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We study, for any positive integer k and for any subset I of N*, the Banach space E; of the bounded real sequences {x,},.; and
a measure over (R', B") that generalizes the k-dimensional Lebesgue one. Moreover, we expose a differentiation theory for
the functions defined over this space. The main result of our paper is a change of variables’ formula for the integration of the
measurable real functions on (R', Z"). This change of variables is defined by some infinite-dimensional functions with properties

that generalize the analogous ones of the standard finite-dimensional diffeomorphisms.

1. Introduction

The aim of this paper is to generalize the results of article [1],
where, for any positive integer k and for any subset I of N*, we
study a particular infinite-dimensional measure /\(ISQV that,
in the case I = {1,...,k}, coincides with the k-dimensional
Lebesgue one on R¥. The measure )L(ISQV is a product indexed
by I of o-finite measures on the Borel o-algebra 9 on R (by
using a generalization of the Jessen theorem), and it is defined
over the measurable space (R, "), and in particular over
(E;, B,;), where Y is the product indexed by I of the same
o-algebra %, E; C R is the Banach space of the bounded real
sequences {x,,},;> and 9B is the restriction to E; of 78

In the mathematical literature, some articles introduced
infinite-dimensional measures analogue of the Lebesgue one
(see, e.g., the paper of Léandre [2], in the context of the
noncommutative geometry, that one of Tsilevich et al. [3],
which studies a family of o-finite measures on R, and that

one of Baker [4], which defines a measure on RN that is not
o-finite).

In paper [1], the main result is a change of variables’
formula for the integration of the measurable real functions
on the space (E;, %;). This change of variables is defined by
a particular class of linear functions over E;, called (m,0)-
standard. A related problem is studied in the paper of Accardi
et al. [5], where the authors describe the transformations of

generalized measures on locally convex spaces under smooth
transformations of these spaces.

In this paper, we prove that the change of variables
formula given in [1] can be extended by defining some
infinite-dimensional functions with properties that general-
ize the analogous ones of the standard finite-dimensional
diffeomorphisms.

In Section 2, we construct the infinite-dimensional
Banach space E;, and we define the continuous functions and
the homeomorphisms over the open subsets of this space.
Moreover, we recall some results about the integration of the
measurable real functions defined on a measurable product
space. In Section 3, we expose a differentiation theory in
the infinite-dimensional context, and in particular we define
the functions C' and the diffeomorphisms. Moreover, we
introduce a class of functions, called (m,o)-standard, that
generalizes the set of the linear (m,0)-standard functions
given in [1], and we expose some properties of these func-
tions. In Section 4, we present the main result of our paper,
that is, a change of variables’ formula for the integration
of the measurable real functions on (RI , %(I)); this change
of variables is defined by the biunique, C! and (m,o0)-
standard functions, with further properties (Theorem 47).
This result agrees with the analogous finite-dimensional
result. In Section 5, we expose some ideas for further study
in the probability theory.



2. Construction of an Infinite-Dimensional
Banach Space

Henceforth, we will indicate by N* and R* the sets N \
{0} and R\ {0}, respectively. Let I # @& be a set and let
k e N*; indicate by 7, by 7®, by 7P, by %, by 8%,
by B, by Leb, and by Leb®, respectively, the Euclidean
topology on R, the Euclidean topology on R¥, the topology
;c;7 the Borel g-algebra on R, the Borel o-algebra on R,
the o-algebra X),.; B, the Lebesgue measure on R, and the
Lebesgue measure on R*. Moreover, for any set A C R,
indicate by %B(A) the o-algebra induced by &% on A, and by
7(A) the topology induced by T on A; analogously, for any
set A ¢ R/, define the o-algebra " (A) and the topology
D(A). Finally, if S = [],.;S; is a Cartesian product, for
any (x; : i € I) € Sand forany @ # H C I, define
xg = (x; i € H) € [[;eyS;> and define the projection
r gy on [ [;eyS; as the function 71y 5y © S — []cS; given by
myg(xp) = xg.

Theorem 1. Let I + & be a set and, for anyi € I, let (S;, Z;, ;)
be a measure space such that y; is finite. Moreover, suppose that,
for some countable set | C I, y; is a probability measure for any
i€ I\J and [];e;0;(S;) € R". Then, over the measurable space
(ITLesSi QicrZy), there is a unique finite measure y, indicated
by Qi such that, for any H C I such that |H| < +c0
and for any A = [],egAn % ]_[id\HSi € X;c;Zi where A, €
2y, Yh € H, we have (A) = [Tpepttn (A jepup;(S))- In
particular, if I is countable, then u(A) = [L;c;pi(A;) for any
A = [Tic/Ai € Qier i

Proof. See the proof of Corollary 4 in Asci [1]. O

Henceforth, we will suppose that I, ] are sets such that
@ # I,] ¢ N*; moreover, for any k € N*, we will indicate
by I, = {i},..., i} the set of the first k elements of I (with the
natural order and with the convention I, = I if |I| < k) and
analogously Ji; finally, for any j =i, € I, set | j| = n.

Theorem 2. Let (S;,Z;, ;) be a probability space, for any
i €L let (S2,p) = ([TiesS QiesZi> Rierh), and let f €
L'(S, 3, w). Moreover, for any H C I such that @ # |H| < +oo,
define the measurable function fp. : (S,X) — (R, %) by

Sre (%) = L f (e xpre) Ay (1) @)

probability  space
y-a.e. one  has

where (S, Zppuy)  is the
([ LienSi QicnZi- Qjept)-  Then,
lirnnﬂJroofIfl = va f d.“

Proof. See, for example, Theorem 3, page 349, in Rao [6]. [

Corollary 3. Let (S;, 2, ;) be a measure space such that y;
is finite, for any i € I, and [[;c;p:(S;) € [0,+00); moreover,

let (S, 2,1) = ([TiesSi RierZo Riertt), let f € L'(S,Z,p),
and let the measurable function fi. : (S,X) — (R, %) defined

by (1), for any n € N". Then, p-a.e. one has lim,_, ., frc =
J f du
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Proof. Suppose that 14;(S;) # 0, Vi € I; then, g, = p;/p;(S;) is
a probability measure, and also i = &)1t ;= Qe Hi>
and @1, = ;e V1 € N*; then, define the function f. :

(S$,2) = (R,RB) by
@)= J £ (o) iy, (x,) )

From Theorem 2, yi-a.e., we have

i g = g (T ()7,

i, 3)
~[w(s) | sda=| fan
iel S s
Conversely, if 4;(S;) = 0, for some i € I, then
Jim f=0= | fdu )

Thus, since = ([[;c;¢4;(S;))1, we obtain the statement.
O

Definition 4. For any set I # &, define the function || - ||; :
R’ — [0, +00] by

||x||1=Si1§)|x,-|, Vx=(x;:iel)eR, (5)

and define the vector space
E;={x e R |x||; < +oo}. (6)

Moreover, indicate by %, the o-algebra B (E;), by 7, the
topology 7”(E;) induced on E; by the product topology
DR, and by 7)., the topology induced on E; by the
distance d : E; x E; — [0, +00) defined by d(x, y) = l|x - yll;,
Vx,y € Ep furthermore, for any set A C Ej, indicate by
7)1, (A) the topology induced by 7), on A. Finally, for any
X, € E; and for any § > 0, indicate by B;(x,,d) the set
{x e E;:llx —xll; <0}

Observe that 7V (A) c T"_"I(A), VA c E; moreover, E;
is a Banach space, with the norm | - [|; (see, e.g., the proof of
Remark 2 in [1]).

Proposition 5. Let H and I be sets such that @ + H C I; then,
the function mp g : RL D) - R, ™) is continuous and
open.

Proof. See, for example, the theory of the product spaces in
Weidmann’s book [7]. O

Proposition 6. Let H and I be sets such that @ + H C I, and
let 7ty y; : E; — Ey be the function given by 1y 1 (x) = mp (%),
for any x € Ey; then,

(D) 7y g : (Ep 1) — (Eg, Tyy) is continuous and open;

(2) Ty g : (B, T"_Hl) — (EH,T"_"H) is continuous and open.
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Proof of (). VA € T, there exists B € %7 such that A =
BNEy,and so 7, ;(A) = (] (BN Ey)) NE; = m; 1(B) N Ej;
then, since ﬂi}{(B) e by Proposition 5, we have EZ}J(A) €
71, and so 7T} ; is a continuous function. Moreover, VA € T,
there exists B € 7 such that A = BN E;, and so T (A) =
(B N Ep) = mp(B) N Eyy; then, since 717 4(B) € ) by
Proposition 5, we have 7} ;;(A) € Ty, and so 77} ;; is an open
function. O]

Proof of (2). VA € 7y andVx = (x; :i € I) € ﬁ;}{(A), we
have (x; : i € H) € A, and so there existsa € R" and (y; : i €
H) € Asuchthat (x;:i € H) € [[;,ey(y; —a, y; + a) C A;let
z=(z:i€l) € (A)suchthatz; = x;, Vi € I\ H, and
z; = y;, Vi € H; then, x € [[,;(z; —a,z; +a) C ﬁ;}{(A), and
S0 7T; 5 is a continuous function. Moreover, VA € 7)., and
Vx = (x;:i € H) € mpy(A),lety = (y; :i € I) € Asuch
that y; = x;, Vi € H;since A € 7y, there exists @ € R and
(zj i €I) e Asuchthat y € [[;c;(z; —a,2z; +a) C A, and
$0 x € [[;en(z; — a,2z; + a) C 7y (A); then, 77 p; is an open
function. O

Definition 7. Let U € 7, let x, € U, let] € Ej, and let
¢ : U C E; — E| be a function; we say that lim,_,, ¢(x) =1
if, for any neighbourhood M € 7 of ¢(x,), there exists a
neighbourhood N € Ty, (U) of x, such that, for any x € N \
{xo}, we have ¢(x) € M.

Definition 8. Let U € 7y andlet¢ : U C E; — E;

be a function; we say that ¢ is continuous in x, € U if
lim,_,, ¢(x) = ¢(x,), and we say that ¢ is continuous in U
if ¢ is continuous in x,, for any x, € U.

Remark 9. LetU € 7 ,letV € 7y ,andletp : U C E; —
V' ¢ E; be a function; then, ¢ : (U, 7y (U)) — (V, 7, (V) is
continuous if and only if ¢ is continuous in U.

Remark 10. Let H, I, and ] be sets such that @ + H C I, let
U € 1,andletg : U C E; — E; be a function continuous

in U; then, the function (7; ;o @) : U — Ey; is continuous in
U.

Proof. The statement follows from Proposition 6. O

Definition 1. Let U € 7 andlet V' € 7y ;a function ¢ :
U € E; — V ¢ Ejis called homeomorphism if ¢ is biunique
and the functions ¢ : (U, T”,",(U)) - (V, T“,“l(V)) and (p"l :
v, ‘r"_"I(V)) — (U, T",”/(U)) are continuous.

3. Differentiation Theory in the
Infinite-Dimensional Context

The following concept generalizes Definition 6 in [1] (see also
the theory in the Lang’s book [8]).

Definition 12. Let A = (a;);c1,jey be a real matrix I x J
(eventually infinite); then, define the linear function A =
(@)ierjey + Ep — R’, and write x — Ax, in the following
manner:

(Ax); = Zaijxj, Vx € E;, Viel,
j€l

7)

on condition that, for any i € I, the sum in (7) converges to a
real number.

Definition 13. Let U € 7y ;a function ¢ : U C E; — E

is called differentiable in x,, € U if there exists a linear and
continuous function A : E; — E; defined by a real matrix
A = (ajj)jer jej» and one has

lim "‘P (0 +h) =@ (x) - AhHI _
h—0 121l

(8)

If ¢ is differentiable in x, for any x, € U, ¢ is called
differentiable in U. The function A is called differential of
the function ¢ in x,, and it is indicated by the symbol
de(x).

Remark 14. LetU € 7 andlet g,y : U C E; — Ej be
differentiable functions in x,, € U; then, for any a, 5 € R, the
function ag+ By is differentiable in x,,, and d(ag+ By)(x,) =
ade(x,) + Bdy(x,).

Proof. Observe that

(g + By) (o + ) — (o + By) () = (o (x0) + By () A,

h—0 Ikl

— lim "“‘P (x9 +h) — g (x,) — adg (xo) b+ By (x + h) = By (x,) — Bdy (x,) hHI

h—0 Ikl

< lim
h—0 Il

d (g + By) (xo) = adp (xo) + By (xo).-

g (o + ) o () = oy (e) l, By (o + ) = B (x0) = By (),

h—0 Ikl

€

:OS




Remark 15. Alinear and continuous function A = (;)iey, je;
E; — Ej, defined by

(Ax)i = Za,-jxj, Vx € EI’ vl € I,

jeJ (10)

is differentiable and d¢(x,) = A, for any x,, € E;.

Remark 16. Let U € 7y andlet¢ : U C E; — E;bea

function differentiable in x, € Us; then, for any i € I, the
component ¢; : U — Ris differentiable in x,, and dg;(x,) is
the matrix A; given by the ith row of A = dg(x,). Moreover,
if |I| < +coand ¢; : U ¢ E; — Ris differentiable in x, for
anyi € I, then ¢ : U C E; — Ej is differentiable in x,.

Remark 17. Let U € 7 andletg : U C E; — E;bea
function differentiable in x,, € U; then, ¢ is continuous in x;,.

Proof. Vx € U, set
0 (x,%0) = f (%) = f (x0) —df (x0) (x —x0).  (1D)

From (8), we have lim,onlla(x, xo)|l; = 0; moreover,

”f (x) - f (xo)||1 = ”df (o) (x = xo) + o (x, xo)"z

< [ldf (xo)] [l ~ x0"] (12)
+ o (3, x0)
from which lim, _,, f(x) = f(x). O

Definition 18. Let U € Ty, and let v € Ej such that ||v||; = 1;

afunction ¢ : U € E; — Ris called derivable in x, € U in
the direction v if there exists the limit

llm(P (xO + tV) % (XO) ) (13)
t—0 t
This limit is indicated by (d¢/0v)(x,), and it is called
derivative of ¢ in x, in the direction v. If for some j € ]
one has v = e where (ej)k = Sjk, for any k € J, indicate
(09/0v)(x,) by (0p/0x ]-)(xo), and call it partial derivative of
@ in x,, with respect to x ;. Moreover, if there exists the linear
function defined by the matrix Jo(x,), where (J,(x0));; =
(aq)i/axj)(xo), foranyi € I and j € ], then ]q,(xo) is called
Jacobian matrix of the function ¢ in x,,.

Remark 19. LetU € 7y and suppose that a function ¢ : U C
E; — E;is differentiable in x,, € U; then, for any v € E 7 such
that [|[v|; = 1 and for any i € I, the function ¢, : U C E; — R
is derivable in x,, in the direction v, and one has

0.
P (xy) = do (x0) - (14)

Proof. Vh € Ej, by setting h = tv, for some matrix A =
(@;j)ier jey We have

lim lo: (xq +1v) = @; (x0) = A; (v)]
t—0 |t|

~ lim |‘Pi (x0 +h) = ; (x,) - Aihl -0
h—0 12l '

(15)
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Then, since A;(tv) = tA,v, we have

(xg +1v) = 9; (%) _

lim ¥ A, (16)
t—0 t
from which
% (x0) = A = do; (xo) v. 7
ov
O

Corollary 20. Let U ¢ Tjy, andlet ¢ : U C E; — Ej be

a function differentiable in x, € U; then, the linear function
Jo(xo) : E; — Ej is defined and continuous; moreover, for any
h € Ej, one has do(x,)(h) = ]q,(xo)h.

Proof. From Remark 19, Vi € I and Vj € ], we have
(d(P(x()))ij = d(l’i(xo)(ej) = (a(Pi/axj)(xo) = (](p(xo))ij' O

Theorem 21. LetU € 7y , let ¢ : U C E; — E; be a function
differentiable in x, € U, let V € 7y, such that V' > ¢(U), and
lety : V c E; — Ey beafunction differentiable in y, = ¢(x,).
Then, the function y o ¢ is differentiable in x,, and one has
d(y o 9)(xo) = dy (o) ° dp(xo)-

Proof. The proofis analogous to that one true in the particular
case |[H| < +00,|I| < +00, ]| < +00 (see, e.g., the Lang’s book
[9D). O

Definition 22. Let U € 7y, leti,j € J,andlet¢y : U C
E; — Rbe a function derivable in x, € U with respect to x;,
such that the function d¢/0x; is derivable in x;, with respect
to x;. Indicate (a/axj)(a<p/axi)(x0) by (az(p/axjaxi)(xo) and
call it second partial derivative of ¢ in x, with respect
to x; and Xxj. If i = j, it is indicated by (azgo/axiz)(xo).
Analogously, for any k € N* and for any ji,..., j; € J, define

(akgo/ (ox T 0x ,))(x) and call it kth partial derivative of g

in x, with respect to x; ,..., x;,.

Definition 23. Let U € 7 and letk € N*; a function ¢ :
U C E; — Ejis called C* in x, € U if, in a neighbourhood
V €1, (U) of xo, foranyi € I'and forany jy,..., ji € J, there
exists the function defined by x — (ak(pi/ (0x e ale))(x),
and this function is continuous in x,; ¢ is called ckinU if,
for any x, € U, ¢ is C* in x,. Moreover, ¢ is called strongly
C in x, € U if, in a neighbourhood V' € 7, (U) of x,, there

exists the function defined by x — J,(x), and this function
is continuous in x,, with [|],(x,)[l < +co. Finally, ¢ is called

strongly C' in U if, for any x, € U, ¢ is strongly C' in x,.

Definition 24. Let U € 1) andlet V' € 7y ; a function ¢ :
U ¢ E; — V ¢ Ej is called diffeomorphism if ¢ is biunique
and C' in U, and the function 9" : V ¢ E; - U ¢ E;is c!
inV.

Remark 25. Let U € 7 andletg : U C E; — E;bea

function C' in X, € U, where |I| < +00, |J| < +00; then, ¢ is
strongly C' in x.
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Theorem 26. LetU € 7y , let ¢ : U C E; — R be a function

Cin xo € U, letiy,...,i € J,andlet j,...,ji. € J bea
permutation of i\, ..., i,. Then, one has
Fp o

= . 18

Proof. The proofis analogous to that one true in the particular
case |J| < +00 (see, e.g., the Lang’s book [9]). ]
Proposition 27. LetU = ([];;U;) NE; € 7y, whereU; € T,

forany j € ], andlet ¢ : U C E; — E; be a function C' in
xo € U, such that

¢; (x) = Z?’ij (xj)’

JeJ

Vx=(x;ije]) €U Viel, g

where ¢; : U; — R, Vi € [ and Vj € ]; moreover,
suppose that there exists a neighbourhood V' € 7 (U) of x,
such that sup, .y [lJ,(x)| < +0o. Then, ¢ is continuous in xo;
in particular, if ¢ is strongly C' in x, and |I| < +0o, ¢ is
differentiable in x.

Proof. Since ¢ is C' in x,, from (19) there exists a neighbour-
hood of x5 = (xg; : j € J) that we can suppose to be V,
such that V = [[;;V; ¢ U, where V; = (xo; =y}, Xo; + 6)),
Vj € J,and such that, Vi € I and Vj € ], goi'j exists in V. Let
x = (x;: j €]) € V; from the Lagrange theorem, Vi € I and
Vj € J, there exists E,-j € (min{xoj,xj}, max{xoj,xj}) cV;
such that ¢;;(x;) — @;;(x,;) = (pi'j(E,»j)(xj — xo;)- Then,
@ (x) = 9; (x0) = Z(Pi’j (fij) (xj - xo;) =
]EI (20)
9 ()~ 9 (x0) = Ay (5.3%) (v~ 30),

where A, (x, x,) = (¢:j(fij))ie1,je}- Thus, if sup ey [l/,(X)I =

¢ < 400, Vx € V, we have

[4¢ Geoxo)] = sup (4 (o)) |

(21)
<ol (55 1)] <
from which
lo ) = @ (xo); = ¢ [l = x5 (22)
then, ¢ is continuous in x,. Moreover, we have
@ (%) = (x) — Iy (%0) (x = x0)
= (A(p (x.x0) = (xo)) (x - x) =
"‘P (x) = 9 (xo) - Iy (x0) (¢ = xo)",
(23)

||x— xo"]
<[y (o) = 1, (%)

<sup|J, (&: 7€) =T, (x)]-
iel

Then, if ¢ is strongly C' in x, and |I| < +00, we obtain

o) = @ () = T, () (x = o)

=% I = ol

=0, (24)

and so ¢ is differentiable in x,, with dg(xy) = J,(x). O

Definition 28. Letm € N*,letU = (U™ x [ e, A)NE; €

T, where U™ € 7™, A j € Ris an open interval, for any
jeI\L,,andleto : I \I — I\, be an increasing function.
A funct1on ¢ :U C E; — E;jis called (m, 0)-standard if

(1) Vi € I, there exist some functions <p(m m L gm R
and {¢;;}jen;, © A; — Rsuch that, Vx € U, one has

¢i(x) = (Pl(m’m)(xip X )+ Yen, Pi(x));

(2) Vi € I\I,,and Vx € U, one has (pim’m)(xil, o
and ¢;;(x;) = 0,Vj # o(i);

(3) Vi € I\ I, the function g; = ¢, is constant or
injective derivable; moreover, Vox = (x; : j € I\ ) €
[Tiens, A ;> there exists Hie] (-1 )|'|+|U(’)|g1'( Xgi) €
R, where .7, = {i € I\, : g; is injective derivable}.

Ifo(i) = i,Vi € I\, ¢ is called m-standard; moreover, if
the sequence {(—1)"*1o® gi (Xo())}ic 7, converges uniformly
to 1, with respect tox = (x; : j € I\I,) € [] ;e Aj> theng
is called strongly (m, 0)-standard.

Furthermore, Vi > m, define the function go("’")

:xim) = 0

my; (U) — R" by (p(”’") x) = (go(" M(x),. .., gogl’")(x)), where
(Pi(n’n) (X) = (P;m’m) (xil yeees xim) + Z 901] (x]) 5
€L\, (25)
Vx=(x;:jel,) em, (U), Viel,
Finally, define the (1, 0)-standard function ¢ : U ¢ E; —
E, in the following manner:
9" () = 9" (x5, )
Vx=(x;:jel)eU, Viel,
(26)
9" () = 9 (),
Vx=(x;:jel)eU, Viel\l,
and indicate ¢ by .

Remark 29. Let ¢ : U Cc E; — E; be a (m,0)-standard
function. Then,

(1) if o is injective, for any n € N, n > m, ¢ is (n,0)-
standard;

(2) o is biunique ifand only if (i) =i, Vi € I\ I,;;

() if [Tjens,A; € Epy,» there exista € R" and m, € N,

mg, > m, such that, for any j € I\ Imo, one has Aj C
(-a,a).



Proof. Points (1) and (2) follow from the fact that o is
increasing. Moreover, the proof of the point (3) is trivial. [

Remark 30. Let ¢ : U c E; — E; be a (m,0)-standard
function such that [[;cp; A; C Eyy; ,and o is injective; then,
there exists m; € N, m; > m, such that, foranyi € I \ Iml, g
is bounded. In particular, if |I| = +00, ¢ is not surjective.

Proof. Since [];ep;, A;j € Epyy,» from Remark 29, there exists
myqy € N,my > m, such that Vj € I\L,, ,theset A is bounded;
then,let Z = {i € I\ L, my © i is not bounded} c I
since o is injective and increasing, we have o(#) ¢ I'\ L,
Moreover, we have | Z| < +0co;indeed, Vi € 7, theset A ;) is
bounded, and so there exists t; € A such that |g; (t ) > 2;
by supposing by contradiction |7 | = +oo, Vx = (x;:] €
I\1,) € [ljeng,Aj such that x,;) = t;, Vi € #, we would

obtain Hiefq,|£]i’(xa(i))| = Hie]q,\?{"gi,(xo(i))ll—[ie%"gi,(ti” =
+00 (a contradiction). Then, there exists m; € N, m; > m,
such that, Vi € I \Im1 , g; isbounded. In particular, Vi € I\1,, ,
the function g; is not surjective; then, if |I| = +00, ¢ is not
surjective. O

Proposition 31. Let ¢ : U C E; — E; be a (m, 0)-standard
function; then,

(1) suppose that ¢ is injective, 7y 1 (p(U)) € ), for any
H c I\ 1, such that 0 < |H| < 2, the function ¢; :
U — RisC!, foranyi € I, and det J gmem (X) # 0,
vx € U™ then, the functions g, for anyi € 1\ 1,,,
and ™™ are injective, and o is biunique.

(2) if ¢ is biunique, then the functions g;, for anyi € I\1,,

"™ and o are biunique.

Proof of (I). Suppose that ¢ is injective, 7, ;;((U)) € )
forany H c I\ I, such that 0 < |H| < 2,and leti € I\ I;
we have i € .5, since otherwise we would obtain g;(x) = c,
Vx € A, forsomec € R, from which 7 (p(U)) = {c} ¢ 7 =
7" and this should contradict the assumption; then, g; is
injective. Moreover, o must be injective; in fact, by supposing
by contradiction that o(i,) = 0(i,), for somem < i, < i,,then

i) (9 U)) = {1 32) € R 2 3y = g, (), 3,
= g;, (x), for some x € A } = {(J’p)’z)
=9, (gi_ll ()’1))}

27)
2
cR :y €g; (Aa(il))> V2
¢ 7 = i)
(a contradiction). Moreover, ¢ is surjective; in fact, suppose
by contradiction that there exists n € (I\I,,)\o(I\1,,);since ¢

is injective, Vy € @(U), thereisa unique x = (x;: j€ I) €U
such that ¢(x) = y, and so

_ (mm)
=" (x,-l,...

+ Z (pij(xj), Viel, =
jen(I,u{n)

Vi = @i (x) >xim) + @i, (%)
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(m,m)

P; (xi1>""x1‘m)+§0in(xn)_yt
+ Y gy(x;)=0, Viel,
jeN,,u{n})
(28)
Then, consider the function F : U™ x A, — R™ defined by
E () = 9" (2) + @ (1) - 3,

.

jeN(I,uin})

Pij (x]-) ’ (29)

VzeU™, VieA, Viel,,

From (28) and by assumption, we have

F (x,-l,...,xl-m,xn) =0,
(30)
OF
det S (xil,...,xim,x,,) #0;

then, there exist a neighbourhood V; ¢ A, of x,, and a
neighbourhood V, ¢ U™ of (RPN )such that, Vt € V,
there exists a unique z = f(t) ¢ V, such that F(z,t) = 0 (a
contradiction with the uniqueness of x = (x; : j € I) € U
such that ¢(x) = y). Finally, let x,y € U(m) be such that
™™ (x) = ™™ (y), and let %, 7 € U be such that X, = x;
andy, =y, Viel, ,x; =y, ViecI\I, Wehave

9 =™ @+ Y 9y(%))
jel\L,
= (mm + V. )=0.(y 5
=™ (v) jEIZ\ImqD,, () =90 o

Viel,;

¢ (%) = g; X)) = 9 (?a(i)) =@ (y), Viel\l,

from which ¢(x) =
X = y,and sox = y. Then, the function ¢

@(¥); then, since ¢ is injective, we have
(mm) s injective. [J

Proof of (2). Suppose that g; is injective, Vi € I\ I,,,, and let
x,y € U be such that ¢(x) = ¢(y); then, Vi € I\ I,, we have
gi(xa(i)) = (Pi(x) = (Pl(y) gt(yaz ) from which Xo(i) = Yoliy>
then, if o is biunique, from Remark 29, we have a(z) =i, and

so (x;:i€I\I,) = (y,:ie€l\I,). Thisimplies that

(Pl(mm)( X m,xim) =g, (x) - Z Pij (xj)
je\L,

“0 () - Y 95 (3)
je\L,

(32)
=" (oo, )
Viel, =
(m,m) (le) , xim) — (p(m,m) ()/il, N yim) >
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and so, if ™™ is injective, we have (X;5.005%; ) =
(i>-+->;,); then, x = y; that is, ¢ is injective. O

Proposition 32. Let ¢ : U C E; — E; be a (m, 0)-standard
function; then:
(1) Suppose that ¢ is biunique, the function ¢; : U — R
is C', for any i € I, and det Jomm (X) # 0, for any
x € U™, Then, the functions g;, for anyi € I\ I, o
and ™™ are biunique.
(2) If the functions g;, foranyi € I\ I,
biunique, then ¢ is biunique.

, 0 and 9™ ar,

Proofof (1). If g is biunique, VH ¢ I\I,, suchthat0 < |H| < 2;
we have 7} ;;(p(U)) = RY € ¢'H); then, from Proposition 31,
the functions g, Vi € I\ I,,, and ™™ are injective, and ¢
is biunique; thus, Vi € I\ I, we have o(i) = i. Moreover,
Vi e I\ 1, g; is surjective, since ¢ is surjective. Furthermore,
Yy =) € R™, let (x;:jeI\l,) € (]_[jd\ImAj) n
Ej, andlety € E; be such that

> 9i(x)), Vviel,
jeNL, (33)
Fi=a(v), Viel\ly

moreover, let X = ¢ ' (¥) € U, from which ¥, = g;(x;), Vi €
I'\ 1. Since g; is injective, we have X; = x;, Vi € I \ I; then,
Vi € I,,, we have

" (i %y, )+ Y 0y(%) =7,
jenl,,
2. 9(x;) =
jenL, (34)
y; = gol(mm (_1 ...,Z»m)=>
y=¢"" ),
wherex = (x; ,...,X; ) € U™ then, ™™ is surjective. [

Proof of (2). If the functions g;, Vi € I\ I,,, o and ™™ a
biunique, from Proposition 31, we obtain that @ is 1n]ect1ve

Moreover, Yy € Ej, define x € U™ x []; jen, Aj in the
following manner:
x=g; () € Ap Viel\l,
L (35)
(x,-l,...,xim) = ((p(m’m)) (z,-l,...,z,-m) cy™
where
2. 9i(x;). Vi€l (36)
jel,,
Let x5 = (xy; :i € I) € U; Vi € I'\ I, we have
|| = 'gi_l (i) = %, + xO,i’
X . (37)
£ 'gi () -9g: (g (xo,i))' + |xouls

moreover, the function g; ' : R — A, is derivable, and

(glfl)' (t) = m €R", Viel\l,, VteR; (38)

then, the Lagrange theorem implies that, for some &; €
(min{y;, g;(x, )}, max{y;, g;(x,,)}), we have

'gi_l () - gi_l (9 (xo,i))'

N (39)
= l(gi ) (Ez)‘ |}Vi —Yi (xO,i)l;
thus, from (37) and (38), we obtain
|x'| < |)/1 gz 01)| (40)

e 4 X,

oo @)

Moreover, we have HieI\Imlg;(gi_l(fi))l =
Hi€j¢|gi'(g;1(fi))| € R", from which there exists i, € I\ I,
such that Vi € I'\ I,,,i > i, we have Igf(g;l(fi))l > 1/2; then,

there exists ¢ € R such that supiemmIgl{(gifl(ﬁi))lf1 < ¢, and
so formula (40) implies
sup x| < e ([lyl; + ll (xo)[;) + oy < +o0s 4y
iel\l,

then, we have x € E[, from which x € U. Finally, it is easy to
prove that ¢(x) = y, and so ¢ is surjective. O

Remark 33. Let ¢ : U C E; — E; be a (m,0)-standard
function such that ¢;;(x;) = 0, forany x; € A ;, foranyi € I,,,
and for any j € I'\ I,; then,

(1) if @ is injective, and 71} ;;(¢(U)) € ™ for any H ¢
I'\ I, such that 0 < |H| < 2, then the functions g;,

foranyi € I\ I,, and q)(m’m)
biunique.

are injective, and o is

(2) if @ is biunique, then the functions g;, foranyi € I\I,,

¢"™™ and ¢ are biunique.

Proof of (I). Suppose that ¢ is injective; by proceeding as in
the proof of Proposition 31, we have that the functions g;, Vi €
I\, ™™, and o are injective. Moreover, o is surjective; in

fact, suppose by contradiction that there exists n € (I \ I,,,) \
o(I\I,),andlet x = (x;j: j € I); moreover, Vt € A, t # x,,

letx = (x; : j € I) € U be the sequence defined by X; = x;,
Vj # n,and X, = t; we have
Pi (x) = (m " (xil’ ) (Pl(m o ( i ’Eim)
=¢;(x), Viel, (42)
¢ (%) = g; (x50)) = 9 (Ko) = ¢ (%), Vie I\,
thus, we have ¢(x) = ¢@(x), and so ¢ is not injective (a
contradiction). O

Proof of (2). Since ¢ is surjective, the functions g;, Vi € I\ I,
and @™ are surjective; moreover, VH ¢ I\ I, such that
0 < [H| < 2, we have 71 z(p(U)) = RY € 1 then, since
@ is injective, from point 1, the functions g;, Vi € I \ I,,,, and

@"™™ are injective, and o is biunique. O



Corollary 34. Let ¢ : U C E; — E; be a (m,0)-standard
Sfunction such that mr; 1 (e(U)) € T(H),for any H c I'\ 1, such
that 0 < |H| < 2, and @ is injective; then, the functions ¢, ¢,
and ¢™", for any n € N, n > m, are injective.

Proof. Observe that ¢ is (m, 0)-standard, and 7} ;;(9(U)) =
maleU)) € ™, VH ¢ I\ 1, such that 0 < |H| <
2; then, from Remark 33, we have that the functions g,
Vi € I\ I, and "™ are injective, and o is biunique;
then, from Proposition 31, ¢ is injective; analogously, since
Vn € N, n > m, the function q)(") is (n,0)-standard,
from Proposition 31 (p(”) is injective, Moreover, we have
(@™ (U) = m(eU)) € P, VH ¢ I\ I, such that
0 < |H| < 2; then, from Remark 33, q)("’”) = ((p("))("’") is
injective. O

Proposition 35. Let ¢ : U ¢ E; — E; be a function C' in
Xg = (xo,j : j € I) € U and (m,0)-standard. Then, for any
n > m, the function ™" : my (U) — R is C' in (%o,
j € L), the function " : U C E; — E; is C' in x,, there
exists the function J,w(xo) : E; — Ep, and it is continuous.
Moreover, if ¢ is C' in x, and strongly (m, o)-standard, then
@™ is differentiable in x,. Finally, i ¢ is strongly C" in x, and
strongly (m, 0)-standard, then ¢ is differentiable in x,,.

Proof. By assumption, there exists a neighbourhood V' =
[Tje/Vj € 74,(U) of xy such that, Vi, j € I, there exists
the function x — agoi(x)/axj on V, and this function is
continuous in xy; then, Vx = (x; : j € I,) € [[;; V;, let
x € V such that (x;:j€l,)=x;sincepisa(m, o)-standard
function, Vi, j € I,,, we have

a‘Pin)n) (x) _ 9g; (x)

, 43
0x; 0x; (43)
from which ™" is C" in (%o, ¢ j € I,). Moreover, Vx € V,
we have
o9;" (x)
0x;
o, (44)
B i ) e x 1)U (L) X (0 )
- j
0 if (i,j)el,x(I\1,),

and so ¢™ is C! in x,. Furthermore, Vi € I, the function
¢ . U c E; — Ris differentiable in x,, since ¢!
depends only on a finite number of variables, and so there
exists the function ]fpf")(xo) : E; — R; moreover, since
Vi € I\ I, we have ||](plgn)(x0)|| = |gi'(x0,a(i))| and since
the sequence {|g; (x,)) |} 7, Is convergent, this implies that

!
sup;en, 19; (Xo0())] < +00, and so supi€I||]¢§n)(xO)|| < +00;
then, there exists the function Jom (x,) : E; — Ej, and it is

continuous.
Moreover, suppose that ¢ is C' in x, and strongly

(m, 0)-standard; then, the sequence {(—1)“”"’(")| gi'(x(,(,-))},»e 7,
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converges uniformly to 1, with respect to x = (x; : j €
I\1L,) € [ljens,Aj thus, Ve > 0, there exists i € I\ I,
such that, Vi € .7 » i>1i,and Vx € U, we have

'(_1)|1|+|0(1)| gl’ (xa(i)) _ 1| < E (45)

Observe that, since Vi < i the function (pi(") is differentiable in
o> there exists a neighbourhood N € 7, (U) of x, such that,
Vx € N\ {x,}, we have

9 () = 9" (x0) = Ty (o) (3 = %o)| .

e. (46)
Il = %o

sup

iel:i<i

Moreover, Vi € I such thati > 1, g; is derivable in
A, and so, from the Lagrange theorem, there exists &; €
(min{x o) X0} Max{xg 5(;)> X5(}) such that

i (xa(i)) —Gi (x(),a(i)) = g: (&) (xo(i) - xO,a(i)) > (47)

from which

9 () = 91 () = Ty () (3 = %)

I ==,

B |gi (%o)) = 9 (Xo,0)) — gi (Xo0,0)) (%o = xo,a<i))|

llx = xoll; )
o o 48
B |(—1)|1|+|0(')‘ gi (&) - ()il gl (Xo,a(f))| %o0) = X000
[l = xol;
< (|0 gl (&) = 1] + |1 gl (xg 000) - 1))
. 1]4) (i) < e
Then, from (46) and (48), we have
™ (x) = 0™ (x,) = J o () (x = x
" (6 = 9 (30) = Ty (30) (3 = o), e W)

I =],

and so ¢ is differentiable in x,.

Finally, if ¢ is strongly C' in x, and strongly (m,o)-
standard, the functiony = ¢ —¢ : U ¢ E; — E; given
by

> ¢;(x;) Viel, VxeU
jel\l,, (50)
0 VieI\I,, VxeU

i (x) =

is strongly C' in x,, and so it is differentiable in x, from
Proposition 27; then, since ¢ is differentiable in x, this is true
for ¢ = v + @ too, from Remark 14. O

Proposition 36. Let ¢ : U ¢ E; — E; be a function C'
and (m, 0)-standard; then, ¢ : U — R is (.%(I)(U),.%’(D)—
measurable.

Proof. Leti € I, and let n € N, n > max{|i],m}; from
Proposition 35, the function (pi(”’”) s (U) — Ris c'.
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Then, VB € 7, we have ((pl.(”’"))’l(B) e ™ c 3™

(n,m)

; moreover,
if we consider ¢;”" as a function from U to R, we have
1y, (@) (B)) = R, and so (™)' (B) € B'"; then,
since (1) = B, VB € A, we have ((pf"’"))fl(B) e B, and so
@™)1(B) € B (U). Moreover, since lim,,_,, .9 = ¢;,
the function ¢, is (8D (U), B)-measurable. Let

Z(I):{B:HBi:Bie%, Viel}; (51)
i€l

VB € X(I), we have

9 (B) =()(p)

i€l

(B e 3D ). (52)

Finally, since o(2(I)) = B, VB € BY, we have <p71(B) €
2BDW). O

Proposition 37. Let ¢ : U C E; — E; be a (m, 0)-standard
function, such that ¢ : U — @(U) is a homeomorphism. Then,
the functions '™™ . U™ — ™™ U™) and g, : A; —
gi(A,), Vi € I\ 1, are homeomorphisms, and o is biunique.

Proof. Since ¢ is a homeomorphism, we have p(U) € 7y ;
then, from Proposition 6, VH ¢ I \ I, such that 0 <
[Hl < 2, we have m;5(p(U)) € Ty = . thus,
since @ is injective, from Remark 33, the functions g;, Vi €
I\ 1,, and ¢"™™ are injective, and o is biunique; then,
the functions g; and g;', Vi € I\ I, are derivable, and
so they are continuous. Moreover, we have ™™ (U™) =
@) € T, g(A) = mueU) € T, Vi e
I'\ I,. Finally, from Remark 10, the function (7;; ©° ¢) :
Uy, U) — (R™,7") is continuous; then, VB € 7,
we have (¢"™™)7(B) x H,em = (m; 2 ¢)'(B) €
73,0, from which (¢"™"™)™'(B) € T(m)(U ™), then, ™
is continuous; analogously, we can prove that the function
((p(m’m))*1 is continuous. O
Proposition 38. Let ¢ : U C E; — E; be a (m,0)-standard
Sfunction such that mr; 1 (p(U)) € T(H),for any H c I'\ I,, such
that 0 < |H| < 2. Then, ¢ : U — @(U) is a diffeomorphism
if and only if the functions ™™ . U™ — ™™ (U™ and
g+ A; = gi(A), Vi € I\ 1, are diffeomorphisms, and o is
biunique.

Proof. We have m; ,;(p(U)) = m;(e(U)) € ™) for any
H c I\, suchthat 0 < [H| < 2. If ¢ is a diffeomorphism,
then @ is injective, and so, from Remark 33, the functions

g Vi € I\ I, and ™™
Moreover, ¢ is C 'in U, and so, from Proposition 35, ¢
™™ is Cin U™ = ;5 (U); analogously, since ()™

9(U) — U is C' in (U), then (q)('"’m))- = ((p))imm
is C! in (p(m’m)(U(m)) = (@U)) € 7; then, o) (m.m)
is a diffeomorphism. Moreover, Vi € I \ I, Vx € A,
letx = (x; : j € I) € Usuch that x; = x; we have

are injective, and o is biunique.
(mm) _

gi(x) = (99,/0x,)(X), and so g; is C' in A;; analogously,
Vielll, ‘v’yeg,(A) lety =(y;:j€l)€p(U)such that

y; = y; we have (g; hy (y) = (a(—*l) /0y;)(¥), and so gi_l is C!
in g;(A;) = n; (3,(@(U)) € 7; then, g; is a diffeomorphism.
Conversely, if the functions ™™ and g;, Vi € I \ I,,,, are
diffeomorphisms and o is biunique, then @ is injective from
Remark 33; moreover, Vx = (xj cjel)eU,setx = (xj ije

1,) € U™; we have

a gm,m)
Y Gy e (@ x)
ox; |9 (%) ifi €I\, j=i
0 otherwise,

and so g is C' in U; analogously, Vy = (yj:jel) € o),

sety = (y;: j€l,) €y (@U)); wehave
(), (»)
ayj
o) ) 50
28 i ) e (1 x )
_ i

(g") &) ifi €I\, j=i

0 otherwise,
and so g ' is C' in p(U); then, ¢ is a diffeomorphism. O

Proposition 39. Let ¢ : U C E; — E; be a (m, 0)-standard
function such that ¢; : U — R is C', for any i € I, ; moreover,
suppose that @ is injective and p(U) € 7, ; then,

W if g™ U, AU - (U,
™ (™™ (U ™)) is an open function, then, for any
n € N, n > m, the function <p(”’") o (U) —
go("’”)(rrl)[n(U)) is a homeomorphism, and one has
9"W) €7y,

Q) if e U — ) is a diffeomorphism, then,
for any n € N, n > m, the functions ™"
15, (U) = 9"y, (U)) and 9" - U — oM ()
are diffeomorphisms.

Proof of (1). Since 9(U) € 7y, VH < I\ I, such that
0 < |H| < 2, we have 71, 1y (9(U)) = 1 4 (@(U)) € 73, = 775
then, from Corollary 34, Vi € N, n > m, the function (p("’")
is injective. Moreover, from Remark 33, the functions g;, Vi €

1\I,,,and "™ are injective, and o is biunique. Furthermore,
from Proposition 35 and the continuity of the functions g;,

Vi € I, \ I, we have that ¢™" is continuous in iy (U).
Finally, Vy € <p<" "y, (O)), let x = (9™) 7 (y) € my; (U);
Vi € I, \ I,,, we have x; = g; ' (y;); then, Vi € I,,,

-1
X, ) E D @y (gj (7)) (55)

JELALy

yi =" (x;
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and so
(xil,...,xim) = ((p(m’m)y1 (zil,...,zim),
(56)
xi=g; (), VieL\I,
where

Zi=yi— Z S"ij(gfl (J’j))’ Viel,. (57)

JELAL,

Then, since the functions (go(m’m) )L

(n,n))—l

> ¢;j> and g}l are con-
tinuous, the function (¢ is continuous too, and so
" (rry,, (U)) € 75 then, o™ 2 71y, (U) — ™" (m;; (U))
is a homeomorphism. Furthermore, since p(U) € 7, , we
have T, (p(U)) € Ty, and so

o (U) = 9" (1, ) x 7111, (9 () €70 (58)

O

Proof of (2). If ¢ : U — @(U) is a diffeomorphism, from
Proposition 38, the functions ™™ : U™ — @mm (™)
and g; : A; — gi(A), Vi € I\ I, are diffeomorphisms;
in particular, the functions (9""™)™" and g;*, Vi € I, \ I,
are C'; then, since Vi € I,,Vj € I, \ I, the function @;j is
C', from (56) and (57), we obtain that the function ((p("’”))_1
is C' in (p(”’")(nun (U)). Moreover, from Proposition 35 and
since, Vi € I, \ I,, the functions g; are C', o™ is C'
in 777 (U), and so 9™ is a diffeomorphism. Finally, since
oU) € 7, YH ¢ I\ L, such that 0 < [H| < 2, we
have 71, (9" (U)) = 7, 4(@U)) € 1, = ™; then, from
Proposition 38, ™ : U — ¢ (U) is a diffeomorphism. [J
Remark 40. A linear function A = (a;);je; * Ef — Ejis
(m, 0)-standard, wherem € N*ando : I\ I,, > I\ I, isan
increasing function, if

W) @ = 0,YG, j) ¢ Ly x DU Ueny, {(m o(m)}s

(2) there exists [l 2204 € R, where A; =

(-1)iHlo@lg, o VieI\1,.

Recall the following concept, defined in [1].

Definition 41. Let A = (ay); je; : E; — E; be alinear (m,0)-

standard function; define the determinant of A, and call it
det(,, ,) A, or det A, the real number

det(m’o.)A
det A™™ H A; if o is biunique (59)
= iel\I,
0 if o is not biunique,
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where A is the m xm real matrix defined by A™™ (i, j) =
aj, Vi, j € I,

Proposition 42. Let A = (aij)ijel : E; — E; be a linear and
injective (m, o)-standard function; then, A is biunique if and
only if A'is (ty , Ty, )-open.

Proof. From Remark 9 in [1], A is continuous; then, if A is
biunique, from the Banach theorem of the open function, A
is (T","I, T”,”I)—open. Conversely, if A is (T","I, T”,”I)—open, VH C
I'\ I, such that 0 < |H| < 2, we have m; ;;(A(E})) € Ty =

) moreover, since A is linear, the function A, : E; — R
isCl, Vi € I,; furthermore, by proceeding as in the proof

of Proposition 31, we obtain that A”™™ is injective, and so
det J4onm (x) # 0, Vx € Ej; then, from Proposition 31, the
functions g;, Vi € I\ I,,,, are injective, and o is biunique. Thus,
since the functions A”™™ and g;, Vi € I\ I, are linear, they
are biunique, and so A is biunique from Proposition 32. [

4. Change of Variables’ Formula

Henceforth, we will suppose |I| = +0co0.

Definition 43. Letk € N*,let M,N € R*,leta= (a;:i€]) €
[0, +00)" such that [T;cp,, 404 € R*,andletv = (v, :i € I) €
E; define the following sets in % :

k, k
Eg\,i)v =R"x H (v = Na;,v; + Na;);

i€\,
(60)
k, k
ESiay = MM x [ (v - Nayv; + Nay).
i€\,
. (3 I D
Moreover, define the o-finite measure A, over (R', %"")
in the following manner:
(k.I)
/\N,a,v
1
_ <® —Leb>
iel, 2N (61)

® ( ® %Leb (-n(v; = Na,v; + Nai))> .

iel\I,

Proposition 44. Let ¢ : U € E; — E; be a (m, 0)-standard
function such that @ is biunique; moreover, let N € R, let

a=(a:iel) e [0,+00) such that [Ticrazom € RY, and
let v € Ey; then,

(1) there existb = (b, : i € I) € [0, +oo) and z € E; such
that [ Jierp40b: € R" and such that, for any n,k € N,
n >m, k >m, one has

o (BED) = (o) (BED) = BEDs ()

(2) suppose that ¢, : U — R is C', for any i € I, and
the function (p(m’m) (U™, M@y S (R ™)
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is open; then, for any M, € R", there exists M, € R"
such that, for any n,k € N, n > m, k > m, one has

- (Eg\]jl’ll,)N,a,v) C EM ,N,b,2>

(gD(n)) (Eg\ljff)l\lav) C EDI;IZIsz

Proof of (1). Since ¢ is biunique, from Remark 33, the
functions g;, Vi € I\ I, and o are biunique. Set b = (b, :

1
iel)e[0,+00),z = (z; :i€I) e Ejsuchthath, = z; = 1,
Vi € I,; moreover, define

_ |g,71 (v + Naj) - g;* (v, - Nai)|

(63)

b, , VielI\l,
2N (64)
-1 -1
z, = 9i (v; + Na;) sz 9i (v; - Nai), Viel\,

Observe that, Vi € I'\ I,,,, we have b, # 0 if and only if a; # 0;
then, by definition of b = (b, : i € I), we have

Hbi:Hbi

i€l:b#0 iel:a;#0

B H 'gi_l (v; + Na;) — g (v; - Na,-)|
iel\I,:a;#0 2Na, (65)

1
(1)
ieI\l,:a;#0

Moreover, since Vi € I \ I, the function g; ' is derivable on
R, if g; # 0, the Lagrange theorem implies that, for some &; €
(v; — Na;, v; + Na;), we have
g;' (v + Na;) - g;* (v, - Nay)
2Na;
B 1
g: (" (&)
from which [];cp,, 400 € R'. Furthermore, Vi € I'\ I,,, we
have
g;' (v~ Nay,v; + Nay))

=(g7) )

(66)

v; + Na;)) if g; is increasin,
e i ( )) ifg 5 &)
(gz (v +Na),g;" (v; - Nai)) if g; is decreasing

=(z; - Nb,z; + Nb,),
from which
9i((z = Nb, z; + Nb)) = (v; - Na;,v; + Na;) . (68)

Then, from (67) and (68), Vk € N, k > m, we obtain

(B € Bl

o (EED) ¢ E&D,

N,b,z N,a,v
(k,I) (k.I) (69)
S} I
EN,b z (P (ENa v) =

(D) - B4

1

Analogously, Vn € N, n > m, from (67) and (68), we have
(0" ES) = By O
Proofof (2). Supposethate, : U — RisC', foranyi € I,,,and
(p(m‘m) (U™, MUy S (R™,77) is an open function;
thus, Vk e N,k > m,andVx = (x; :i € I) € (p_l(Eg\IfI’i)N)a)V),
let y = ¢(x) € (EM NM) Vi € I\ I, we have x; = g, (y,);
then, Vi e I,,,

(pl(mm ( 11 ...,xim)+

Z Pij (9; 1 (yj)) ©(70)

jen,,
and so
() = @) )
=g, (), Viel\l,
where

z=y- ) o9 (7)), Viel, (72)
jen,,

. . . . -1
Moreover, since Vi € I,,,Vj € I\, the functions ¢;; and g;
are continuous and Lyl < max{M,, Ivling, + N||a||I\Im}, there
exists M € R* such that

sup Y oy (97" (7)) < M, (73)

iel, ]EI\I

and so ||(Zi1’ ey zim)IIIm <M, + M; then, since the function

((p("”'”))_1 is continuous, there exists M € R" such that
(x5 x; )y, < M; finally, if b, z are the sequences defined
by the point (1), by setting M, = max{]T/f "Z"I\Im +N"b”1\1m}>
from (67), we have ¢~ (EM Naw) € E A’}I)Nb Analogously,
Vn € N, n > m, we have
sup 3 ey (95" ()] = M. (74)
i€l jeI \I,
from which (p™) (B ) € ESey .- O

Proposition 45. Let (S, X) be a measurable space, let .7 be a
mi-system on S, and let y, and u, be two measures on (S,X), o-
finite on F; if 0(F) = X and y, and p, coincide on 7, then y,
and , coincide on X.

Proof. See, for example, Theorem 10.3 in Billingsley [10]. [
Lemma 46. Letk € N*, let N € R", leta = (a, : i € I) €
[0, +00)" such that [licrazom € R, andletv = (v;:i € 1) €

Ej; then, for any measurable function f : (R', 89) - (R, %)
such that f* (or f7)is A(Isgv—mtegmble, one has

J-RI fd/\(lsla)v - J-E(k,r) fdA(I{C’f‘)’V‘ (75)

Na,v
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Proof. Let B = [],;B; € #B'; by definition OfA(Iff,fz),v’ we have

(k.I) (k1)
J-R Bd/\N ay J-E(k‘” dAN av’ (76)
N,y
then, consider the measures y; = A%QV and y, = A(ISIM(

E%iv) on (R, (I)); from (76), p#, and y, coincide on the
set & = {B ¢ B : B = [],B}; moreover, we have
R! = Upen(-7 n]* x R, where [-m,n]* x RV € .7,
i ([-n, n]k x RIMk) = w([-n, n]k x RIMk) < +00, Vi € N, and
so yy and p, are o-finite on 7. Then, since .7 is a 7r-system
on R’ such that o(.7) = B, from Proposition 45, formula
(76) is true VB € B, This implies that, if y : R, 20y -
([0, +00), B([0, +00))) is a simple function, we have

k, k,
L, ydAQy, = L(k,,) ydAQy, (77)

Then, if f: (RL B S ([0, +00), B([0, +00))) is a measur-
able function, and {y,},,cy is @ sequence of increasing positive
simple functions over (R, #D) such that lim, ., v, = f,
from Beppo Levi theorem we have

[, s, = tim | vk,

n—+00

. (k,I)
nLHJrnoo J E&D YuldANay (78)

(k,I)
JE”"I) f dAN,u,v'

Na,v

Then, for any measurable function f : R, 3D) - (R, B)
such that f* (or f7)is A%? _integrable,

N,a,v
[ raxsa, = rranel - raxs,

_ + 1y (D) — 19 (kD)
- JE“‘D f d/\N,u,v JE(k’D f dAN,u,v (79)

'N,a,v N,a,v

— (k1)
- J'E“"” fd/\N,u,v’

N,a,v
O

Now, we can prove the main result of our paper, that
improves Theorem 29 in [1] and generalizes the change
of variables’ formula for the integration of a measurable
function on R™ with values in R (see, e.g., the Lang’s book

[9D).

Theorem 47 (change of variables’ formula). Let ¢ : U ¢
E; — E; be a C' and (m,o)-standard function, such that
the function ¢ : U — E; is a diffeomorphism; moreover, let
N eRY leta=(a :i€l) e [0,+00) such that [Licra 209 €
RY, let v € Ep, and letb € [0,+00)' and z € E; defined by
Proposition 44. Then, for any k € N, k > m, for any B ¢ BY,
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and for any measumblefunction f:®RLBD) - (R, B) such
that f* (or f7)is ANM—mtegrable, one has

j A, = j f(9)|det o dASL,.  (80)
B ¢ '(B)

Proof. Letn,k € N,n > k > m; moreover, since ¢ is biunique,
VM,,N € R, Va = (a, : i € I) € [0,+00)" such that
[Licrazo® € R',and Vv € Ep, let M, € R" and let b and
z be the sequences defined by Proposition 44. Then, VB =

[1;e;B; € %(I)(Eg\lffi)N)a’v), we have B; € B((v;—Na;, v;+ Ng;))
and g;l(Bi) € B((z; - Nb,

i 2; + Nb,)), Vi € I'\ I, and so
(k,I) k 1
kD J p RN
J N.av By x-xBy, X[Tgens, By (@ 2N )
® ® LLeb
qel\I, 2N B((vg=Nag,vy+Nay))
ST (- E
By xxB; X[]gen, B p=1 2N
® ® LLebl
qel\l, 2N B((vg~Nag,vy+Na,))
1
J < —Leb)
| XXBy, et 2N
. J-H B

1
d —Leb
q€N\In>q < ® 2N

(81)

qel\l, %((vq—Naq,vq+Naq))>

Moreover, we have

1
[l @ pted
11 B gel\l, 2N ggs’((vquaq,qurNaq))

qel\l,2q

1
= dl (X —Leb
ansl\lan (qEI\I,, 2N *%(Bq)>
i @ 5ot
2N B(B)

qel,\I,

= lim J
p—+00 l—[ B

q€lp\In"q

(by Theorem 1)

= lim J 'det ] )’
preo ety 95" (B )qu \I,

1
d < 69 led @(gﬂBq))) ()

geI\I,
(by Proposition 38)
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1
= lim

p_)ﬂ)onqe[\l |det] ( )'

. J |det ] )|
aer\, 95 (B )qEI\I

g ) )
H |det I, (xq)|

J Mgens, 95" By genr,

| det] Pl

("I\In )
B((24~Nby,z,+Nb,))

d <<(Pgl> ﬁub) ® <q(§[

qel\I

Consider the measures y, and y, on & = B (EM1 NM)
defined by
M (B) J A%Qv’

(84)
_ gD
4y (B) = LM_I(B) |det 7, dAD)

from (83), 4, and y, coincide on the set

f:{BeE:B:HB,}; (85)
iel

(k,I)

moreover, we have .”1(EM Nay) = yz(EAlfII)NM) < +00,
EE\IZINM € ., and so y, and p, are o-finite on 7. Then,
since # is a r-system on EE\IZDNQ , such that 0(.%) = Z, from
Proposition 45, VB € ‘%(1)(E§\]/(III,)I\T, a’v), we have
(kD) _ .
oo =] | fder|adls ee
B (¢"™)~1(B)

n 1 )
d —Leb |- J
<<§) 2N Myen, 97 (By)

1
—Leb
2N

1
—Leb
2N

13

d( ® %Leb

qel\I,

x
‘%(gql(Bq))> ( I\In)
(by Corollary 3)

J ‘det ] ) ‘
[gens, 95" By genit,

-d<® _Leb

qel\I,

(xl\ln) :

%((zq—qu,zq+qu)) )
(82)

Then, from Proposition 39, formula (81) implies

H 'det Jg, (’%)'

qel\I,

%((zqubq,qurqu)) >

B((2g~Nbyz, +Nb,)) > >

(since ((p(")) (B) ¢ ENk£)2>

(83)

moreover, since ((p(”)) (B) ¢ E%
we have

M, N p. from Proposition 44,

(k.D)
JE("’U BdANu v

‘My,N,a,v

- JE“"”

My, Nbz

(87)
o) |det 5| A,

This implies that, if y : (R', Z") — ([0, +00), 9?;([0 +00)))
is a simple function such that y(x) = 0, Vx ¢ EM Ny We
have

A =
JE(k’” l// N a v EkD

M1,N,a,v Mj,N,b,z

(9% |det J| A (88)

Then, if I : (RLBP) = ([0,+00), B([0,+00))) is a
measurable function such that I(x) = 0,Vx ¢ E A/fII,N,u,v’ and
{y;}en 1s @ sequence of increasing positive simple functions
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over (R', ") such that lim; , v, = L, w;(x) = 0, Vx ¢
ElkD Vi € N, from Beppo Levi theorem we have

M;i,N,a,v>
kI _ 1. (k,I)
LM 1dAED = lim Lw ydA &P,

i—+00
M1,N,a,v Mj,N,a,v

lim Jm,n Vi (q)("))'det ]¢| A&y

i—+00
My.Nbz

JE(k,I) l (QD(")) 'det ]¢| d)t(lff’,i),z

My, Nb,z

lim Lw) (™) |det 15| Ay,

n—+00
My, Nb,z

(89)

In particular, formula (89) is true if [ is a function of the
form

e =1 (xi00,) T 15, (%5)5

JENI (90)

Vx=(x;:jel)eR),

where I® . R* — [0, 1] is a continuous function such that
®(x) = 0, Vx ¢ (-M;,M,)", and B; € B((v; - Na,v; +
Na;)),Vj € I\ I. In this case, let {f,},., be the sequence of

(k.I) gD (E(k’I)

the measurable functions f,, : (EMZ’N)b’Z, Mz’N’b,z)) —

([0, +00), B([0, +00))) given by
fu2) =1(¢™ (x)) |det J ()],

Vx € E

(o1

(k,I) .
Mo Nob2? Vn > k;

(k,I)
Vn > k, we have |f,| < ExiNpe

2D (E;’;fz{i\]’b)z)) — ([0, +00), B([0, +00))) is the measurable

function defined by

g, where g : (

g(x) = 'det 5 (x)' , Vxe Eg\l;i)N)b)Z. (92)

Moreover, we have

sl [T 15 ()]

jeI,

g(x) = |det](P(m,m) (x,»l,...,

(93)
(k,I) .
Vx € EMZ,N,b,z’
then, by definition of EE\}Z )N’h’z and since the functions ](P(m,m)

and g;, Vj € I\ I, are continuous, there exists § € R" such

that g(x) < 3, Vx € EE@’ZI’)NM, and so
(k,I) () B 1
JE""” 9AAGy. < PAN, (EMZ,N,b,z) =B H N
‘My,N,b,z JuI
-Leb ((-M,, M,))
1 Mk (94)
T Lreb((z, - Nb 2, + NB,)) = PR
2N q 979 q Nk

gel\I}

. H bq < +00.

gel\I;
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Moreover, we havelim,_,, . 9™ = ¢,andsolim,_, . f,(x) =
lp(x))| det J5(x)l, ¥x € EyDy, s then, from the dominated
convergence theorem:

lim J;;w,n l (90(")) Idet ]¢| d/\(ls’,i),z

n—+00
My N.b.z

- kD) .
- Lw 1(p) [det 7| dA&D)

Mj,N,bz

(95)

consequently, from (89), we have

L*““”

My,N,a,v

(kD)  _ (k1)
1aAED, = J L L) |det | aA%D. (o)
EMZ,N,b,z
Let B = [[;,B; € B(Ey" ), where B; = (a;,b)),

Vj € I,; moreover, Vn € N*, consider the function I, : R! —
[0, 1] defined by

I, (x) = 1P (x;:5en) ] lg, (%)
JENI (97)
Vx =(x;:jel)eR,

where
19 (x)
5. 5.
1 ifxe (a-+—],b<——1>
jel_I[k i, o
X—X S 3.
:«% ifxe HBJ- \H(aj+—],bj——J>
lx; — X2||1m jel, jel h h
0 ifx¢[]B;
Jjely

8] = (b]_a])/27v_] € Ik;x = (x] : ] € Ik),xl =rn
E)(]_[J-dk(aj+6j/n,b-—6j/n)),x2 = rna(HjeIkBj),whereris the
half-line with initial point ] je Ik((aj + bj)/2) and containing
x. Since {I,},.cn+ is an increasing positive sequence such that
lim I, = 1g, and since the function lflk) :R™ — [0,1] is

n—+oo'n
continuous, from Beppo Levi theorem and (96), we have

() (k,I)
LW) 1,dAED = lim Lw 1,dA%D,

n—+00
My,N,a,v M1,N,a,v

i (k,I)
lim Lmn L (¢) |det]¢| A (99)

n—+00
Mj,N,b,z

(k.I)
L(m 15 () |det )| dA%D.

My Nb.z

Moreover, Proposition 45 implies that formula (99) is true
VB € %(I)(Eg\]ffl{)zv,a,v)- Consider the measures y and v on
(EED , BOEED ) defined by
w®) = | A,
(100)
v(B) = J

(k.T)
i |det 7| dA,,
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and set B, = BN En"IQM, Vn € N* and VB € BD(EGD ).
Since B, € B,,;, A" (B,) ¢ A" (B,,1)s U,en+ B, = B and
Upen- A1(B,) = A™'(B), from the continuity property of u
and v and (99), we have

Jdmﬁw: lim J AA&D
BYI

lim J |det 5| AL, aon)
¢\ (B,) ”

n—+oo

| o et A%

Then, suppose that B € %(I); from Lemma 46, formula (101),
and Proposition 44, we have

(k.I) A&D
JRI LdAN e = JBOE(k o ANy

|det 75 A,

97 (BNES,)

(k1)
J ¢ (BNELY [det gl i

N,b,z

(102)

:J 15 (9) |det Jp | dA%D

thus, by proceeding as in the proof of formula (89),
for any measurable function f ®RL8Y) -

([0, +00), B(]0, +00))), we obtain

L Farld — LI £ (g)|detJy| AP (103)

Then, for any measurable function f : R, 3D) - (R, B)

such that f* (or f7)is A(Isfl -integrable and for any B € 2D,
we have

[, rartl,

[ Frisad, - | o,
R! R!

[, 7 15) () Jdet s an .

- [ @) e andy,  aon
= | 010) () e g ansy,
= det Jo| dAD .
Jcp*(B)f((P” el Xy
O

5. Problems for Further Study

A natural extension of this paper is the generalization of
Theorem 47, by substituting the (1, 0)-standard functions for
more general functions ¢ : U ¢ E; — E; such that, for any

15

i €I\I,,the function ¢; :
number of variables.

Moreover, a natural application of this paper, in the
probabilistic framework, is the development of the theory
of the infinite-dimensional continuous random elements,
defined in the paper [1]. In particular, we can prove the
formula of the density of such random elements composed
with the (m, 0)-standard functions given in the change of
variables’ formula in Theorem 47. Consequently, it is possible
to introduce many random elements that generalize the well-
known continuous random vectors in R™ (e.g., the Gaus-
sian random elements in E; defined by the (m, 0)-standard
matrices) and to develop some theoretical results and some
applications in the statistical inference. It is possible also to
define a convolution between the laws of two independent
and infinite-dimensional continuous random elements, as in
the finite case.

Furthermore, we can generahze paper [11] by considering

defined by

U ¢ E; — R depends on a finite

the recursion {X,},x on [0, p)N

X, = AX,+B, (modp), (105)
where X, = x, € E;, A is a biunique, linear, integer and
(m, 0)-standard function, p € R", and {B,},y is a sequence
of independent and identically distributed random elements
on E;. Our target is to prove that, with some assumptions on
the law of B,, the sequence {X, },,cy converges with geometric
rate to a random element with law X),n-((1/p)Leb| 93([0,1,))).
Moreover, we wish to quantify the rate of convergence in
terms of A, p, m, and the law of B, and to prove that, if A has
an eigenvalue that is a root of 1, then O(p?) steps are necessary
to achieve randomness.
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