024919

0.4 0.6 0.8284 0.5499 0.7771 0.4652 ≤0.024952

Survival hierarchical Gumbel 0.2 0.4 0.7813 0.4243 0.5739 0.1436 ≤0.024919

0.2 0.6 0.9682 0.9148 0.7140 0.4123 ≤0.024944

0.4 0.6 0.8623 0.6355 0.7979 0.5256 ≤0.024992

8 Hierarchical Clayton 0.2 0.4 0.8447 0.2334 0.7219 0.0571 ≤0.024907

0.2 0.6 0.9529 0.7548 0.7841 0.2104 ≤0.024906

0.4 0.6 0.8813 0.4184 0.8508 0.3046 ≤0.024965

Survival hierarchical Gumbel 0.2 0.4 0.8668 0.3202 0.7339 0.0907 ≤0.024883

0.2 0.6 0.9701 0.8419 0.7922 0.2507 ≤0.024708

0.4 0.6 0.8948 0.4699 0.8511 0.3139 ≤0.024868

Table 6 Simulation results from Model 2 for N = 500, d = 64

J C0 λC0 λCi Complete linkage MDS + K -means Stress

RI ARI RI ARI

4 Hierarchical Clayton 0.2 0.4 0.7254 0.3161 0.4609 0.0654 ≤0.024992

0.2 0.6 0.9550 0.8850 0.5770 0.2410 ≤0.024956

0.4 0.6 0.8267 0.5644 0.7430 0.4457 ≤0.024937

Survival hierarchical Gumbel 0.2 0.4 0.7726 0.4201 0.5432 0.1417 ≤0.024941

0.2 0.6 0.9734 0.9306 0.6197 0.2973 ≤0.024988

0.4 0.6 0.8564 0.6363 0.7676 0.5039 ≤0.024859

8 Hierarchical Clayton 0.2 0.4 0.8244 0.2247 0.5890 0.0388 ≤0.024953

0.2 0.6 0.9564 0.7963 0.6687 0.1441 ≤0.024938

0.4 0.6 0.8674 0.4170 0.7952 0.2594 ≤0.024996

Survival hierarchical Gumbel 0.2 0.4 0.8530 0.3253 0.6598 0.0739 ≤0.024997

0.2 0.6 0.9718 0.8666 0.6947 0.2006 ≤0.024994

0.4 0.6 0.8893 0.4998 0.8167 0.3173 ≤0.024984

16 Hierarchical Clayton 0.2 0.4 0.9123 0.1685 0.8114 0.0375 ≤0.024982

0.2 0.6 0.9669 0.6731 0.8413 0.1285 ≤0.024994

0.4 0.6 0.9266 0.3167 0.9056 0.1666 ≤0.024956

Survival hierarchical Gumbel 0.2 0.4 0.9215 0.2273 0.8384 0.0507 ≤0.024961

0.2 0.6 0.9773 0.7671 0.8523 0.1669 ≤0.024994

0.4 0.6 0.9354 0.3794 0.9085 0.2162 ≤0.024983

123
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Table 7 Simulation results from Model 2 for N = 500, d = 128

J C0 λC0 λCi Complete linkage MDS + K -means Stress

RI ARI RI ARI

4 Hierarchical Clayton 0.2 0.4 0.6998 0.2910 0.4305 0.0412 ≤0.024961
0.2 0.6 0.9556 0.8879 0.5206 0.1704 ≤0.024992
0.4 0.6 0.8461 0.6122 0.6697 0.3705 ≤0.024977

Survival hierarchical Gumbel 0.2 0.4 0.7535 0.4068 0.4755 0.0798 ≤0.024991
0.2 0.6 0.9743 0.9346 0.5910 0.2604 ≤0.024971
0.4 0.6 0.8739 0.6785 0.7545 0.5137 ≤0.024985

8 Hierarchical Clayton 0.2 0.4 0.8105 0.2127 0.5358 0.0293 ≤0.024961
0.2 0.6 0.9563 0.8065 0.5696 0.1029 ≤0.024990
0.4 0.6 0.8624 0.4294 0.7414 0.2265 ≤0.024979

Survival hierarchical Gumbel 0.2 0.4 0.8409 0.3147 0.6031 0.0696 ≤0.024971
0.2 0.6 0.9709 0.8692 0.6544 0.1808 ≤0.024965
0.4 0.6 0.8869 0.5106 0.7820 0.3253 ≤0.024915

16 Hierarchical Clayton 0.2 0.4 0.8981 0.1591 0.6964 0.0285 ≤0.024997
0.2 0.6 0.9635 0.6838 0.7476 0.1029 ≤0.024994
0.4 0.6 0.8592 0.2048 0.8111 0.1023 ≤0.024994

Survival hierarchical Gumbel 0.2 0.4 0.9094 0.2209 0.7775 0.0458 ≤0.024999
0.2 0.6 0.9752 0.7784 0.8040 0.1605 ≤0.024986
0.4 0.6 0.9255 0.3744 0.8725 0.2084 ≤0.024985

Table 8 Simulation results
from Model 2 for N = 500,
d = 32

The number of clusters k is not
fixed, but selected by the
silhouette index

J C0 λC0 λCi Complete linkage

RI ARI

4 Hierarchical Clayton 0.2 0.4 0.5929 0.5603

0.2 0.6 0.8274 0.8608

0.4 0.6 0.7362 0.6844

Survival hierarchical Gumbel 0.2 0.4 0.6675 0.6026

0.2 0.6 0.8881 0.8929

0.4 0.6 0.7400 0.7201

8 Hierarchical Clayton 0.2 0.4 0.5579 0.5128

0.2 0.6 0.7966 0.7752

0.4 0.6 0.6811 0.5685

Survival hierarchical Gumbel 0.2 0.4 0.6707 0.4832

0.2 0.6 0.8870 0.8262

0.4 0.6 0.7421 0.5799

• When the number of cluster k is not specified a priori, the results maintain a rea-
sonable good performance (Table 8).

Finally, even when usingModel 3, the general considerations remain the same. The
results for Model 3, when d = 32, are reported in Table 9.
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Table 9 Simulation results from Model 3 for N = 500, d = 32

J α λCi Complete linkage MDS + K -means Stress

RI ARI RI ARI

4 0.2 0.7177 0.2651 0.6310 0.1091 ≤0.024963

0 0.4 0.9111 0.7592 0.6673 0.2145 ≤0.024993

0.6 0.9956 0.9876 0.6831 0.2855 ≤0.024981

0.2 0.7061 0.2326 0.5978 0.0717 ≤0.024925

0.2 0.4 0.9004 0.7293 0.6246 0.1585 ≤0.024988

0.6 0.9916 0.9773 0.6544 0.2488 ≤0.024958

0.2 0.6866 0.1712 0.5477 0.0447 ≤0.025000

0.4 0.4 0.8718 0.6568 0.5787 0.1246 ≤0.024991

0.6 0.9832 0.9547 0.6098 0.1955 ≤0.024998

0.2 0.6574 0.1005 0.4685 0.0213 ≤0.024980

0.6 0.4 0.8436 0.5814 0.5162 0.0852 ≤0.024762

0.6 0.9763 0.9358 0.6325 0.2815 ≤0.024994

8 0.2 0.8491 0.2039 0.7989 0.0712 ≤0.024993

0 0.4 0.9285 0.6217 0.8159 0.1655 ≤0.024971

0.6 0.9899 0.9457 0.8338 0.2817 ≤0.024991

0.2 0.7061 0.2326 0.5978 0.0717 ≤0.024925

0.2 0.4 0.9004 0.7293 0.6246 0.1585 ≤0.024988

0.6 0.9916 0.9773 0.6544 0.2488 ≤0.024958

0.2 0.8324 0.1317 0.7355 0.0377 ≤0.024922

0.4 0.4 0.9084 0.5189 0.7386 0.0901 ≤0.024986

0.6 0.9837 0.9126 0.7678 0.1750 ≤0.024953

0.2 0.8205 0.0889 0.6751 0.0257 ≤0.024984

0.6 0.4 0.8895 0.4311 0.7004 0.0693 ≤0.024967

0.6 0.9715 0.8496 0.7543 0.1688 ≤0.024956

4 Application to real data

In order to illustrate our approach we analyse daily returns of time series of Morgan
Stanley Capital International (MSCI) Developed Markets indices designed to mea-
sure the equity market performance of developed markets. The Dataset includes the
following markets: Australia, Austria, Belgium, Canada, Denmark, Finland, France,
Germany, Greece, Hong Kong, Ireland, Italy, Japan, Netherlands, New Zealand, Nor-
way, Portugal, Singapore, Spain, Sweden, Switzerland, the United Kingdom and
the United States. We restrict to the time series of daily log–returns (x1t , . . . , x

d
t ),

d = 23, t = 1, . . . , T , in the period from June 4, 2002 to June 10, 2010 (T=2093
observations; Source: Datastream) in order to provide a direct comparison with the
results by De Luca and Zuccolotto (2011).

We preliminary fit AR-GARCH models to each series of returns with Student-
t distributed errors to account for heavy tails. For all time series we then perform
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Fig. 1 Dissimilarity matrix of the MSCIWorld Index Data constituents according to the described method

Box-Pierce and Ljung-Box tests at lags 1 and 5, to check for residual autocorrelation,
ARCH tests at lags 1 and 5, for autoregressive conditional heteroscedasticity and
Kolmogorov-Smirnov test to check for the Student hypothesis for the standardized
residuals. The estimation results show a reasonable fit for all time series (available
upon request). The standardized residuals from each time series are rescaled to the
interval [0, 1] thus obtaining the pseudo-observations (z1t , . . . , z

23
t ) on [0, 1]23 which

represent the empirical copula among the time series of returns. For the estimation of
TDC, we consider m = 91 block maxima where each block contains 2093/91 = 23
elements from each time series of residuals (i.e. we focus approximately to monthly
maxima). Then, the pairwise lower TDCs λL

i j are estimated non-parametrically by the
described procedure. The total number of estimated coefficients is d(d − 1)/2 = 253,
resulting in a 23× 23 symmetric matrix. Given estimates λ̂L

i j , the dissimilarity matrix
is computed as in (2.6) (see Fig. 1). Such a matrix can be used as input for several
clustering algorithms.

Among hierarchical clustering techniques the complete linkage method is chosen
in order to achieve more useful hierarchies than single or average linkage from a
pragmatic point of view. Moreover, it can be used on data that are not restricted to
Euclideandistances. Looking at the dendrogramproducedby complete linkage scheme
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Fig. 2 Dendrogram of the MSCI World Index Data constituents according to complete linkage. Cutting at
about height 1.4 a 4-clusters solution is obtained

Table 10 Hierarchical
Clustering of MSCI World Index
Data

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Belgium Australia Hong Kong Canada

Finland Austria Japan USA

France Greece Singapore

Germany Denmark

Ireland New Zealand

Italy

Netherlands

Norway

Portugal

Spain

Sweden

Switzerland

UK

(Fig. 2), we find out that k = 4 can be considered a good solution, where k denotes the
number of clusters selected. Table 10 reports the corresponding cluster composition.
Notice that the results can be interpreted in terms of geographic proximity: the lower
tail dependence tends to be higher within European markets, where the Scandinavian
countries are grouped together as well as USA and Canada; Pacific countries tend
to be divided in two separate clusters where New Zealand and Australia are joined
together aswell asHongKong, Japan and Singapore.Moreover, it seems that European
markets are splitted in two groups, being some small markets inserted in a separate
group (Austria and Denmark).
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Fig. 3 Left Two-dimensional MDS configuration. Right Within groups sum of squares versus the number
of clusters in a K -means solution

In order to provide a further comparison, we run K -means algorithm on the dis-
similarity matrix � = (

�i j
)

. Before doing this step, as suggested in De Luca and
Zuccolotto (2011), we need to convert the information coming from � into a set of
d vectors in a high-dimensional Euclidean space. As discussed in Sect. 2.3, we can
adopt a non–metric MDS procedure so that each time series (xit ) will be represented
by a q-dimensional vector xi . Starting from an initial configuration for q = 2, the
Shepard–Kruskal algorithm iteratively improves the accuracy of the final representa-
tion by increasing q until the minimum stress of the corresponding configuration is
lower than 2.5%. The final configuration results in a set of d = 23 points of dimension
q = 10, corresponding to a stress value of 0.0242. Left part of Fig. 3 displays the two-
dimensional MDS configuration, characterized by a stress value min(s) = 0.2283.
The obtained 10-dimensional points configuration can be used as input for K -means
algorithm. As said, unlike hierarchical clustering, K -means clustering requires that
the number of clusters to extract be specified in advance.

A plot of the within-groups sum of squares against the number of clusters extracted
can help determine the appropriate number of clusters. A bend in the graph can suggest
the appropriate number of clusters. From the right part of Fig. 3 we can observe that
the decreasing profile in the within groups sum of squares when k increases from 4
to 5 seems to be higher than the decreasing profile when k increases from 5 to 6,
suggesting that a 5-clusters solution can be considered an appropriate choice.

The cluster memberships are listed in Table 11 and are quite consistent with the
results in Table 10. Again these results can be mainly interpreted in terms of geo-
graphic proximity, although some small European markets are separated from the rest
of European markets.

The cluster solutionswe carry out from the two procedures can be directly compared
with the results obtained by De Luca and Zuccolotto (2011), although in our analysis
we perform hierarchical clustering in addition to partitioning clustering and adopt
different criteria in the choice of the number of clusters. Moreover, we would like
to stress again that our procedure does not require any parametric assumption on
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Table 11 K -means clustering of MSCI World Index Data

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Belgium Austria Denmark Australia Greece

France Canada Finland Japan Hong Kong

Germany Ireland Norway New Zealand Singapore

Italy USA Sweden

Netherlands

Portugal

SPAIN

Switzerland

UK

the copula linking the pairwise financial assets, which can be considered the main
advantage of the proposed method.

5 Conclusions

We have presented a procedure for clustering time series according to their tail behav-
iour. The procedure follows three steps: first, a copula-based time series model is fitted
to univariate time series; second, the pairwise tail dependence coefficients is computed
via a non-parametric procedure; finally, a dissimilarity matrix is created from these
coefficients and some standard clustering procedures are adopted.

The results are related to the work by De Luca and Zuccolotto (2011), where
a similar procedure was investigated by using a parametric estimation. Moreover,
contrarily to the latter work, our study suggests that the additional step of performing
a MDS of the dissimilarity matrix does not provide a real advantage.

A direct application of the given procedure is mainly related to the field of portfolio
optimization and selection. In fact, the proposed clustering procedure may be adopted
as a graphical tool to visualize linkages among financial time series that are related to
the tail of their joint distribution. In particular, it can also be exploited to perform an
automatic selection procedure for financial portfolios trying to hedge against extreme
risks (De Luca and Zuccolotto 2013). Alternatively, one may also use the clustering
information as a constraint in a portfolio optimization problem, for instance by impos-
ing to select exactly one asset in each sub-group (for more details about this procedure,
see the work by Cesarone et al. (2013)).

In general, such clustering procedures may be applied in all fields where the (joint)
tail behaviour of different time series is of interest; see, e.g., environmental science
(see, for instance, Salvadori et al. 2007). However, the direct application of such
techniques need a special care, since the sample size is often of limited length in this
kind of data and the estimation of the tail may be not accurate.
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