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ABSTRACT
We consider the long-standing problem of the automatic
generation of regular expressions for text extraction, based
solely on examples of the desired behavior. We investigate
several active learning approaches in which the user anno-
tates only one desired extraction and then merely answers
extraction queries generated by the system.

The resulting framework is attractive because it is the sys-
tem, not the user, which digs out the data in search of the
samples most suitable to the specific learning task. We tailor
our proposals to a state-of-the-art learner based on Genetic
Programming and we assess them experimentally on a num-
ber of challenging tasks of realistic complexity. The results
indicate that active learning is indeed a viable framework in
this application domain and may thus significantly decrease
the amount of costly annotation effort required.

CCS Concepts
•Information systems → Users and interactive re-
trieval; •Mathematics of computing → Evolutionary
algorithms; •Computing methodologies→ Learning par-
adigms;

Keywords
Information Extraction; Entity Extraction; Programming
by Examples; Machine Learning

1. INTRODUCTION
A large class of entity extraction tasks from unstructured
data may be addressed by regular expressions, because in
many practical cases the relevant entities follow an underly-
ing syntactical pattern and this pattern may be described by
a regular expression. A long-standing problem in this area
consists in the automatic generation of a regular expression
suitable for a specific task based solely on examples of the
desired behavior.
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A wealth of research efforts in this area considered classifica-
tion problems either in formal languages [12, 18, 39, 17, 20,
23] or in the realm of deterministic finite automata (DFA)
[25, 15, 10, 29]. Those results considered scenarios that do
not fit practical text processing applications, which have to
cope with much longer sequences of symbols drawn from a
much larger alphabet. Text extraction problems of non triv-
ial size and complexity were first considered in a procedure
that automatically optimized an initial regular expression
to be provided by the user based on examples of the desired
functioning [27]. Later proposals still required an initial reg-
ular expression but were more robust toward initial expres-
sions of modest accuracy and noisy datasets [3, 32]. The
need of an initial solution was later removed in several pro-
posal [14, 11, 4]. A more recent proposal based on Genetic
Programming advanced significantly over earlier approaches
and is capable of addressing text extraction tasks of prac-
tical complexity effectively, with a few tens of examples of
the desired behavior [5, 6].

In this work, we investigate the feasibility of an active learn-
ing approach for relieving the user from the need of examin-
ing the full input text (i.e., the dataset) in search of all the
desired extractions to be annotated for learning [1, 36, 38,
13, 28]. We develop and evaluate experimentally a frame-
work in which the user initially marks only one snippet of
the input text as desired extraction. A learner based on
Genetic Programming then constructs a solution, digs into
the (possibly very long) input text, selects the most appro-
priate snippet to be used for improving the current model
and presents it to the user as an extraction query. The user
merely answers the query by specifying whether the selected
snippet has to be extracted or not extracted and the process
continues iteratively, improving the solution at each query.

The resulting framework is highly attractive and may greatly
broaden the potential scope of automatic regex generation
from examples. On the other hand, actually implementing
this framework is challenging because the scenario presents
significant differences from successful applications of active
learning.

Active learning approaches usually consider datasets where
each item is an input instance and thus a candidate query.
This property is shared also by approaches based on Ge-



t I was born in 1979 and he was born in 1974.

sq I was born in 1979 and he was born in 1974.

M,U I was born in 1979 and he was born in 1974.

Figure 1: Oracle annotation example: desired (un-
desired) extractions are in dark (light) gray; the
query is boxed.

netic Programming [16, 33, 22]. Our case is different be-
cause the dataset is a single, possibly long, input text with-
out any native segmentation in smaller units. Depending on
the application, it may consist of one very long line or sev-
eral lines with possibly variable length; furthermore, more
than one desired extractions may occur within a single line
(e.g., IP addresses in network logs) or a single desired ex-
traction may span across several lines (e.g., HTML elements
including their content). Assuming that the text is natively
segmented in lines or in sentences (as in, e.g., [19]) would
severely restrict the scope of possible applications of the sys-
tem. Moreover, the size of the query to be presented to the
user should be chosen carefully. Presenting a large snippet
(e.g., one or more entire lines) to the user for annotation
may nullify the objective of minimizing user annotation ef-
fort. On the other extreme, repeatedly asking the user to
annotate very short snippets may not be effective.

In other words, not only we have the problem of choosing
the next query among candidate queries, we also have the
problem of constructing candidate queries out of the avail-
able input text. In this respect, it is useful to remark that
the number of possible queries in (i.e., the number of snip-
pets of) an input text grows quadratically with the text
size and becomes huge very quickly—e.g., even if we assume
that the learner cannot generate queries ex novo and can
only query a snippet of the input text, if the latter size is
just 105characters then there are ≈ 1010 candidate queries.
Furthermore, active learning usually targets scenarios with
hundreds of queries (e.g., [38, 13, 28]) whereas we must be
able to improve over a random query chooser and provide
solutions of good quality even with a few tens of examples,
similarly to [22].

Our contribution consists in:(a) a model for the external
oracle that may participate in the construction of queries,
which improves the quality of annotation information while
at the same time maintaining a behavior very intuitive to
unskilled users; (b) a technique for constructing queries suit-
able to regex-based entity extraction from unstructured text,
which does not assume any internal segmentation of input
text; (c) an implementation of several active learning ap-
proaches taking into account the need of constructing candi-
date queries; (d) a novel variant for the learner in which the
number of generations executed between consecutive queries
may vary dynamically depending on the quality of the cur-
rent solution; and, (e) an experimental analysis on a number
of challenging datasets of several active learning approaches,
which target different accuracy/annotation effort regions of
the design space.

2. OUR APPROACH
The problem consists in generating a regular expression au-

tomatically based on examples of the desired extraction be-
havior on a text t. Such examples are annotations: snippets
of t that are to be extracted (matches) or snippets of t that
are not to be extracted (unmatches).

We propose an approach based on active learning, as follows.
Initially an external oracle, i.e., the user, annotates an ex-
tremely small portion of t—we experimented with only one
match. The learner consists of three components: the solver,
which generates a regular expression suited to the matches
and unmatches annotated by the oracle so far; the query
trigger, which determines when a query has to be proposed
to the oracle; and the query builder, which constructs candi-
date queries and determines which query should be proposed
to the oracle.

Each query consists of a snippet of t, denoted sq, to be
annotated by the oracle. We propose the following behavior
for the oracle: the oracle’s answer is a pair M,U , where M
is the (possibly empty) set of all matches which overlap sq
and U is the (possibly empty) set of maximal subsnippets
of sq which are unmatches—Figure 1 shows an example of
annotation.

In other words, we propose an oracle that may modify the
received query slightly and then answer the modified query.
With most active learning approaches the user is required
to provide the class of queried data and is not allowed to
modify those data. The proposed behavior for the oracle is
very practical and is easily implemented with a GUI, though.
When the queried snippet consists exactly of a desired ex-
traction or does not contain any desired extraction, one sin-
gle click suffices to answer the query. Otherwise, when the
query partly overlaps a match, the user is expected to ex-
pand the query on either or both sides—an action which
is more intuitive to unskilled users, nevertheless results in
answers which are more informative to the learner.

We developed a web-based prototype with a GUI that effi-
ciently implements the proposed interaction model. Figure 2
shows how the user interface appears when a query is made
(left) and while the learning algorithm is running (right). In
the first case, a query is shown as a highlighted portion of the
text (in purple) t and the user is presented with 3 buttons:
‘Extract”, “Do not extract” and “Edit”. When the query
corresponds exactly to a desired extraction or does not con-
tain any desired extraction, then one single click suffices to
answer the query (button “Extract” or “Do not extract”, re-
spectively). Otherwise, when the user has to describe a more
complex answer, by clicking the “Edit” button the user may
extend the selection boundaries of the query and delimit
desired extractions precisely. The GUI also highlights (in
green) the extractions of the current best solution, in order
to help the user in understanding the behaviour of the cur-
rent solution. The state of the current solution is reported
also while the search is in progress, as illustrated in the left
part of Figure 2. The aim of this design is to help the user
in deciding when to stop the regex search—i.e., when the
user is satisfied by the current solution.

The solver is based on the proposal in [6, 7], whose code
is publicly available1. The proposal is based on Genetic
Programming [24]: a population of regular expressions, rep-

1https://github.com/MaLeLabTs/RegexGenerator



Figure 2: Screenshots of the web-based prototype developed for our framework: query submitted to the user
(left), learning based on the currently available annotations (right).

resented by abstract syntax trees, is iteratively evolved by
applying the genetic operators across many iterations (gen-
erations). A multiobjective optimization algorithm drives
evolution of regular expressions according to their length (to
be minimized) and their extraction performance computed
on the matches and unmatches (to be maximized). We refer
the reader to the cited paper for full details.

We considered two variants for the query trigger. The Const
variant has been used in other active learning proposals for
Genetic Programming [16, 33, 22] and generates a new query
whenever a predefined number of generations of the solver
has been executed. W experimented with 30 and with 200
generations. The Solved variant is an optimization that we
explore in this work. This variant triggers the query builder
when the best regular expression in the population, as as-
sessed on the current set of matches and unmatches, has
remained unchanged for a predefined number of generations
of the solver—i.e., a new query is triggered when no further
progress seems to be achievable with the available annota-
tions. We experimented with 200 generations, i.e., one of
the values selected for the Const variant, in order to assess
the accuracy/speed trade-off of the two variants.

The query builder constructs candidate queries based on
the notion of disagreement : given a set C of regular ex-
pressions (the committee), we define as disagreement of C
on a character c of the input text t the quantity dC(c) =

1 − 2abs
(

1
2
− |Cc|
|C|

)
, where Cc ⊆ C is the subset of regular

expressions which extract c—dC(c) = 1 if half of the com-
mittee extracts c (maximum disagreement), dC(c) = 0 if the
all committee agrees on the processing of c (minimum dis-
agreement). Note that we quantify disagreement based on
the class chosen by each candidate solution in C (extracted
vs. not extracted) [30] without any reference to forms of con-
fidence value, margin or probability [26, 31]. As we pointed
out already in the introduction, such notions are not made
available by the solver that we have chosen to use.

The procedure for constructing candidate queries takes a
set of regular expressions C as parameter and determines

the character c∗ ∈ t with maximal disagreement dC(c∗) in
the full input set t. Next, the procedure determines the set S
of candidate queries as the set composed of all snippets of t
which meet the following conditions: they (a) are extracted
by at least a regular expression in C, (b) overlap c∗, and
(c) do not overlap any available annotation.

We implemented two variants of a query builder. The Query
by committee (QbC) variant works as follows: (a) construct
the set S of candidate queries using the full population as
committee C, (b) compute, for each snippet in S, the aver-
age disagreement among the characters of the snippet, and
(c) choose the snippet with minimal average disagreement
as query. The Query by restricted committee (rQbC) vari-
ant is similar to QbC except that the committee C contains
only the best 25% of the current population (ranking being
based on the current set of matches and unmatches).

QbC and rQbC are based on a principle widely used in active
learning [34, 36], i.e., on the assumption that the query for
which an ensemble of competing hypotheses exhibits max-
imal disagreement is the most informative for the learning
task [37]. Such a principle has been used also in active learn-
ing for Genetic Programming [16, 33, 22]—in those scenarios
there is the problem of choosing a candidate query but not
the one of constructing queries, though. Indeed, the pro-
posal in [22] augments this principle by also taking into ac-
count a measure of diversity between each candidate query
and queries already answered. Our preliminary exploration
of this additional principle, that we do not illustrate for
space reasons, has not delivered satisfactory results. We be-
lieve the reason consists in the difficulty of finding a diversity
measure for text snippets correlated with diversity between
regular expressions—e.g., two text snippets could be very
different while at the same time they could be captured by
the same regular expression or by regular expressions that
are very similar.

Concerning query builders we also observe that a wealth of
active learning approaches choose queries based on uncer-
tainty of the current solution, especially when the learner



is not based on an ensemble of competing hypotheses [26,
35, 34, 38]. On the other hand, such approaches do not fit
the state-of-the-art regex learner that we use in our system,
because such a learner does not provide any confidence level
about the handling of a given snippet (i.e., extracted vs. not
extracted) by the current solution.

We also implemented a third query builder that randomly
chooses an unannotated snippet. We place an upper bound
to the maximum length of the query that may be generated:
we set the actual bound value in our experimental evaluation
to the maximum size of a desired extraction across all our
datasets (few hundreds characters). The upper bound causes
this query builder to filter out candidate queries which are
too long, which hence advantages this builder w.r.t. one
which selects a truly random snippet of t. For this reason,
we call this builder SmartRand.

3. EXPERIMENTS
We focused on the extraction performance of the regular
expression generated for a given amount of user annota-
tion effort. We quantify extraction performance with F-
measure (Fm), which is the harmonic mean of precision (ra-
tio between the number of correctly extracted snippets and
the number of all the extracted snippets) and recall (ra-
tio between the number of correctly extracted snippets and
the number of all the snippets which should have been ex-
tracted). We chose to quantify user annotation effort by the
number of annotated characters (AC).

We evaluated all the 9 combinations between the proposed
design variants and we considered 11 challenging extraction
tasks used in [6]. For each extraction task, we randomly
selected a subset of the original corpus containing approxi-
mately 100 desired extractions. The name of each extraction
task can be seen—along with the size of the input text ex-
pressed in number of characters—in Table 1: it is composed
of the name of the corpus followed by the name of the entity
type to be extracted.

We assessed our system variants as follows. For each task
and variant, we chose a random desired extraction as the
only starting annotated snippet and executed the variant
with a simulated oracle. We repeated the above procedure
15 times, with 5 different starting matches and 3 differ-
ent random seeds. We terminated each execution upon the
query for which either at least 25% of the available charac-
ters was annotated or the F-measure on the full input text
(i.e., not only on the annotated portion) was 1. Although a
real deployment cannot quantify F-measure on a yet unan-
notated input text, we chose to include the latter condition
in the termination criterion in order to provide a fair as-
sessment of variants which are able to generate perfect solu-
tions before reaching the predefined annotation budget. We
chose 25% of the available characters as annotation budget
because we have found that, with these datasets, it corre-
sponds to a few minutes of actual annotation.

Table 1 shows the main results (statistical significance is an-
alyzed in more detail later). For each task, Fm is computed
on the full input text and averaged across the 15 repeti-
tions of each experiment. Values in the bottom rows of the
table are averaged across all tasks. We define the compu-

tational effort (CE) as the number of characters analyzed
for fitness evaluations across an execution. This quantity
is a hardware-independent performance index. Execution
times are in the order of minutes, similarly to [6], we do not
list them in detail for space reasons: the time taken by the
query trigger and the query builder is negligible w.r.t. the
time taken by the solver.

It can be seen that for nearly all tasks several of our ac-
tive learning variants are able to generate regular expres-
sions of very good quality. This result is significant because
it strongly suggests that active learning is indeed a viable
framework for the task of automatic generation of regular
expressions.

Another important outcome is that the rQbC query builder
tends to deliver better F-measure than the SmartRand query
builder while requiring less annotations—∆Fm between 0.05
and 0.1 on the average. In many applications of active learn-
ing, a random query chooser is often quite effective and often
turns out to be a challenging baseline for more sophisticated
query choice strategies [2, 21, 38]. Although we may observe
this phenomenon also in our scenario (in which the random
selection is enhanced by a lenght-based filtering, see Sec-
tion 2), we also observe a clear superiority of approaches
based on rQbC. The QbC query builder, on the other hand,
is not effective as it tends to exhibit worse results from the
three points of view summarized in the table: F-measure,
annotation effort, computational effort.

We speculate that the superiority of rQbC over SmartRand
may become even more apparent with datasets in which the
density of desired extractions is smaller than ours—in our
datasets, the likelihood of randomly choosing a snippet that
partly overlaps a desired extraction is not very small. We
need to investigate this conjecture further, however.

Concerning the behavior of query triggers with rQbC, it can
be seen that each of the three options analyzed belongs to
a different region of the design space. The Const30 query
trigger is much faster (CE) at the expense of obtaining a rel-
atively good but smaller F-measure, while at the same time
requiring more annotations (AC). Const200 and Solved rep-
resent more useful trade-offs because they deliver the best
average F-measure: they require the same amount of anno-
tations, trading a small difference in F-measure for a sub-
stantial difference in computational effort.

In order to illustrate the significance of these results fur-
ther, we executed the state-of-the-art learner proposed in
[6] on the same tasks. This learner requires a training set
fully annotated before starting execution. For each task we
randomly generated 5 training sets, each one with 25% of
the available characters and with a random generation pro-
cedure carefully tailored so as to ensure that each training
set contains approximately 25% of the desired extractions.
It may be useful to emphasize that the size of the train-
ing set corresponds to the size of the training set of active
learning upon the last query: in this case the training set is
instead available to the solver for the full execution; further-
more, in active learning the user need not take any effort to
dig out an adequate amount of desired extractions from the
(potentially large) available data. We executed each task 5
times, each execution using one of the 5 different training



Table 1: The F-measure obtained with each variant on each task. The average F-measure, CE and AC are
also shown.

QbC QbC QbC SmartRand SmartRand SmartRand rQbC rQbC rQbC
Task Size Const30 Const200 Solved Const30 Const200 Solved Const30 Const200 Solved

ReLIE-HTML/All-URL 16 655 0.61 0.82 0.76 0.75 0.86 0.82 0.69 0.84 0.85
ReLIE-Email/Phone-Num. 18 123 0.97 0.99 0.99 0.57 0.95 0.70 0.97 0.98 0.99
Cetinkaya-HTML/href 14 922 0.77 0.87 0.88 0.95 1.00 1.00 0.81 1.00 1.00
Cetinkaya-Text/All-URL 7573 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99
Twitter/Hashtag+Citation 5308 0.91 0.93 0.98 0.98 0.99 0.99 0.92 0.99 0.99
Twitter/All-URL 9537 0.92 0.92 1.00 1.00 0.92 1.00 0.92 1.00 1.00
Log/IP 5766 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Log/MAC 10 387 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Email-Headers/IP 36 925 0.89 0.80 0.94 0.39 0.85 0.53 0.69 0.71 0.77
NoProfit-HTML/Email 4651 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Web-HTML/Heading 37 678 0.51 0.54 0.54 0.81 0.75 0.82 0.52 0.83 0.60

Average Fm 0.87 0.89 0.91 0.86 0.94 0.89 0.86 0.94 0.92
Average AC 3311 3202 2734 2997 2864 2646 3238 2506 2525

Average CE (×109) 6.5 45.4 44.2 4.3 33.6 27.3 7.2 40.0 27.2

sets. We obtained, on average, Fm = 0.97, CE = 29.8× 109

and AC = 3748, i.e., 49% more annotated characters than
rQbC-Const200 and 48% more than rQbC-Solved.

We performed an analysis of the statistical significance of
the results based on the Wilcoxon signed-rank test: we chose
this test since it is non-parametric and does not require the
population to be normally distributed. The results are in
Table 2 (F-measure, above, and annotated characters, AC,
below)—we omit results about CE for space reasons. In each
table, cell (i, j) contains the difference in the average value of
the corresponding performance index between variant in row
i and variant in row j. Statistical significance of performance
index comparison is indicated for varying p-values of the test
and highlighted with asterisks.

These results confirm the analysis of Table 1, but they also
indicate that the rQbC/Const200 and rQbC/Solved actually
does not guarantee any statistically significant improvement
in Fm over SmartRand/Const200. On the other hand, there
is indeed some statistically significant evidence of an im-
provement in terms of smaller annotation effort—12.5% for
rQbC/Const200 and 11.8% for rQbC/Solved. Concerning
CE (not shown for space reasons), rQbC/Const200 requires
19% more character evaluations but this result is not sta-
tistically significant; rQbC/Solved instead requires 19% less
character evaluations with the strongest statistical signifi-
cance.

Figure 3 illustrates the trade-off AC vs. F-measure (left)
and AC vs. CE (right). The figure contains one point for
each task; the different query triggers are represented as
points of different colors while the different query builders
are represented with different shapes. For each point, F-
measure, AC and CE are averaged among 15 experiment
repetitions—5 folds and 3 different random seeds.

In the left figure it can be seen that points representing
the Const30 query trigger—light grey points—tend to be
distributed in the rightmost and lower part of the figure—
i.e., this query trigger requires high AC but obtains low
F-measure. Points representing the Const200 and Solved
query trigger—dark gray and black points—tend instead to
be distributed in the leftmost and higher part of the figure,
i.e., for each AC value we may obtain high F-measure val-

ues. Concerning query builders, the graphical distribution
of points does not provide any significant insights; in this
respect, the other analyses discussed previously are more ef-
fective. In the right figure shows for each point the average
CE vs the average AC for one task it can be seen that points
representing the Const200 and Solved query triggers tend to
be distributed in the highest part of the figure, as expected
Const200 and Solved query triggers require CE values higher
than the Const30 ones. We may note that the points rep-
resenting the SmartRand query builder tend to occupy the
highest part of the figure, in other words SmartRand query
builders require CE values higher than the QbC and rQbC
ones.

Finally, in Table 3 we report the detailed execution trace of
two significant experiments based on the rQbC/Solved con-
figuration: one for the Twitter/Hashtag+Citation task and
another for the Email-Headers/IP task. The table contains
one row for each query constructed by the system. Each row
contains: the sequential number of the query; the number
of annotated matches |

⋃
M | and unmatches |

⋃
U |, available

to the learning algorithm; the content of the query sq; the
response provided by the user in terms of desired matches M
and desired unmatches U . Each row also contains the cur-
rently best solution, along with the F-measure associated
with such solution and the total amount of AC.

4. CONCLUDING REMARKS
We have proposed several active learning approaches tai-
lored to the automatic generation of regular expressions for
entity extraction from unstructured text. We have assessed
these approaches experimentally on a number of challenging
extraction tasks that have been previously used in the litera-
ture. The results indicate that active learning, starting with
only one annotated match, is indeed a viable framework for
this application domain and may thus significantly decrease
the amount of costly user annotation effort. We have also
identified design options and explored the design space, in
terms of computational effort and annotation effort, while
delivering very good F-measure. We believe that our results
are significant and highly promising.

As future work we intend to broaden the experimental anal-



Table 2: Average differences of Fm and AC of pairs of the proposed variants. For each pair, the statistical
significance is shown: *: p < 0.1, **: p < 0.05, ***: p < 0.01 (the last condition corresponds to the strongest
statistical significance; absence of any asterisk indicates that the comparison is not statistically significant,
i.e., p ≥ 0.1).

F-measure (Fm)
QbC QbC QbC SmartRand SmartRand SmartRand rQbC rQbC rQbC

Variant Const30 Const200 Solved Const30 Const200 Solved Const30 Const200 Solved

QbC/Const30 −0.03*** −0.05*** 0.01 −0.07*** −0.03** 0.01* −0.07*** −0.05***
QbC/Const200 0.03*** −0.02* 0.04** −0.04** 0.00 0.03*** −0.04*** −0.03***
QbC/Solved 0.05*** 0.02* 0.06*** −0.02 0.02 0.05*** −0.02** −0.01***
SmartRand/Const30 −0.01 −0.04** −0.06*** −0.08*** −0.04*** −0.01 −0.08*** −0.07***
SmartRand/Const200 0.07*** 0.04** 0.02 0.08*** 0.04*** 0.07*** 0.00 0.01
SmartRand/Solved 0.03** 0.00 −0.02 0.04*** −0.04*** 0.03** −0.04*** −0.03***
rQbC/Const30 −0.01* −0.03*** −0.05*** 0.01 −0.07*** −0.03** −0.07*** −0.06***
rQbC/Const200 0.07*** 0.04*** 0.02** 0.08*** 0.00 0.04*** 0.07*** 0.01
rQbC/Solved 0.05*** 0.03*** 0.01*** 0.07*** −0.01 0.03*** 0.06*** −0.01

Annotated characters (AC)
QbC QbC QbC SmartRand SmartRand SmartRand rQbC rQbC rQbC

Variant Const30 Const200 Solved Const30 Const200 Solved Const30 Const200 Solved

QbC/Const30 109*** 577*** 314*** 447*** 665*** 73** 805*** 786***
QbC/Const200 −109*** 468*** 205** 338*** 556*** −35 696*** 677***
QbC/Solved −577*** −468*** −263** −129 88 −503*** 228** 209**
SmartRand/Const30 −314*** −205** 263** 133*** 351*** −240*** 491*** 472***
SmartRand/Const200 −447*** −338*** 129 −133*** 218*** −374*** 358* 338*
SmartRand/Solved −665*** −556*** −88 −351*** −218*** −592*** 140 120
rQbC/Const30 −73** 35 503*** 240*** 374*** 592*** 732*** 712***
rQbC/Const200 −805*** −696*** −228** −491*** −358* −140 −732*** −19***
rQbC/Solved −786*** −677*** −209** −472*** −338* −120 −712*** 19***

QbC rQbC SmartRand
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Figure 3: AC vs. F-measure (left) or vs. CE (right): one point for each task (corresponding to the average
index across the repetitions).



Table 3: Sequences of queries generated for two different experiments. For each query are reported the total
number of matches and unmatches annotated, the query sq, the user answer in terms of M and U , the current
best solution, the corresponding F-measure and the current AC.

# |
⋃

M | |
⋃

U | sq M U Best regex F-m AC

1 1 0 #20topsongsever #20topsongsever #\w++ 0.39 24
2 2 0 #hacking #hacking #\w++ 0.39 32
3 3 0 #ti #tips #\w++ 0.39 37
4 4 0 #O #OpPiggyBank #\w++ 0.39 49
5 5 0 #plurfamily #plurfamily #\w++ 0.39 60
6 6 1 #FF mee !!!" #FF  mee !!!" #\w++ 0.39 72
7 7 2 #bast@Rd #bast @Rd #\w++ 0.39 80
8 8 2 @Callum @Callum_Rose [@#]\w++ 1.00 92

1 1 0 199.87 199.87.247.43 199\.87\.247\.43 0.08 26
2 2 0 209.85.216.170 209.85.216.170 \w++\.\w++\.\w++\.\w++ 0.77 40
3 3 0 10.2 10.231.24.9 \w++\.\w++\.\w++\.\w++ 0.77 51
4 4 2 : by 10.231.102.195 with SMTP 10.231.102.195 : by  with SMTP (?:\d++\.)++\d++ 0.68 80
5 5 2 10.236.195.3 10.236.195.34 (?:\w++\.)++\d++ 0.66 93
6 5 3 go2mr11586177wib.22 go2mr11586177wib.22 \w++\.\w++\.\w++\.\w++ 0.77 112
7 5 4 etPan.528e775f.6ce90669.a etPan.528e775f.6ce90669.a \d++\.\d++\.\d++\.\d++ 0.92 137
8 6 4 199.7.202.190 199.7.202.190 \d++\.\d++\.\d++\.\d++ 0.92 150
9 7 4 199.7.202.190 199.7.202.190 \d++\.\w++\.\w++\.\w++ 0.84 163

10 7 5 Exim 4.80.1 Exim 4.80.1 \d++\.\w++\.\w++\.\w++ 0.84 174
11 7 6 h6mr48792qew.9 h6mr48792qew.9 \w++\.\w++\.\w++\.\d++ 0.87 188
12 7 7 5.1gphBQfkbkwG8rjXKOhM 5.1gphBQfkbkwG8rjXKOhM \w++\.\w++\.\w++\.\d++ 0.87 210
13 7 8 x8mr5889809oek.49.1 x8mr5889809oek.49.1 \w++\.\w++\.\w++\.\d++ 0.87 229
14 7 9 jx4mr3506406vec.35.1 jx4mr3506406vec.35.1 \w++\.\w++\.\w++\.\d++ 0.87 249
15 7 10 6.0.3790.4 6.0.3790.4 \w\w++\.\w++\.\d++\.\d++ 0.91 259
16 7 11 1.2013.11.11 1.2013.11.11 \w\d++\.[^1]\w*+\.(?!3)\d++\.\d++ 0.80 271
18 8 13 217.12.10.166; 217.12.10.166 ; \w\d++\.\w++\.\d*+\.\d++ 0.95 360

ysis by taking into account more facets of the user effort, in-
cluding a measure of the user annotation time as a function
of the number, length and complexity of individual queries.
We also intend to devise a suitable metric for taking into
account the user cost broadly involved in the elapsed time
between consecutive queries. Finally, we may explore the
feasibility of an online estimate of the difficulty of obtaining
a suitable regular expression given the current set of anno-
tations, basing on the work in [8, 9].
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