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SUMMARY 

This study evaluates the association between the long noncoding RNA GAS5 levels and the anti-

proliferative effect of the glucocorticoid (GC) methylprednisolone (MP) alone and in combination 

with rapamycin in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. 

The effect of MP, rapamycin, and MP plus rapamycin was determined in 17 healthy donors by 

labelling metabolically active cells with [methyl-3H] thymidine and the expression levels of GAS5 

gene were evaluated by real-time RT-PCR TaqMan analysis. We confirmed a role for GAS5 in 

modulating GC response: poor responders presented higher levels of GAS5 in comparison with 

good responders. Interestingly, when PBMCs were treated with the combination of rapamycin plus 

MP, the high levels of GAS5 observed for each drug in the MP poor responders group decreased in 

comparison with rapamycin (P value = 0.0134) or MP alone (P value = 0.0193).  GAS5 is involved 

in GC resistance and co-treatment of rapamycin with GCs restores GC effectiveness in poor 

responders through the downregulation of the long noncoding RNA. GAS5 could be considered a 
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biomarker to personalize therapy and a novel therapeutic target useful for the development of new 

pharmacological approaches to restore GC sensitivity. 
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INTRODUCTION 

Glucocorticoids (GCs) are commonly used as therapeutic agents for inflammatory and autoimmune 

diseases, in the treatment of leukaemias and lymphomas, and in the prevention of rejection in 

transplant patients.1–3 These agents exert their biological effects through binding to the GC receptor 

(GR), which translocates from the cytoplasm into the nucleus and binds, through its DNA-binding 

domain (DBD), the glucocorticoid responsive elements (GREs) in the regulatory regions of GC 

responsive genes.4 However, considerable inter-individual differences in their efficacy and side 

effects have been reported. The molecular mechanisms involved in this variability are scarcely 

understood and there is presently no means to predict the response in advance.5, 6  

Recent results obtained in the authors’ laboratory suggest a role for the long noncoding 

RNA (lncRNA) growth arrest-specific 5 (GAS5) in modulating GC response in peripheral blood 

mononuclear cells (PBMCs). A previous in vitro study demonstrated that PBMCs resistant to GCs 

express higher levels of GAS5 in comparison with good responders, and hypothesized that 

upregulation of GAS5 could interfere with GR activity, leading to the resistance phenotype 

observed.7 In addition, others have recently demonstrated that decreasing GAS5 levels can enhance 

GC action in airway epithelial cells.8 

GAS5 is a lncRNA (~650 bases in humans) that interacts with the DBD of the ligand-

activated GR and suppresses GR-induced transcriptional activity of GC responsive genes by 

inhibiting binding of the GR to target genes GREs.9 GAS5 is a member of the 5’ terminal 

oligopyrimidine (5’TOP) class of RNAs, whose transcript levels are controlled by the mammalian 

target of rapamycin (mTOR) pathway.10, 11  

An increasing number of reports indicate that other immunosuppressive agents, among 

which rapamycin, the inhibitor of mTOR, can reverse GC resistance in different human cell lines,12–

16 suggesting that the poor response to GCs may derive from an impaired cross-talk between the GC 

and mTOR signalling pathways. However, the molecular mechanism involved in the synergistic 

effect of these agents has not yet been clarified. An increase in the levels of GAS5 was observed 

when mouse embryo NIH3T3 cells were treated with the mTOR-specific inhibitor rapamycin.10 
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Furthermore, the regulation of GAS5 transcript levels by mTOR has been confirmed in leukaemic 

and primary human T cells: downregulation of GAS5 using RNA interference protected both cell 

types from the inhibition of proliferation produced by mTOR antagonists.11  

These findings are in contrast with our recent observation, showing an upregulation of 

GAS5 in GC resistant PBMCs. On these bases, this study investigates the role of GAS5 in the 

phenomenon of GC sensitivity restored by rapamycin in resistant PBMCs. The association between 

the anti-proliferative effects of methyl-prednisolone (MP) alone or in combination with rapamycin, 

and GAS5 gene expression in PBMCs obtained from healthy subjects was examined. The 

preliminary data presented here suggest that rapamycin, in combination with GCs, reverts GC 

resistance in PBMCs and this effect is associated with a reduction in the expression of GAS5. The 

study confirms that mTOR pathway is connected with GR signalling and that GAS5 could play a 

key role in the synergistic effect of rapamycin and GCs. 

 

RESULTS 

Peripheral blood mononuclear cells obtained from healthy donors were isolated for proliferation and 

gene expression analyses. Subjects were divided into two groups on the basis of individual MP (250 

ng/mL) response: MP good responders (MP_GR) had a percentage of inhibition ≥54% (8 subjects 

MP_GR, median inhibition 61%); and MP poor responders (MP_PR) had a percentage of inhibition 

<54% (9 subjects MP_PR, median inhibition 36%) (Fig. 1, P = 0.0004).  

When incubated with rapamycin (100 nmol/L) alone, the MP_GR and MP_PR groups 

showed a significantly different growth inhibitory effect: the MP_GR subjects were significantly 

more sensitive to rapamycin (RAPA: MP_GR median inhibition 75%) compared with MP_PR 

group (MP_PR median inhibition 58%) (Fig. 1, P = 0.0225). The combination of rapamycin with 

MP in MP_PR PBMCs enhanced the growth inhibitory effect (RAPA+MP: MP_PR median 

inhibition 81%) compared to rapamycin or MP alone (MP_PR: RAPA+MP vs RAPA P < 0.001; 

RAPA+MP vs MP P < 0.001), and the same trend was observed in MP_GR (RAPA+MP: MP_GR 

median inhibition 91%) (MP_GR: RAPA+MP vs RAPA P < 0.05; RAPA+MP vs MP P < 0.001) 

(Fig. 1).  

While the percentage of inhibition was significantly different between MP_GR and MP_PR 

both for MP and rapamycin alone, when the combination of the two drugs was used, no significant 

difference in growth inhibition was observed between the two groups (RAPA+MP: MP_GR vs 

MP_PR P >0.05). 

The expression of the GAS5 gene was analyzed in the same MP_GR and MP_PR PBMCs.  
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Treatment with MP alone induced a different regulation of GAS5 in the two groups, confirming 

recently published preliminary data from our laboratory:7 the expression of GAS5 mRNA was 

significantly downregulated in MP_GR group after 72 hours of treatment with 250 ng/mL of MP in 

comparison with MP_PR, in which GAS5 resulted, on the contrary, upregulated (Fig. 2, 

P = 0.0427). The correlation between the percentage inhibition of PBMC proliferation and GAS5 

expression level was further analyzed using the nonparametric correlation coefficient (Fig. 2, 

Spearman rho = –0,73; P = 0.0009).  

Then, the effect of rapamycin alone and in combination with MP on the expression of GAS5  

was checked (Fig. 3). When all subjects were considered, no differences in GAS5 expression were 

observed after 72 hours of treatment with rapamycin in comparison with the untreated cells (data 

not shown; P = 0.1019), as already published for MP alone.7 When GAS5 expression was evaluated 

in the MP_PR group after treatment with RAPA, it was observed that the levels of GAS5 were 

significantly increased compared to the MP_GR group (Fig. 3; P = 0.0302). 

Interestingly when PBMCs were treated with the combination of rapamycin plus MP, the 

high levels of GAS5 observed for each drug in MP_PR, decreased in comparison with rapamycin 

(P = 0.0134) or MP alone (P = 0.0193); it is important to point out that no significant difference 

between MP_PR and MP_GR groups was observed (Fig. 3; P = 0.9502).  

 

DISCUSSION 

Glucocorticoid resistance is a major driver of therapeutic failure in cancer, allogeneic 

transplantation, and immune-mediated diseases and there is presently no means to predict this 

phenomenon in advance. 

Recent reports have shown that the lncRNA GAS5 could act as a riborepressor of the GR. In 

particular, GAS5 exon 12-derived sequence has been shown to structurally mimic the GREs, 

preventing the binding of the activated GR complex to its target DNA sequences.9 Moreover, GAS5 

is a member of the 5’ terminal oligopyrimidine (5’TOP) class of RNAs, whose transcript levels are 

controlled by the mTOR pathway,10 a potential target to restore GC effectiveness.14, 15  

This study provides new insights on the phenomenon of GC sensitivity restored by 

rapamycin in which GAS5 could be directly involved. In particular, the results demonstrate for the 

first time the synergistic effect of MP and rapamycin in MP_PR PBMCs, confirming previous 

studies in tumor cell lines.12–15 Indeed, it has been recently shown that rapamycin sensitizes GC 

resistant haematological malignant cells to Dexamethasone-induced apoptosis; this is demonstrated 

by an increased inhibition of cell growth, cell cycle arrest at G1 and apoptosis.14, 15, 17 In particular, 
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the combination of rapamycin and GCs was able to both inhibit the mTOR signalling pathway, as 

confirmed by downregulation of p-p70S6k, and increase in the phosphorylation status of the GR.15 

Previous studies conducted in our laboratory have shown that endogenous GAS5 is 

upregulated in resistant PBMCs after in vitro treatment with MP, possibly through the binding to 

the DBD site, and consequent interference with the GR transcriptional activity,7 however, no data 

are available on the effect of rapamycin reversion of GC resistance on GAS5 expression levels in 

PBMCs. Our data demonstrate that mTOR inhibition increases GAS5 transcript levels in MP_PR 

PBMCs compared to the MP_GR group. This upregulation observed in MP_PR PBMCs is probably 

ascribable to the fact that GAS5 is a 5’TOP RNA, whose stability is controlled by the mTOR 

pathway.10 An accumulation of GAS5 transcript in NIH3T3 cells treated with rapamycin has been 

described already by Smith and Steitz.10 Furthermore, the regulation of GAS5 transcript levels by 

mTOR has been studied indirectly in leukaemic and primary human T cells: downregulation of 

GAS5 using RNA interference protected both cell lines from the inhibition of proliferation 

produced by rapamycin.11 The different regulation of GAS5 expression in the MP_GR and MP_PR 

PBMCs observed in the current study is unexpected and requires further investigation. Currently 

studies are in progress on the involvement of the lncRNA GAS5 antisense RNA 1 (GAS5-AS1) 

gene: the partial overlap between the two lncRNAs could be important to regulate GAS5 RNA 

stability. 

When PBMCs were treated with the combination of rapamycin plus MP, the high levels of 

GAS5 observed for each drug in MP_PR group decreased in comparison with rapamycin or MP 

alone. It was very interesting to find that the combination of rapamycin and MP could reverse GC 

resistance in PBMCs, not only through the inhibition of mTOR but also decreasing GAS5 levels. 

Again, the downregulation of this lncRNA is associated with a good response to GCs.7 This 

downregulation seems not to be related to the direct effect of the single drug but rather to a possible 

cross-talk between their pathways, however, further investigation is needed to shed light on the 

interacting mechanism. 

Taken together, the results provide evidence that high GAS5 levels in PBMCs of healthy 

donors after GC treatment in vitro could represent a molecular index of GC resistance. Therefore, if 

these data could be confirmed in patients in therapy with GCs, GAS5 levels could represent a 

specific molecular target to be evaluated. The development of an assay based on GAS5 screening in 

patients’ PBMCs treated with GCs in vitro could predict the in vivo response and help clinicians in 

the adjustment of the current protocols. In patients with high levels of GAS5, a co-treatment with 

rapamycin could eventually be proposed.  In conclusion, GAS5 could be considered a biomarker to 
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personalize therapy and a novel therapeutic target useful for the development of new 

pharmacological approaches to restore GC sensitivity. 

 

METHODS 

Subjects 

Samples from 17 blood donors were collected between January 2014 and October 2014 from the 

Transfusion Centre, Azienda Ospedaliera Universitaria, Trieste, Italy. Blood samples were obtained 

by venipuncture between 0800 and 1000 hours to minimize the variability due to circadian rhythm, 

and immediately processed. All donors signed an individual review-board-approved consent for 

blood sampling and use for research purposes. Blood samples were delivered to the University of 

Trieste with no individually identifiable information. A total of 9 mL of each buffy coat was used 

for the isolation of PBMCs. 

 

In vitro proliferation assay 

Using the method reported by Cuzzoni and colleagues,18 the effect of MP, rapamycin and MP plus 

rapamycin on the proliferation of PBMCs was determined. The I250 was calculated and defined as 

the inhibition of proliferation achievable at 250 ng/mL concentration of MP. PBMCs were treated 

for 72 hours with MP 250 ng/mL, rapamycin 100 nmol/L and with the combination. Subjects were 

divided into two groups based on their individual response to MP and considered good or poor 

responders if their I250 values were respectively above or below the median of the whole population 

analyzed.  

 

Quantitative real-time PCR (TaqMan) 

The PBMCs treated as above were collected and preserved in RNAlater solution (Ambion, Austin, 

TX) at –80°C. RNA extraction using the purelink RNA Isolation Kit (Ambion, Life Technologies, 

Carlsbad, CA) was performed according to the manufacturer’s instructions. The RNA concentration 

and purity were calculated by Nano Drop instrument (NanoDrop 2000, ThermoScientific, 

Wilmington, Delaware USA). Expression levels of GAS5 gene were evaluated by real-time RT-

PCR TaqMan analysis using the CFX96 real-time system-C1000 Thermal Cycler (Bio-Rad 

Laboratories, Foster City, CA). The reverse transcription reaction was carried out with the High 

Capacity RNA-to-cDNA Kit (Applied Biosystems, Foster City, CA) and the real-time PCR was 

performed in triplicate using the TaqMan Gene Expression Assay to assess GAS5 mRNA 

expression, according to the manufacturer’s instructions. The expression levels of GAS5 were 
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evaluated using the comparative Ct method (2-ΔΔCt method). Ct values were corrected based on 

PCR efficiencies using LinRegPCR. The GAS5 expression values were normalized using the 18S 

as housekeeping gene. 

 

Statistical analysis 

Statistical analyses were performed using Graph-Pad Prism version 4.00 (GraphPad, La Jolla, CA). 

Two way ANOVA, Spearman correlation and t test were used for the analysis of inhibition of 

proliferation and gene expression between good and poor responders. P values < 0.05 were 

considered statistically significant. 
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Fig. 1    Percent inhibition of proliferation in methylprednisolone (MP) good responder (MP_GR) 

and poor responder (MP_PR) groups after treatment for 72 hours with MP (250 ng/mL), rapamycin 

(RAPA, 100 nmol/L) and the combination (RAPA+MP). Two way ANOVA *** P < 0.001; ** 

P < 0.01. 

 

 

 

Fig. 2    Correlation between the percentage inhibition and the GAS5 expression level. Spearman 

rho = –0,73; P = 0.0009. 
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Fig. 3    Relative expression (RE) of GAS5 in methylprednisolone (MP) good responder (MP_GR) 

and poor responder (MP_PR) groups after treatment with MP (250 ng/mL), rapamycin (RAPA; 100 

nmol/L) and in combination for 72 hours. t test *P < 0.05. 


