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Abstract 

The spontaneous self-organization of dissimilar ligands on the surface of metal nanoparticles is a very 

appealing approach to obtain anisotropic “spherical” systems. In addition to differences in ligand 

length and end groups, a further thermodynamic driving force to control the self-assembled 

monolayer organization may become available if the ligands are inherently immiscible, as is the case 

of hydrogenated (H-) and fluorinated (F-) species. Here, we validate the viability of this approach by 

combining 19F NMR experiments and multiscale molecular simulations on large sets of mixed-

monolayers protected gold nanoparticles (NPs). The phase segregation of blends of F- and H-thiolates 

grafted on the surface of gold NPs allows a straightforward approach to patterned mixed-monolayers, 

the shapes of the monolayer domains being encoded in the structure of the F/H- thiolate ligands. The 

results obtained from this comprehensive study offer molecular designing rules to achieve a precise 

control of inorganic nanoparticles protected by specifically patterned monolayers. 

KEYWORDS: anisotropic nanoparticles, phase-segregation, self-assembly, gold nanoparticles, 

multiscale molecular modeling, NMR.  
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Patchy particles display precisely controlled surface areas with different properties. These different 

surface areas determine particles-environment interactions, as nicely demonstrated by several 

examples of naturally occurring anisotropic particles such as pollen grains,1 or viruses.2 Surface 

morphology is also responsible for the biological activity of these systems; thus, for instance, Janus-

like structures of hydrophobin proteins can have roles in the attachment of fungi to different surfaces.3 

The development of artificial (nano)particles with anisotropy in shape, surface properties, and 

chemical functionality will certainly lead to innovative materials.4-7 Indeed, taking inspiration from 

Nature, chemists now utilize patchy particles as elemental building blocks for the generation of new 

materials, mainly by exploiting their self-assembly properties in the design of 2D- or 3D networks. 

By this approach, hierarchical structures with applications in biology/medicine and in the mimicry of 

virus have been obtained.8-11 This would have been difficult or even out of reach by using colloids 

displaying solely isotropic interactions.9  

While many studies carried out in this field concern polymeric particles with size above 100 nm, 

hybrid organic-inorganic nanoparticles characterized by dimensions below 100 nm have been much 

less explored.  

In this context, the preparation of spherical metal nanoparticles decorated by anisotropic organic 

monolayers remain challenging, notwithstanding the easy and precise control of their size, surface 

functionalization, and dispersion. Also, because of their inorganic core, these systems may be 

endowed with interesting additional properties with respect to soft (e.g., polymeric) particles. Striving 

in this direction, tremendous efforts have been devoted to theoretical and experimental studies aimed 

at inducing the organization of thiolate ligands on the surface of gold nanoparticles (NPs) into well-

defined domains as a source of anisotropy. Indeed, several different approaches to the preparation of 

patchy or Janus hybrid organic-inorganic NPs have been reported.13 Particularly attractive in this 

respect is the formation of anisotropic spherical nanoparticles by exploiting the spontaneous self-

assembly of coded ligands on their surface. This strategy was pioneered by the group of Stellacci, 

using mixtures of immiscible thiolate ligands that self-sort on the gold NP surface forming stripe-like 

domains.14,15 These experimental results were coupled to computational investigations carried out by 

Glotzer and coworkers, who identified the difference in ligand length and the NP core size as two 

critical parameters in determining the morphology of self-assembled monolayers (SAMs).16 Thus, 

according to these seminal studies, binary mixtures of thermodynamically incompatible thiolates can 

originate three main  SAM morphologies on a gold NP surface, depending on their structure and on 

NP core size: Janus NPs are foreseen when the ligands have comparable length or the NP core 

diameter is small (typically below 2.5 nm),17 patches or stripe-like domains are predicted when the 

two ligands differ in size, while a random organization of the monolayer is expected when one of the 
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two ligands has a branched structure.18 According to this rationale, several thiol combinations, e.g. 

mercaptopropionic acid and octane- or dodecanethiol,14,15 mercaptopropanesulfonate and 

phenylmethanethiol,19 thiopronin and mercaptoundecyltetraethyleneglycol,17 11-mercapto-1-

undecanesulfonate and octanethiol,18 octanethiol and N-1-{2-[2-(2-Methoxyethoxy)ethoxy]ethyl}-8-

sulfanyloctanamide (HS-C8-TEG),21 dodecanethiol and diphenyl thiol,22 have been experimentally 

explored. 

In this respect, we reasoned that combining H- and F-alkanethiolates in the NP decorating monolayer 

should allow maximizing ligand immiscibility (Flory-Huggins χ parameter) and promoting self-

sorting, in analogy to 2D SAM.23  

In addition, the presence of fluorinated ligands in the coating of hybrid organic-inorganic 

nanoparticles is of particular interest in material science because of their electronic properties, which 

may influence the features of the metal core.24-26 Moreover, their anti-fouling surface properties may 

be exploited at the interface with complex fluids or, even more importantly, in their interactions with 

biological tissues. So far, these features are unexplored for monolayer protected metal nanoparticles 

due to limited examples of fluorinated nanoparticles soluble in organic or aqueous solvents. 

In this context, we reported examples of 3D mixed monolayers composed of F- and H-thiolates 

ending with a polyethylene glycol (PEG) group,27 and demonstrated that phase segregation occurs at 

all molar fractions explored; moreover, we found that the difference in ligand chain length determines 

the formation of ribbon-like domains on nanoparticles with gold core larger than 2 nm.28 Yet, the 

presence of a PEG terminal group did not allow for a complete dissection of the contribution of the 

immiscible hydrocarbon/fluorocarbon chains to the morphology of the monolayer.  

To unravel this contribution and to further analyze the ligand structural requirements needed to induce 

well defined-morphologies, we embarked in the synthesis and systematic morphological investigation 

of gold nanoparticles protected by blends of F- and H-alkanethiolates differing in chain lengths, steric 

bulks and relative ratio. This study also allows to assess how the morphology correlates with NPs 

properties such as solubility or aggregation.  

Thus, we prepared 2-4 nm core diameter gold NPs decorated by blends of F- and H-ligands of (Figure 

1): 

i) different length: NP-C16/F6, protected by blends of hexadecanethiol (HC16) and 1H,1H,2H,2H-

perfluorooctanethiol (HF6), and NP-C12/F6, coated by mixtures of dodecanethiol (HC12) and HF6; 

ii) equal length: NP-C12/F10, coated by HC12 and 1H,1H,2H,2H-perfluorododecanethiol (HF10), 

and NP-C8/F6, protected by mixtures of octanethiol (HC8) and HF6; and 

iii) increased steric hindrance NP-brC12/F6, featuring mixtures of 3-methyldodecane-1-thiol 

(HbrC12) and HF6. The complete list of the systems investigated in this work is reported in Table 
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S1-S5, while the synthetic strategies for the preparation of these nanoparticles have been recently 

described by some of us.29  

 

 

Figure 1. Representation of the library of mixed-monolayer protected gold NPs investigated in this work. 

 

The assessment of the morphology of resulting mixed-monolayer protected gold NPs may be 

cumbersome because of a large number of limitations such as their low solubility in common organic 

solvents, presence of impurities, or the slippery nature of NP surface, thereby restricting the number 

of techniques suitable to study their morphology. To overcome some of these practical obstacles, in 

this work we adopted an integrated and complementary experimental/computational approach for 

characterizing the structural features of these mixed SAM-protected gold NPs. Specifically, our 

experimental analysis relies on 1D and 2D 19F NMR. NMR techniques based on 1H NMR experiments 

have been successfully used in previous works to characterize monolayer protected gold 

nanoparticles30 and in particular to investigate the morphology of mixed-monolayers by complexation 

of lanthanide ions21 or by NOESY experiments.31 More recently, an NMR-based approach has been 

proposed to detail the shell morphology of NPs coated with binary mixtures of aliphatic and aromatic 

ligands exploiting a combination of chemical shift variations and NOESY experiments.22 Yet, the 19F 

NMR technique is definitely more sensitive to chemical environment than 1H NMR since 19F 

chemical shifts span more than 200 ppm, whereas protons chemical shift varies between 0 and 15 

ppm. Accordingly, in this work we exploited this further technique to sensitively probe changes in 

the environment surrounding the F-ligands as function of monolayer composition. The theoretical 

investigation is based on a predictive multiscale molecular simulation protocol, i.e., a combination of 
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atomistic/coarse-grained calculations.28 

 

Results and Discussion 

Gold nanoparticles NP-C16/F6, NP-C8/F6, and NP-brC12/F6 were prepared by direct synthesis, 

whereas NP-C12/F6 and NP-C12/F10 were obtained by place exchange reaction from narrowly 

dispersed NP-C12, in turn prepared following the method of Miyake.32 Synthetic details are reported 

in reference 29 and, for additional nanoparticles, in the Supporting Information (SI). All samples were 

fully characterized using UV-VIS, TEM, TGA, and standard NMR experiments. NPs solubility was 

also assessed and analyzed by increasing the molar fraction of the fluorinated ligands.29 This property 

was ultimately rationalized in the light of the morphology of the 3-D SAM. 

Monodimensional 19F NMR experiments were used to monitor the change in chemical shift as a 

function of the percentage of the fluorinated thiolate in the monolayer. Due to solubility limitations 

those nanoparticles soluble only in CHCl3 were dissolved in CDCl3 while the remaining samples were 

solubilized in different mixtures of CDCl3/C6F6, as reported in Tables S1-S5. All 19F NMR spectra 

have been recorded using CFCl3 as external reference. The 19F NMR spectra of the nanoparticles 

show only two peaks that are well separated allowing an accurate measurement of the chemical shift: 

the peak at around -81 ppm representing the CF3 end group and the peak at about -126 ppm that is 

assigned to the CF2 group next to the CF3, Figure S2. The 19F NMR spectra display that the peaks of 

nanoparticles shift by changing the composition of the solvent. For this reason, the chemical shifts of 

the CF3 and of 7- or 9-CF2 groups have been corrected for all samples as described in SI for NP-

C16/F6 as an example. Also, the 19F NMR data reveal that small changes of gold core size, within 

the same type of NPs, do not influence the chemical shift. 

At the same time, multiscale molecular simulations have been carried out on the same set of NPs in 

order to predict the mixed monolayer organization. Coarse-grained methods as Dissipative Particle 

Dynamics (DPD) are especially suitable for predicting self-assembling phenomena as those involved 

in the organization of binary mixtures of ligands on solid curved surfaces, since they allow sampling 

longer times with respect to atomic resolution techniques such as molecular dynamics (MD). The 

computational approach applied here consists in exploiting information obtained at lower level 

simulations (e.g., MD simulations) as input for higher-level calculations (e.g., mesoscopic DPD 

simulations) in a multiscale framework. DPD simulations were employed to study the effect of mixing 

different immiscible thiols on the surface of Au NPs in presence of explicit solvent. With the aim of 

mimicking the experimental measurement conditions, both CHCl3 and C6F6 were modeled in the 

relative appropriate amount (Table S1-S5). In order to reproduce a realistic gold core employed an 

icosahedral shape was adopted. Mesoscale models and procedure are described in detail in the SI. 
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Effect of solvent composition on the chemical shift. 

From the experiments reported in Figures S4 and S5 for NP-C16/F6, it can be observed that the 

solvent composition has a smaller influence on the chemical shift of the peak corresponding to 7-CF2 

groups respect to that exerted on the CF3 groups. For this reason, we initially surmised that the 

variation of the chemical shift of CF3 would be larger than that of CF2 groups as a function of the 

loading of the fluorinated thiolates into the monolayer. On the contrary, even though the CF3 group 

is more exposed to the solvent than the CF2 group, the variation of their chemical shift as a function 

of the monolayer composition is similar in both cases. These results further confirm that the chemical 

shift variations reported here are not a consequence of the variation of the solvent composition but, 

instead, result from an evolution of the monolayer organization.  

Nanoparticles coated by branched ligands, NP-brC12/F6.  

The chemical shifts of the CF3 and 7-CF2 groups of ligand F6 as a function of the percentage of the 

fluorinated ligand into the monolayer for the NP-brC12/F6 system is shown in Figure 2. These 

graphs display that the broad peaks of the nanoparticles gradually shift upfield when the percentage 

of the F6 into the monolayer increases from 6 to 100%. The linear decay of Figure 2 suggests that the 

average composition of the first nearest neighbor shell of each F-ligands coincides with the overall 

composition of the monolayer. This is in agreement with the initial hypothesis that the branched 

structure of the hydrogenated ligand does not allow an ordered crystalline arrangement on the surface 

of the gold core, hampering the formation of phase-segregated domains. This hypothesis is confirmed 

by the equilibrium morphologies collected from the corresponding DPD calculations summarized in 

Figure 3. These simulation structures clearly prove that the two ligands have no tendency to form 

compact domains and they prefer to remain isolated; this results in a random organization of the 

monolayer regardless of the monolayer composition and dimension of the gold core. These evidences 

agree well with previous literature data on the organization of monolayers comprising branched 

thiolates.18 

 

 

 

 

 

a) b) 
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Figure 2. Chemical shift (δ) variation of a) CF3 groups and b) 7-CF2 nuclei increasing the percentage of the fluorinated 

ligand in the monolayer of NP-brC12/F6. Solid line serves as eye guide only. 

 

 

Figure 3. Equilibrium morphologies of NP-brC12/F6 (color code: grey, brC12; green, F6) NPs as obtained by the 

mesoscale simulations. Solvent is omitted for clarity. 

 

Nanoparticles coated by ligands of equal length, NP-C12/F10 and NP-C8/F6. The behavior of the 

chemical shifts of the CF3 and 9-CF2 groups vs. the percentage of fluorinated ligands into the monolayer 

for samples of NP-C12/F10, Figure 4, is different from that observed for NP-brC12/F6, and the 

interpolation of the points conforms to a 1/(F10%) decay.22 A steep decay is observed when the loading 

of the fluorinated ligand is less than 40%, indicating a strong evolution of the surface area at the H-/F 

interface; at higher percentages the chemical shift remains nearly constant suggesting no significant 

changes at the H-/F interface.  

 

CF3 7-CF2 
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a) 

 

b) 

 

Figure 4. Chemical shift (δ) variation of a) CF3 groups and b) 9-CF2 nuclei increasing the percentage of the fluorinated 

ligand in the monolayer of NP-C12/F10. Solid line serves as eye guide only. 

 

The equilibrium morphologies obtained from the mesoscale simulation of the NP-C12/F10 systems, 

presented in Figure 5, reveal that the ligands form two distinct domains, i.e., the SAM has a Janus-

type morphology, in line with a previously reported theoretical prediction on nanoparticles protected 

by ligands of equal length.16 Indeed, to our knowledge, there are no previous examples of 3D 

monolayers with Janus morphology obtained by place-exchange in the absence of external tools. This 

organization of the monolayer well explains the behavior of the chemical shift of the CF3 and 9-CF2 

groups as a function of the monolayer composition.  

 

 

CF3 9-CF2 
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Figure 5. Equilibrium morphologies of NP-C12/F10 (color code: grey, C12; green, F10) obtained by the mesoscale 

simulations. Solvent is omitted for clarity. 

 

These results are also supported by the NPs tendency to form dimers under TEM conditions, as 

recently reported for nanoparticle featuring a Janus organization of the decorating shell.29  

At variance with NP-C12/F10 the alternative system featuring ligands of comparable lengths, i.e., 

NP-C8/F6, is characterized by a different shape of the variation of the chemical shift vs. the 

percentage of F6 in the monolayer.  In this case an intermediate situation between 1/(F6%) and a 

linear decay is observed, Figure 6. This trend is somewhat unexpected since, intuitively, the 

monolayers of NP-C8/F6 and the previously discussed NP-C12/F10 should both present a similar 

Janus-like organization.16  
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a) 

 

b)  

 

Figure 6. Chemical shift (δ) variation of a) CF3 groups and b) 7-CF2 nuclei increasing the percentage of the fluorinated 

ligand in the monolayer of NP-C8/F6. Solid line serves as eye guide only. 

 

 

Figure 7. Equilibrium morphologies of NP-C8/F6 (color code: grey, C8; green, F6) NPS as obtained by the mesoscale 

simulations. Solvent is omitted for clarity. 

 

Yet, the corresponding mesoscopic simulations, see Figure 7, indisputably predict that the C8 and F6 

thiolates, though similar in length, do not phase-separate in two distinct domains on the surface of the 

gold core. On the contrary, at small percentages of the fluorinated ligand (i.e., below 20%), the F- 

thiolates prefer to remain isolated, yielding an essentially random organization. By increasing the 

loading, the fluorinated ligands do not form extended domains, but rather tend to cluster in small, 

irregular patches. Overall, the morphology of NP-C8/F6 nanoparticles remains ill defined, as no 

decisive evidence or reason for a preferred organization can be provided. While deeper and specific 

CF3 7-CF2 
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investigations on these aspects are under way, a working hypothesis can be anticipated: the shorter 

chain length of F6 respect to F10 reduces the overall strength of the fluorophilic interactions, making 

the formation of fluorinated domains less favorable. In addition, the difference in steric bulk between 

H- and F- thiolates may represent a bias in the organization of the thiolates when this geometrical 

mismatch is not counterbalanced by the occurrence of strong fluorophilic interactions. 

Nanoparticles coated by ligands of different length, NP-C16/F6 and NP-C12/F6. The chemical shifts 

of the CF3 and 7-CF2 groups as a function of the percentage of the F-ligand into the monolayer for 

NP-C16/F6 system is shown in Figure 8.  

 

a) 

 

b) 

 
Figure 8. Chemical shift (δ) variation of a) CF3 groups and b) 7-CF2 nuclei increasing the percentage of the fluorinated 

ligand in the monolayer of NP-C16/F6. Solid line serves as eye guide only. 

 

The chemical shift vs. composition curve is composed of three regions: an initial, almost linear decay 

is obtained in the composition range 0-40%, suggesting that by increasing the amount of fluorinated 

ligands into the monolayer these species experience very different chemical surroundings. In the 

region between 40 and 80%, the chemical shift of the CF3 group is less sensitive to the composition 

of the monolayer, indicating that thiolate F6 experiences very similar chemical environments, even 

though the percentage of the fluorinated ligand into the monolayer increases. Lastly, when more than 

80% of the F6 thiolate is introduced in the monolayer, the chemical shift of the terminal CF3 and of 

7-CF2 groups becomes again sensitive to the influence of the neighboring thiolates.  

Mesoscale simulations on selected samples of NP-C16/F6, Figure 9, revealed that the two ligands 

organize in striped domains on the surface of the gold NP core, even when 20% of the F6 thiolate is 

present in the monolayer. For these NPs, the gain in entropy due to the difference in length and the 

immiscibility of H- and F-ligands is sufficient to overcome the loss of van der Waals interactions 

between the hydrogenated alkyl chains, thus leading to a stripy structure, in line with previously 

reported data about the organization of mixed monolayers composed of thiols having different 

length.16,33 Furthermore, the striped organization can explain why some samples of NP-C16/F6 are 

CF3 7-CF2 
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soluble in chloroform even at percentages of the fluorinated ligands into the monolayer up to 73%. We 

reasoned that the sufficiently long hydrogenated chain might mask the short fluorinated ones, screening 

out the inter-nanoparticles interactions between fluorinated domains if the width of the stripes is small 

enough, 0.75 nm on average. Evidences from simulations give further insights into the monolayer 

organization as a function of the fluorinated thiolate percentage. At values of F6 lower than 40%, 

increasing the number of fluorinated ligands results in striped-domains of F-chains different in size 

(and, consequently, in interface area), in line with the observed linear decay of the chemical shift. Once 

the stripes are completely formed (approximately at F6 > 40%), the further addition of fluorinated 

ligands does not influence the number of thiolates at the H-/F- interface, as the incoming thiols locates 

inside a previously formed fluorinated/hydrogenated stripe. At percentages of the fluorinated thiolate 

higher than 80%, F6 chains prevail, thus reducing the size of the H-domains and modifying the number 

of thiolates at the interface, ultimately resulting in a substantial decrease of the chemical shift of the 

diagnostic groups. 

 

Figure 9. Equilibrium morphologies of selected of NP-C16/F6 (color code: grey, C16; green, F6) NPs as obtained by 

mesoscale simulations. Solvent is omitted for clarity. 

 

For the alternative system characterized by F- and H- thiolates of different length, NP-C12/F6, the 

chemical shift of 19F nuclei in CF3 and 7-CF2 as a function of the percentage of the fluorinated ligand 

is represented by a sigmoidal curve, Figure 10, which is very different from that obtained for the 

related NP-C16/F6 system. In this case, a plateau region is found until the 25% of fluorinated thiolate 

is introduced in the monolayer; this trend is followed by a sudden decrease of the chemical shift for 
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small additions of F6 into the monolayer. Finally, a second plateau region is observed up to 100% 

F6. This can be an indication that at low and high loadings of F6 there are no marked differences in 

the surroundings of the fluorinated ligands at the interface triggered by small variations of the 

monolayer composition. A sensible explanation for this behavior is that, within this interval of 

compositions, F-/H-regions of comparable size are gradually formed and this does not influence the 

overall ratio between thiolates at the H-/F-interface. 

 

a) 

 

b) 

 

Figure 10. Chemical shift (δ) variation of a) CF3 groups and b) 7-CF2 nuclei increasing the percentage of the fluorinated 

ligand in the monolayer of NP-C12/F6. Solid line serves as eye guide only. 

 

Mesoscale simulations reveal that the monolayer of nanoparticles NP-C12/F6 does not show a well-

defined, ordered organization as a function of the F6 content. Indeed, as clearly shown in Figure 11, 

in some instances stripe-like domains are formed, while, at the same time, irregular patches are also 

observed. Specifically, when 10-15% of the fluorinated ligands are introduced into the monolayer, 

they form small patches typically composed of a few fluorinated chains. When the loading of F6 

exceeds 30%, elongated patches or stripe-like domains appear, and the dimensions of the relevant 

domains increase to 0.75-0.80 nm, on average. This is also the composition at which the chemical 

shift of the CF3 and 7-CF2 groups of F6 starts decreasing, indicating the generation of different 

environments around the fluorinated ligands. At percentages higher than 60% of F- thiolates, the 

shape of the domains is again predominantly patchy, and the chemical shift of the CF3 group returnes 

insensitive to any further variation of composition, suggesting no important changes in the 

neighboring environment. The predicted morphologies are also consistent with the solubility 

properties of NP-C12/F6. Indeed, up to 40% of F6 in the monolayer, these systems are soluble in 

chloroform indicating that the surfaces of the fluorinated domains are small enough to be efficiently 

shielded by the hydrogenated adjacent chains. Increasing the F6 content leads to an enlargement of 

the fluorinated domains, and the H- ligands do not hamper inter-particles interactions anymore 

leading to a change of the solubility properties.  

7-CF2 CF3 
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Figure 11. Equilibrium morphologies of selected NP-C12/F6 (color code: grey, C12; green, F6) NPs as obtained by 

mesoscale simulations. Solvent is omitted for clarity. 

 

HOESY experiments. NOESY experiments on mixed-monolayers gold nanoparticles enable to 

observe cross peaks between the spin systems of two different ligands if their distance is smaller than 

0.4 nm and the number of spin systems involved is large enough. These conditions are fulfilled for 

random and striped mixed-monolayers.22 Similar 2D NMR experiments between F- and H-thiolates, 

i.e. 19F-1H HOESY, have been carried out on selected samples of each type of nanoparticles in order 

to support the morphological analysis described above. In particular, on the basis of the morphologies 

suggested by 1D NMR experiments and mesoscale simulations, cross peaks are expected between the 

CF2 central groups of the fluorinated ligands and the methylene groups of the hydrogenated ones in 

the HOESY of nanoparticles NP-brC12/F6, NP-C16/F6, NP-C12/F6 and NP-C8/F6. Indeed, as 

reported in Figure S7, the 19F-1H HOESY spectra of these nanoparticles with a ratio between F- and 

H-thiolates close to 1:1 display the presence of cross peaks between the signal at about -123 ppm 

assigned to the central CF2 groups of the F-ligands and the peak at 1.2 ppm of the methylene groups 

of the hydrogenated ones. In the HOESY spectra of nanoparticles NP-brC12/F6 and NP-C16/F6 a 

second cross peak between the same CF2 central groups and a signal at around 2.5 ppm in the 1H-

NMR spectra could also be observed. This cross peak was assigned to the intramolecular interaction 
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between the CH2 and CF2 groups of the same thiolate F6 as from HOESY experiments on homoligand 

nanoparticles, NP-F6, and on the free thiol HF6.  

Unexpectedly, the HOESY spectrum of NP-C12/F10-f, presents a cross peak, between the signal of 

the central CF2 groups of the fluorinated ligands and the methylene groups of the hydrogenated ones. 

Since for Janus nanoparticles the fluorinated and hydrogenated thiolates are interacting solely at the 

interface between two domains, the intensity of this cross peak is expected to be vanishingly small. 

An explanation for the observation of this cross peak comes from the length of the fluorinated ligand; 

thiolate F10 has nine CF2 groups capable of determining a high number of interactions responsible 

for the NMR signal. For this reason, even though the F-/H- ligands are interacting exclusively at the 

interface between the two phase-separated regions, the high number of CF2 groups may be sufficient 

to determine the appearance of the cross peak. In order to test this hypothesis, we performed another 

HOESY analysis on a sample of the same class of nanoparticles presenting a low percentage (13.9%) 

of the fluorinated thiolate into the monolayer (i.e., system NP-C12/F10-a). For this system the 

fluorinated ligands form a small patch, Figure 5 and, accordingly, the number of F-/H- interactions 

is reasonably lower with respect to NP-C12/F10-f. Yet, even in this case, the HOESY spectrum 

exhibits a relatively intense cross peak between the methylene groups of C12 and the central CF2 

groups of F10. From these experiments we conclude that the 19F-1H HOESY is very sensitive and 

cross peaks can be observed even though an exiguous number of interactions between the 

hydrogenated and fluorinated thiolates is present in the monolayer. 

 

Conclusions 

Our analysis of five different set of mixed-monolayer nanoparticles obtained by using blends of 

hydrogenated and fluorinated ligands and a plethora of different samples for each set nicely covering 

the loading of the F-ligand over the percentage range, offers the ground to develop our understanding 

of the design rules required to control the formation of specifically patterned monolayer protected 

NPs. Specifically, the combination of 19F NMR experiments and mesoscale simulation predictions 

allows assessing the morphology of self-organized mixed-monolayers comprising mixtures of H-and 

F- thiolates. Overall, the results point out that, beside the strong immiscibility between H- and F-

ligands, other key parameters – such as the high steric hindrance and rigidity of the fluorinated chains 

– influence the morphology of the organic layer. As a consequence, only when the mismatch of 

ligands length is equal to eight carbon atoms, stripe-like domains are formed (e.g. system NP-

C16/F6), driven by entropy gain. On the other hand, a length difference of four-carbon atoms gives 

rise to domains that appear as patches or elongated patches, as seen for the NP-C12/F6 system. 

Ligands of the same length self-organize in Janus domains (NP-C12/F10), as expected. However, if 
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both ligands are shorter as in NP-C8/F6, the experimental and theoretical results suggest the 

formation of a SAM with no specific morphology. Finally, the presence of a branched ligand in the 

monolayer, such as in the NP-brC12/F6 system, disfavors phase-segregation and promote a random 

organization of the two types of ligands. The design principles arising from our analysis, although 

obtained with simple model systems, are envisaged to be of general validity and, as such, are currently 

being employed by our group in the synthesis and characterization of more complex nanoparticle 

systems for practical applications.  

 

Methods 

Synthesis. The detailed synthetic procedures for the preparation of gold nanoparticles NP-C16/F6, 

NP-C12/F6, NP-C12/F10, NP-C8/F6 and NP-brC12/F6 are reported in reference 29. Synthesis of 

NP-C8/F6-i and NP-C8/F6-p systems are given in full in SI. 

NMR experiments. NMR experiments were carried out on a Varian 500 spectrometer (operating at 

500 MHz for proton, and at 470.08 MHz for 19F). The 1H chemical shifts are referenced to the residual 

protons in deuterated solvents whereas CFCl3 was used as external reference for 19F spectra. The 

maximum error on 19F chemical shift of repeated measurements is 0.04 ppm. 

Samples were prepared by dissolving about 10 mg of NPs in 0.7 mL of deoxygenated CDCl3 or 

mixtures of CDCl3/C6F6, as detailed in Tables S1-S5 of SI, and additionally deoxygenated by 

bubbling argon while keeping the NMR tube in an ultrasound bath for at least 1 min. For 19F-1H 

HOESY experiments the pulse sequence FH_HOESY was used with 256 scans and a tuning 

increment, t1, of 128. 

Computational studies. Coarse-grained methods as Dissipative Particle Dynamics (DPD) are 

especially suitable for predicting self-assembling phenomena as those involved in the organization of 

binary mixtures of ligands on solid curved surfaces, since they allow sampling longer times with 

respect to atomic resolution techniques (e.g., molecular dynamics (MD)). The computational 

approach applied here consists in exploiting information obtained at lower level simulations (e.g., 

MD simulations) as input for higher-level calculations (e.g., mesoscopic DPD simulations). In details, 

a suitable atomistic model of the gold/ligands/solvent interface was employed to estimate the 

interaction energy among the different system components. These energy values were in turn utilized 

to derive the corresponding DPD simulation parameters. Further, by matching the 

atomistic/mesoscale pair-pair correlation functions for each ligand, the coarse-grained topology of 

each chain ligand was calculated. The computational procedure employed here was already 

successfully applied by our group.28,34-38 to predict the self-assembling organization of several 

immiscible ligand mixtures, including poly(ethylene oxide) terminating 
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hydrocarbon/perfluorocarbon thiolated chains as well as mercaptoundecanesulfonate/octanethiol 

ligands, on gold nanoparticle spherical surface and other immiscible polymer related systems. 
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Supporting Information. 19F NMR of the thiol HF6 and of NP-C12/F6 with the peaks assignment. 

Description of the experiments to determine the influence of solvent composition on the chemical 

shift of the NP-C16/F6. Preparation of nanoparticles NP-C8/F6-i and NP-C8/F6-p. Tables S1-S5 

reporting the characterization data of all nanoparticles, 19F chemical shifts of CF3 and 7- or 9-CF2 

groups and percentage of C6F6 added. 19F-1H HOESY experiments. Details of the computational 

methods, mesoscale models, and mesoscale procedure.  
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