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Abstract:We discuss existence, multiplicity, localisation and stability properties of solutions of the Dirichlet
problem associated with the gradient dependent prescribed mean curvature equation in the Lorentz–
Minkowski space

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = f(x, u, ∇u) in Ω,

u = 0 on ∂Ω.

The obtained results display various peculiarities, which are due to the special features of the involved differ-
ential operator and have no counterpart for elliptic problems driven by other quasilinear differential opera-
tors. This research is also motivated by some recent achievements in the study of prescribed mean curvature
graphs in certain Friedmann–Lemaître–Robertson–Walker, as well as Schwarzschild–Reissner–Nordström,
spacetimes.
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1 Introduction
Let us consider the quasilinear elliptic problem

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = f(x, u, ∇u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in ℝN with regular boundary ∂Ω and f satisfies the L∞-Carathéodory con-
ditions. Graphs of solutions of (1.1) are surfaces of prescribed mean curvature in the Lorentz–Minkowski
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114 | C. Corsato, F. Obersnel and P. Omari, The Dirichlet problem

space LN+1 = {(x, t) : x ∈ ℝN , t ∈ ℝ}with metric∑N
i=1 dx2i − dt

2. We will be concerned with strictly spacelike
solutions of (1.1), that is, weak, or strong, solutions u of (1.1) satisfying ‖∇u‖∞ < 1; a non-exhaustive list of
references about this problem includes [2, 3, 10, 22, 26, 28, 30] and the bibliographies therein.

A motivation for considering equations in (1.1), where the right-hand side f depends explicitly on the
gradient of the solution, derives from the interest in various issues of differential geometry about the following
class of anisotropic mean curvature equations,

−
1
N
div( ∇u

√1 − |∇u|2
) = H(x, u,N(u)),

in which the prescribed mean curvatureH depends on the unit upward normal to the graph of u,

N(u) = (∇u, 1)
√1 − |∇u|2

.

These equationsmay also arise as Euler–Lagrange equations of someweighted area functionals (cf. [8, 9, 13,
26, 27, 29]), such as

∫
Ω

A(x, u)√1 − |∇u|2dx + ∫
Ω

B(x, u)dx,

as well as they occur in the study of prescribed mean curvature graphs in certain Friedmann–Lemaître–
Robertson–Walker, or Schwarzschild–Reissner–Nordström, spacetimes (cf. [4, 19, 20, 26]).

The aim of this paper is to work out a general lower and upper solution method for (1.1). Rather than
the solvability of (1.1), which as we will see is always guaranteed without placing any additional qualitative
or quantitative assumption on the right-hand side f , the interest of using lower and upper solutions in this
contextmainly relies on the localisation, themultiplicity and the stability information that theymay provide.
In this respect, due to the special features of the mean curvature operator in the Lorentz–Minkowski space,
various peculiarities are displayed, which have no counterpart for elliptic problems driven by other quasilin-
ear differential operators, such as the p-Laplace operator, or the mean curvature operator in the Euclidean
space. In particular, the simple knowledge of just one lower solution α, or just one upper solution β, allows
to localise solutions in terms of α, or β, whereas the existence of a couple of lower and upper solutions α, β
with α ̸≤ β yields multiple solutions, whose stability or instability properties can be detected and specified.
Here we use the notion of order stability: for a discussion of the relationships between this concept and other
classical ones considered in the literature we refer to [18, 21, 24]. It is worthy to point out that our stability,
or instability, conclusions will follow, as in [16–18], without assuming any additional regularity hypotheses
on the function f besides the L∞-Carathéodory conditions.

We finally recall that some preliminary results related to the topics of this paper, but confined to the
simpler problem

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

were announced in [14].We refer to that paper for some applications of the lower and upper solutionsmethod
to the existence of multiple positive solutions of (1.2) (see also [5–7, 11, 12, 15] for further results). It should
be stressed that, if compared with (1.2), the study of (1.1) needs more care and requires the introduction of
some new technical devices.

Notations. We list some notations that are used throughout this paper. For s ∈ ℝ, we set s+ = max{s, 0} and
s− = −min{s, 0}. We denote by BR(y) = {x ∈ ℝN : |x − y| < R} the open ball in ℝN centered at y and having
radius R; the subscript R indicating the radius, as well as the indication of the center y, may be omitted if
irrelevant in the context. Let O be a bounded domain in ℝN with boundary ∂O. For functions u, v : O → ℝ,
wewrite u ≤ v inO if u(x) ≤ v(x) for a.e. x ∈ O. Whenever u, v : O → ℝ are continuous, we alsowrite: u ≤ v on
∂O if u(x) ≤ v(x) for all x ∈ ∂O; u ≤ v inO if u(x) ≤ v(x) for all x ∈ O; u < v inO if u ≤ v inO and u(x0) < v(x0)
for some x0 ∈ O; u ≪ v in O if there is ε > 0 such that u(x) + ε dist(x, ∂O) ≤ v(x) for all x ∈ O. We finally set
C10(O) = {u ∈ C1(O) : u = 0 on ∂O}.

Brought to you by | University of Sussex Library
Authenticated

Download Date | 3/2/17 1:13 AM



C. Corsato, F. Obersnel and P. Omari, The Dirichlet problem | 115

2 Preliminaries
Throughout this paper the following assumptions are considered:
(h1) Ω is a bounded domain inℝN with boundary ∂Ω of class C2,
(h2) f : Ω × ℝ × ℝN → ℝ satisfies the L∞-Carathéodory conditions, i.e.,

∙ for every (s, ξ) ∈ ℝ × ℝN , f( ⋅ , s, ξ) is measurable in Ω,
∙ for a.e. x ∈ Ω, f(x, ⋅ , ⋅ ) is continuous onℝ × ℝN ,
∙ for each ρ > 0,

ess sup
Ω×[−ρ,ρ]×[−ρ,ρ]N

|f(x, s, ξ)| < +∞.

The following notion of solution of problem (1.1) is adopted.

Definition 2.1. We say that a function u : Ω → ℝ is a solution of (1.1) if u ∈ C0,1(Ω) and satisfies
∙ ‖∇u‖∞ < 1,
∙ for every w ∈ W1,1

0 (Ω),
∫
Ω

∇u ⋅ ∇w
√1 − |∇u|2

dx = ∫
Ω

f(x, u, ∇u)w dx, (2.1)

∙ u = 0 on ∂Ω.

Remark 2.1. Adirect consequence of this definition is that any solution u of (1.1) satisfies ‖u‖∞ < 1
2diam(Ω).

Next we state the following comparison result, which is a direct consequence of [3, Lemma 1.2].

Lemma 2.1. Assume that O is a bounded domain in ℝN with Lipschitz boundary ∂O, and suppose that
v1, v2 ∈ L∞(O) satisfy v1 ≤ v2 in O. Let, for i = 1, 2, ui ∈ C0,1(O) be such that ‖∇ui‖∞ < 1 and

∫
O

∇ui ⋅ ∇w
√1 − |∇ui|2

dx = ∫
O

viw dx

for all w ∈ W1,1
0 (O). Then we have

min
∂O

(u2 − u1) = min
O

(u2 − u1). (2.2)

Proof. Fix v ∈ L∞(O). Let u ∈ C0,1(O) be such that ‖∇u‖∞ < 1 and

∫
O

∇u ⋅ ∇w
√1 − |∇u|2

dx = ∫
O

vw dx (2.3)

for all w ∈ W1,1
0 (O). Set

Cu = {w ∈ C0,1(O) : ‖∇w‖∞ ≤ 1 and w = u on ∂O}

and define the functional Jv : Cu → ℝ by

Jv(w) = ∫
O

√1 − |∇w|2 dx + ∫
O

vw dx.

We claim that u maximises Jv in Cu. Indeed, pick any w ∈ Cu. Taking u − w as test function in (2.3), we get

∫
O

∇u ⋅ ∇(u − w)
√1 − |∇u|2

dx = ∫
O

v(u − w) dx. (2.4)

Let g : B1(0) → ℝ be defined by g(y) = √1 − |y|2. By the concavity and the differentiability of g in B1(0),
we obtain

∫
O

√1 − |∇w|2 dx − ∫
O

√1 − |∇u|2 dx ≤ ∫
O

∇u ⋅ ∇(u − w)
√1 − |∇u|2

dx. (2.5)

Combining (2.4) and (2.5) yields
Jv(w) ≤ Jv(u).

Accordingly, we have that u1 and u2 are global maximisers of Jv1 in Cu1 and of Jv2 in Cu2 , respectively. Hence
[3, Lemma 1.2] applies, implying that (2.2) holds.
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Now we prove an existence and regularity result for the problem

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = v in O,

u = 0 on ∂O,
(2.6)

where O is an open bounded set in ℝN with boundary of class C2 and v ∈ L∞(O). This result is based on the
gradient estimates obtained in [3, Corollary 3.4, Theorem 3.5].

Lemma 2.2. Assume that O is a bounded domain in ℝN with boundary ∂O of class C2, and suppose that
v ∈ L∞(O). Then problem (2.6) has a unique solution u with u ∈ W2,r(O), for all finite r ≥ 1. Moreover, for any
given Λ > 0 and r ∈ ]N, +∞[, there exist constants ϑ = ϑ(O, Λ) ∈ ]0, 1[ and c = c(O, Λ, r) > 0 such that, for
every v ∈ L∞(O) with ‖v‖∞ ≤ Λ, the following estimates hold:

‖∇u‖∞ < 1 − ϑ (2.7)

and
‖u‖W2,r ≤ c‖v‖Lr . (2.8)

Proof. Uniqueness. Uniqueness of solution of (2.6) follows immediately from Lemma 2.1.
Existence. Let Λ > 0 and r ∈ ]N, +∞[ be fixed. Take a function v ∈ L∞(O)with ‖v‖∞ ≤ Λ. We first assume

that v further satisfies v ∈ C0,1(O). Combining [3, Corollary 3.4] and [3, Theorem 3.5] provides the existence
of a constant ϑ = ϑ(O, Λ) ∈ ]0, 1[ such that any solution u ∈ C2(O) ∩ C1(O) of (2.6) satisfies (2.7); according
to Remark 2.1, u also satisfies ‖u‖∞ < 1

2diam(Ω).
Let us introduce a function A : ℝN → ℝN satisfying the structure conditions assumed in [25, Theorem 1]

and
A(ξ) = ξ

√1 − |ξ|2
for all ξ ∈ ℝN with |ξ| ≤ ϑ.

Then [25, Theorem1] applies and yields the existence of constants α = α(O, Λ) ∈ ]0, 1] and c1 = c1(O, Λ) > 0
such that u ∈ C1,α(O) and

‖u‖C1,α < c1.

We can also suppose that α has been taken so small that W2,r(O) is compactly embedded into C1,α(O); as
a consequence, α and c1 now depend on O, Λ and r too.

Let us define
D = {w ∈ C1,α(O) : ‖∇w‖∞ < 1 − ϑ, ‖w‖C1,α < c1};

D is an open bounded subset of C1,α(O) with 0 ∈ D. Pick any w ∈ D and set, for i, j = 1, . . . , N,

aij(w) = δija(|∇w|2) + 2a�(|∇w|2)∂xiw ∂xjw,

where δij is the Kronecker delta and a(s) = (1 − s)− 1
2 . Consider the Dirichlet problem

{{{
{{{
{

−
N
∑
i,j=1

aij(w)∂xixj z = v in O,

z = 0 on ∂O.

(2.9)

Note that the coefficients aij(w) belong to C0,α(O) and are uniformly bounded in C0,α(O) with bound inde-
pendent of w ∈ D and ultimately depending on O, Λ and r only; moreover, the ellipticity constant can be
taken equal to 1. According to the Lp-regularity theory [23, Theorem 9.15, Theorem 9.13], problem (2.9) has
a unique solution z ∈ W2,r(O) (depending on v and w) and there exists a constant c2 = c2(O, Λ, r) > 0 such
that

‖z‖W2,r ≤ c2(‖z‖Lr + ‖v‖Lr ).

Since in particular r ∈ ]N2 , +∞[,W2,r(O) is embedded into L∞(O), and z satisfies

‖z‖∞ ≤ c3
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for some c3 = c3(O, Λ, r) > 0. Combining these two estimates yields

‖z‖W2,r ≤ c‖v‖Lr (2.10)

for some constant c = c(O, Λ, r) > 0 (depending on the indicated quantities only). Moreover, as z ∈ C1,α(O),
v ∈ C0,1(O) and aij(w) ∈ C0,α(O), for i, j = 1, . . . , N, the Schauder regularity theory [23, Corollary 6.9] applies
locally and allows us to conclude that z ∈ C2,α(O); hence, in particular, z ∈ W2,r(O) ∩ C2(O).

Let us denote by L : D → C1,α(O) the operator which sends each w ∈ D onto the unique solution
z ∈ W2,r(O) of (2.9). Let us verify that L is completely continuous. We first prove that L has a relatively
compact range. Let (wn)n be a sequence inD. By (2.10) the sequence (L(wn))n is bounded inW2,r(O). Hence
there exists a subsequence (L(wnk ))k which converges weakly in W2,r(O) and strongly in C1,α(O) to some
z ∈ W2,r(O). The continuity ofL can be verified as follows. Let (wn)n be a sequence inD converging in C1,α(O)
to somew ∈ D.Wewant to prove that (L(wn))n converges in C1,α(O) toL(w). Let us consider any subsequence
(L(wnk ))k of (L(wn))n and verify that it has a subsequence converging toL(w). Arguing as above, there exists
a subsequence (L(wnks ))s of (L(wnk ))k which converges weakly in W2,r(O) and strongly in C1,α(O) to some
z ∈ W2,r(O). As each znks = L(wnks ) satisfies the problem

{{{
{{{
{

−
N
∑
i,j=1

aij(wnks )∂xixj znks = v in O,

znks = 0 on ∂O,

we can pass to the limit, concluding that z ∈ W2,r(O) is a solution of (2.9) and hence, by uniqueness,
z = L(w). We then deduce that the whole sequence (L(wn))n converges in C1,α(O) to L(w).

We further observe that, if u ∈ D is a fixed point of L, then u is a solution of (2.6) with u ∈ W2,r(O). In
order to prove the existence of a fixed point of L, we show that every solution u ∈ D of

u = tL(u), (2.11)

for some t ∈ [0, 1], belongs toD. Note that (2.11) implies that u ∈ W2,r(O) is a solution of

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = tv in O,

u = 0 on ∂O.

As ‖tv‖∞ ≤ Λ and v ∈ C0,1(O), by the previous argument we deduce that u satisfies u ∈ W2,r(O) ∩ C2(O),
‖∇u‖∞ < 1 − ϑ, ‖u‖C1,α < c1, and hence u ∈ D. Accordingly, the Leray–Schauder continuation theorem yields
the existence of a fixed point u ∈ D of L and therefore of a solution in W2,r(O) of (2.6) which satisfies (2.7)
and (2.8).

The general case of a function v ∈ L∞(O) with ‖v‖∞ ≤ Λ, can be easily dealt with by approximation. Fix
r ∈ ]N, +∞[ and let (vn)n be a sequence in C0,1(O) converging to v in Lr(O) and satisfying ‖vn‖∞ ≤ Λ for all n.
The corresponding solutions (un)n in W2,r(O) of (2.6) satisfy (2.7) and (2.8), where u is replaced by un, for
all n. Arguing as above, we can extract a subsequence of (un)n which weakly converges inW2,r(O) to a solu-
tion u of (2.6). Clearly, estimate (2.7) is valid, possibly reducing ϑ. By the weak lower semi-continuity of the
W2,r-norm, (2.8) holds true as well.

Remark 2.2. Assume thatO is a bounded domain inℝN with boundary of class C2,α and v ∈ C0,α(O) for some
α ∈ ]0, 1[. Then the solution u of (2.6) belongs to C2,γ(O) for some γ ∈ ]0, 1[. Indeed, let us fix r ∈ ]N, +∞[.
Lemma 2.2 implies that u ∈ W2,r(O) and hence u ∈ C1,β(O) with β = 1 − N

r . For i, j = 1, . . . , N, let us define
the functions aij ∈ C0,β(O) by

aij = δija(|∇u|2) + 2a�(|∇u|2)∂xiu ∂xju,

where δij is the Kronecker delta and, as before, a(s) = (1 − s)− 1
2 . Then u is a solution of the linear elliptic

problem
{{{
{{{
{

−
N
∑
i,j=1

aij∂xixj z = v in O,

z = 0 on ∂O.
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The Schauder regularity theory [23, Theorem 6.14] applies and allows us to conclude that u ∈ C2,γ(O) for
some γ ∈ ]0, 1[.

Remark 2.3. Lemma 2.2 guarantees in particular that, if u ∈ C0,1(Ω) is a solution of (1.1), then u ∈ W2,r(Ω),
for all finite r ≥ 1, and hence it is a strong solution of (1.1). Further, if, for some α ∈ ]0, 1[, Ω is a bounded
domain in ℝN with boundary ∂Ω of class C2,α and f ∈ C0,α(Ω × ℝ × ℝN), then Remark 2.2 implies that any
solution u of (1.1) belongs to C2,γ(Ω), for some γ ∈ ]0, 1[, and thus it is a classical solution of (1.1).

Let us denote by
B = {u ∈ C10(Ω) : ‖∇u‖∞ < 1}

the unit open ball in C10(Ω) and by I the identity operator in C
1
0(Ω).

Lemma 2.3. Assume (h1) and letN : C0,1(Ω) → L∞(Ω) be an operator satisfying
(h3) for any sequence (vn)n in C0,1(Ω) converging in C0,1(Ω) to some v ∈ C0,1(Ω), limn→+∞ N(vn) = N(v) a.e.

in Ω,
(h4) for any bounded sequence (vn)n in C0,1(Ω), there is a constant Λ > 0 such that ‖N(vn)‖∞ ≤ Λ for all n.
Let P : C0,1(Ω) → C10(Ω) be the operator which sends any function v ∈ C0,1(Ω) onto the unique solution u of
the problem

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = N(v) in Ω,

u = 0 on ∂Ω.
(2.12)

Then P is completely continuous and
deg(I − P,B, 0) = 1. (2.13)

Proof. We divide the proof into two steps.

Step 1. The operatorP is completely continuous. We first prove the continuity of P. Fix r ∈ ]N, +∞[. Let (vn)n
be a sequence in C0,1(Ω) converging to some v ∈ C0,1(Ω). By assumption the sequence (N(vn))n converges to
N(v) a.e. in Ω. Set, for each n, un = P(vn) and u = P(v). We aim to prove that limn→+∞ un = u in C1(Ω). Let
(unk )k be a subsequence of (un)n. From (h1), (h4) and Lemma 2.2 we infer that (unk )k is bounded inW2,r(Ω).
Therefore, there exists a subsequence (unkj )j of (unk )k which converges weakly in W2,r(Ω) and strongly in
C1(Ω) to some z ∈ W2,r(Ω); moreover there exists ϑ = ϑ(Ω, Λ) ∈ ]0, 1[ such that

‖∇unkj ‖∞ < 1 − ϑ

for all j. In particular, we have z ∈ C10(Ω) and ‖∇z‖∞ ≤ 1 − ϑ. Furthermore, as, for each j, unkj solves (2.12),
it satisfies

∫
Ω

∇unkj ⋅ ∇w

√1 − |∇unkj |
2
dx = ∫

Ω

N(vnkj )w dx (2.14)

for all w ∈ W1,1
0 (Ω). Letting j → +∞ in (2.14), we get by the dominated convergence theorem

∫
Ω

∇z ⋅ ∇w
√1 − |∇z|2

dx = ∫
Ω

N(v)w dx

for all w ∈ W1,1
0 (Ω). Thus we conclude that z ∈ W2,r(Ω) is a solution of problem (2.12). By uniqueness of the

solution, we conclude that z = P(v) = u. Therefore it follows that limn→+∞ un = u in C1(Ω).
Next we show that P sends bounded subsets of C0,1(Ω) into relatively compact subsets of C10(Ω). Let

(vn)n be a bounded sequence in C0,1(Ω). Then, by condition (h4), there exists a constant Λ > 0 such that
‖N(vn)‖∞ ≤ Λ for all n. Set un = P(vn) for all n. Arguing as above, we deduce the existence of a subsequence
(unk )k of (un)n which strongly converges in C1(Ω). We conclude that the operatorP is completely continuous.

Step 2. deg(I − P,B, 0) = 1. According to assumption (h4), there exists Λ1 > 0 such that ‖N(v)‖∞ ≤ Λ1 for
all v ∈ B. Using Lemma 2.2, we find a constant η ∈ ]0, 1[ such that any solution u = P(v) of (2.12) satisfies
‖∇u‖∞ ≤ η. Hence PmapsB intoB and, a fortiori, for each t ∈ [0, 1[, also tPmapsB intoB. The invariance
under homotopy of the topological degree yields deg(I − P,B, 0) = deg(I,B, 0) = 1.
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Remark 2.4. Under the assumptions of Lemma 2.3, we see in particular that there exists a solution
u ∈ W2,r(Ω), for every finite r ≥ 1, of the problem

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = N(u) in Ω,

u = 0 on ∂Ω.

Remark 2.5. Assume (h1) and (h2). Then we can define the operator T : C0,1(Ω) → C10(Ω), which sends any
function v ∈ C0,1(Ω) onto the unique solution u of the problem

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = f(x, v, ∇v) in Ω,

u = 0 on ∂Ω.
(2.15)

Clearly, u ∈ C0,1(Ω) is a solution of (1.1) if and only if u is a fixed point of T. LetN : C0,1(Ω) → L∞(Ω) be the
superposition operator definedbyN(v) = f( ⋅ , v, ∇v). Observe that, by (h2),N satisfies (h3) and (h4). Applying
Lemma 2.3 toN we see that the operator T is completely continuous and deg(I − T,B, 0) = 1.

3 A lower and upper solution method
The following notion of lower and upper solutions of problem (1.1) is adopted.

Definition 3.1. We say that a function α : Ω → ℝ is a lower solution of (1.1) if α ∈ C0,1(Ω) and satisfies
∙ ‖∇α‖∞ < 1,
∙ for every w ∈ W1,1

0 (Ω) with w ≥ 0 in Ω,

∫
Ω

∇α ⋅ ∇w
√1 − |∇α|2

dx ≤ ∫
Ω

f(x, α, ∇α)w dx, (3.1)

∙ α ≤ 0 on ∂Ω.
We say that a lower solution α of (1.1) is proper if it is not a solution. Further, we say that a lower solution α
of (1.1) is strict if every solution u of (1.1) with u ≥ α in Ω satisfies u ≫ α in Ω.

Similarly, we say that a function β : Ω → ℝ is an upper solution of (1.1) if β ∈ C0,1(Ω) and satisfies
∙ ‖∇β‖∞ < 1,
∙ for every w ∈ W1,1

0 (Ω) with w ≥ 0 in Ω,

∫
Ω

∇β ⋅ ∇w

√1 − |∇β|2
dx ≥ ∫

Ω

f(x, β, ∇β)w dx,

∙ β ≥ 0 on ∂Ω.
We say that an upper solution β of (1.1) is proper if it is not a solution. Further, we say that an upper solution
β of (1.1) is strict if every solution u of (1.1) with u ≤ β in Ω satisfies u ≪ β in Ω.

Remark 3.1. Note that u is a solution of (1.1) if and only if it is simultaneously a lower solution and an upper
solution of (1.1).

The following result holds in the presence of a couple of ordered lower and upper solutions.

Proposition 3.1. Assume (h1) and (h2). Suppose that there exist a lower solution α and an upper solution β
of (1.1) with α ≤ β in Ω. Then problem (1.1) has solutions v, w with α ≤ v ≤ w ≤ β in Ω such that every solution
u of (1.1) with α ≤ u ≤ β in Ω satisfies v ≤ u ≤ w in Ω. Further, if α and β are strict, then

deg(I − T,U, 0) = 1, (3.2)

where T is defined by (2.15) and

U = {z ∈ C10(Ω) : α ≪ z ≪ β in Ω and ‖∇z‖∞ < 1}. (3.3)
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Proof. The proof is divided into three parts.

Part 1. Existence of a solution u of (1.1) with α ≤ u ≤ β in Ω.

Step 1. Construction of a modified problem. We define a function γ : Ω × ℝ → ℝ by setting, for all x ∈ Ω,

γ(x, s) =
{{{
{{{
{

α(x) if s < α(x),
s if α(x) ≤ s < β(x),
β(x) if β(x) ≤ s,

and an operator F : C0,1(Ω) → L∞(Ω) by setting

F(u) = f( ⋅ , γ( ⋅ , u), ∇(γ( ⋅ , u))).

Note that, for each u ∈ C0,1(Ω), we have, for a.e. x ∈ Ω,

F(u)(x) = f(x, α(x), ∇α(x)) if u(x) ≤ α(x),

and
F(u)(x) = f(x, β(x), ∇β(x)) if u(x) ≥ β(x).

Then we consider the modified problem

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = F(u) in Ω,

u = 0 on ∂Ω.
(3.4)

Step 2. Every solution u of (3.4) satisfies α ≤ u ≤ β in Ω. Let u be a solution of (3.4). In order to prove that
u ≥ α in Ω, we set w = (u − α)− ∈ W1,1

0 (Ω). Taking w as a test function both in

∫
Ω

∇u ⋅ ∇w
√1 − |∇u|2

dx = ∫
Ω

F(u)w dx

and in (3.1), we get

∫
{u<α}

∇u ⋅ ∇(u − α)
√1 − |∇u|2

dx = −∫
Ω

∇u ⋅ ∇(u − α)−

√1 − |∇u|2
dx = −∫

Ω

F(u) (u − α)− dx = ∫
{u<α}

F(u) (u − α) dx

and

− ∫
{u<α}

∇α ⋅ ∇(u − α)
√1 − |∇α|2

dx = ∫
Ω

∇α ⋅ ∇(u − α)−

√1 − |∇α|2
dx ≤ ∫

Ω

f(x, α, ∇α) (u − α)− dx = − ∫
{u<α}

f(x, α, ∇α) (u − α) dx,

respectively. Summing up we obtain

∫
{u<α}

(
∇u

√1 − |∇u|2
−

∇α
√1 − |∇α|2

) ⋅ (∇u − ∇α) dx ≤ ∫
{u<α}

(F(u) − f(x, α, ∇α)) (u − α) dx = 0. (3.5)

Define ψ : B1(0) → ℝN by
ψ(y) = y

√1 − |y|2
.

As a consequence of the strict monotonicity of ψ, from (3.5) we deduce that

∫
{u<α}

(
∇u

√1 − |∇u|2
−

∇α
√1 − |∇α|2

) ⋅ (∇u − ∇α) dx = 0;

then either the N-dimensional measure of the set {u < α} is equal to 0 or∇(u − α) = 0 in {u < α}. In both cases
we get (u − α)− = 0 and hence u ≥ α, in Ω. In a completely similar way we prove that u ≤ β in Ω.
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Step 3. Problem (1.1)has at least one solution uwith α ≤ u ≤ β inΩ. Observe that the operatorN = F satisfies
(h3) and (h4). By Remark 2.4 there exists a solution u of problem (3.4) which, by the result of Step 2, satisfies
α ≤ u ≤ β in Ω and, in particular, is a solution of (1.1) as well.

Part 2. Existence of extremal solutions. We know that the solutions of (1.1) are precisely the fixed points of
the operator T. By the complete continuity of T proved in Remark 2.5, the closed bounded subset of C10(Ω),

S = {u ∈ C10(Ω) : u = T(u) and α ≤ u ≤ β in Ω},

is compact. In Part 1 we have seen that S is not empty.

Step 1. There existsmin S. For each u ∈ S, define the closed subset of S

Ku = {z ∈ S : z ≤ u in Ω}.

The family {Ku : u ∈ S}has thefinite intersectionproperty. Indeed, if u1, . . . , uk ∈ S, let u0 =min{u1, . . . , uk}:
it satisfies α ≤ u0 ≤ β in Ω. We prove the existence of a solution u of (1.1) with α ≤ u ≤ u0 in Ω. For all
i = 0, 1, . . . , k, define the function γi : Ω × ℝ → ℝ by

γi(x, s) =
{{{
{{{
{

α(x) if s < α(x),
s if α(x) ≤ s < ui(x),
ui(x) if ui(x) ≤ s,

for all x ∈ Ω, and the operator Fi : C0,1(Ω) → L∞(Ω) by

Fi(u) = f( ⋅ , γi( ⋅ , u), ∇(γi( ⋅ , u))).

Next,we setF = F0 − ∑k
i=1 |F0 − Fi| andobserve that the operatorN = F satisfies (h3) and (h4). ByRemark2.4

there exists a solution u of the problem

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = F(u) in Ω,

u = 0 on ∂Ω.
(3.6)

We prove now that any solution z of (3.6) satisfies α ≤ z ≤ u0 in Ω. We first notice that, for all i = 0, 1, . . . , k
and for a.e. x ∈ Ω, we have

Fi(z)(x) = f(x, α(x), ∇α(x)) if z(x) < α(x),

and, hence,

F(z)(x) = f(x, α(x), ∇α(x)) if z(x) < α(x); (3.7)

on the other hand, for all i = 0, 1, . . . , k, ui ≥ u0 in Ω, then we get, for a.e. x ∈ Ω,

Fi(z)(x) = Fi(ui)(x) = f(x, ui(x), ∇ui(x)) if z(x) > ui(x). (3.8)

Similarly to Step 2 in Part 1, testing now (3.1) and

∫
Ω

∇z ⋅ ∇w
√1 − |∇z|2

dx = ∫
Ω

F(z)w dx (3.9)

against w = (z − α)− ∈ W1,1
0 (Ω) and taking advantage of (3.7), we get

0 ≤ ∫
{z<α}

(
∇z

√1 − |∇z|2
−

∇α
√1 − |∇α|2

) ⋅ (∇z − ∇α) dx

≤ ∫
{z<α}

(F(z) − f(x, α, ∇α))(z − α) dx = 0.
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We then deduce that z ≥ α in Ω. For any given j = 1, . . . , k, wewill prove that z ≤ uj in Ω. Testing (2.1), where
u is replaced by uj, and (3.9) against w = (z − uj)+ ∈ W1,1

0 (Ω), and using (3.8) yield

0 ≤ ∫
{z>uj}

(
∇z

√1 − |∇z|2
−

∇uj
√1 − |∇uj|2

) ⋅ (∇z − ∇uj) dx

= ∫
{z>uj}

(F(z) − f(x, uj , ∇uj))(z − uj) dx

= ∫
{z>uj}

(F0(z) − f(x, uj , ∇uj) −
k
∑
i=1

|F0(z) − Fi(z)|)(z − uj) dx

= ∫
{z>uj}

(F0(z) − f(x, uj , ∇uj) − |F0(z) − Fj(z)| −
k
∑
i=1
i ̸=j

|F0(z) − Fi(z)|)(z − uj) dx

≤ ∫
{z>uj}

(F0(z) − f(x, uj , ∇uj) − |F0(z) − Fj(z)|)(z − uj) dx

= ∫
{z>uj}

(F0(z) − Fj(z) − |F0(z) − Fj(z)|)(z − uj) dx

≤ 0.

We then obtain z ≤ uj in Ω. Hence we conclude that z ≤ u0 in Ω.
The estimates above prove that the solution u of (3.6) satisfies α ≤ u ≤ u0 ≤ β in Ω, therefore u is also

a solution of (1.1). In particular, we have u ∈ ⋂k
i=1Kui , which entails the validity of the finite intersection

property for the family {Ku : u ∈ S}. By the compactness of S, there exists v ∈ ⋂u∈S Ku. Clearly, v = min S,
that is v is the minimum solution of (1.1) lying between α and β.

Step 2. There existsmax S. The procedure is similar to the one developed in the previous step.

Part 3. Degree computation. LetP be the operator defined by (2.12), whereN = F. Let us assume that α and β
are, respectively, a strict lower and a strict upper solution of (1.1). Since there exists a solution u of (1.1) with
α ≤ u ≤ β in Ω, and sucha solution satisfies α ≪ u ≪ β in Ω, it follows that α ≪ β in Ω.Hence the setUdefined
in (3.3) is a non-empty open bounded subset of C10(Ω) such that there is no fixed point either of T or of P on
its boundary ∂U. Moreover, as T and P coincide in U, we have

deg(I − T,U, 0) = deg(I − P,U, 0).

Since P is fixed point free inB \ U, the excision property of the degree and (2.13) imply that

deg(I − P,U, 0) = deg(I − P,B, 0) = 1.

Thus we conclude that (3.2) holds.

The counterpart result to Proposition 3.1, in the presence of a couple of non-ordered strict lower and strict
upper solutions of (1.1), is formulated below.

Proposition 3.2. Assume (h1) and (h2). Suppose that there exist a strict lower solution α and a strict upper
solution β of (1.1) with α ̸≤ β in Ω. Then problem (1.1) has at least three solutions u1, u2, u3 with

u1 < u2 < u3, u1 ≪ β, u2 ̸≥ α, u2 ̸≤ β, u3 ≫ α in Ω. (3.10)

Proof. The proof is divided into three steps.

Step 1. Construction of a modified problem. Set

M = max{‖α‖∞, ‖β‖∞, 12diam(Ω)}, (3.11)

and define fM : Ω × ℝ × ℝN → ℝ by

fM(x, s, ξ) = η(s, ξ)f(x, s, ξ),
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where η : ℝ × ℝN → ℝ is a continuous function such that supp η ⊂ [−(M + 1),M + 1] × B2(0) and η(s, ξ) = 1
in [−M,M] × B1(0). Note that fM satisfies the L∞-Carathéodory conditions.We consider themodified problem

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = fM(x, u, ∇u) in Ω,

u = 0 on ∂Ω.
(3.12)

Due to the choice ofM, Remark 2.1 implies that any solution of (3.12) is a solution of (1.1), α and β are strict
lower and upper solutions of (3.12), and the constants ᾱ = −(M + 1) and β̄ = M + 1 are strict lower and upper
solutions of (3.12), respectively.

Step 2. Degree computation. Let us define the following open bounded subsets of C10(Ω):

U
β
ᾱ = {u ∈ C10(Ω) : ᾱ ≪ u ≪ β in Ω and ‖∇u‖∞ < 1},

U
β̄
α = {u ∈ C10(Ω) : α ≪ u ≪ β̄ in Ω and ‖∇u‖∞ < 1},

U
β̄
ᾱ = {u ∈ C10(Ω) : ᾱ ≪ u ≪ β̄ in Ω and ‖∇u‖∞ < 1}.

Notice that Uβᾱ ⊂ U
β̄
ᾱ, U

β̄
α ⊂ U

β̄
ᾱ, and, as α ̸≤ β in Ω, Uβᾱ ∩ U

β̄
α = 0. Moreover, since both α and ᾱ are strict lower

solutions of (3.12), and β and β̄ are strict upper solutions of (3.12), we have

0 ∉ (I − TM)(∂U
β̄
α ∪ ∂U

β
ᾱ ∪ ∂U

β̄
ᾱ), (3.13)

where TM : C0,1(Ω) → C10(Ω) is the operator which sends any function v ∈ C0,1(Ω) onto the unique solution
u ∈ C10(Ω) of

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = fM(x, v, ∇v) in Ω,

u = 0 on ∂Ω.

Define now the following open bounded subset of C10(Ω):

V = U
β̄
ᾱ \ (U

β̄
α ∪ U

β
ᾱ).

By (3.13), using the excision property of the degree, we get

deg(I − TM ,U
β̄
ᾱ , 0) = deg(I − TM ,U

β̄
ᾱ \ (∂U

β̄
α ∪ ∂U

β
ᾱ), 0)

and hence the additivity property of the degree implies

deg(I − TM ,U
β̄
ᾱ , 0) = deg(I − TM ,U

β
ᾱ , 0) + deg(I − TM ,U

β̄
α , 0) + deg(I − TM ,V, 0).

Since, by Proposition 3.1, we have

deg(I − TM ,U
β̄
ᾱ , 0) = deg(I − TM ,U

β
ᾱ , 0) = deg(I − TM ,U

β̄
α , 0) = 1,

we finally get
deg(I − TM ,V, 0) = −1.

Step 3. Existence of solutions. Since Uβᾱ ,U
β̄
α, V are pairwise disjoint, the previous degree calculations imply

that there are three distinct fixed points u1, u2, u3 of the operator TM with

u1 ∈ U
β
ᾱ , u2 ∈ V, u3 ∈ U

β̄
α .

This means that
u1 ≪ β, u2 ̸≥ α, u2 ̸≤ β, u3 ≫ α in Ω.

Let v and w be, respectively, the minimum and themaximum solution of (3.12) lying between ᾱ and β̄. Then,
possibly replacing u1 with v and u3 withw, we immediately conclude that (3.12) and, hence, (1.1) have three
distinct solutions for which (3.10) holds.
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Remark 3.2. By combining Step 1 of Part 2 in the proof of Proposition 3.1with the truncation argument of the
proof of Proposition 3.2, we infer that if α1, . . . , αn are lower solutions of (1.1) (respectively, β1, . . . , βn are
upper solutions of (1.1)), then there exists a solution u of (1.1) with u ≥ max{α1, . . . , αn} in Ω (respectively,
there exists a solution u of (1.1) with u ≤ min{β1, . . . , βn} in Ω).

4 Existence, multiplicity and localisation results
In this sectionwe formulate some existence, multiplicity and localisation results for problem (1.1), which are
consequence of the conclusions achieved in the previous section.

Theorem 4.1. Assume (h1) and (h2).
(i) Suppose that there exists a lower solution α of (1.1). Then problem (1.1) has at least one solution

u ∈ W2,r(Ω), for all finite r ≥ 1, with
u ≥ α in Ω.

(ii) Suppose that there exists an upper solution β of (1.1). Then problem (1.1) has at least one solution
u ∈ W2,r(Ω), for all finite r ≥ 1, with

u ≤ β in Ω.

(iii) Suppose that there exist a lower solution α and an upper solution β of (1.1) with α ≤ β in Ω. Then prob-
lem (1.1) has at least one solution u ∈ W2,r(Ω), for all finite r ≥ 1, with

α ≤ u ≤ β in Ω.

(iv) Suppose that there exist a lower solution α and an upper solution β of (1.1) with α ̸≤ β in Ω. Then prob-
lem (1.1) has at least two solutions u1, u2 ∈ W2,r(Ω), for all finite r ≥ 1, with

u1 < u2, u1 ≤ β, u2 ≥ α in Ω. (4.1)

(v) Suppose that there exist a strict lower solution α and a strict upper solution β of (1.1)with α ̸≤ β in Ω. Then
problem (1.1) has at least three solutions u1, u2, u3 ∈ W2,r(Ω), for all finite r ≥ 1, with

u1 < u2 < u3, u1 ≪ β, u2 ̸≥ α, u2 ̸≤ β, u3 ≫ α in Ω. (4.2)

(vi) Suppose that there exist lower solutions α, ᾱ and upper solutions β, β̄ of (1.1) such that α and β are
strict, ᾱ ≤ min{α, β} ≤ max{α, β} ≤ β̄ and α ̸≤ β in Ω. Then problem (1.1) has at least three solutions
u1, u2, u3 ∈ W2,r(Ω), for all finite r ≥ 1, with

ᾱ ≤ u1 < u2 < u3 ≤ β̄, u1 ≪ β, u2 ̸≥ α, u2 ̸≤ β, u3 ≫ α in Ω. (4.3)

Proof. In order to prove (i), we consider the modified problem (3.12) constructed in Step 1 of the proof of
Proposition 3.2, with the choice

M1 = max{‖α‖∞, 12diam(Ω)}.

By Remark 2.1, we see that any solution of the modified problem (3.12) with M = M1 is a solution of the
original one (1.1). Let us set β̄ = M1 + 1.We have that α is a lower solution and β̄ is an upper solution of (3.12)
with α ≤ β̄ in Ω. By Proposition 3.1 there exists at least one solution u of (3.12)with α ≤ u ≤ β̄ in Ω, and hence
of (1.1).

A similar argument implies the validity of (ii).
The statement in (iii) follows from Proposition 3.1.
Let us prove (iv). Let α be a lower solution and β an upper solution of (1.1) with α ̸≤ β in Ω. Let M be the

positive constant defined in (3.11) and set ᾱ = −(M + 1) and β̄ = M + 1. Consider themodifiedproblem (3.12).
Observe that α, ᾱ are lower solutions and β, β̄ areupper solutions of (3.12),which satisfy ᾱ ≤ β and α ≤ β̄ in Ω.
According to (iii) and to Remark 2.1 applied to the modified problem (3.12), there exist two solutions u1, u2
of (3.12) which satisfy

ᾱ ≤ u1 ≤ β, α ≤ u2 ≤ β̄ in Ω
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and ‖ui‖∞ < M. Therefore u1 and u2 are solutions of (1.1). Proposition 3.1 provides a minimum solution v
and a maximum solution w of (1.1) lying between ᾱ and β̄. Possibly replacing u1 with v and u2 with w, from
the assumption α ̸≤ β in Ω, we have u1 < u2 in Ω, thus (4.1) holds.

The statement in (v) is precisely the one of Proposition 3.2.
We finally prove (vi). We define the function γ : Ω × ℝ → ℝ by

γ(x, s) =
{{{
{{{
{

ᾱ(x) if s < ᾱ(x),
s if ᾱ(x) ≤ s < β̄(x),
β̄(x) if β̄(x) ≤ s,

for all x ∈ Ω and the operator F : C0,1(Ω) → L∞(Ω) by

F(u) = f( ⋅ , γ( ⋅ , u), ∇(γ( ⋅ , u))). (4.4)

We consider problem (3.4), where the operator on the right-hand side of the equation is given by (4.4). From
the proof of Proposition 3.1 we infer that any solution u of (3.4) satisfies ᾱ ≤ u ≤ β̄ in Ω. We notice that α
and β are still a strict lower solution and a strict upper solution of (3.4), respectively. Then, applying state-
ment (v) to problem (3.4), we deduce the existence of three solutions u1, u2, u3 of (3.4) which satisfy (4.2).
As ᾱ ≤ u1 < u2 < u3 ≤ β̄ in Ω, we conclude that u1, u2, u3 are solutions of (1.1), satisfying (4.3).

We conclude with a kind of “universal” existence result. We notice that the solvability of (1.1), where the
right-hand side explicitly depends on the gradient, has been raised in [28] as an open question.

Theorem 4.2. Assume (h1) and (h2). Then problem (1.1) has at least one solution u ∈ W2,r(Ω), for all fi-
nite r ≥ 1.

Proof. Set M = 1
2diam(Ω) and consider the modified problem (3.12). Take the constant functions in Ω given

by ᾱ = −(M + 1) and β̄ = M + 1. Then ᾱ is a lower solution and β̄ is an upper solution of (3.12), which sat-
isfies ᾱ < β̄ in Ω. According to Proposition 3.1 and to Remark 2.1 applied to the modified problem (3.12),
there exists a solution u of (3.12) which satisfies ᾱ ≤ u ≤ β̄ in Ω, and ‖u‖∞ < M. Therefore u is a solution of
problem (1.1).

5 Stability analysis
In this section we show how certain stability properties of the solutions of problem (1.1) can be detected by
the use of lower and upper solutions. We introduce a concept of order stability and order instability, adapted
to the present setting from [24, Chapter I]. Our analysis follows patterns developed in [16–18].

Definition 5.1. We say that a solution u of problem (1.1) is order stable (respectively, properly order stable)
from below if there exists a sequence (αn)n of lower solutions (respectively, proper lower solutions) such that,
for each n, αn < αn+1 in Ω and limn→+∞ αn = u in C0,1(Ω).

We say that a solution u of problem (1.1) is order stable (respectively, properly order stable) from above if
there exists a sequence (βn)n of upper solutions (respectively, proper upper solutions) such that, for each n,
βn > βn+1 in Ω and limn→+∞ βn = u in C0,1(Ω).

We say that a solution u of problem (1.1) is order stable (respectively, properly order stable) if u is order
stable (respectively, properly order stable) both from below and from above.

Definition 5.2. We say that a solution u of problem (1.1) is order unstable (respectively, properly order
unstable) from below if there exists a sequence (βn)n of upper solutions (respectively, proper upper solu-
tions) such that, for each n, βn < βn+1 in Ω and limn→+∞ βn = u in C0,1(Ω).

We say that a solution u of problem (1.1) is order unstable (respectively, properly order unstable) from
above if there exists a sequence (αn)n of lower solutions (respectively, proper lower solutions) such that, for
each n, αn > αn+1 in Ω and limn→+∞ αn = u in C0,1(Ω).
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We begin by stating some preliminary results.

Lemma 5.1. Assume (h1) and (h2). Let S be a non-empty set of solutions of (1.1). Then there exist a minimal
solution v of (1.1) and a maximal solution w of (1.1) in S, where S is the closure in C1(Ω) of S.

Proof. Weonly prove the existence of amaximal solutionw; the proof of the existence of aminimal solution v
being similar. Let us fix r ∈ ]N, +∞[. We first notice that, as any solution u ∈ S satisfies ‖u‖∞ < 1

2 diam(Ω) and
‖∇u‖∞ < 1, assumption (h2) and Lemma 2.2 imply that

sup
u∈S

‖u‖C1 < +∞ (5.1)

and
sup
u∈S

‖u‖W2,r < +∞. (5.2)

Next we show that (S, ≤) is inductively ordered. Let C = {ui : i ∈ I} be a totally ordered subset of S and let
us prove that C has an upper bound in S. Set, for each x ∈ Ω,

u(x) = sup
i∈I

ui(x).

LetD = {xm : m ∈ ℕ} be a countable dense subset of Ω and define a sequence in C as follows: for n = 1, take
u1 ∈ C such that u1(x1) ≥ u(x1) − 1, for n = 2, take u2 ∈ C with u2 ≥ u1 in Ω such that u2(x2) ≥ u(x2) − 1

2 ,
u2(x1) ≥ u(x1) − 1

2 , and so on. In this way, we construct a sequence (un)n in C with

u1 ≤ u2 ≤ ⋅ ⋅ ⋅ ≤ un ≤ un+1 ≤ ⋅ ⋅ ⋅ in Ω,

such that un(xk) ≥ u(xk) − 1
n for k = 1, . . . , n. It is clear that (un)n converges to u pointwise on D. On the

other hand, as (un)n satisfies (5.1) and (5.2), we conclude that any subsequence of (un)n has a further sub-
sequence which converges weakly in W2,r(Ω) and strongly in C1(Ω) to some function û ∈ W2,r(Ω). Actually,
by monotonicity, the whole sequence (un)n converges pointwise in Ω to û, which is therefore independent of
the chosen subsequence. Hence we infer that (un)n converges weakly inW2,r(Ω) and strongly in C1(Ω) to û,
which is a solution of (1.1). Moreover, we have û = u onD and û ≤ u in Ω. Let us show that û = u in Ω. Indeed,
otherwise, one can find a point x0 ∈ Ω and a function u0 ∈ C such that û(x0) < u0(x0) ≤ u(x0). The continuity
of both û and u0 and the density of D in Ω yield a contradiction. This proves that u ∈ S is an upper bound
of C.

Finally, since (S, ≤) is inductively ordered, Zorn lemma guarantees the existence of a maximal ele-
ment w ∈ S.

The following elementary result is immediately deduced from [17, Lemma 2.1] and [18, Proposition 1.10]: it
will be crucial in the sequel in order to supply some monotonicity to problem (1.1) or to variations thereof.

Lemma 5.2. Assume that f : Ω × ℝ × ℝN → ℝ satisfies the L∞-Carathéodory conditions. Then, for each ρ > 0,
there exists a L∞-Carathéodory function h : Ω × ℝ × ℝ × ℝN → ℝ such that
(i) for a.e. x ∈ Ω and every (r, ξ) ∈ [−ρ, ρ] × ℝN , h(x, ⋅ , r, ξ)|[−ρ,ρ] is strictly increasing,
(ii) for a.e. x ∈ Ω and every (s, ξ) ∈ [−ρ, ρ] × ℝN , h(x, s, ⋅ , ξ)|[−ρ,ρ] is strictly decreasing,
(iii) for a.e. x ∈ Ω and every (r, s, ξ) ∈ [−ρ, ρ] × [−ρ, ρ] × ℝN , h(x, s, r, ξ) = −h(x, r, s, ξ),
(iv) for a.e. x ∈ Ω and every (r, s, ξ) ∈ [−ρ, ρ] × [−ρ, ρ] × ℝN with r < s,

|f(x, s, ξ) − f(x, r, ξ)| < h(x, s, r, ξ).

We first prove the following technical conclusion.

Lemma 5.3. Assume (h1) and (h2). Let z be a solution of (1.1).
(i) If α is a proper lower solution of (1.1) such that α < z in Ω, then there exists a proper lower solution ᾱ

of (1.1), satisfying ᾱ ∈ W2,r(Ω), for all finite r ≥ 1, ᾱ = 0 on ∂Ω, and α < ᾱ < z in Ω.
(ii) If β is a proper upper solution of (1.1) such that β > z in Ω, then there exists a proper upper solution β̄

of (1.1), satisfying β̄ ∈ W2,r(Ω), for all finite r ≥ 1, β̄ = 0 on ∂Ω, and z < β̄ < β in Ω.
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Proof. We only prove the former statement; the proof of the latter being similar. Let h be the function associ-
ated with f by Lemma 5.2 and corresponding to ρ = max{‖α‖∞, ‖z‖∞}. Consider the problem

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = f(x, α, ∇u) − h(x, u, α, ∇u) in Ω,

u = 0 on ∂Ω.
(5.3)

The right-hand side of the equation satisfies the L∞-Carathéodory conditions. Moreover, as α is a proper
lower solution and z is a proper upper solution of (5.3) with α < z in Ω, Proposition 3.1 implies that (5.3) has
a solution ᾱ, satisfying α < ᾱ < z in Ω. The properties of h imply that ᾱ is a proper lower solution of
problem (1.1).

Now we state an order stability result. We point out that our conclusions are obtained without assuming any
additional regularity condition on f , like, e.g., Lipschitz continuity, as it is generally required to associate an
order preserving operator with the considered problem (see, e.g., [1, 24]).

Proposition 5.4. Assume (h1) and (h2). Let z be a solution of (1.1).
(i) Suppose that there exists a proper lower solution α of (1.1) such that z > α in Ω and there is no solution u

of (1.1) satisfying α < u < z in Ω. Then z is properly order stable from below.
(ii) Suppose that there exists a proper upper solution β of (1.1) such that z < β in Ω and there is no solution u

of (1.1) satisfying z < u < β in Ω. Then z is properly order stable from above.

Proof. We only prove the former statement; the proof of the latter being similar. Repeating recursively the
argument in the proof of Lemma 5.3, we get a sequence of proper lower solutions (αn)n such that α0 = α and,
for each n ≥ 1, αn ∈ W2,r(Ω), for all finite r ≥ 1, α < αn−1 < αn < z in Ω, and αn is a solution of

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = f(x, αn−1, ∇u) − h(x, u, αn−1, ∇u), in Ω,

u = 0 on ∂Ω,

where h is defined as in Lemma 5.3. Arguing as in the proof of Lemma 5.1, we see that the sequence (αn)n
converges weakly inW2,r(Ω) and strongly in C1(Ω) to a solution u of (1.1), which satisfies α < u ≤ z in Ω and
therefore must be z.

Proposition 5.4 immediately yields the proper order stability from below of the minimum solution and the
proper order stability from above of the maximum solution of (1.1), lying between a couple of proper lower
and upper solutions α and β with α ≤ β.

Theorem 5.5. Assume (h1) and (h2). Suppose that α and β are, respectively, a proper lower solution and
a proper upper solution of (1.1) with α < β in Ω. Then the minimum solution v and the maximum solution w
of (1.1), lying between α and β, are, respectively, properly order stable from below and properly order stable
from above.

We now provide the basic tool for carrying out our analysis further.

Lemma 5.6. Assume (h1) and (h2). Suppose that u1, u2 are solutions of (1.1) such that u1 < u2 in Ω and there
is no solution u of (1.1) with u1 < u < u2 in Ω. Then one of the following statements holds.
∙ There exists a sequence (αn)n of proper lower solutions of (1.1) such that, for each n, αn ∈ W2,r(Ω), for all

finite r ≥ 1, αn = 0 on ∂Ω, and u1 < αn < u2 in Ω, which converges weakly in W2,r(Ω) and strongly in C1(Ω)
to u1.

∙ There exists a sequence (βn)n of proper upper solutions of (1.1) such that, for each n, βn ∈ W2,r(Ω), for all
finite r ≥ 1, βn = 0 on ∂Ω, and u1 < βn < u2 in Ω, which converges weakly in W2,r(Ω) and strongly in C1(Ω)
to u2.

Proof. The proof is inspired by [17, Lemma 2.8] (see also [18, Lemma III-3.1], [16, Proposition 2.18]). As in
Proposition 3.1 we define a function

γ : Ω × ℝ → ℝ
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by setting, for all x ∈ Ω,

γ(x, s) =
{{{
{{{
{

u1(x) if s < u1(x),
s if u1(x) ≤ s < u2(x),
u2(x) if u2(x) ≤ s.

Clearly, γ is continuous and, for each x ∈ Ω, γ(x, ⋅ ) : ℝ → ℝ is increasing. For i = 1, 2, let us set, for a.e. x ∈ Ω
and every ε > 0,

ωi(x, ε) = max
|ξ|≤ε

|f(x, ui(x), ∇ui(x) + ξ) − f(x, ui(x), ∇ui(x))|,

and, for a.e. x ∈ Ω and every s ∈ ℝ,

ω(x, s) =
{{{
{{{
{

ω1(x, u1(x) − s) if s < u1(x),
0 if u1(x) ≤ s < u2(x),
−ω2(x, s − u2(x)) if u2(x) ≤ s.

Let h be the function introduced in Lemma 5.2, associated with f and ρ = max{‖u1‖∞, ‖u2‖∞}, and consider
the following problems:

{{
{{
{

−div( ∇u
√1 − |∇u|2

) = f(x, γ(x, u), ∇u) + ω(x, u) in Ω,

u = 0 on ∂Ω,
(5.4)

and, for μ ∈ [0, 1],

{{{{
{{{{
{

−div( ∇u
√1 − |∇u|2

) = μ(f(x, γ(x, u), ∇u) + ω(x, u))

+ (1 − μ)(f(x, u1, ∇u) + h(x, u1, γ(x, u), ∇u) + ω(x, u)) in Ω,

u = 0 on ∂Ω,

(5.5)

and

{{{{
{{{{
{

−div( ∇u
√1 − |∇u|2

) = μ(f(x, γ(x, u), ∇u) + ω(x, u))

+ (1 − μ)(f(x, u2, ∇u) + h(x, u2, γ(x, u), ∇u) + ω(x, u)) in Ω,

u = 0 on ∂Ω.

(5.6)

Clearly, the right-hand sides of the equations in (5.5) and (5.6) satisfy the L∞-Carathéodory conditions.Notice
that, if u is a solution of (5.4) satisfying u1 ≤ u ≤ u2 in Ω, then u is a solution of (1.1). Moreover, the choice
μ = 1 reduces both problems (5.5) and (5.6) to (5.4).

Claim 1. For any μ ∈ [0, 1], every solution u of (5.5), or (5.6), satisfies u1 ≤ u ≤ u2 inΩ. In particular, u1 and u2
are the only solutions of problem (5.4).

Let u be a solution of (5.5). We prove that u ≥ u1 in Ω. Set v = u − u1 and assume that minΩ v < 0. Let x0
be such that v(x0) = minΩ v < 0 and let Ω0 be the maximum open connected subset of Ω such that x0 ∈ Ω0
and v(x) < 0 for all x ∈ Ω0. Define K = {y ∈ Ω0 : v(y) = minΩ v}. For each y ∈ K pick an open ball B(y) cen-
tered at y with B(y) ⊂ Ω0 and such that |∇v| ≤ |v| in B(y). As K is compact, there exists a finite open covering
O = ⋃n

i=1 B(yi) of K. Let O0 be a connected component of O. Clearly, O0 is a bounded domain with Lipschitz
boundary ∂O0. Then we have

−div( ∇u
√1 − |∇u|2

) = μ(f(x, γ(x, u), ∇u) + ω(x, u)) + (1 − μ)(f(x, u1, ∇u) + h(x, u1, γ(x, u), ∇u) + ω(x, u))

= f(x, u1, ∇u) + ω1(x, |v|)
≥ f(x, u1, ∇u) − f(x, u1, ∇u1 + ∇v) + f(x, u1, ∇u1)

= −div( ∇u1
√1 − |∇u1|2

)

Brought to you by | University of Sussex Library
Authenticated

Download Date | 3/2/17 1:13 AM



C. Corsato, F. Obersnel and P. Omari, The Dirichlet problem | 129

in O0. Lemma 2.1 applies and yields
min
∂O0

v ≤ min
O0

v,

which is a contradiction, as ∂O0 does not contain any minimum point of v in Ω0. To prove that u ≤ u2 in Ω
we argue similarly: set v = u2 − u, define K andO0 as above and observe that, by the properties of h, we have

−div( ∇u
√1 − |∇u|2

) = μf(x, u2, ∇u) + (1 − μ)(f(x, u1, ∇u) + h(x, u1, u2, ∇u)) + ω(x, u)

≤ μf(x, u2, ∇u) + (1 − μ)f(x, u2, ∇u) + ω(x, u)
≤ f(x, u2, ∇u) − ω2(x, |v|)

≤ −div( ∇u2
√1 − |∇u2|2

)

in O0. The conclusions for (5.6) follow in a symmetric way.

Claim 2. For every μ ∈ [0, 1], any solution of (5.5) is a lower solution of (1.1) and any solution of (5.6) is an
upper solution of (1.1).

Fix μ ∈ [0, 1] and let u be a solution of (5.5). By Claim 1, we have u1 ≤ u ≤ u2 in Ω and hence, in particular,

|f(x, u1, ∇u) − f(x, u, ∇u)| ≤ −h(x, u1, u, ∇u)

in Ω. Therefore we obtain

−div( ∇u
√1 − |∇u|2

) = μf(x, u, ∇u) + (1 − μ)(f(x, u1, ∇u) + h(x, u1, u, ∇u))

≤ μf(x, u, ∇u) + (1 − μ)f(x, u, ∇u) = f(x, u, ∇u)

in Ω. Similarly we prove the result for a solution u of (5.6).

Claim 3. For every δ > 0, u1 − δ is a strict lower solution of (5.5) with μ = 0, and u1 + δ is an upper solution
of (5.5) with μ = 0. For every δ > 0, u2 − δ is a lower solution of (5.6) with μ = 0, and u2 + δ is a strict upper
solution of (5.6) with μ = 0.

Observe that ω( ⋅ , u1 − δ) ≥ 0 in Ω. Hence we compute

−div( ∇(u1 − δ)
√1 − |∇(u1 − δ)|2

) = f(x, u1, ∇u1)

≤ f(x, u1, ∇(u1 − δ)) + h(x, u1, γ(x, u1 − δ), ∇(u1 − δ)) + ω(x, u1 − δ)

in Ω. This means that u1 − δ is a lower solution of (5.5) with μ = 0. Note that u1 − δ is strict; indeed, if u is
a solution of (5.5) satisfying u ≥ u1 − δ in Ω, then u ≥ u1 ≫ u1 − δ in Ω.

Consider now u1 + δ. Observe that ω( ⋅ , u1 + δ) ≤ 0 and h( ⋅ , u1, γ( ⋅ , u1 + δ), ∇(u1 + δ)) ≤ 0 in Ω. Hence
we compute

−div( ∇(u1 + δ)
√1 − |∇(u1 + δ)|2

) = f(x, u1, ∇u1)

≥ f(x, u1, ∇(u1 + δ)) + h(x, u1, γ(x, u1 + δ), ∇(u1 + δ)) + ω(x, u1 + δ)

in Ω. This means that u1 + δ is an upper solution of (5.5) with μ = 0.
The proof for u2 − δ and u2 + δ is symmetric.

Claim 4. Suppose that, for all δ1 > 0, there exists δ ∈ ]0, δ1[ such that u1 + δ is an upper solution of (5.5) with
μ = 0 which is not strict. Then there is a sequence (αn)n of proper lower solutions of (1.1) such that, for each n,
αn ∈ W2,r(Ω), for all finite r ≥ 1, αn = 0 on ∂Ω, and u1 < αn < u2 in Ω, which converges weakly in W2,r(Ω) and
strongly in C1(Ω) to u1.

By assumption we can find a decreasing sequence of numbers (δn)n, satisfying limn→+∞ δn = 0, and, for
each n, a solution uδn of (5.5) with μ = 0 satisfying uδn ≤ min{u1 + δn , u2} in Ω, and some xδn ∈ Ω with
uδn (xδn ) = u1(xδn ) + δn; in particular, ‖u1 − uδn‖∞ = δn. Observe that uδn is a proper lower solution of (1.1).
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Moreover, by Lemma 2.2, there is a constant c > 0 such that ‖uδn‖W2,r ≤ c for all δn. Therefore we can easily
construct a sequence (αn)n of proper lower solutions of (1.1) such that, for each n, αn ∈ W2,r(Ω), for all finite
r ≥ 1, αn = 0 on ∂Ω, and u1 < αn < u2 in Ω, which converges weakly inW2,r(Ω) and strongly in C1(Ω) to u1.

Claim 5. Suppose that, for all δ1 > 0, there exists δ ∈ ]0, δ1[ such that u2 − δ is a lower solution of (5.6) with
μ = 0which is not strict. Then, there is a sequence (βn)n of proper upper solutions of (1.1) such that, for each n,
βn ∈ W2,r(Ω), for all finite r ≥ 1, βn = 0 on ∂Ω, and u2 > βn > u1 in Ω, which converges weakly in W2,r(Ω) and
strongly in C1(Ω) to u2.

The proof is similar to that one of Claim 4.

Conclusion of the proof. By Claim 4 and Claim 5 we may suppose that there exists δ1 > 0 such that, for all
δ ∈ ]0, δ1[, u1 + δ is a strict upper solution of (5.5) with μ = 0, and u2 − δ is a strict lower solution of (5.6)
with μ = 0. Assume, for convenience, that δ1 < 1

2 ‖u1 − u2‖∞. For all δ ∈ ]0, δ1[ we set

Uδ1 = {u ∈ C10(Ω) : u1 − δ ≪ u ≪ u1 + δ in Ω and ‖∇u‖∞ < 1}

and
Uδ2 = {u ∈ C10(Ω) : u2 − δ ≪ u ≪ u2 + δ in Ω and ‖∇u‖∞ < 1}.

Moreover, for all μ ∈ [0, 1], we consider the solution operators T1,μ , T2,μ : C0,1(Ω) → C10(Ω) associated with
problems (5.5) and (5.6), respectively. Since u1 − δ and u1 + δ are strict, Proposition 3.1 yields

deg(I − T1,0,Uδ1, 0) = 1. (5.7)

Similarly we have
deg(I − T2,0,Uδ2, 0) = 1. (5.8)

We also set
U = {u ∈ C10(Ω) : u1 − 1 ≪ u ≪ u2 + 1 in Ω and ‖∇u‖∞ < 1},

and we consider the solution operator T : C0,1(Ω) → C10(Ω) associated with problem (5.4). Note that

T1,1 = T2,1 = T.

Observe that u1 − 1 and u2 + 1 are, respectively, a strict lower solution and a strict upper solution of (5.4).
Therefore Proposition 3.1 yields

deg(I − T,U, 0) = 1.

Using the fact that u1 and u2 are the only fixed points of T, we conclude, by the additivity and the excision
properties of the degree, that

1 = deg(I − T,U, 0) = deg(I − T,Uδ1 ∪ Uδ2, 0) = deg(I − T,Uδ1, 0) + deg(I − T,Uδ2, 0). (5.9)

Now, let us assume that, for every δ0 > 0, there exists δ ∈ ]0, δ0[ such that, for every μ ∈ [0, 1], problem (5.5)
has no solution on ∂Uδ1 and problem (5.6) has no solution on ∂Uδ2. The homotopy property of the degree then
implies, by (5.7) and (5.8),

deg(I − T,Uδ1, 0) = deg(I − T1,1,Uδ1, 0) = deg(I − T1,0,Uδ1, 0) = 1

and
deg(I − T,Uδ2, 0) = deg(I − T2,1,Uδ2, 0) = deg(I − T2,0,Uδ2, 0) = 1,

thus contradicting (5.9).
Therefore, we conclude that there is δ0 > 0 such that, for all δ ∈ ]0, δ0[, either there is a solution αδ of

problem (5.5), for some μ ∈ [0, 1], such that αδ ∈ ∂Uδ1, or there is a solution βδ of problem (5.6), for some
μ ∈ [0, 1], such that βδ ∈ ∂Uδ2. In the former case, the condition αδ ∈ ∂Uδ1, together with Claim 1, implies that
u1 ≤ αδ ≤ min{u2, u1 + δ} in Ω and ‖u1 − αδ‖∞ = δ. By Claim 2, αδ is a lower solution of (1.1). Moreover, by
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Lemma2.2, there is a constant C such that ‖αδ‖W2,r ≤ C for all δ. Therefore we can easily construct a sequence
(αn)n of proper lower solutions of (1.1) such that, for each n, αn ∈ W2,r(Ω), for all finite r ≥ 1, αn = 0 on ∂Ω,
and u1 < αn < u2 in Ω, which converges weakly in W2,r(Ω) and strongly in C1(Ω) to u1. In the latter case,
arguing in the same way, we can construct a sequence (βn)n of proper upper solutions of (1.1) such that,
for each n, βn ∈ W2,r(Ω), for all finite r ≥ 1, βn = 0 on ∂Ω, and u1 < βn < u2 in Ω, which converges weakly
inW2,r(Ω) and strongly in C1(Ω) to u2.

Lemma 5.6 yields in particular the existence of sequences of lower or upper solutions connecting a couple of
consecutive solutions of (1.1).

Corollary 5.7. Assume (h1) and (h2). Suppose that u1, u2 are solutions of (1.1) such that u1 < u2 in Ω and
there is no solution u of (1.1) with u1 < u < u2 in Ω. Then one of the following statements holds.
∙ There exists a double sequence (αm)m∈ℤ of proper lower solutions of problem (1.1) such that, for each m,

αm ∈ W2,r(Ω), for all finite r ≥ 1, αm = 0 on ∂Ω, and u1 < αm < u2 in Ω, which converges weakly in W2,r(Ω)
and strongly in C1(Ω) to u1 as m → −∞ and to u2 as m → +∞.

∙ There exists a double sequence (βm)m∈ℤ of proper upper solutions of problem (1.1) such that, for each m,
βm ∈ W2,r(Ω), for all finite r ≥ 1, βm = 0 on ∂Ω, and u1 < βm < u2 in Ω, which converges weakly in W2,r(Ω)
and strongly in C1(Ω) to u2 as m → −∞ and to u1 as m → +∞.

Proof. The conclusion follows just combining Lemma 5.6 with Proposition 5.4.

We now prove a result which provides the existence of order stable solutions of (1.1) in the presence of lower
and upper solutions α, β with α ≤ β in Ω. It also yields information about the topological structure of the set
of the order stable solutions lying between α, β.

Theorem 5.8. Assume (h1) and (h2). Suppose that α is a proper lower solution and β is a proper upper solution
of (1.1) satisfying

α ≤ β in Ω.

Let v and w be, respectively, the minimum solution and the maximum solution of (1.1), lying between α and β.
Then there exists a non-empty totally ordered compact and connected setK in C1(Ω) such that every u ∈ K is
an order stable solution of (1.1) satisfying v ≤ u ≤ w in Ω; moreover, u1 = minK is properly order stable from
below and u2 = maxK is properly order stable from above.

Proof. Let us denote by S1 the set of all solutions u of (1.1)with α ≤ u ≤ β in Ω which are properly order stable
from below. Since theminimum solution v is properly order stable from below, S1 is not empty. By Lemma 5.1
there exists a maximal solution u1 ∈ S1, which, by a diagonal argument, is easily proved to be properly order
stable from below and, hence, u1 ∈ S1.

Let us denote by S2 the set of all solutions u of (1.1) with u1 ≤ u ≤ β in Ω which are properly order stable
from above. Since the maximum solution w is properly order stable from above, S2 is not empty. Arguing as
above, we prove that there exists at least one minimal element u2 ∈ S2 with u1 ≤ u2 in Ω.

If u1 = u2, the conclusion is achieved. Therefore, let us suppose that u1 < u2 in Ω and let us denote by S3
the set of all solutions u of (1.1) with u1 ≤ u ≤ u2 in Ω.

Let us observe that there is no proper lower solution and no proper upper solution of (1.1) between u1
and u2. Indeed, if we assume that there exists, for instance, a proper lower solution α∗ with u1 < α∗ < u2
in Ω, and we denote by z the minimum solution of (1.1) with α∗ < z ≤ u2 in Ω, Proposition 5.4 implies that z
is properly order stable from below, thus contradicting the maximality of u1.

Next, we prove that if z1, z2 ∈ S3 with z1 < z2 in Ω, then there exists a solution z3 of (1.1) such that
z1 < z3 < z2 in Ω. Indeed, if we assume that there is no solution z of (1.1) with z1 < z < z2 in Ω, then
Lemma 5.6 guarantees either the existence of a proper lower solution α∗ with z1 < α∗ < z2 in Ω, or the
existence of a proper upper solution β∗ with z1 < β∗ < z2 in Ω, thus contradicting our preceding conclusion.

Now, let us fix a solution u0 ∈ S3 and denote by S(u0) a maximal totally ordered subset of S3 with
u0 ∈ S(u0), which exists by Zorn lemma. Note that u1, u2 ∈ S(u0) and for every z1, z2 ∈ S(u0) with z1 < z2
in Ω, there is z3 ∈ S(u0) such that z1 < z3 < z2 in Ω.
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Since S(u0) is bounded in C1(Ω), arguing as in the proof of Lemma 5.1, we conclude that it is bounded
in W2,r(Ω), for any fixed r ∈ ]N, +∞[, and therefore it is relatively compact in C1(Ω). In order to prove that
S(u0) is compact, let us show that it is closed in C1(Ω). Let (zn)n be a sequence in S(u0) converging in C1(Ω)
to some function z ∈ C1(Ω). It is clear that u1 ≤ z ≤ u2 in Ω. As in the proof of Lemma 5.1, we also see that
z ∈ W2,r(Ω) and it is a solution of (1.1). Let us show that z ∈ S(u0), that is, for each u ∈ S(u0), either u ≤ z or
u ≥ z in Ω. Assume by contradiction that there exists u ∈ S(u0) such that u ̸≤ z and u ̸≥ z in Ω, i.e.,

min{‖(u − z)+‖∞, ‖(u − z)−‖∞} > 0.

Take n such that
‖zn − z‖∞ < min{‖(u − z)+‖∞, ‖(u − z)−‖∞}

and suppose, for instance, that zn ≥ u in Ω. We have (zn − z)+ ≥ (u − z)+ in Ω̄ and hence

‖(u − z)+‖∞ ≤ ‖(zn − z)+‖∞ ≤ ‖zn − z‖∞ < ‖(u − z)+‖∞,

which is a contradiction. Thus we conclude that z ∈ S(u0) and hence S(u0) is compact.
Now, take a continuous linear functional ℓ : C1(Ω) → ℝ such that ℓ(u) > 0 if u > 0 in Ω. Since ℓ(S(u0)) ⊂ ℝ

is compact and ℓ|S(u0) is strictly increasing, ℓ|S(u0) is a homeomorphism between S(u0) and ℓ(S(u0)). Since
ℓ(S(u0)) is also dense into itself, with respect to the ordering of ℝ, ℓ(S(u0)) is an interval. Accordingly, S(u0)
is connected.

Finally, it is clear that every u ∈ S(u0) is order stable and u1 = min S(u0) and u2 = max S(u0) are, respec-
tively, properly order stable from below and properly order stable from above. The conclusion then follows
settingK = S(u0).

The following result is a counterpart, concerning instability, of Proposition 5.4.

Proposition 5.9. Assume (h1) and (h2). Let z be a solution of (1.1).
(i) Suppose that there exists a strict lower solution α of (1.1) such that α ̸≤ z in Ω and there is no solution u

of (1.1) satisfying u > z and u ̸≥ α in Ω. Then z is properly order unstable from above.
(ii) Suppose that there exists a strict upper solution β of (1.1) such that β ̸≥ z in Ω and there is no solution u

of (1.1) satisfying u < z and u ̸≤ β in Ω. Then z is properly order unstable from below.

Proof. We prove only the former statement; the proof of the latter being similar. Define

S = {u : u is a solution of (1.1) with u ≥ max{α, z} in Ω}.

Remark 3.2 implies that S ̸= 0. Hence, by Lemma 5.1, there exists a minimal solution v ∈ S. Since α is a strict
lower solution, we have v ≫ α and hence v > max{α, z} in Ω. Let us observe that there is no solution u
of (1.1) such that z < u < v in Ω. Indeed, if u were such a solution, by the minimality of v, it should satisfy
u ̸≥ max{α, z} in Ω and hence u ̸≥ α in Ω. This contradicts the assumptions on z.

Then Lemma 5.6 implies that either there exists a sequence (αn)n of proper lower solutions of (1.1) such
that, for each n, αn ∈ W2,r(Ω), for all finite r ≥ 1, αn = 0 on ∂Ω, and z < αn < v in Ω, which converges weakly
inW2,r(Ω) and strongly in C1(Ω) to z, or there exists a sequence (βn)n of proper upper solutions of (1.1) such
that, for each n, βn ∈ W2,r(Ω), for all finite r ≥ 1, βn = 0 on ∂Ω, and z < βn < v in Ω, which converges weakly
inW2,r(Ω) and strongly in C1(Ω) to v.

Let us show that the latter alternative cannot occur. Indeed, otherwise, as v ≫ α in Ω, we could find
an upper solution β̂ of (1.1) with max{α, z} ≤ β̂ < v in Ω. Hence there should exist a solution u of (1.1)
with max{α, z} ≤ u ≤ β̂ in Ω and therefore z < u < v in Ω, as z ̸≥ α in Ω. This yields a contradiction with
a preceding conclusion. Therefore, the former alternative necessarily occurs, that is, z is properly order
unstable from above.

An immediate consequence of these statements is the following instability result, in the presence of a lower
solution α and an upper solution β satisfying the condition α ̸≤ β in Ω. Let us set

V = {u ∈ C1(Ω) : u ̸≥ α and u ̸≤ β in Ω}.
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Theorem 5.10. Assume (h1) and (h2). Suppose that α is a strict lower solution and β is a strict upper solution
of (1.1) satisfying

α ̸≤ β in Ω.

Then any minimal solution v of (1.1) in V is order unstable from below and any maximal solution w of (1.1)
in V is order unstable from above.

Remark 5.1. Proposition 3.2 and Lemma 5.1 guarantee the existence of minimal and maximal solutions
of (1.1) in V.

We conclude with a kind of “universal” result concerning the existence of order stable solutions.

Theorem 5.11. Assume (h1) and (h2). Then there exists a non-empty totally ordered compact and connected
setK in C1(Ω) such that every u ∈ K is an order stable solution of (1.1). Moreover, anyminimal solution of (1.1)
is properly order stable from below and any maximal solution of (1.1) is properly order stable from above.

Proof. We argue as in Theorem 4.2 to construct a constant lower solution ᾱ and a constant upper solution β̄.
The conclusions are then achieved by applying Theorem 5.8 and Proposition 5.4 to the modified problem
(3.12) and by observing that the solutions of (3.12) are precisely the solutions of (1.1).

Funding: This paper was written under the auspices of INdAM-GNAMPA. The second and the third named
authors have also been supported by the University of Trieste, in the frame of the 2015 FRA project “Differ-
ential Equations: Qualitative and Computational Theory”.

References
[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976),

no. 4, 620–709.
[2] R. Bartnik, Maximal surfaces and general relativity, in:Miniconference on Geometry and Partial Differential Equations

(Canberra 1986), Proc. Centre Math. Appl. Austral. Nat. Univ. 12, Australian National University, Canberra (1987), 24–49.
[3] R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math.

Phys. 87 (1982/83), no. 1, 131–152.
[4] C. Bereanu, D. de la Fuente, A. Romero and P. J. Torres, Existence and multiplicity of entire radial spacelike graphs with

prescribed mean curvature function in certain Friedmann–Lemaître–Robertson–Walker spacetimes, Commun. Contemp.
Math. (2016), DOI 10.1142/S0219199716500061.

[5] C. Bereanu, P. Jebelean and J. Mawhin, The Dirichlet problem with mean curvature operator in Minkowski space – A varia-
tional approach, Adv. Nonlinear Stud. 14 (2014), no. 2, 315–326.

[6] C. Bereanu, P. Jebelean and P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean
curvature operator in Minkowski space, J. Funct. Anal. 265 (2013), no. 4, 644–659.

[7] C. Bereanu, P. Jebelean and P. J. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in
Minkowski space, J. Funct. Anal. 264 (2013), no. 1, 270–287.

[8] M. Bergner, The Dirichlet problem for graphs of prescribed anisotropic mean curvature inℝn+1, Analysis (Munich) 28
(2008), no. 2, 149–166.

[9] M. Bergner, On the Dirichlet problem for the prescribed mean curvature equation over general domains, Differential Geom.
Appl. 27 (2009), no. 3, 335–343.

[10] S. Y. Cheng and S. T. Yau, Maximal space-like hypersurfaces in the Lorentz–Minkowski spaces, Ann. of Math. (2) 104
(1976), no. 3, 407–419.

[11] I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional
Minkowski-curvature equation, Adv. Nonlinear Stud. 12 (2012), no. 3, 621–638.

[12] I. Coelho, C. Corsato and S. Rivetti, Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation
in a ball, Topol. Methods Nonlinear Anal. 44 (2014), no. 1, 23–39.

[13] C. Corsato, C. De Coster and P. Omari, The Dirichlet problem for a prescribed anisotropic mean curvature equation:
Existence, uniqueness and regularity of solutions, J. Differential Equations 260 (2016), no. 5, 4572–4618.

[14] C. Corsato, F. Obersnel, P. Omari and S. Rivetti, On the lower and upper solution method for the prescribed mean curvature
equation in Minkowski space, Discrete Contin. Dyn. Syst. Suppl. 2013 (2013), 159–169.

[15] C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean
curvature equation in Minkowski space, J. Math. Anal. Appl. 405 (2013), no. 1, 227–239.

Brought to you by | University of Sussex Library
Authenticated

Download Date | 3/2/17 1:13 AM



134 | C. Corsato, F. Obersnel and P. Omari, The Dirichlet problem

[16] C. De Coster, F. Obersnel and P. Omari, A qualitative analysis, via lower and upper solutions, of first order periodic
evolutionary equations with lack of uniqueness, in: Handbook of Differential Equations: Ordinary Differential Equations.
Vol. III, Elsevier, Amsterdam (2006), 203–339.

[17] C. De Coster and P. Omari, Unstable periodic solutions of a parabolic problem in the presence of non-well-ordered lower
and upper solutions, J. Funct. Anal. 175 (2000), no. 1, 52–88.

[18] C. De Coster and P. Omari, Stability and Instability in Periodic Parabolic Problems via Lower and Upper Solutions, Quad.
Mat. (II Ser.) 539, Università di Trieste, Trieste, 2003; http://www.dmi.units.it/~omari/DCOARB/DCO.pdf.

[19] D. de la Fuente, A. Romero and P. J. Torres, Entire spherically symmetric spacelike graphs with prescribed mean curvature
function in Schwarzchild and Reissner–Nordström spacetimes, Classical and Quantum Gravity 32 (2015), no. 3,
Article ID 035018.

[20] D. de la Fuente, A. Romero and P. J. Torres, Radial solutions of the Dirichlet problem for the prescribed mean curvature
equation in a Robertson–Walker spacetime, Adv. Nonlinear Stud. 15 (2015), no. 1, 171–181.

[21] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monogr. Surv. Pure Appl.
Math. 143, Chapman & Hall/CRC, Boca Raton, 2011.

[22] C. Gerhardt, H-surfaces in Lorentzian manifolds, Comm. Math. Phys. 89 (1983), no. 4, 523–553.
[23] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 Edition,

Classics Math., Springer, Berlin, 2001.
[24] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser. 247, Longman

Scientific & Technical, Harlow, 1991.
[25] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11,

1203–1219.
[26] R. López, Constant Mean Curvature Surfaces with Boundary, Springer Monogr. Math., Springer, Heidelberg, 2013.
[27] T. Marquardt, Remark on the anisotropic prescribed mean curvature equation on arbitrary domains,Math. Z. 264 (2010),

no. 3, 507–511.
[28] J. Mawhin, Radial solutions of Neumann problem for periodic perturbations of the mean extrinsic curvature operator,

Milan J. Math. 79 (2011), no. 1, 95–112.
[29] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos.

Trans. Roy. Soc. Lond. Ser. A 264 (1969), 413–496.
[30] A. E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math. 66 (1982),

no. 1, 39–56.

Brought to you by | University of Sussex Library
Authenticated

Download Date | 3/2/17 1:13 AM

http://www.dmi.units.it/~omari/DCOARB/DCO.pdf

	The Dirichlet problem for gradient dependent prescribed mean curvature equations in the Lorentz–Minkowski space
	1 Introduction
	2 Preliminaries
	3 A lower and upper solution method
	4 Existence, multiplicity and localisation results
	5 Stability analysis


