
Spotting the Malicious Moment: Characterizing
Malware Behavior Using Dynamic Features

Alberto Ferrante∗, Eric Medvet†, Francesco Mercaldo‡, Jelena Milosevic∗, Corrado Aaron Visaggio‡
∗Advanced Learning and Research Institute, Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland

{alberto.ferrante, jelena.milosevic}@usi.ch
†Department of Engineering and Architecture, Università di Trieste, Trieste, Italy

emedvet@units.it
‡Department of Engineering, Università del Sannio, Benevento, Italy

{fmercaldo, visaggio}@unisannio.it

Abstract—While mobile devices have become more pervasive
every day, the interest in them from attackers has also been
increasing, making effective malware detection tools of ultimate
importance for malware investigation and user protection.

Most informative malware identification techniques are the
ones that are able to identify where the malicious behavior is
located in applications. In this way, better understanding of
malware can be achieved and effective tools for its detection
can be written. However, due to complexity of such a task, most
of the current approaches just classify applications as malicious
or benign, without giving any further insights.

In this work, we propose a technique for automatic analysis
of mobile applications which allows its users to automatically
identify the sub-sequences of execution traces where malicious
activity happens, hence making further manual analysis and
understanding of malware easier. Our technique is based on
dynamic features concerning resources usage and system calls,
which are jointly collected while the application is executed.
An execution trace is then split in shorter chunks that are
analyzed with machine learning techniques to detect local ma-
licious behaviors. Obtained results on the analysis of 3,232
Android applications show that collected features contain enough
information to identify suspicious execution traces that should be
further analysed and investigated.

I. INTRODUCTION

Mobile devices have become of ultimate importance in
our everyday life. We use them for communication with
other individuals, for storing private data, and for performing
financial transactions. Together with the increased usage of
these devices, the interest of attackers to abuse them has been
increasing as well. This can be observed in the expansion
of reported threats and attacks, in particular of malware. By
malware we consider any malicious software that gains access
to a device for the purpose of stealing data, damaging the
device, or annoying the user [1].

During the first quarter of 2015, G DATA security ex-
perts found 440,267 new malware files. This represents an
increase of 6.4% compared to the fourth quarter of 2014
(413,871). Consequently, the number of new malware appli-
cations has risen by 21% compared to the first quarter of
2014 (363,153) [2], i.e., in average the analysts identified
a new malware sample every 18 seconds, which means ap-
proximately 200 new Android malware samples per hour. In

Q2 2015, Kaspersky Lab mobile security products detected
291,887 new malicious mobile applications; this represents
a 2.8-fold increase on Q1 2015. The number of malicious
installation packages detected was 1,048,129, which is seven
times more than in the previous quarter [3]. Additionally,
according to the 2016 Trend Micro Security Predictions [4], 3
out of 4 applications currently used in China contain malware.

To protect our privacy and enable secure usage of devices,
effective malware detection methods are needed. Static detec-
tion, that is commonly used, is based on the investigation of
static features that are observed before running the application.
These techniques are efficient on mobile devices, but alone
they may not be sufficiently effective in detecting malware, due
to malware obfuscation techniques that are being adopted [5].
In order to be resistant to a variety of malware that exists on
the market, dynamic detection that is based on the investigation
of dynamic features is needed.

Most of the currently proposed dynamic detection methods
provide the ability to classify applications as malicious or
benign, without providing any insight on which parts of the
application executions are actually malicious. We propose a
dynamic detection method that can identify those malicious
parts (we call them sub-traces) during the applications exe-
cutions. Our proposed method jointly uses several dynamic
features related to system calls, memory usage, and CPU
usage, to identify those traces in which the application be-
have maliciously. We use system timestamps to connect our
dynamic features, thus having knowledge about the behavior
of different parts of the system at any given time.

In a nutshell, our solution consists of three steps. First, we
split the execution trace under analysis in fixed-length sub-
traces. Second, we use the features obtained from CPU and
memory observations in each sub-trace to classify the sub-
trace in one among a set of possible local behavior. Finally,
we analyze the features derived from the system call sequence
corresponding to the sub-trace, with another classifier tailored
to sub-traces with similar local behavior. Later, during execu-
tion of applications, we classify sub-traces based on learned
information, and we mark those that are potentially malicious.
Being able to identify sub-traces in which a malicious behavior
is detected may greatly foster the malware analysis by security

experts by helping in training the detection algorithms and in
better understanding malware behavior in general.

The rest of the paper is organized as follows. In Section II
we discuss the related work. In Section III we present our
method in detail. In Section IV we describe our experimental
evaluation, along with the way we collected the data. In
Section V we describe the results and discuss about possible
improvements of our work. Finally, in Section VI, we draw
the concluding remarks.

II. RELATED WORK

The existing malware detection methods make use either
static or dynamic features. In the remaining part of this section,
we survey recent works in the two aforementioned categories
of detection. A deeper and broader analysis about issues and
techniques for securing the Android platform may be found
in two extensive and recent surveys [6, 7].

A. Static Detection Methods

An effective approach to static malware detection is pro-
posed in [8] where high detection accuracy is achieved by
using features from the manifest file and feature sets from
disassembled code. The analysis of disassembled code is used
also in [9, 10, 11, 12]. The cited papers rely on the analysis of
opcodes. In the former, the occurrences of opcode n-grams are
used, by means of machine learning, to classify apps as benign
or malicious and the effectiveness of the proposed method is
evaluated also with respect to the specific malware family.
In [10, 11, 12] the features are given by opcode frequencies,
which are also used to determine if an app was retrieved from
the official market or third-party one.

A static feature which has been often used to characterize
malware is app permissions. In [13], the authors consider sets
of required permissions: their security rules classify appli-
cations based on sets of permissions rather than individual
permissions to reduce the number of false positives. In [1],
sending SMS messages without confirmation or accessing
unique phone identifiers like the IMEI are identified as promis-
ing features for malware detection as legitimate applications
ask for these permissions less often [14]. Still, using only
asked permissions, as it is done in [1, 14], is subject to
high false positive rates. For example, nearly one third of
applications request access to user location but far fewer
request access to user location and to launch at boot time. The
authors state that more sophisticated rules and classification
features are required in the future.

Recently, the possibility to identify the malicious payload
in Android malware using a model checking based approach
has been explored in [15, 16]. Starting from the payload
behavior definition the authors formulate logic rules and then
test them by using a real world dataset composed by real-world
malicious samples.

A different feature has been considered in [17]: the authors
analyze the set of identifiers representing the applications that
are being executed on the device. The assumption is that such
information may give an indication of the likelihood of the

device being classified as infected in the future. Nevertheless,
a conclusion of the paper is that observing just this feature is
not enough to give a precise answer about the device being
infected or not.

The main disadvantage of approaches based on static de-
tection is that they are prone to obfuscation, and as such
they alone are not enough to detect malware anymore [5].
Additionally, they are not able to detect malware at run-time,
during its execution. Dynamic detection methods appear as
promising approaches that can cope with these problems.

B. Dynamic Detection Methods

Several detection approaches based on dynamic analysis of
resources have been proposed for mobile devices: some of
them consider several resources while others focus on few or
a single resource (e.g., power consumption). From a broader
point of view, several techniques which are not specific to
mobile device can be used for malware detection on such
devices: a comprehensive and detailed description of those
techniques and tools is provided in [18].

1) Approaches Based on Power Consumption: Power con-
sumption, monitored through battery usage, has been found
to be a promising feature for malware detection. Among
the different solutions, VirusMeter [19], monitors and audits
power consumption on mobile devices with a power model that
accurately characterizes power consumption of normal user
behaviors. However, to what extent malware can be detected
on phones by monitoring just the battery power remains an
open research question [20].

2) Approaches Considering CPU and Memory Features:
Several resources are monitored by the tool proposed in [21],
Andromaly, which considers: touch screen, keyboard, sched-
uler, CPU load, messaging, power, memory, calls, operating
system, network, hardware, binder, and leds. The cited work
compares different machine learning techniques for analyzing
the features obtained from the monitored resources: Random
Forest and Logistic Regression appear to be the most effective.
The results are obtained using 40 benign applications and four
malicious samples developed by the authors.

A similar approach is proposed in [22], where feature
selection is performed on a set of run-time features related
to network, SMS, CPU, power, process information, memory,
and Virtual memory. Features importance is estimated using
Information Gain and four different classification algorithms
evaluated, Random Forest being the one that provides the
best performance. Results are obtained by considering only 30
benign and 5 malicious applications, with a limited coverage
of the high variety of malware available to date. This may
limit the applicability of results, both in terms of algorithm
and of features selected.

A quite large set of features related to CPU, memory,
storage, and network are used in [23]: the focus of the cited
paper is more on a precisely defined acquisition procedure
than on the analysis itself, which is performed using machine
learning techniques. The authors obtain an accuracy detection
of 99% on a dataset of 2,000 apps.

Other recent works, presented in [24] and in [25], also
take into account memory and CPU features for malware
detection. In [24], most significant CPU and memory related
features are extracted for each considered malware family;
some features appear as good candidates for malware detection
in general, some features appear as good candidates for
detection of specific malware families, and some others are
simply irrelevant. In [25], instead, importance of memory and
CPU features for identification of malicious execution traces is
investigated. Different detection algorithms of low complexity
are tested and Logistic Regression is identified as the best
one in distinguishing between benign and malicious execution
records.

3) Approaches Based On System Calls: Many detection ap-
proaches have been developed which work on features deriving
from system calls, or sequences of system calls, occurrences
or frequencies. CopperDroid [26] recognizes malware samples
through a system calls analysis with a customized version of
the Android emulator in order to track system calls. In Wang
et al. [27], an emulator is used to perform a similar task: the
method is assessed on a dataset composed of 1,600 malicious
apps; 60% of the malicious apps belonging to the Genoma
Project as well as the 73% of the malicious apps included in
the Contagio dataset are identified correctly.

Canfora et al. [28] propose a method to detect Android mal-
ware based on three metrics, which evaluate the occurrences
of a reduced subset of system calls, a weighted sum of a
subset of permissions required by applications, and a set of
combinations of permissions. In their experiment a sample of
200 malicious apps and 200 benign apps are considered; a
74% precision in the identification of malware is obtained.

In [29], system calls generated in background when apps
are stimulated through their user interface are monitored. The
Android emulator is used for running experiments and their
evaluation is based on two malicious samples of DroidDream
family (“Super History Eraser” and “Task Killer Pro”).

Beyond system calls, other OS-related features have been
largely investigated for malware detection. The detection
method presented in [30] uses data gathered by an application
log and a recorder of a set of system calls related to man-
agement of file, I/O and processes. A physical device with
a modified Android 2.1 is used for the experiments and 230
applications, in greater part downloaded from Google Play,
were considered; among them, the method is able to detect
37 applications which steal some kind of personal data, 14
applications which execute exploit code, and 13 destructive
applications.

Researchers in [31] hook system calls to create, read/write
operations on files to detect malicious behavior. Their tech-
nique hooks system calls and a binder driver function in the
Android kernel. The authors used a customized kernel on a
real device, and the evaluated dataset includes two malicious
apps developed ad-hoc. Similarly, Schmidt et al. [32] used the
view from Linux-kernel such as network traffic, system calls,
and file system logs to detect anomalies in the Android system.

Monitoring of system calls in Android is also discussed

by Blasing et al. [33]. They perform both static and dynamic
analysis, disposing a module which monitors system calls and
logs the return value of each system call.

Authors of [34] propose a method to perform automatic
classification based on tracking system calls while applications
are executed in a sandbox environment, obtaining an accuracy
of 93% with a 5% benign application classification error.

Armando et al. [35] built a kernel module able to retrieve
system calls invoked by application framework layer. Their
module re-executes the tracked calls: the collected information
may indicate that little control is enforced between the Android
and the Linux layers, thereby suggesting that the attack surface
of the Android platform is wider than expected.

In [36] an accurate approach to malware detection that also
uses system calls is presented. The approach uses machine
learning to discover connections between malicious behavior
(e.g., sending high premium rate SMS or ciphering data for
ransom) and their execution traces and then exploit obtained
knowledge to detect malware. As opposed to other systems,
where a limited set of system calls is taken into account, in
this work, all system calls are considered so as their sequences.
The approach is tested with data coming from a real device,
with a dataset consisting of 20,000 execution traces and 2,000
applications, and obtains a detection accuracy of 97%.

4) Approaches Considering CPU and Memory Features
Along With System Calls: MADAM [37] is an Android
malware detector that concurrently monitors Android at kernel
and at user level; machine learning techniques are used to dis-
tinguish between standard and malicious behaviors. At kernel-
level, features related to the following system parameters are
extracted: system calls, running processes, free RAM and CPU
usage. At user-level, features related to the following system
parameters are considered: idle/active, key-stroke, called num-
bers, sent/received SMS and Bluetooth/Wi-Fi analysis. The
developed prototype is able to detect several real malware
applications found in the wild with a low number of false
positives.

Our approach takes into account only memory, CPU, and
system calls. By combining them, we are able to provide
a system that is more resistant to obfuscation. At the same
time, the proposed method potentially allows for a simpler
implementation, since the actual analysis of system calls is
triggered only when memory- and CPU-related information
suggest that a given sub-trace deserves further attention.

As opposed to MADAM, we use only memory and CPU
kernel-level features. Additionally, we focus on malicious sub-
traces identification instead of currently commonly performed
malicious application identification.

III. DETECTION METHOD

The aim of the work is to propose a method that, based on
dynamic features, identifies suspicious execution sub-traces of
Android applications and enables their further classification
into benign or malicious. Dynamic features taken into account
are CPU and memory usage by the application under analysis,
as well as statistics on system calls caused by the same

application. During application executions we use timestamps
for memory, CPU, and system calls related features in order
to connect them: this allow us to have information about
behavior of different parts of the system during the execution
time. While these features in the literature were observed
separately, to the best of our knowledge, their combined usage
together with execution time information and in order to detect
suspicious sub-traces, was not investigated yet.

In the state-of-the-art works it is shown that high detection
accuracy can be achieved using system calls. However, using
system calls for identification of malicious sub-traces is a
challenging task due to complexity of their analysis and to
the difficulty of identifying anomalous parts in sequences
of system calls consisting of system call names and their
attributes. In order to overcome this problem, and to identify
which parts of system calls traces are actually anomalous, we
connect them with memory and CPU features, that are real-
valued numbers and can be easily grouped into clusters with
similar behavior. In this way, by having clusters of similar
memory and CPU behavior, we have connected also system
calls of similar behavior, being able to further investigate them.
Based on the information of collected system calls, we train
classifiers in the way it was proposed in [36] and then, during
the application execution, by observing their memory and CPU
behavior, we classify the sub-traces with learned classifiers.
The main steps of the proposed methodology consist of the
application execution, the sub-traces collection, the sub-traces
clustering based on similarity between memory and CPU
information, and the learning of one classifier for each cluster;
an overview of our methodology is outlined in Figure 1.

We assume that no labeled training data is available which
specify exactly the sub-traces which are actually malicious;
instead, we assume that only a collection of traces which
are atomically malicious or not-malicious is available—the
formers possibly and likely consisting of several non-malicious
sub-traces. On one hand, this assumption enhances the prac-
ticality of our proposed solution, since it can be used on
existing datasets in which a single binary label is available
for each trace. On the other hand, it makes the problem more
challenging because it is posed as a classification scenario in
which the training data is only weakly labeled or, from another
point of view, heavily noisy.

More in detail, in our method, given an execution of
an application, a trace t = (o1, o2, . . .) of observations is
available. Each observation o is a tuple composed of:
• A timestamp,
• 3 values for CPU usage (total, user, kernel)
• 5 values for total memory usage (PSS, shared, private,

heap allocation, free heap)
• 5 values for Dalvik memory usage (PSS, shared, private,

heap allocation, free heap)
• 5 values for Native memory usage (PSS, shared, private,

heap allocation, free heap)
• A sequence s of system calls generated in the time frame

delimited by the current observation timestamp and the
previous observation timestamp

We denote an observation as o = (~fCM, s), where ~fCM ∈ R19 is
the numeric vector consisting of the 19 values concerning CPU
and memory, which are extensively discussed in Section IV-B.
The system calls sequence s is a string defined over an alphabet
of 63+1 symbols, each one corresponding to a system call but
one symbol, which is used to represent all the other system
calls. The set of the 63 system calls has been chosen statically
by selecting the most occurring system calls performed by
Android applications (as in [36], where they provide high
detection accuracy). Names of considered system calls are
listed in Section IV-B.

We focus on traces in which the frequency of observations is
0.5Hz (i.e., one observation every 2 s): the number of system
calls generated during the corresponding time frame is in the
order of some hundreds.

We assume that a learning set L of labeled traces is
available to tune the classification method. The learning
set is composed by pairs (t, l) where T is a trace and
l ∈ {benign,malicious} is a label which is benign if the
application for which t has been obtained is benign, and
malicious otherwise.

The goal of this work is to propose a method which, given
a learning set, a trace t, and a time interval T , can for any
subsequence t′ of t corresponding to consecutive observations
collected in a time interval lasting T , indicate if t′ corresponds
to a malicious or benign behavior of the application during the
corresponding interval. We remark, however, that the learning
set provides traces labeled atomically (at the level of execution
observations), i.e., there is no information about where an
actually malicious sub-trace is within each trace of the learning
set: it follows that the learning information is only weakly
labeled.

The basic idea is to divide a trace in sub-traces and to
classify each of them by considering system calls. For this
purpose, different classifiers are trained for sub-traces that
exhibit specific CPU and memory behaviors.

The method itself consist of a learning phase, in which the
learning set L is used to tune several inner parameters, and a
classification phase, in which a single trace t is analyzed.

In both phases, a trace t is preprocessed in order to decom-
pose it in sub-traces t′1, t

′
2, . . . , t

′
k, each one corresponding to a

time interval T . Then, for each sub-trace t′, a tuple (~f ′CM, s
′)

is obtained where ~f ′CM ∈ R19×4 is a vector composed of 4

aggregates computed from the vectors ~fCM of the observations
in t′ (see below), and s′ is the concatenation of the strings s of
the observations in t′. More precisely, ~f ′CM is the concatenation
of: the vector ~f last

CM−~ffirst
CM (i.e., the difference between the vector

of the first and the last observation in the sub-trace); the vector
pmaxt′ ~fCM of the element-wise max values of vectors in t′;
the vector pmint′

~fCM of the element-wise min values; and the
vector pavgt′

~fCM of the element-wise average values.

A. Learning Phase

The aim of the learning phase is twofold. First, to cluster
sub-traces of the labeled applications according to the corre-
sponding behavior of the app in terms of CPU and memory

Figure 1. Main steps of the proposed detection system.

usage. Second, for each cluster, to train a classifier based
on system calls; this classifier should be able to discriminate
benign and malicious sub-traces.

Note that the latter task is somewhat hard, since the learning
set does not provide labels at the level of the observation, nor
of the sub-trace. Moreover, it can be expected that even a trace
collected from a malicious application may consist of several
sub-traces which do not correspond to any actually malicious
behavior. Hence, and from another point of view, the sub-
trace classifier has to be trained from a learning set which is
intrinsically noisy.

The clustering step is performed using the KMeans++
algorithm [38] with a maximum of 10,000 iterations over all
the vectors ~f ′CM in L; note that labels are not used in the
clustering step. KMeans++ partitions the observations into k
clusters such that each observation belongs to the cluster with
the nearest mean that is used as a prototype of the cluster. We
experimented with different values for the number of clusters,
with k ∈ {3, 5, 7}; we also experimented with following
three distances: Euclidean, Canberra, and Chebyshev. These
distances are explained in more details in Section IV-C.

For each cluster c, a classifier Cc is built using the method
proposed in [36] as follows. Let Lc be the set of pairs (s′, l)
where s′ is the system calls sequence corresponding to the
sub-trace t′ whose ~f ′CM belong to the cluster, and l is the label
in L of the trace of t′. First, we build the set Gc of all the
n-grams occurring in the sequences Lc, an n-gram being a
substring of up to n symbols, where n is a parameter of the
method which we set to 2. Second, for each sequence s′ we
build a numeric vector ~fs′ ∈ [0, 1]|Gc| where each element
fi,s′ is the relative frequency of the ith n-gram of Gc in s′.
Third, we select a subset G′c of Gc containing exactly m n-
grams, m being a parameter of our method which we set to
m = 250. The aim of this feature selection is twofold: (i) we
want to select only the most promising n-grams, with respect
to their discriminative power, and (ii) we want to limit the
size of the feature space on which a subsequent classifier will
operate. The set G′c is composed of the m n-grams with the

largest relative class difference δi:

δi =

∣∣∣ 1

|Lbenign
c |

∑
Lbenign

c
fi,s′ − 1

|Lmalicious
c |

∑
Lmalicious

c
fi,s′

∣∣∣
maxLc

fi,s′
(1)

where Lbenign
c and Lmalicious

c are the partition of Lc containing
all and only the element with l = benign and l = malicious,
respectively. Finally, a binary classifier is trained on the
instances in Lc using the features corresponding to n-grams
of G′c; we used a Random Forest (RF) classifier and we
experimented with three values for the number of trees:
ntree ∈ {5, 50, 500}. Random Forest is a combination of
different tree classifiers [39].

For each cluster, we also compute the expected accuracy
of a classifier built as described above by means of a cross-
folding procedure. That is, we first split Lc in nfold partitions
with equal size and equal proportion of benign and malicious
pairs. Then, for each jth partition, we train a classifier on
all the other partitions and assess it on the jth partition, in
terms of False Positive Rate (FPR, i.e., ratio of benign sub-
traces classified as malicious), False Negative Rate (FNR,
i.e., ratio of malicious sub-traces classified as benign), and
accuracy (i.e., 1− 1

2 (FPR+FNR)). We set the cluster accuracy
Ac ∈ [0, 1] as the average of the accuracies computed over the
nfold partitions.

The output of the learning phase is a set of exactly k tuples,
each consisting of:
• the cluster centroid, i.e., a vector ~f ′CM,c ∈ R19×4;
• the reduced set G′c of n-grams which has been selected

for the cluster;
• the trained classifier Cc;
• the cluster accuracy Ac.

B. Classification Phase

As stated before, the goal of the classification phase is to
give an indication on sub-traces t′ of traces t lasting time
T about whether each t′ is related to a benign or malicious
behavior during the corresponding interval. We proceed as
follows: First, we obtain the list t′1, t

′
2, . . . of sub-traces of

t and the corresponding (~f ′CM, s
′) tuples. Then, for each sub-

trace, we obtain the ncentroids clusters closest to ~f ′CM, i.e., those
for which the considered distance metric between ~f ′CM,c and
~f ′CM is the smallest—ncentroids is a parameter of our method
which we set to ncentroids = 3. Finally, for each of these
close clusters, we obtain the numeric vector ~fs′ from s′ by
considering the n-grams in G′c and then classify ~fs′ with Cc.
The outcome of the classification is cast as a value in [0, 1]
which corresponds to the probability, according to Cc, that ~fs′
has a label l = benign . We combine the ncentroids classification
outcomes of the sub-trace by means of a weighted average
w in which the weights are determined by the corresponding
cluster accuracies Ac. The underling motivation is to give more
importance to an outcome generated by a classifier which has
been trained on a cluster for which the difference between
malicious and benign behaviors is sharper. The value of w
is defined as an internal parameter in the range of [0, 1] and
is closer to 1 when the corresponding sub-trace is deemed to
be benign, and closer to 0, otherwise. The cluster accuracies
on the identification of malicious sub-traces obtained in our
experiments are reported and further discussed in Section V.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the experimental evaluation that
we performed on our detection method. We first provide a
description of the data collection process and our experimental
setup. Finally, we discuss in detail the features we took into
account and the distance metrics we used.

A. Data Collection

1,709 benign applications were automatically collected from
Google Play [40] by using a script implemented by the
authors; the script queries an unofficial Google Play python
API [41] to search and download apps. The downloaded
applications belong to different categories (call & contacts,
education, entertainment, GPS & travel, internet, lifestyle,
news & weather, productivity, utilities, business, communi-
cation, email & SMS, fun & games, health & fitness, live
wallpapers, personalization). The applications retrieved are
among the most downloaded ones in each category and
they are free. We chose the most popular apps in order to
increase the probability to download malware-free apps. In any
case, the benign applications were analysed by the VirusTotal
service [42], a service that checks submitted apps by using
57 different antimalwares (e.g., Symantec, Avast, Kasperky,
McAfee, Panda): none of our benign apps was identified to
include any malicious payload.

The malware dataset consists of 1,523 obtained from the
Drebin dataset [43, 44].

Memory and CPU usage traces were recorded by running
the applications, one at a time, on the Android emulator and
by using a script that recorded features related to memory
and CPU usage every two seconds. To collect system calls
data we used strace [45], a tool for tracing system calls. In

particular, we used the command strace -p PID in order
to hook the process corresponding to the application under
analysis and intercept only its system calls; to retrieve the CPU
and memory values we used the dumpsys CPUinfo and
dumpsys meminfo commands, respectively. Dumpsys [46]
is an Android tool for dumping information about system
status as text. Log files for CPU, memory, and system calls
are later unified by using timestamps recorded at execution
time. Each application has been run for 10 minutes, even
though some of the traces are shorter, due to emulator hiccups.
Although it could be the case that a longer execution period
would provide us more significant results, we believe that the
duration that we have chosen is a good trade-off between time
when most of the malware samples expose their malicious
intents and duration of the overall experimentation. This is also
supported by the obtained results, as discussed in Section V.

The Android emulator of choice was the one included in the
Android Software Development Kit [47] release 20140702,
running Android 4.0. The reason why an Android emulator
was chosen instead of real devices is that this solution min-
imizes the time necessary to set up each application before
running, thus providing the ability to run a large number of
applications with the purpose of making the obtained dataset
more significant. The Android operating system was each time
re-initialized (as if the operating system was reinstalled on the
device) before running each application. This guarantees that
the system is always in a mint condition when a new sample
is started, thus avoiding possible interferences (e.g., changed
settings, running processes, and modifications of the operating
system files) from previously run samples.

The execution of the applications and the collection of
features have been automated by means of a script that have
been run on a Linux PC; the script made use of Android
Debug Bridge (adb) [48] as well as of the Monkey application
exerciser [49]. Android Debug Bridge is a command line tool
that lets the PC communicate with an emulator instance or
with an Android device. The Monkey is a command line tool
that exercises the system with a stream of pseudo-random
user events, thus acting as a stress test on the application
software; the Monkey can be run on any emulator instance
or on a device. In our script, the Monkey was used to
activate different parts of the applications; adb was deployed
to monitor application features, namely the memory usage of
the considered sample, as well as to install the applications.
In summary, for each application, the following actions have
been performed:

1) Clean-up of the Android operating system
2) Application installation on the Android Emulator by

means of adb
3) Memory and CPU monitors setup by starting peri-

odic calls to the dumpsys CPUinfo and dumpsys
meminfo commands

4) Initialization and run of the application for 10 minutes
by using Monkey

5) Start of system call recording by means of strace

B. Features
We have chosen a set of memory and CPU related features

on the assumption that malicious behavior is thereby reflected;
this belief is supported by other works that can be found in
the literature, such as [24, 25]. In detail, we have extracted
three CPU-related features related to single applications under
analysis:
• Total: total percentage of CPU used
• User: percentage of CPU used by user
• Kernel: percentage of CPU used by kernel
For what concerns memory-related features, we have ex-

tracted 15 features obtained by monitoring the following types
of memory consumption: (i) the Dalvik Virtual Machine;
(ii) the native memory usage; (iii) the total memory usage. In
particular, for each of these three categories, we have extracted
the following features:
• PSS: The total Proportional Set Size (PSS) is the RAM

used by proces; it indicates the overall memory weight of
your process, which can be directly compared with other
processes and the total available RAM

• Shared: Shared Dirty is the amount of shared RAM that
will be released back to the system when the process is
destroyed; Dirty RAM is represented by pages that have
been modified and must stay committed to RAM, since
there is no swap in Android

• Private: Private Dirty is the amount of RAM that will be
released back to the system when the process is destroyed

• Heap allocation: it represents the RAM actually allocated
by Dalvik Virtual Machine allocation for the application
under analysis

• Heap free: represents the allocatable RAM (but not allo-
cated yet) by Dalvik Virtual Machine for the application
under analysis

All considered memory features are about single applications
under analysis.

The set of system calls considered in this work is based
on the one successfully used in [36] and it is composed
of following system calls: msgget, getpid, ioctl,
recv, semget, getuid32, mprotect, SYS_224, read,
syscall_983042, write, gettimeofday, writev,
sigprocmask, mmap2, munmap, close, lseek, brk,
pread, fstat64, open, dup, fcntl64, stat64,
getdents64, access, clone, semop, getpriority,
fsync, nanosleep, _llseek, unlink, lstat64,
pwrite, chmod, rename, sched_yield, pivot_root,
mkdir, ipc_subcall, getsockopt, getcwd,
pipe, sched_getscheduler, sched_getparam,
socket, uname, getgid32, getegid32, geteuid32,
ftruncate, syscall_317, select, rmdir, connect,
bind, flock, setsockopt, getsockname, kill,
fork.

C. Distance Metrics
As mentioned in Section III, we took into account different

distance metrics for KMeans++ clustering. Following, we
discuss them in more detail.

Euclidean distance is the most commonly used distance
metric that represents straight-line distance between two points
in an Euclidean space; the distance between two points ~x and
~y is given by d(~x, ~y) =

√∑
i(xi − yi)2.

Canberra distance has already been successfully used for
intrusion detection, as discussed in [50]; it is given by
d(~x, ~y) =

∑
i
|xi−yi|
|xi|+|yi| .

Chebyshev distance between two vectors is the greatest of
their differences along any coordinate dimension; it is given
by d(~x, ~y) = maxi |xi − yi|.

V. RESULTS

In order to validate our methodology, we have performed
experiments taking into account different distance metrics for
clustering stage, different number of clusters and different
number of trees for classification stage with Random Forest.
More in detail, we have experimented with Euclidean, Can-
berra, and Chebyshev distance, number of clusters 3, 5, and
7 and number of trees ranging from small (5 trees) to high
(500 trees). Concerning the time interval T which define the
lasting of a sub-trace under analysis, we set it to T = 40 s,
which corresponds to 20 observations for each sub-trace.

We have used 1,709 benign and 1,523 malicious applica-
tions for training and testing, respectively. The evaluation has
been performed by using 3 fold cross validation; in each round,
sub-traces belonging to 1,000 benign and 1,000 malicious
applications have been used as a training set; the remaining
ones are used as a test set. This implies that testing is always
performed on applications that are previously unseen by the
detector. Detection accuracy is obtained by averaging the
results obtained in the three rounds. The obtained results in
term of sub-trace classification accuracy are shown in Table I.
From these results we can draw the following considerations:
• Increasing the number of trees in Random Forest classi-

fier, does not necessary increase detection performance
• Increasing the number of clusters does increase detection

performance
• There is no dominantly better distance, although the Eu-

cledian one provides higher accuracy also when smaller
numbers of clusters are considered

• The highest accuracy of detection is achieved with both
Euclidean and Chebyshev distance with 7 clusters and 50
and 500 trees, respectively

The obtained accuracy varies for different investigated op-
tions, with the highest figure being 0.67: while this value in
not great in absolute, we should recall that sub-traces have
been labelled by implicitly assuming that all the sub-traces of
a malicious trace are malicious and all sub-traces of a benign
application are benign. In reality, though, not all sub-traces
of a malicious application will contain malicious behavior.
From this point of view, besides reflecting how accurate is
our detection method, accuracy also measures how good our
previously mentioned assumption holds. In other words, these
results were obtained on the sub-traces of malicious and
benign applications which are marked in the same way as

Table I
SUB-TRACE ACCURACY.

Observation
Distance k ntree FPR FNR Acc.

Euclidean 3 5 0.12 0.61 0.63
Euclidean 3 50 0.33 0.44 0.61
Euclidean 3 500 0.37 0.41 0.61
Euclidean 5 5 0.14 0.53 0.66
Euclidean 5 50 0.17 0.51 0.66
Euclidean 5 500 0.24 0.45 0.66
Euclidean 7 5 0.14 0.58 0.64
Euclidean 7 50 0.28 0.39 0.67
Euclidean 7 500 0.29 0.38 0.67

Canberra 3 5 0.20 0.54 0.63
Canberra 3 50 0.60 0.23 0.58
Canberra 3 500 0.64 0.21 0.58
Canberra 5 5 0.24 0.46 0.65
Canberra 5 50 0.19 0.49 0.66
Canberra 5 500 0.21 0.47 0.66
Canberra 7 5 0.42 0.28 0.65
Canberra 7 50 0.54 0.16 0.65
Canberra 7 500 0.51 0.18 0.66

Chebyshev 3 5 0.07 0.78 0.58
Chebyshev 3 50 0.07 0.70 0.62
Chebyshev 3 500 0.03 0.81 0.58
Chebyshev 5 5 0.43 0.34 0.62
Chebyshev 5 50 0.49 0.29 0.61
Chebyshev 5 500 0.46 0.31 0.61
Chebyshev 7 5 0.54 0.28 0.59
Chebyshev 7 50 0.31 0.35 0.67
Chebyshev 7 500 0.32 0.34 0.67

applications themselves. Knowing that not all malicious sub-
traces are actually malicious, we are aware of the fact that our
initial set of labels is noisy and this is likely to negatively affect
accuracy. Our future steps will be to further improve accuracy
of observations detection by excluding those malicious sub-
traces that are labelled as such, although malicious payload
was not triggered during their execution.

VI. CONCLUDING REMARKS

In this paper we propose, discuss and enclose initial results
on a detection method for identifying malicious sub-traces
during applications execution. While most of the current
state-of-the art approaches focus on classification of complete
applications as malicious or benign, our goal was to propose
a methodology suitable for identifying those parts of appli-
cations that exhibit a malicious behavior, thus enabling their
further investigation and better understanding of malware in
general.

Our methodology takes into account the behavior of mem-
ory, CPU, and corresponding system calls while applications
are executed; it uses trained classifiers to recognize which parts
of executions are malicious.

We validated our method on a dataset of thousands of
real Android applications, part of which have been used for
learning and another part for testing: we think that the results
are positive and that the method is useful in performing initial

marking of malicious sub-traces. Our method can be further
improved by reducing noise in labelling sub-traces used in
training.

REFERENCES

[1] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner,
“A Survey Of Mobile Malware in the Wild,” in 1st ACM
workshop on Security and privacy in smartphones and
mobile devices (SPSM). ACM, 2011, pp. 3–14.

[2] G DATA, “Mobile Malware Report,” 2015, online:
https://public.gdatasoftware.com/Presse/Publikationen/
Malware Reports/G DATA MobileMWR Q1 2015
US.pdf.

[3] Kaspersky Lab, “IT Threat Evolution in Q2 2015,”
2015, online: https://cdn.securelist.com/files/2015/08/IT
threat evolution Q2 2015 ENG.pdf.

[4] “2016 trend micro security predictions: The fine line,”
Trend Micro, Tech. Rep., October 2015. [Online].
Available: http://www.trendmicro.com/cloud-content/us/
pdfs/security-intelligence/reports/rpt-the-fine-line.pdf

[5] A. Moser, C. Kruegel, and E. Kirda, “Limits of static
analysis for malware detection,” in Computer Security
Applications Conference, 2007. ACSAC 2007. Twenty-
Third Annual, Dec 2007, pp. 421–430.

[6] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S.
Gaur, M. Conti, and M. Rajarajan, “Android security:
a survey of issues, malware penetration, and defenses,”
Communications Surveys & Tutorials, IEEE, vol. 17,
no. 2, pp. 998–1022, 2015.

[7] D. J. Tan, T.-W. Chua, V. L. Thing et al., “Securing
android: a survey, taxonomy, and challenges,” ACM Com-
puting Surveys (CSUR), vol. 47, no. 4, p. 58, 2015.

[8] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck, “DREBIN: Effective and Explainable Detec-
tion of Android Malware in Your Pocket,” in NDSS,
2014.

[9] G. Canfora, A. De Lorenzo, E. Medvet, F. Mercaldo, and
C. A. Visaggio, “Effectiveness of opcode ngrams for de-
tection of multi family android malware,” in Availability,
Reliability and Security (ARES), 2015 10th International
Conference on. IEEE, 2015, pp. 333–340.

[10] G. Canfora, F. Mercaldo, and C. A. Visaggio, “Evaluating
op-code frequency histograms in malware and third-party
mobile applications,” in E-Business and Telecommunica-
tions. Springer, 2015, pp. 201–222.

[11] F. Mercaldo, C. A. Visaggio, G. Canfora, and A. Cim-
itile, “Mobile malware detection in the real world,” in
Proceedings of the 38th International Conference on
Software Engineering Companion. ACM, 2016, pp.
744–746.

[12] G. Canfora, F. Mercaldo, and C. A. Visaggio, “Mobile
malware detection using op-code frequency histograms,”
in Proceedings of International Conference on Security
and Cryptography (SECRYPT), 2015.

[13] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight
mobile phone application certification,” in 16th ACM

conference on Computer and communications security
(CCS). ACM, 2009, pp. 235–245.

[14] A. P. Felt, K. Greenwood, and D. Wagner, “The ef-
fectiveness of application permissions,” in 2nd USENIX
conference on Web application development (WebApps).
USENIX Association, 2011, pp. 7–7.

[15] F. Mercaldo, V. Nardone, A. Santone, and C. A. Vis-
aggio, “Ransomware steals your phone. formal meth-
ods rescue it,” in International Conference on Formal
Techniques for Distributed Objects, Components, and
Systems. Springer, 2016, pp. 212–221.

[16] ——, “Download malware? no, thanks: how formal
methods can block update attacks,” in Proceedings of
the 4th FME Workshop on Formal Methods in Software
Engineering. ACM, 2016, pp. 22–28.

[17] H. T. T. Truong, E. Lagerspetz, P. Nurmi, A. J. Oliner,
S. Tarkoma, N. Asokan, and S. Bhattacharya, “The Com-
pany You Keep: Mobile Malware Infection Rates and
Inexpensive Risk Indicators,” CoRR, vol. abs/1312.3245,
2013.

[18] M. Egele, T. Scholte, E. Kirda, and C. Kruegel,
“A Survey on Automated Dynamic Malware-analysis
Techniques and Tools,” ACM Comput. Surv., vol. 44,
no. 2, pp. 6:1–6:42, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/2089125.2089126

[19] L. Liu, G. Yan, X. Zhang, and S. Chen, “Virusmeter: Pre-
venting your cellphone from spies,” in 12th International
Symposium on Recent Advances in Intrusion Detection
(RAID). Springer, 2009, pp. 244–264.

[20] M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uel-
lenbeck, and C. Wolf, “Mobile security catching up?
revealing the nuts and bolts of the security of mobile
devices,” in Symposium on Security and Privacy, ser. SP
’11. IEEE Computer Society, 2011, pp. 96–111.

[21] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and
Y. Weiss, “”andromaly”: A behavioral malware detection
framework for android devices,” J. Intell. Inf. Syst.,
vol. 38, no. 1, pp. 161–190, Feb. 2012. [Online].
Available: http://dx.doi.org/10.1007/s10844-010-0148-x

[22] H.-S. Ham and M.-J. Choi, “Analysis of android malware
detection performance using machine learning classi-
fiers,” in ICT Convergence (ICTC), 2013 International
Conference on, Oct 2013, pp. 490–495.

[23] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visag-
gio, “Acquiring and analyzing app metrics for effective
mobile malware detection,” in Proceedings of the 2016
ACM International Workshop on International Workshop
on Security and Privacy Analytics. ACM, 2016.

[24] J. Milosevic, A. Ferrante, and M. Malek, “What does the
memory say? towards the most indicative features for
efficient malware detection,” in CCNC 2016, The 13th
Annual IEEE Consumer Communications & Networking
Conference, IEEE Communication Society. Las Vegas,
NV, USA: IEEE Communication Society, Jan 2016.

[25] J. Milosevic, M. Malek, and A. Ferrante, “A Friend or a
Foe? Detecting Malware Using Memory and CPU Fea-

tures,” in SECRYPT 2016, 13th International Conference
on Security and Cryptography, 2016.

[26] A. Reina, A. Fattori, and L. Cavallaro, “A system call-
centric analysis and stimulation technique to automati-
cally reconstruct android malware behaviors,” EuroSec,
April, 2013.

[27] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Detecting
software theft via system call based birthmarks,” in
Computer Security Applications Conference, 2009. AC-
SAC’09. Annual. IEEE, 2009, pp. 149–158.

[28] G. Canfora, F. Mercaldo, and C. A. Visaggio, “A clas-
sifier of malicious android applications,” in Proceedings
of the 2nd International Workshop on Security of Mobile
Applications, in conjunction with the International Con-
ference on Availability, Reliability and Security, 2013.

[29] F. Tchakounté and P. Dayang, “System calls analysis of
malwares on android,” International Journal of Science
and Tecnology (IJST) Volume, vol. 2, 2013.

[30] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based
behavior analysis for android malware detection,” in
Computational Intelligence and Security (CIS), 2011
Seventh International Conference on. IEEE, 2011, pp.
1011–1015.

[31] Y.-s. Jeong, H.-t. Lee, S.-j. Cho, S. Han, and M. Park,
“A kernel-based monitoring approach for analyzing ma-
licious behavior on android,” in Proceedings of the 29th
Annual ACM Symposium on Applied Computing. ACM,
2014, pp. 1737–1738.

[32] A.-D. Schmidt, H.-G. Schmidt, J. Clausen, K. A. Yuksel,
O. Kiraz, A. Camtepe, and S. Albayrak, “Enhancing se-
curity of linux-based android devices,” in in Proceedings
of 15th International Linux Kongress. Lehmann, 2008.

[33] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe,
and S. Albayrak, “An android application sandbox system
for suspicious software detection,” in Malicious and
unwanted software (MALWARE), 2010 5th international
conference on. IEEE, 2010, pp. 55–62.

[34] M. Dimjaševic, S. Atzeni, Z. Rakamaric, and I. Ugrina,
“Evaluation of android malware detection based on sys-
tem calls,” in ACM Conference on Data and Application
Security and Privacy (CODASPY), 2016.

[35] A. Armando, A. Merlo, and L. Verderame, “Security
issues in the android cross-layer architecture,” arXiv
preprint arXiv:1209.0687, 2012.

[36] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio,
“Detecting android malware using sequences of system
calls,” in Proceedings of the 3rd International Workshop
on Software Development Lifecycle for Mobile. ACM,
2015, pp. 13–20.

[37] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra,
“Madam: A multi-level anomaly detector for android
malware.” in MMM-ACNS, vol. 12. Springer, 2012, pp.
240–253.

[38] D. Arthur and S. Vassilvitskii, “k-means++: The advan-
tages of careful seeding,” in Proceedings of the eigh-
teenth annual ACM-SIAM symposium on Discrete algo-

rithms. Society for Industrial and Applied Mathematics,
2007, pp. 1027–1035.

[39] L. Breiman, “Random forests,” Mach. Learn., vol. 45,
no. 1, pp. 5–32, Oct. 2001. [Online]. Available:
http://dx.doi.org/10.1023/A:1010933404324

[40] Google, “Google Store,” online: https://play.google.com/
store.

[41] GitHub project, “Google Play Unofficial Python API,”
online: https://github.com/egirault/googleplay-api.

[42] Virus Total, “Suspicious Files Analyser,” online: https:
//www.virustotal.com/.

[43] D. Arp, M. Spreitzenbarth, M. Huebner, H. Gascon, and
K. Rieck, “Drebin: Efficient and explainable detection
of android malware in your pocket,” in Proceedings of
21th Annual Network and Distributed System Security
Symposium (NDSS), 2014.

[44] M. Spreitzenbarth, F. Echtler, T. Schreck, F. C. Freling,
and J. Hoffmann, “Mobilesandbox: Looking deeper into

android applications,” in 28th International ACM Sym-
posium on Applied Computing (SAC), 2013.

[45] Linux, “Strace,” online: http://linux.die.net/man/1/strace.
[46] Google Inc., “Dumpsys Input Diagnostics,” online: https:

//source.android.com/devices/input/diagnostics.html.
[47] Android Open Source project, “Android

Software Development Kit,” 2015, online:
https://developer.android.com/sdk/index.html.

[48] ——, “Android Debug Bridge,” 2015, online:
http://developer.android.com/tools/help/adb.html.

[49] ——, “UI/Application Exerciser Monkey,” 2015, online:
http://developer.android.com/tools/help/monkey.html.

[50] S. M. Emran and N. Ye, “Robustness of chi-
square and canberra distance metrics for computer
intrusion detection,” Quality and Reliability Engineering
International, vol. 18, no. 1, pp. 19–28, 2002. [Online].
Available: http://dx.doi.org/10.1002/qre.441

