
Syntactical Similarity Learning
by means of Grammatical Evolution

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

Department of Engineering and Architecture, University of Trieste, Trieste, Italy

Abstract. Several research efforts have shown that a similarity function
synthesized from examples may capture an application-specific similarity
criterion in a way that fits the application needs more effectively than a
generic distance definition. In this work, we propose a similarity learning
algorithm tailored to problems of syntax-based entity extraction from
unstructured text streams. The algorithm takes in input pairs of strings
along with an indication of whether they adhere or not adhere to the
same syntactic pattern. Our approach is based on Grammatical Evolution
and explores systematically a similarity definition space including all
functions that may be expressed with a specialized, simple language that
we have defined for this purpose. We assessed our proposal on patterns
representative of practical applications. The results suggest that the
proposed approach is indeed feasible and that the learned similarity
function is more effective than the Levenshtein distance and the Jaccard
similarity index.

Keywords: distance learning, entity extraction, string patterns

1 Introduction and related work

Many solutions to practically relevant applications are based on techniques that
rely on a form of similarity between data items, i.e., on a quantification of the
difference between any pair of data items in a given feature space. Although such
a similarity may be quantified by many different generic functions, i.e., distances
or pseudo-distances, a wealth of research efforts have advocated the usage of
similarity functions that are learned from collections of data pairs labelled as being
either “similar” or “dissimilar” [1–3]. Indeed, similarity functions constructed
by a similarity learning algorithm have proven very powerful in many different
application domains, as such functions may capture the application-specific
similarity criterion described by the available examples in a way that fits the
application needs more effectively than a generic distance definition.

In this work, we focus on the problem of learning a similarity function
suitable for syntax-based entity extraction from unstructured text streams. The
identification of strings which adhere to a certain syntactic pattern is an essential
component of many workflows leveraging digital data and such a task occurs
routinely in virtually every sector of business, government, science, technology.

2 Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

Devising a similarity function capable of capturing syntactic patterns is an
important problem as it may enable significant improvements in methods for
constructing syntax-based entity extractors from examples automatically [4–
14]. We are not aware of any similarity definition capable of (approximately)
separating strings which adhere to a common syntactic pattern (e.g., telephone
numbers, or email addresses) from strings which do not.

We propose an approach based on GE, in which we explore systematically a
similarity definition space including all functions that may be expressed with a
specialized, simple language that we have defined for this purpose. The language
includes the basic flow control, arithmetic and relation operators. It is expressive
enough to describe important, existing similarity definitions, that we use as
baseline in our experimental evaluation. A candidate solution, i.e., an individual,
represents a program in the language which takes a pair of strings as input
and outputs a number quantifying their similarity. Programs are executed with
a virtual machine that we designed and implemented. The virtual machine
is necessary only for assessing the quality of candidate solutions during the
evolutionary search: the final solution can obviously be implemented in a more
compact and more efficient way based on the specific technology in which the
learned similarity function will be inserted.

We assessed our proposal on several tasks representative of practical applica-
tions, each task being a large text stream annotated with the strings following
a task-specific pattern. We emphasize that we did not learn one similarity def-
inition for each task: instead, we learned a single similarity function from all
tasks except for one and then evaluated the behavior of the learned similarity
function on the remaining task—i.e., on a syntactic pattern that was not available
while learning. The results, averaged across all the tasks, demonstrate that the
proposed approach is indeed feasible, i.e., it is able to learn a similarity function
capable of (approximately) separating strings based on their adherence to a given
syntactical pattern. Most importantly, the learned function is more effective than
the Levenshtein distance and the Jaccard similarity index.

An evolutionary approach to metric learning can be found in [15]. The cited
work proposes a general approach for multi-label clustering problems in a given
feature space. We focus instead on a different and more specific problem: syntax-
based entity extraction from unstructured text streams. Furthermore, we aim
at learning a similarity function and do not insist in requiring that the learned
function be a distance. Several proposals have advocated genetic approaches
to similarity learning in the context of case-based reasoning [16–18]. In those
cases, though, the problem was learning a meaningful similarity criterion between
problem definitions, to enable effective comparison of a new problem to a library
of known, already solved problems. We consider instead similarity between pairs
of strings that are a small part of a problem instance. Our problem statement
follows a common approach in similarity learning: input data consist of pairs of
data points, where each pair is known to belong to either the same class (i.e.,
the same pattern) or to different classes [1]. An alternative framework is based
on input data which consist of triplets of data points (a, b, c) labelled with the

Syntactical Similarity Learning by means of Grammatical Evolution 3

information regarding whether a is more similar to b or to c [19–21]. Such a
relative comparisons framework has proven to be quite powerful, in particular,
for clustering applications. A relative comparison approach could be applied also
to our entity extraction problem and indeed deserves further investigation.

1.1 Problem statement

The problem input consists of a set of tasks {T1, . . . , Tn} where each task describes
a syntactic pattern by means of examples. Task Ti consists of a pair of sets of
strings (Pi, Ni): Pi contains strings which adhere to the ith pattern while Ni

contains strings which do not adhere to that pattern. The problem consists in
learning a similarity function m̂(s, s′) which, given two strings s, s′, returns a
similarity index capable of capturing to which degree s and s′ adhere to the
same (unknown) syntactic pattern. That is, intuitively, pairs of strings in Pi

should be associated with a “large” similarity index, while pairs consisting of a
string in Pi and a string in Ni should be associated with a “small” similarity
index. Furthermore, this requirement should be satisfied for all tasks by the same
function m̂.

In details, the ideal learned function should satisfy the following requirement:

∀i ∈ {1, . . . , n},∀x ∈M(Pi, Ni),∀y ∈M(Pi, Pi), x < y (1)

where M(S, S′) = {m(s, s′) : s ∈ S, s ∈ S′}. For a given problem input, a function
satisfying Equation 1 may or may not exist; and, even if it exists, a learning
algorithm may or may not be capable of learning that function.

2 Our approach

2.1 Search space and solution quality

We consider a search space composed of functions that may be expressed
with the language L described in Figure 1 in the Backus-Naur Form (BNF).
The available mathematical operators are defined in the rule concerning the
〈ValueReturningFunction〉 non-terminal while relation operators are defined in
rule concerning the 〈Condition〉 non-terminal. The language includes basic flow
control operators and allows defining numeric variables and arrays dynamically.
Access to variables and array elements occur by index.

The language is expressive enough to describe commonly used similarity
indexes: in particular, we described the Levenshtein distance and the Jaccard
similarity index—which we used in our experimental evaluation as baselines—
using this language.

We propose an evolutionary approach based on Grammatical Evolution
(GE) [22, 23]. GE is an evolutionary framework where candidate solutions (in-
dividuals) are represented as fixed-length numeric sequences. Such sequences
(genotype) are translated into similarity functions (phenotype) by means of a
mapping procedure which uses the production rules in a grammar definition.

4 Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

Rules

1. 〈BlockCode〉 ::= 〈RowOfBlockCode〉
2. 〈Statement〉 ::= 〈Assign〉 | 〈CreateArray〉 | 〈CreateVariable〉 | 〈For〉 | 〈If〉 |
〈Return〉 | 〈SetArrayItem〉

3. 〈ValueReturningFunction〉 ::=〈Constant〉 | 〈GetVariableValue〉 | 〈Add〉 | 〈Decrement〉 |
〈Maximum〉 | 〈Minimum〉 | 〈GetArrayItem〉 | 〈GetArrayLength〉 | 〈Division〉 |
〈Multiplication〉

4 〈Assign〉 ::= var[〈ValueReturningFunction〉] = 〈ValueReturningFunction〉
5. 〈CreateArray〉 ::= newArray[〈ValueReturningFunction〉]
6. 〈CreateVariable〉 ::= createVariable()
7. 〈Division〉 ::= (〈ValueReturningFunction〉 / 〈ValueReturningFunction〉)
8. 〈For〉 ::= for(index0 = 0; index0 < 〈ValueReturningFunction〉; index0++) 〈BlockCode〉
9. 〈If〉 ::= if(〈Condition〉) 〈BlockCode〉 else 〈BlockCode〉

10. 〈Return〉 ::= return 〈ValueReturningFunction〉
11. 〈SetArrayItem〉 ::= array[〈ValueReturningFunction〉][〈ValueReturningFunction〉] =
〈ValueReturningFunction〉

12. 〈Add〉 ::= 〈ValueReturningFunction〉 + 〈ValueReturningFunction〉
13. 〈Subtract〉 ::= 〈ValueReturningFunction〉 - 〈ValueReturningFunction〉
14. 〈Maximum〉 ::= maximum(〈ValueReturningFunction〉,〈ValueReturningFunction〉)
15. 〈Minimum〉 ::= minimum(〈ValueReturningFunction〉,〈ValueReturningFunction〉)
16. 〈Multiplication〉 ::= 〈ValueReturningFunction〉 * 〈ValueReturningFunction〉
17. 〈GetArrayItem〉 ::= array[〈ValueReturningFunction〉][〈ValueReturningFunction〉]
18. 〈GetArrayLength〉 ::= array[〈ValueReturningFunction〉].length
19. 〈Constant〉 ::= 0 | 1 | ... | 255
20. 〈GetVariableValue〉 ::= var[〈ValueReturningFunction〉]
21. 〈RowOfBlockCode〉 ::= 〈Statement〉 | 〈Statement〉 \n 〈RowOfBlockCode〉
22. 〈Condition〉 ::= 〈EqualCondition〉 | 〈NotEqualCondition〉 |
〈GreaterCondition〉 | 〈GreaterOrEqualCondition〉

23. 〈EqualCondition〉 ::= 〈ValueReturningFunction〉 == 〈ValueReturningFunction〉
24. 〈NotEqualCondition〉 ::= 〈ValueReturningFunction〉 != 〈ValueReturningFunction〉
25. 〈GreaterCondition〉 ::= 〈ValueReturningFunction〉 > 〈ValueReturningFunction〉
26. 〈GreaterOrEqualCondition〉 ::= 〈ValueReturningFunction〉 >= 〈ValueReturningFunction〉

Alternative rules

2. 〈Statement〉 ::= 〈CreateVariable〉
3. 〈ValueReturningFunction〉 ::= 〈Constant〉

21. 〈RowOfBlockCode〉 ::= 〈Statement〉

Fig. 1. BNF grammar for the language L: below the set of alternative rules (see text).

Syntactical Similarity Learning by means of Grammatical Evolution 5

After early experimentation, we chose to tailor several aspects of the general GE
framework to our specific problem.

In our case, we represent an individual with a genotype consisting of a tuple
g ∈ [0, 255]ngen , where each gi element is a positive 8-bit integer. We chose
ngen = 350 because with such value we were able to obtain, from two suitable
genotypes, the phenotypes corresponding to the Levenshtein distance and the
Jaccard similarity, according to the mapping procedure described below. Given
a genotype, we obtain the corresponding phenotype, i.e., a similarity function
expressed as a program l in the language L, according to an iterative mapping
procedure which works as follows, starting with l = 〈BlockCode〉 and i = 0:
(i) we consider the first occurrence of a non-terminal in l and the corresponding
rule in the BNF grammar for L; (ii) among the nrule ≥ 1 alternatives (i.e.,
possible replacements separated by | in the rule), we choose the (j + 1)th one,
with j equals to the remainder between gi and nrule; (iii) we increment i by
one: if i exceeds ngen, we set to 1. The procedure is iterated until no more
non-terminals exist in l: since it is not guaranteed that this condition is satisfied
in a finite number of iterations, we implemented a mechanism to overcome this
limitation. We associate a number c with each non-terminal x in l: the value of
c is set to 0 for the starting non-terminal 〈BlockCode〉, or to c′ + 1 otherwise,
where c′ is the number associated with the non-terminal whose replacement
lead to the insertion of x in l. Whenever a non-terminal among 〈Statement〉,
〈ValueReturningFunction〉, and 〈RowOfBlockCode〉 has to be replaced, if its c
exceeds a parameter cmax = 40, we use the alternative rules shown at the bottom
of Figure 1 instead of the original ones for those non-terminals—in other words,
with this mechanism we pose a depth limit on the derivation trees.

We quantify the quality of an individual encoding a similarity function m
by its fitness f(m), that we define as follows. Given a numeric multiset I, let
Ip%

indicate the smallest element i ∈ I greater or equal to the p percentile of
elements in I. Given a pair of numeric multisets (X,Y), we define the overlapness
function o(X,Y ; p) ∈ [0, 1] as follows:

o(X,Y ; p) =
|{x ∈ X : x ≥ Yp%}|+ |{y ∈ Y : y ≤ X(100−p)%}|

|X|+ |Y |
(2)

Intuitively, o(X,Y ; p) measures the degree of overlapping between elements of X
and Y , assuming that elements in X are in general smaller than elements of Y :
when X and Y are perfectly separated, o(X,Y ; p) = 0,∀p. The value of p is used
to discard extreme (greatest for X and smallest for Y) elements in the multisets.
The fitness f(m) ∈ [0, 1] of m is given by:

f(m) =
1

2n

n∑
i=1

o
(
M(Pi, Ni),M(Pi, Pi); 10

)
+ o
(
M(Pi, Ni),M(Pi, Pi); 0

)
(3)

where M(S, S′) is defined as for Equation 1. In other words, the fitness of m
is the average overlapness over the tasks in {T1, . . . , Tn}: for each task, f(m)
takes into account the average between the overlapness of the two multisets

6 Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

M(Pi, Ni) and M(Pi, Pi) computed on the whole multisets and after discarding
10% extreme values. The rationale for the latter design choice is to avoid giving
too much importance to possible outliers in the data. Note that a similarity
function satisfying Equation 1 has zero fitness—i.e., fitness should be minimized.

During the evolutionary search, we evolve a fixed-size population of npop

individuals for niter = 200 generations by means of the mutation and two-point
crossover genetic operators, which are applied to individuals selected by means
of a tournament of size 3.

2.2 Virtual Machine

We designed and implemented a virtual machine (VM) capable of executing
programs in language L. A VM program execution takes a pair of strings (s, s′) as
input and returns the value m(s, s′), m being the similarity function represented
by the program.

As described in Section 2.1, the language allows defining numeric variables
and arrays dynamically with access occurring by index. VM provides a running
program with a list of numeric variables and a list of numeric arrays. Indexes
start from 0 and when a new variable is created the next free index is used: the
actual variable/array being accessed is determined by the reminder of i

nv
. When

execution starts, VM creates two arrays into the arrays list, one for s and the
other for s′: the ith element of each array contains the UTF-8 representation of
the ith character in the corresponding string. The execution stops when a return
statement is reached or when the last instruction has been executed: in the latter
case, the returned value is m(s, s′) = 0.

A VM program execution may fail, in which case execution terminates and
the returned value is m(s, s′) = 0. Failure occurs when one of the following
conditions is met: division by zero; maximum number nmax of executed instruc-
tions exceeded; maximum array size narray exceeded—we set nmax = 40 000 and
nmax = 10 length(s) length(s′).

3 Experimental evaluation

As described previously, a task describes a syntactic pattern by means of examples,
i.e., each task consists of a pair of sets of strings (Pi, Ni): Pi contains strings which
adhere to the pattern while Ni contains strings which do not adhere to the pattern.
We assess our proposal on several datasets representative of possible applications
of our similarity learning method (the name of each dataset describes the nature
of the data and the type of the entities to be extracted): HTML-href [14, 13,
11], Log-MAC+IP [14, 13, 11], Email-Phone [14, 13, 11, 8, 7], Bills-Date [14, 12],
Web-URL [14, 13, 11, 7], Twitter-URL [14, 13, 11]. Each dataset consists of a text
annotated with all and only the snippets that should be extracted.

We constructed a task (P,N) for each such dataset, as follows. Let d denote
the annotated text in the dataset. Set P contains all and only the strings that
should be extracted from d. Set N contains strings obtained by splitting the

Syntactical Similarity Learning by means of Grammatical Evolution 7

remaining part of d. It follows that no pair of elements in P ∪N overlap. The
splitting procedure is based on a tokenization heuristics that (approximately)
identifies the tokens that delimit P strings in d; those tokens are then used
for splitting N strings in d as well. For example, if strings in P are delimited
by a space, then we split the remaining part of d by spaces and insert all the
resulting strings in N . The details of the heuristic are complex because different
P strings could be delimited by different characters—we omit the details for ease
of presentation.

We performed a cross-fold assessment of our proposed method, i.e., we exe-
cuted one experiment for each of the 6 tasks resulting from the available datasets.
In each ith experiment we executed our method on a learning set consisting of all
but the ith task. We obtained the actual jth pair (P ′j , N

′
j) of the learning set by

sampling 2nex items of the corresponding (Pj , Nj), i.e., |P ′j | = |N ′j | = nex, with
P ′j ⊆ Pj , N

′
j ⊆ Nj , where nex is a parameter of the experiment which affects the

amount of data available for learning.

We used the remaining task (Pi, N
′
i) (i.e., all of the examples in Pi and a

number |N ′i | = |Pi| of examples sampled randomly from Ni) for quantifying the
quality of the learned similarity function m?—m? being the individual with the
best fitness after the last generation. Note that we assessed m? on a task different
from the tasks that we used for learning it.

For each task, we repeated the experiment for 5 times, each time using a
different random seed. We considered the following indexes for each experiment,
which we averaged across the 5 repetitions: the learning fitness LF, i.e., the
fitness of m? on the learning set; the testing fitness TF, i.e., the fitness of m?

on (Pi, N
′
i); the number #I of instructions in m?; the average number #S of

executed instructions while processing pairs in (Pi, N
′
i) with m?.

We explored two different values for the population size npop, 50 and 100
individuals, and three different values for the cardinality of sets of examples nex:
10, 25 and 50.

Table 1 provides the key results (with nex = 50 and npop = 50), separately
for each dataset and averaged across all datasets. To place results in perspective,
we provide all indexes (except for LF) also for two baseline definitions: the
Levenshtein distance, which counts the minimum number of character insertions,
replacements or deletions required to change one string into the other, and the
Jaccard similarity index, which considers each string as a set of bigrams and is
the ratio between the intersection and the union of the two sets. The key result
is that, on average, the definitions synthesized by our method exhibit the best
results. By looking at individual tasks, our synthesized definitions outperform
Jaccard in three tasks, are nearly equivalent in one task and are worse or slightly
worse in the two remaining tasks. Thus, the similarity functions synthesized by
our method are more effective at separating strings based on their adherence at a
certain syntactic pattern with respect to the traditional Levenshtein and Jaccard
metrics.

Table 2 provides further insights into our method by providing results averaged
across all tasks for various combinations of available examples nex and population

8 Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

Table 1. Results of our method, with nex = 50 and npop = 50, and the baselines. Best
TF figure highlighted.

Task LF TF #I #S [×106]
GE GE Jac. Lev. GE Jac. Lev. GE Jac. Lev.

HTML-href 0.45 0.42 0.64 0.91 1877 174 103 0.22 3.49 2.25
Log-MAC+IP 0.44 0.08 0.82 0.91 179 174 103 0.06 0.42 0.75
Email-Phone 0.43 0.64 0.56 0.90 352 174 103 0.41 4.62 3.64
Bills-Date 0.49 0.85 0.59 0.90 1116 174 103 1.56 2.71 5.19
Web-URL 0.40 0.30 0.43 0.92 151 174 103 0.72 23.8 10.00
Twitter-URL 0.48 0.30 0.29 0.90 147 174 103 0.84 6.28 8.10

Average 0.45 0.43 0.55 0.90 637 174 103 0.64 6.90 4.99

size npop. It can be seen that, with a larger population (npop = 100), the amount
of learning examples does not impact TF significantly, but more examples lead to
more compact and more efficient solutions (smaller #I and #S, respectively). On
the other hand, the configuration with smaller population (npop = 50) exhibits a
slight but consistent improvement in TF when the amount of examples grows. It
can also be observed that more examples lead to solutions with varying length
but that tend to be more efficient (no clear trend in #I and decreasing #S,
respectively). This observation suggests that our method might perhaps be
improved further by a multiobjective optimization search strategy, where the
fitness of an individual would take into account not only its ability of capturing
similarity as specified in the learning examples (to be maximized) but also the
length of the individual (to be minimized).

Table 2. Results (including learning time tl) for different values of npop and nex.

npop nex LF TF #I #S [×106] tl [s]

50
10 0.37 0.45 552 0.59 52
25 0.43 0.44 3076 0.56 245
50 0.45 0.43 637 0.64 715

100
10 0.34 0.50 1138 2.76 110
25 0.40 0.48 1224 0.94 326
50 0.38 0.49 443 0.44 1056

Table 2 also shows the learning time tl, averaged across repetition: we per-
formed the experiments on a platform equipped with an Intel Core i7-4720HQ
(2.60 GHz) CPU and 16 GB of RAM.

Syntactical Similarity Learning by means of Grammatical Evolution 9

4 Concluding remarks

We have investigated the feasibility of learning a similarity function capable
of (approximately) separating strings which adhere to a common syntactic
pattern (e.g., telephone numbers, or email addresses) from strings which do
not. We are not aware of any similarity function with this property, which could
enable significant improvements in methods for constructing syntax-based entity
extractors from examples automatically—in many application domains, similarity
functions learned over labelled sets of data points have often proven more effective
than generic distance definitions.

We have proposed a method based on Grammatical Evolution which takes
pairs of strings as input, along with an indication of whether they follow a similar
syntactic pattern. The method synthesizes a similarity function expressed in a
specialized, simple language that we have defined for this purpose.

We assessed our proposal on several tasks representative of practical applica-
tions, with an experimental protocol in which we learned a similarity function
on a given set of tasks (i.e., patterns) and we assessed the learned function on a
previously unseen task. The results demonstrate that the proposed approach is
indeed feasible and that the learned similarity function is much more effective
than the Levenshtein distance and the Jaccard similarity index.

We plan to extend our investigation in two ways: first, synthesize a more
powerful similarity function, by using a broader set of patterns and a larger
amount of labelled data points; in this phase there may certainly be room
for further improvements to our Grammatical Evolution method; next, take
advantage of the learned similarity function in order to improve methods for
syntax-based entity extraction.

Acknowledgements

We are grateful to Michele Furlanetto who contributed in the implementation of
our proposed method.

References

1. Yang, L., Jin, R.: Distance metric learning: A comprehensive survey. Michigan
State Universiy 2 (2006)

2. Kulis, B.: Metric learning: A survey. Foundations and Trends in Machine Learning
5(4) (2012) 287–364

3. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors
and structured data. arXiv preprint arXiv:1306.6709 (2013)

4. Fernau, H.: Algorithms for learning regular expressions from positive data. Infor-
mation and Computation 207(4) (2009) 521 – 541

5. Cicchello, O., Kremer, S.C.: Inducing grammars from sparse data sets: a survey
of algorithms and results. The Journal of Machine Learning Research 4 (2003)
603–632

10 Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

6. Cetinkaya, A.: Regular expression generation through grammatical evolution. In:
Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary
computation, ACM (2007) 2643–2646

7. Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Jagadish, H.: Regular
expression learning for information extraction. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, Association for Computational
Linguistics (2008) 21–30

8. Brauer, F., Rieger, R., Mocan, A., Barczynski, W.M.: Enabling information
extraction by inference of regular expressions from sample entities. In: Proceedings of
the 20th ACM international conference on Information and knowledge management,
ACM (2011) 1285–1294

9. Murthy, K., P., D., Deshpande, P.: Improving recall of regular expressions for
information extraction. In: Web Information Systems Engineering - WISE 2012.
Volume 7651 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2012) 455–467

10. Bartoli, A., Davanzo, G., De Lorenzo, A., Mauri, M., Medvet, E., Sorio, E.: Auto-
matic generation of regular expressions from examples with genetic programming. In:
Proceedings of the 14th annual conference companion on Genetic and evolutionary
computation, ACM (2012) 1477–1478

11. Bartoli, A., Davanzo, G., De Lorenzo, A., Medvet, E., Sorio, E.: Automatic synthesis
of regular expressions from examples. Computer (12) (2014) 72–80

12. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Learning text patterns using
separate-and-conquer genetic programming. In: Genetic Programming. Springer
(2015) 16–27

13. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Active learning approaches for
learning regular expressions with genetic programming. In: Proceedings of the 31st
Annual ACM Symposium on Applied Computing, ACM (2016) 97–102

14. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Inference of regular expres-
sions for text extraction from examples. Knowledge and Data Engineering, IEEE
Transactions on 28(5) (2016) 1217–1230

15. Megano, T., Fukui, K.i., Numao, M., Ono, S.: Evolutionary multi-objective distance
metric learning for multi-label clustering. In: Evolutionary Computation (CEC),
2015 IEEE Congress on, IEEE (2015) 2945–2952

16. Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures.
In: Case-Based Reasoning Research and Development. Springer (2003) 537–551

17. Xiong, N., Funk, P.: Building similarity metrics reflecting utility in case-based
reasoning. Journal of Intelligent & Fuzzy Systems 17(4) (2006) 407–416

18. Xiong, N.: Learning fuzzy rules for similarity assessment in case-based reasoning.
Expert systems with applications 38(9) (2011) 10780–10786

19. Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons.
Advances in neural information processing systems (NIPS) (2004) 41

20. Xiong, S., Pei, Y., Rosales, R., Fern, X.Z.: Active learning from relative comparisons.
Knowledge and Data Engineering, IEEE Transactions on 27(12) (2015) 3166–3175

21. Hao, S., Zhao, P., Hoi, S.C., Miao, C.: Learning relative similarity from data
streams: Active online learning approaches. In: Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, ACM
(2015) 1181–1190

22. Ryan, C., Collins, J., Neill, M.O.: Grammatical evolution: Evolving programs for
an arbitrary language. In: Genetic Programming. Springer (1998) 83–96

23. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary
Computation 5(4) (2001) 349–358

