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Abstract

In this paper, a novel formulation for modeling the vibration of spatial flexible mechanisms and robots is introduced. The

formulation is based on the concepts of equivalent rigid-link system (ERLS) that allows kinematic equations of motion for

the ERLS decoupled from the compatibility equations of the displacement at the joint to be written. With respect to the

available literature, in which the ERLS concept has been proposed together with a finite element method (FEM) approach

(ERLS-FEM), the formulation is extended in this paper through a modal approach and, in particular, a component mode

synthesis technique which allows a reduced-order system of dynamic equations to be maintained even when a fine

discretization is needed. The model is validated numerically by comparing it with the results obtained from the Adams-

FlexTM software, which implements the well-known floating frame of reference approach for a benchmark L-shaped

mechanism. A good agreement between the two models is shown.
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1. Introduction

In industrial robotics, the demand for high-
performance operation has highlighted the need to
study and develop lightweight manipulators. On the
other hand, due to the dynamic effects of structural
flexibility that arise in lightweight systems, design and
control are more difficult and accurate dynamic models
are crucial for reaching an effective result.

In the last 20 years, many researchers have focused
their works on this topic, developing and refining
dynamic models and formulations of the equations of
motion for multibody rigid–flexible-link systems. First
of all, single flexible-link mechanisms, then planar and
finally spatial flexible mechanisms were addressed. This
research area, especially the three-dimensional systems
and their control, is still an open field of investigation
(Bauchau, 2011; Benosman et al., 2002; Choi and
Cheon, 2004; Dwivedy and Eberhard, 2006; Garcı́a-
Vallejo et al., 2008; Ouyang et al., 2013; Shabana,
1997; Tokhi and Azad, 2008; Wasfy and Noor, 2003).

In multibody dynamics, the classical approach is
based on the rigid-body dynamical model of the mech-
anism and then the elastic deformations are introduced
to take the flexibility into account. The elastic deform-
ations of the bodies are influenced by the rigid gross
motion and vice versa. The resultant complete dynamic
formulation is a highly nonlinear and coupled set of
partial differential equations.
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In order to obtain a set of ordinary differential equa-
tions from these partial differential equations, thus a
finite-dimensional problem, two methodologies have
been adopted in the literature, namely the ‘nodal’
approach, i.e. the finite element method (FEM), and the
‘modal’ approach, i.e. the assumed mode method (Dietz
et al., 2003; Dwivedy and Eberhard, 2006; Ge et al.,
1997; Kalra and Sharan, 1991; Martins et al., 2003;
Naganathan and Soni, 1988; Nagarajan and Turcic,
1990; Theodore and Ghosal, 1995; Wang et al., 1996).

In particular, in the case of large rotations and small
vibration displacements, the most adopted and well-
known formulation, which includes both the effect of
the rigid-body motion on the elastic deformation and
the effect of the elasticity on the rigid-body motion, is
the so-called floating frame of reference (FFR) formu-
lation (Shabana, 1997, 2005). In the FFR formulation,
a system of coupled differential equations is obtained
with no separation between the rigid-body motion and
the elastic deformation of the flexible body.

By approaching the problem from a robotic point of
view, the main drawback of the FFR is related to the
constraint conditions since the connection through
mechanical joints between different deformable bodies
is expressed by coupled constraint equations that do
not have an immediate formulation.

In this work, a novel approach for dynamic modeling
of spatial flexible mechanisms under the condition of
large displacements and small deformations is presented.

The method is based on an equivalent rigid-link
system (ERLS), first introduced by Chang and
Hamilton (1991), Turcic and Midha (1984a, b) and
Turcic et al. (1984), that enables the kinematic equa-
tions of the ERLS to be decoupled from the compatibil-
ity equations of the displacements at the joints. Thanks
to ERLS, the standard concepts of three-dimensional
kinematics can be adopted to formulate and solve the
system kinematics. In previous works, the ERLS con-
cept has been exploited together with a FEM approach
(ERLS-FEM), to first model planar flexible-link mech-
anisms (Caracciolo et al., 2005; Gasparetto, 2001;
Gasparetto and Zanotto, 2006; Giovagnoni, 1994) and
then the three-dimensional systems (Gasparetto et al.,
2013; Vidoni et al., 2013, 2014). The approach has been
also exploited and applied for control purposes
(Boscariol and Zanotto, 2012; Boschetti et al., 2012;
Caracciolo et al., 2005; Trevisani, 2003).

One of the limitations of the ERLS-FEM model is
that the number of degrees of freedom of the system,
which is directly related to the mesh refinement, should
be maintained to be low if a low computational time
and a real-time model-based control is required.

In this work, the ERLS approach, which can be
applied to mechanisms with rotational degrees of free-
dom or prismatic joints in which one of the links is the

ground link, is extended through a modal approach in
order to obtain a more flexible solution based upon a
reduced-order system of equations. The compatibility
with both rotational and prismatic joints is inherited by
the use of Denavit–Hartemberg (Denavit and
Hartenberg, 1955) procedure for the definition and
the solution of the kinematics of the mechanism.

To the best of our knowledge, this is the first work in
which the ERLS concept is applied in order to formu-
late the dynamics of spatial flexible mechanisms with a
component mode synthesis (CMS) technique.

In this paper, after the description of the kinematics of
ERLS and of the flexible-link mechanism (Section 2), the
main differences between the ERLS and the FFR formu-
lations are highlighted (Section 3). Section 4 deals with
the derivation of the virtual work term contributions
while Section 5 collects the different terms into the equa-
tions of motion. The numerical implementation of the
model and its validation is given in Section 6 through a
comparison with the Adams-FlexTM multibody dynamic
software for a benchmark flexible mechanism.

2. CMS and ERLS kinematics

Let us consider Figure 1, which shows the kinematic
definitions: ui represents the nodal displacement vector
of the ith link, ei is the nodal position vector for the ith
element of the ERLS and pi is the absolute nodal pos-
ition vector. The index i spans from 1 to l, where l is the
number of links of the mechanism.

Given the definition of the vectors above, the follow-
ing holds

pi ¼ ei þ ui ð1Þ

Let us express the nodal displacements ui of the ith
link as functions of a given number of eigenvectors Ui

and modal coordinates qi, namely

ui ¼ Uiqi ð2Þ

Figure 1. Model of the mechanism and kinematic definitions.
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Eigenvectors and eigenvalues can be calculated
according to the chosen modal reduction approach,
e.g. the Guyan reduction (Qu, 2004). With respect to
the previous ERLS-FEM formulations, that usually
deal with flexible beam type links, the model extension
through a modal approach will allow to work with what-
soever flexible- or rigid-link shape and finite elements.

Assumption 1. The CMS theory requires choosing the
modal coordinates in such a way that they comprehend all
themodal coordinates related to the rigidmotion of the link,
plus at least onemodal coordinate related to the main vibra-
tion mode of the link.

If a link is assumed to be rigid, only eigenvectors
related to the rigid motion are considered (six eigenvec-
tors for the three-dimensional case and three eigenvec-
tors for the two-dimensional case).

Let ûi ¼ Siui be the displacements of the joint belong-
ing to the link i and let ûiþ1 ¼ Siþ1uiþ1 be the displace-
ments of the joint belonging to the link iþ 1, where
matrices Si and Siþ 1 are introduced just to extract the
proper joint displacements from all the nodal displace-
ments ui, and hence they are made of ‘0’ and ‘1’ only.

In terms of modal coordinates, the joint displace-
ments are given by ûi ¼ SiUiqi and ûiþ1 ¼ Siþ1Uiþ1qiþ1.

The following equation accounts for the compatibil-
ity condition at the ith joint

ûiþ1 ¼ Tiþ1,iûi ð3Þ

where Tiþ 1,i(h) is a local-to-local transformation
matrix between the two reference frames of the
ELRLs associated to the two consecutive links i and
iþ 1. Transformation matrices are function of the
joint parameters vector h ¼ �1 �2 � � � �n

� �T
.

Equation (3) can be rewritten as

Siþ1Uiþ1qiþ1 ¼ Tiþ1,iðhÞSiUiqi ð4Þ

or

�Tiþ1,iðhÞSiUi j Siþ1Uiþ1

� � qi
qiþ1

� �
¼ 0 ð5Þ

Since the equations in (4) (one for each joint) are linear
with respect to the modal coordinates, the following com-
prehensive compatibility equation can be assembled

CðhÞq ¼ 0 ð6Þ

where

and

q ¼ q1
T q2

T � � � qn
T

� �T
ð8Þ

Note that the coefficient matrix C only depends on
the joint parameters and that q contains both the rigid-
body and the elastic modal coordinates.

As far as the ERLS mechanism is considered, the
total number of degrees of freedom of all the links with-
out constraints m is related to the total number of
degrees of freedom of the ERLS mechanism n through
the relationship

m� � ¼ n ð9Þ

The number of rows of C equals the number of con-
straints n imposed by the joints. The number of col-
umns equals the total number of modal coordinates
and is given by the sum of the number of the rigid-
body modal coordinates m and the number of the
elastic modal coordinates d. For equation (6), the
dimensions of C are n� (mþ d)¼ (m� n)� (mþ d).
Therefore, the linear system (6) is underdetermined
and the solution is of the form 1nþ d.

All of the rigid-motion modal coordinates and the
elastic modal coordinates can be gathered respectively
into two separate vectors qr and qd. Thus, the system (6)
can be rearranged as follows

Crqr þ Cdqd ¼ 0 ð10Þ

wherein the submatrix Cr has dimensions v�m and Cd

has dimensions v� d. Note that, because of equation
(9), n<m, i.e. the number of unknowns is greater than
the number of equations.

By using the right pseudoinverse Cþr ¼ CT
r ðCrC

T
r Þ
�1

(Ben-Israel and Greville, 2003), the system (10) can be

CðhÞ ¼

S1U1 0 � � � � � � � � � 0

�T1, 2ðhÞS1U1 S2U2 0 � � � � � � 0

0 �T2, 3ðhÞS2U2 S3U3 0 � � � 0

0 0 � � � . .
. . .

.
0

0 0 0 . .
. . .

.
0

0 � � � �Tn�1, nðhÞSn�1Un�1 SnUn

0 0 � � � � � � 0 �Tn, nþ1ðhÞSnUn

2
6666666664

3
7777777775

ð7Þ
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solved with respect to qr, namely qr ¼ �C
þ
r Cdqd. In this

way, the minimum norm solution is chosen for the
unknown qr vector. Eventually, by introducing a new
matrix DðhÞ ¼

def
�Cþr ðhÞCdðhÞ it is possible to represent

the vibration modal coordinates as functions of rigid-
body modal coordinates and joint parameters (ERLS
coordinates)

qr ¼ DðhÞqd ð11Þ

It should be remarked that, according to (11), the
rigid-body modal coordinates are a function of h and qd
only. Note that, if qd¼ 0, then qr¼ 0. In other words, if
all of the links are assumed to be rigid, the remaining
degrees of freedom are those of the ERLS.

According to the literature, the selection of the interior
modes to be retained to keep the model dimensions to a
minimum while preserving the system response accuracy
is still an open field of investigation; indeed, the choice of
the reduction strategy and dimension of the reduced-
order model is generally left to experience. Often only
the lower-frequency modes are retained. In Besselink
et al. (2013) and Koutsovasilis and Beitelschmidt (2008)
a comparison of model reduction techniques have been
made. Recently, a new approach based on an energy-
based coefficient has been proposed for resonant systems
by Palomba et al. (2014). In this work, in order to be able
to compare the results with the FFR AdamsTM imple-
mentation (see Section 6), a classical Craig–Bampton
approach (Craig and Bampton, 1968), where the lower-
frequency modes are retained, has been adopted.

2.1. Derivative terms

In order to implement the dynamic analysis of the com-
plete mechanism, it is necessary to derive all of the vel-
ocity and acceleration terms as functions of h, qd and
their derivatives.

By differentiating equation (6) with respect to time,
we obtain _Cqþ C _q ¼ 0 which can be written as

X
k

@C

@�k
q_hk þ C _q ¼ 0 ð12Þ

Let us define

Eðh, qÞ ¼
def @C

@�1
q � � �

@C

@�n
q

� �
ð13Þ

By substituting (13) into (12), one obtains
E_hþ C _q ¼ 0 and, after splitting the coefficient matrix
C according to (10), (12) becomes E_hþ Cd _qdþ
Cr _qr ¼ 0.

The previous equation can be solved with respect to
the rigid-motion modal coordinate derivative terms by
exploiting the pseudoinverse, namely _qr ¼ �C

þ
r

Cd _qd � Cþr E
_h. The final equation is obtained by intro-

ducing the matrix Gðh, qÞ ¼
def
�Cþr ðhÞEðh, qÞ

_qr ¼ DðhÞ_qd þ Gðh, qÞ_h ð14Þ

which expresses the relationship between the velocities
of the rigid-body modal coordinates and the velocities
of the independent variables. The equation can be rep-
resented in terms of virtual displacements

�qr ¼ DðhÞ�qd þ Gðh, qÞ�h ð15Þ

2.2. Acceleration terms

By differentiating equation (6) with respect to time
twice, one obtains

€Cqþ 2 _C _qþ C €q ¼ 0 ð16Þ

The second derivative of the coefficient matrix is

€C ¼
d

dt

X
k

@C

@�k
_hk ¼

X
j

X
k

@2C

@�j@�k
_hj _hk þ

X
k

@C

@�k
€�k ð17Þ

Let us introduce the notation

hðh, _h, qÞ ¼
def

X
j

X
k

@2C

@�j@�k
_hj _hk

!
q ð18Þ

and

cðh, _h, _qÞ ¼
def _C _q ¼

X
k

@C

@�k
_hk

!
_q ð19Þ

Multiplying both sides of equation (17) by q and
using (13) and (18), it yields

€Cq ¼ hðh, _h, qÞ þ Eðh, qÞ€h ð20Þ

Replacing equations (16) and (19) into (20), the
second derivative of equation (6) can be written as

hðh, _h, qÞ þ Eðh, qÞ€hþ 2cðh, _h, _qÞ þ CðhÞ €q ¼ 0 ð21Þ

By splitting matrix C according to equation (10)
and solving the resulting system with respect to €qr, the
acceleration of rigid-bodymodal coordinates as functions
of the independent coordinates is computed

€qr ¼� Cþr ðhÞhðh,
_h, qÞ � Cþr ðhÞEðh, qÞ

€h

� 2Cþr ðhÞcðh,
_h, _qÞ � Cþr ðhÞCdðhÞ €qd ð22Þ
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By adopting the notation

nðh, _h, q, _qÞ ¼
def
�Cþr ðhÞhðh,

_h, qÞ � 2Cþr ðhÞcðh,
_h, _qÞ ð23Þ

equation (22) can be rewritten as

€qr ¼ Gðh, qÞ€hþDðhÞ €qd þ nðh, _h, q, _qÞ ð24Þ

3. Differences between the ERLS and
the FFR formulations

It is now possible to enumerate the differences between
the ERLS and FFR formulations.

1. In the FFR approach the ith deformed body does
not present rigid displacements with respect to the
ith link, in the sense that there are not rigid motions
of the deformed body with respect to the local ref-
erence frame. On the other hand, rigid displacements
are required for the ERLS approach: they are
defined by the values of the rigid-body modal
coordinates.

2. In the FFR case, joint parameters and deform-
ation modal values are coupled in the kinematic
equations. Indeed, the constraint equations
depend on both the elastic deformations and on
the reference motion of the elastic bodies. In the
ERLS approach the kinematic equations just con-
tain the joint parameters, since the deformation
modal values are present in the compatibility con-
dition at the joints. This means that, as highlighted
in previous works, e.g. Vidoni et al. (2013), the
kinematic equations of the ERLS are decoupled
from the compatibility equations of the displace-
ment at the joints.

3. As a consequence of the difference 2, if a closed-form
solution of the kinematic equations is available, it can
be employed without resorting to iterative algorithm
procedures.

4. Moreover, thanks to the difference 2, for the ERLS
approach the choice of independent variables is not
problematic as it is, on the other hand, for the FFR
approach, as stated in Shabana (2005).

5. The ERLS approach works directly with a classical
Denavit–Hartenberg (Denavit and Hartenberg,
1955) formulation as well as coping with the flex-
ible-link robot as if it were a rigid-link one.

4. Virtual work contributions

4.1. Virtual work of inertial forces for a single link

Let us drop, for sake of clarity, the i subscript which
indicates the link to which each vector refers to. Let p

be the vector containing the global coordinates of all
the nodes of the link, e be the vector containing the
global coordinates of all the nodes belonging to the
ERLS and u be the vector containing all the nodal dis-
placements. These vectors satisfy the equation

p ¼ eþ u ð25Þ

according to notation of equation (1). Note that all
terms are represented with respect to the global refer-
ence frame. Here u can be expressed on terms of modal
coordinates by the relationship

u ¼ �RUq ð26Þ

where the matrix �R contains on the main diagonal the
blocks of the local-to-global rotational matrices Ti.
Thus, the nodal virtual displacements and the second
derivative of nodal displacements are

�u ¼ � �RUqþ �RU�q ð27Þ

€u ¼ €�RUqþ 2 _�RU _qþ �RU €q ð28Þ

In order to compute the virtual displacements and
the acceleration related to the ERLS, it is necessary to
introduce the general formulation of velocity and accel-
eration of a generic point associated to the rigid-body,
i.e. to the link of the ERLS.

For a point P, the velocity and the acceleration mea-
sured with respect to a point O are

vp ¼ vo � ðP�OÞ ^ x ð29Þ

ap ¼ ao � ðP�OÞ ^ aþ x ^ ðvp � voÞ ð30Þ

Let us choose three different nonaligned nodes, iden-
tified by the subscripts 0, 1 and 2. The velocities of
the last two nodes with respect to the first are
v1¼ v0� (P1�P0)6x and v2¼ v0� (P2�P0)6x.
Using matrix notation, the following holds

v0
v1
v2

2
4

3
5 ¼ B̂

v0
x

� �
ð31Þ

where B̂ is a 9� 6 matrix defined in Appendix B.
The matrix U can be split into two blocks: the

columns of the first one are the rigid-body mode
eigenvectors while the columns of the second one
are the deformation mode eigenvectors, i.e.
U ¼ UrjUd

� �
.

Let us extract from the matrix Ur the submatrix Ûr

whose rows just contain the components related to the
nodes 0, 1 and 2. Since Ur is made with rigid-body
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mode vectors, there exists an unknown vector x which
satisfies

v0
v1
v2

2
4

3
5 ¼ Ûrx ð32Þ

By equating equations (31) and (32), and using the
left pseudoinverse to obtain the solution that minimizes
the norm of the error (Ben-Israel and Greville, 2003), it
yields

x ¼ ~B
v0
x

� �
ð33Þ

where ~B ¼ ðÛ
T

r ÛrÞ
�1Û

T

r B̂.
By means of the matrix Ur introduced in equation

(26), all the velocities of the nodes belonging to the
ERLS (expressed with respect to the reference frame
of the links) are obtained as a function of the velocity
of node 0 and the angular velocity vector, in the form

_e ¼ �RUr
~B

v0
x

� �
ð34Þ

Note that the matrix ~B is defined by the link geom-
etry and the eigenvectors. Thus, it is constant and can
be calculated once at the beginning of the simulation.

Let us express the acceleration of nodes 0,1 and 2 as
the sum of the two contributes

a0 ¼ aI0 þ aII0

a1 ¼ aI1 þ aII1

a2 ¼ aI2 þ aII2

ð35Þ

The first term represents the contributions of the accel-
eration for null angular velocity and the second one
represents the components due to the angular velocity
only. Considering that aI0 ¼ a0, a

I
1 ¼ a0 � ðP1 � P0Þ ^ a

and aI2 ¼ a0 � ðP2 � P0Þ ^ a, the nodal accelerations for
null angular velocity are

€eI ¼ �RUr
~B

a0
a

� �
ð36Þ

The contribution to the nodal accelerations due to the
angular velocity is

€eII ¼ �R �:Ur
~B

0

x

� �
ð37Þ

The matrix �: contains on its main diagonal the
skew-symmetric matrices : given by the components
of the angular velocity expressed with respect to the
link reference frame. The centripetal contribution has
been obtained by applying the relationship x6 (vp�
vo)¼x6 [�(P� 0)6x] to all of the nodes of the link.

By adding all of the contributions due to the nodal
accelerations (equations (36) and (37)), one obtains

€e ¼ €eI þ €eII ¼ €e ¼ �RUr
~B

a0

a

� �
þ �R �:Ur

~B
0

x

� �
ð38Þ

The last equation can be simplified by introducing
the matrix B ¼

def ~B
0

h i
. The lower block of B is made of a

number of null rows equal to the number of elastic
modal coordinates of the link. Moreover it is explicitly
assumed that the columns of the eigenvectors matrix U
(from left to right) are in increasing value of the cor-
responding eigenvalues.

Note that Ur
~B can be written as UB; thus, equations

(34) and (38) can be rewritten as

_e ¼ �RUB
v0
x

� �
ð39Þ

€e ¼ �RUB
a0
a

� �
þ �R �:UB

0

x

� �
ð40Þ

From equation (39), the virtual displacements of the
nodes of the ERLS are

�e ¼ �RUB
�P0

�/

� �
ð41Þ

Eventually, since dp¼ deþ du and €p ¼ €eþ €u, the vir-
tual displacements and the absolute accelerations of the
nodes are

�p ¼ �RUB
�P0

�/

� �
þ � �RUqþ �RU�q ð42Þ

€p ¼ �RUB
a0
a

� �
þ �R �:UB

0

x

� �
þ

€�RUqþ 2 _�RU _qþ �RU €q

ð43Þ

Let M be the mass matrix expressed with respect to
the local reference frame. The virtual work done by the
inertial forces is

�Winertia ¼ ��p
T �RM �R

T
€p ð44Þ

or, by introducing equations (42) and (43), is

�Winertia ¼ � �qTUT þ qTUT� �R
T �Rþ

�P0

�/

� �T
BTUT

!
M

� UB
a0

a

� �
þ �:UB

0

x

� �
þ �R

T €�RUqþ 2 �R
T _�RU _qþU €q

� 	
ð45Þ
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The terms � �R
T �R, �R

T _�R and �R
T €�R can be written as (see

Appendix C)

� �R
T �R ¼ � �(

T �R
T _�R ¼ �: and �R

T €�R ¼ �A� �:
T �: ð46Þ

where

: ¼
def

0 �!z !y

!z 0 �!x

�!y !x 0

2
64

3
75,

A ¼
def

0 ��z �y

�z 0 ��x

��y �x 0

2
64

3
75 and

�( ¼
def

0 ���z ��y

��z 0 ���x

���y ��x 0

2
64

3
75 ð47Þ

dfx, dfy and dfz are the virtual rotational displace-
ments of the link. Using equation (46), the virtual
work of inertial forces given by (45) can be simplified

�Winertia ¼� �qTUTþ qTUT� �(
T
þ

�P0

�/

� �T
BTUT

 !
M

UB
a0

a

� �
þ �:UB

0

x

� �
þð �A� �:

T �:ÞUqþ 2 �:U _qþU €q

� 	
ð48Þ

By computing the products between the virtual dis-
placements and the inertial forces, one obtains

� �Winertia ¼ �q
TUTMUB

a0

a

" #
þ qTUT� �(

T
MUB

a0

�

" #

þ
�P0

�/

" #T

BTUTMUB
a0

a

" #
þ �qTUTM �:UB

0

x

" #

þ qTUT� �(
T
M �:UB

0

x

" #
þ

�P0

�/

" #T

BTUTM �:UB
0

x

" #

þ �qTUTMð �A� �:
T �:ÞUqþ qTUT� �(

T
Mð �A� �:

T �:Þ

Uqþ
�P0

�/

" #T

BTUTMð �A� �:
T �:ÞUqþ 2�qTUTM �:U _q

þ 2qTUT� �(
T
M �:U _qþ 2

�P0

�/

" #T

BTUTM �:U _q

þ �qTUTMU €qþ qTUT� �(
T
MU €qþ

�P0

�/

" #T

BTUTMU €q

ð49Þ

Now the virtual work can be split into two sections
�Winertia ¼ �W

I
inertia þ �W

II
inertia, the former containing

all of the terms related to the second derivative of the
variables, the latter containing all the remaining terms

� �WI
inertia ¼ �q

TUTMUB
a0

a

� �

þ qTUT� �(
T
MUB

a0

�

� �
þ

�P0

�/

� �T
BTUTMUB

a0

a

� �

þ �qTUTM �AUqþ qTUT� �(
T
M �AUq

þ
�P0

�/

� �T
BTUTM �AUqþ �qTUTMU €q

þ qTUT� �(
T
MU €qþ

�P0

�/

� �T
BTUTMU €q ð50Þ

�WII
inertia ¼ ��q

TUTM �:UB
0

x

� �
� qTUT� �(

T

M �:UB
0

x

� �
�

�P0

�/

� �T
BTUTM �:UB

0

x

� �

þ �qTUTM �:
T �:Uqþ qTUT� �(

T
M �:

T �:Uq

þ
�P0

�/

� �T
BTUTM �:

T �:Uq� 2�qTUTM �:U _q

� 2qTUT� �(
T
M �:U _q� 2

�P0

�/

� �T
BTUTM �:U _q ð51Þ

The single terms of the last two equations are devel-
oped in Appendix D.

4.2. Variation of elastic energy for a single link

The elastic energy of a link is given by H ¼ 1
2 u

TKu.
Therefore, its variation is

�H ¼ �uTKu ð52Þ

Since u¼Uq, the variation of elastic energy becomes

�H ¼ �qTUTKUq ¼ �qT!q ð53Þ

where the matrix ! is a diagonal matrix whose compo-
nents are the squares of the natural frequencies.
Considering just the submatrix !d corresponding to
the nonnull eigenvalues, it is possible to write

�H ¼ �qTd!dqd ð54Þ

4.3. Virtual work of gravity forces related to a
single link

The virtual work done by the gravity forces is

�Wg ¼ �p
Tfg ð55Þ
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where fg are the gravity forces. The virtual displace-
ments can be written as

�p ¼ �RUB
�P0

�/

� �
þ � �RUqþ �RU�q ð56Þ

and the gravity forces as

fg ¼
�RMĝl ¼

�RMðî1gx þ î2gy þ î3gzÞ ¼ �RMÎgl ð57Þ

where gl¼fgx,gy,gz}
T represents the gravity expressed

with respect to the link’s frame. Vectors îi are defined
depending on the nature of the nodes (see Appendix E).

Replacing equation (56) and (57) into (55), produces

�Wg ¼

 
�P0

�/

� �T
BTUT �R

T
þ qTUT� �R

T
þ �qTUT �R

T

!

�RMÎgl ð58Þ

or

�Wg ¼
�P0

�/

� �T
BTUTMÎgl þ qTUT� �(

T
MÎgl

þ �qTUTMÎgl ð59Þ

The first term of equation (59) can be written as

�P0

�/

� �T
BTUTMÎgl ¼

�P0

�/

� �T
BTQ4gl ð60Þ

where

Q4 ¼ UTMÎ ð61Þ

Part of the second term can be written as

UT� �(
T
MÎ ¼ UT ��x �A

T

1 þ ��y
�A
T

2 þ ��z
�A
T

3


 �
MÎ

¼ ��1Q1 þ ��2Q2 þ ��3Q3 ð62Þ

where Q1 ¼
def

UT �A
T

1MÎ, Q2 ¼
def

UT �A
T

2MÎ and Q3 ¼
def

UT �A
T

3MÎ.
The third term can be written as

�qTUTMÎgl ¼ �q
TQ4gl ð63Þ

4.4. Virtual work of the resultant generalized
forces (forces or torques) acting on the link

The virtual work done by a generalized force f is

�Wf ¼ �p
Tf ð64Þ

where the virtual displacement is

�p ¼ TÛfB
�P0

�/

� �
þ �TÛfqþ TÛf�q ð65Þ

In this case Ûf is a submatrix of U. Its rows are the
rows of U related to the degrees of freedom the general-
ized force is applied to.

Let us define the generalized force vector whose
components are referred to the local link’s reference
as fl. The relationship f¼Tfl holds true. Therefore,
the virtual work done by a generalized force can be
written as

�Wf ¼

 
�P0

�/

� �T
BTÛ

T

f R
T þ qTÛ

T

f �R
T þ �qTÛ

T

f R
T

!
Tfl

ð66Þ

or

�Wf ¼
�P0

�/

� �T
BTÛ

T

f fl þ qTÛ
T

f �(
Tfl þ �q

TÛ
T

f fl ð67Þ

According to (47), the second term of (67) has the
following form

qTÛ
T

f �(
Tfl ¼ ��1q

TÛ
T

f

0 0 0

0 0 1

0 �1 0

2
64

3
75fl

þ ��2q
TÛ

T

f

0 0 �1

0 0 0

1 0 0

2
64

3
75fl

þ ��3q
TÛ

T

f

0 1 0

�1 0 0

0 0 0

2
64

3
75fl ð68Þ

5. Equations of motion

When dealing with a multi-body system, the obtained
formulation should be managed to obtain compact
motion equations expressed in terms of the acceler-
ations of the degrees of freedom of the system.

Thus, by exploiting equations (11), (15) and (24), the
virtual terms of the generic ith link can be rewritten as

�P0i

�/i

�q

2
64

3
75 ¼ V�i 0

0 Vqi

� � JðhÞ 0

Gðh, qÞ DðhÞ

0 I

2
64

3
75 �h

�qd

� �

¼ Vo
i N

�h

�qd

� �
ð69Þ
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where J(h) represents the Jacobian matrix of the ERLS,
and the Vo

i a selection matrix for the proper elements of
the ith link. The Vo

i matrix is block diagonal and allows
the correct terms related to both the rigid degrees of
freedom and the independent vibration modal coordin-
ates to be selected.

The acceleration terms can also be rewritten as func-
tion of the independent variables

a0i
ai
€q

2
4

3
5 ¼ Vo

iN
€h
€qd

� �
þ Vo

i

_Jðh, _hÞ_h
nðh, _h, q, _qÞ

0

2
4

3
5 ð70Þ

where _Jðh, _hÞ represents the first time derivative of the
Jacobian matrix of the ERLS; the second term of the
equation depends only on the position and velocity of
the independent variables and is thus known.

In such a way, all of the terms of the ith link are
expressed as functions of the independent variables and
can be easily added and computed.

The virtual work done by the inertial forces
�WI

inertia, i and �WII
inertia, i of each link, and the virtual

works done by the gravitational dWg and generalized
dWf forces, can be reformulated in a more compact
form. Namely, by gathering in the Li matrix all the
terms not depending on the virtual displacements and
accelerations, the contribution given by �WI

inertia, i

becomes

��WI
inertia,i ¼ �PT

0i �/T
i �qT

� �
Li

a0i
ai
€q

2
4

3
5 ð71Þ

Now, by substituting equations (69) and (70), it holds

��WI
inertia,i ¼ �hT �qTd

� �
NTVoT

i Li Vo
iN

€h

€qd

" #

þ Vo
i

_Jðh, _hÞ_h

nðh, _h, q, _qÞ

0

2
64

3
75
!

ð72Þ

The �WII
inertia, i term can be expressed by gathering in

the li matrix all the terms not depending on the virtual
displacements

�WII
inertia,i ¼ �PT

0i �/T
i �qT

� �
li ¼ �hT �qTd

� �
NTVoT

i li

ð73Þ

Now, since the second term in equation (72) does not
eventually depend on the virtual displacements, it can
be included in the li matrix.

All of the other terms, i.e. the variation of the elastic
energy dH (equation (54)), of the gravity forces dWg

(equations (60), (62) and (63)) and of the resultant gen-
eralized forces dWf (equation (67)) do not depend on
accelerations and can be gathered into the right-hand
term of the dynamic system equation. For the sake of
clarity, the matrix l, which now includes all of these
contributions, will be named ~li. By naming dWi the
term which includes all of the contributions not
depending on accelerations, one obtains

�Wi ¼ �PT
0i �/T

i �qT
� �

~li ¼ �hT �qTd
� �

NTVoT
i
~li

ð74Þ

By adding up all of the links contributions, the fol-
lowing equation is obtained

��WI
inertia ¼

XN
i¼1

�hT �qTd
� �

NTVoT
i Li Vo

iN
€h

€qd

" #

þ Vo
i

_Jðh, _hÞ_h

nðh, _h, q, _qÞ

0

2
64

3
75
!
¼¼ �W

¼
XN
i¼1

�hT �qTd
� �

NTVoT
i
~li

Finally, by letting L ¼
def PN

i¼1 V
oT
i LiV

o
i and

~l ¼
def PN

i¼1 V
oT
i
~li, and discarding the virtual displace-

ments, the final model representation is obtained

LN
€h
€qd

� �
¼ �L

_Jðh, _�Þh
nðh, _�, q, _qÞ

0

2
4

3
5þ ~l ð75Þ

6. Numerical implementation and
model validation

A MATLABTM software simulator has been imple-
mented in order to test and to validate the dynamic
model presented in the previous sections. An
L-shaped benchmark mechanism has been chosen
(Gasparetto et al., 2013) as in Figure 2.

The particular shape of the system has been chosen
to allow a three-dimensional motion of the mechanism,
i.e. to induce motion and vibrations in different direc-
tions, and not only on a plane as often done in the
literature, see Dwivedy and Eberhard (2006).

The results have been compared with those provided
by AdamsTM for the same mechanism. It is well known
that the AdamsTM software uses a FFR approach and a
CMS technique based on the Craig–Bampton method
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where the degrees of freedom of the system are parti-
tioned into boundary and interior degrees of freedom
and the formers are exactly preserved when higher-
order modes are truncated and the system dimension
reduced (Craig and Bampton, 1968).

In AdamsTM, the link flexibility is imported and
loaded through a special file, i.e. the modal neutral
file. Thus, first the links have to be modeled and
meshed in a computer-aided engineering simulation
software such as ANSYSTM and then the proper file
is generated. For this purpose a special toolbox is avail-
able in ANSYSTM (see http://www.ansys.com).

In the ERLS-CMS model under consideration, a
similar approach can be used. Indeed, to set up the
significant terms of each link, such as, for instance,
eigenvectors and eigenvalues, the same files based on
the Craig–Bampton reduction that AdamsTM uses to
import the link flexibility can be exploited for the for-
mulation under evaluation. Thus, the comparison can
be made being sure that the two approaches work with
the same kind of modal reduction.

The L-shaped mechanism chosen for the tests is
made of two flexible rods and can be considered as
the three-dimensional version of the classic single-link
planar mechanism adopted as benchmark in other
approaches limited to a two-dimensional motion.

6.1. Test 1: convergence of the solution

In the first numerical test the convergence of the solu-
tion of the ERLS-CMS model implemented in
MATLABTM has been evaluated; the main geometrical
and mechanical parameters of the tested mechanism are
reported in Table 1.

Since the L-shaped system can rotate only around its
y-axis (i.e. it has one rigid degree of freedom), due to
the chosen mechanical and geometrical parameters,
small deformations but large rotations have been
taken into account. In ANSYSTM the link has been
modeled with four Euler–Bernoulli beams: each beam
has 2 nodes and 6 degrees of freedom and thus the
whole mechanism link has 5 nodes and 30 eigenvalues.
The modal neutral file has been built by choosing as
interface nodes the first and last node of the L-shaped
mechanism and exporting 18 modes over the 30
available.

The motion is simulated under gravity (g¼ 9.81m/s2),
without friction and damping, by releasing the mechan-
ism from the horizontal (y¼ 0�) position. The
chosen solver was a modified Runge–Kutta algorithm.
Figure 3(a) and (b) show the Z motion of the elbow and
of the last node of the L-shaped mechanism with respect
to the number of considered modes, respectively. In
Table 2, y and the third and fifth node coordinates at
a specific time, i.e. 0.5 s, are reported. As can be seen
from the results, the comparisons show the convergence
of the solution and the system behavior by changing the
number of considered modes.

With just six modes only the rigid behavior is simu-
lated; by considering more modes the elastic behavior is
taken into account. By increasing the number of modes
the convergence to the solution obtained through the
FFR model can be achieved, as highlighted by the
results presented in the next section. Anyway, a general
rule for the choice of a suitable number of nodes can be
made according to the bandwidth of the actuator by
considering that the dynamic model of the flexible
system should reproduce with sufficient accuracy all
of the modes that lie within this limit. This rule,
which is commonly applied, is based upon the fact
that a mode cannot be excited if it lies beyond the band-
width of the actuator.

X

Y
Z

Figure 2. L-shaped mechanism: reference frame and node

discretization.

Table 1. Geometrical and mechanical parameters of the L-shaped mechanism.

Element Material Length (m) Depth (m) Width (m)

Density

r (kg/m3)

Poisson’s

ratio

Young’s

modulus (N/m2)

First Steel 0.5 0.03 0.01 7800 0.33 2e11

Second Steel 0.5 0.03 0.01 7800 0.33 2e11
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6.2. Test 2: comparison of the ERLS and FFR
approaches with respect to the number of
considered modes

In order to show the behavior of the ERLS-CMS for-
mulation for a spatial mechanism with respect to the

FFR-CMS, a first comparison between the
MATLABTM simulator and the AdamsTM software
has been performed. The simulation lasts 2 seconds
and the L-shaped mechanism is evaluated under grav-
ity, in the absence of frictional forces and damping,
starting from a zero-degree condition. The chosen
solver is a modified Runge–Kutta algorithm and in

(a)

(b)

Figure 3. L-shaped mechanism: Z-coordinate of the mechanism

elbow (a) and of the mechanism tip (b) with respect to the

number of selected modes.

(a)

(b)

Figure 4. L-shaped mechanism comparison: (a) Y-coordinate

of the mechanism tip and (b) its magnification at about t¼ 1.2 s.

Table 2. Comparison of � and the third and fifth node coordinates at t¼ 0.5 s.

Mode N � (deg)

Third

X-coord (m)

Third

Y-coord (m)

Third

Z-coord (m)

Fifth

X-coord (m)

Fifth

Y-coord (m)

Fifth

Z-coord (m)

6 125.90 �0.2931 0 �0.4050 �0.2931 0 �0.4050

8 115.30 �0.2139 �0.0357 �0.4520 �0.2607 0.4643 �0.5509

10 114.30 �0.2061 �0.0491 �0.4555 �0.2596 0.4509 �0.5735

12 114.25 �0.2044 �0.0500 �0.4563 �0.2615 0.4500 �0.5741

14 114.20 �0.2027 �0.0509 �0.4571 �0.2635 0.4491 �0.5766

16 113.50 �0.1970 �0.0637 �0.4596 �0.2626 0.4491 �0.5955

18 113.50 �0.1970 �0.0637 �0.4596 �0.2626 0.4362 �0.5955
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the first simulation a modal neutral file with 18 modes is
considered, while in the second simulation a modal neu-
tral file with all 30 modes is used. The AdamsTM results
presented take into account all of the modes present in
the modal neutral file. It should be highlighted that
high-order modes are included just to show the agree-
ment between the novel dynamical model and the FFR
formulation. It is known that analytical models are
often incapable of describing with accuracy the behav-
ior of a flexible system at high frequencies.

Figure 4(a) shows the Y-coordinate of the last node
of the L-shaped mechanism with respect to the number
of considered modes, up to 30. In Figure 4(b), a mag-
nification of Figure 4(a) around 1.2 s is shown. It can be
seen that the results provided by the ERLS-CMS
approach are in good agreement with those given by
AdamsTM and that the signals overlap almost perfectly.

Regarding the computing time needed to solve the
dynamic system, since the two approaches are imple-
mented in different software, i.e. MATLABTM and
AdamsTM, at the actual stage it is not possible to
make a proper comparison between the two. Indeed,
as a general consideration, it can be said that, since
the ERLS approach is implemented in a nonoptimized
code, the simulations take comparable computing time
in the case of a low number of modes while, by adding
modes with relative high frequencies, the simulation
time of AdamsTM becomes lower.

By looking at the previous ERLS implementation,
since the new formulation allows the reducing of the
number of degrees of freedom of the considered sys-
tem with respect to the ERLS-FEM approach, the
computational time required decreases. Indeed, it is
highly dependent on the number of degrees of free-
dom, now the number of kept modes and their
frequency; the choice of the selected modes could be
made in different manners and only if the lower-
frequency modes are maintained. A faster integration
time is required for finding the solution of the dynamic
system.

6.3. Test 3: comparison of the ERLS and FFR
approaches under a torque input command

In order to highlight the vibrational behavior of the
L-shaped link in terms of the frequency and shape of
deformation, the mechanism response to a torque input

has been simulated and the results compared with
AdamsTM. The geometrical and mechanical parameters
of the mechanism and the input torque signal have been
chosen as in Table 3 and Figure 5 (Gasparetto et al.,
2013), and the simulation has been performed without
any friction or damping. Extra inertias and a concen-
trated mass have been introduced in order to take into
account the motor, i.e. Im¼ 0.0043 kgm2, and the
shrink disc, i.e. Ic¼ 0.001269 kgm2, inertias and the

Figure 6. Comparison of the elbow Z-coordinate of the

L-shaped mechanism under torque input.

Figure 5. Input torque signal.

Table 3. Geometrical and mechanical parameters of the L-shaped mechanism under an input torque signal.

Element Material Length (m) Depth (m) Width (m)

Density

r (kg/m3)

Poisson’s

ratio

Young’s

modulus (N/m2)

First Aluminum 0.5 0.008 0.008 2700 0.33 7e10

Second Aluminum 0.5 0.008 0.008 2700 0.33 7e10
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elbow articulation mass, i.e. 0.017 kg. The input signal
allows, from a statically balanced configuration at 135�,
to fast accelerate and decelerate the L-beam, according
to the torque profile reported in Figure 5.

As for the previous results, the link has been mod-
eled in ANSYSTM with four Euler–Bernoulli beams,
the modal neutral file has been built by choosing as
interface nodes the first and last node of the L-shaped
mechanism and by exporting 18 modes over the 30
available.

Figure 6 shows the elbow Z-coordinate position
comparison of the last node of the first part of the
L-shaped mechanism, i.e. the elbow, between the simu-
lated ERLS-CMS and AdamsTM, while Figures 7 and 8
show the elbow Z-coordinate acceleration in the time
and frequency domain, respectively.

As can be seen in Figure 8, the ERLS-CMS and
AdamsTM signals match each other very well and
the main frequencies of the mechanism under test, i.e.
11, 31, 113 and 171 Hz, are captured and properly
simulated.

7. Conclusions and future work

In this paper an ERLS formulation was extended with
CMS to develop a novel dynamic model of spatial
flexible mechanisms. After the definition of the model
kinematics, the dynamic equations, which account for
the coupling between rigid-body and flexible-body
motions, were obtained and discussed.

The model was implemented and numerically vali-
dated by comparing its response with a commercial
simulator based on the FFR formulation. The tests,
performed both under gravity and under a forced
torque input, showed a good agreement between the
results, thus proving the effectiveness of the proposed
dynamic model.

Future work will be devoted to further validate the
model through experimental tests both on an L-shaped
and another benchmark mechanism with at least two
rigid degrees of freedom.
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Appendix A

Notation

aX Acceleration of point X.
A Skew-symmetric matrix of absolute angular

accelerations.
B̂ Matrix of relationships between the linear

velocities of three nonaligned nodes with
respect to the velocity of the first one (see
Appendix B).

C Matrix of compatibility relationships.
Cr, Cr Partitions of C.

D Matrix of relationships between vibrational
modal coordinates and rigid-body modal
coordinates.

ei Nodal position vector of the ith link.
E Vector containing the partial derivatives

matrices of C with respect to the rigid degrees
of freedom as defined in equation (13).

G ¼
def
�Cþr ðhÞEðh, qÞ.

f Vector of generalized forces acting on each
link.

fg Vector of gravity forces.
gl Vector of gravity acceleration components

expressed in the local reference frame.
GX Velocity of point X.
H Elastic energy of each link.
Î Matrix of îi components (see Appendix E).

J(h) Jacobian matrix of the ERLS.
K Stiffness matrix of each link.
~l Submatrix of l elements independent from

accelerations for the whole mechanism.
~li Submatrix of l elements independent from

accelerations.
L Selection matrix for the elements independent

form virtual displacements and accelerations
for the whole mechanism.

Li Selection matrix for the elements independent
form virtual displacements and accelerations.

M Mass matrix.
N Matrix that relates the vector of the indepen-

dent degrees of freedom with the overall
system degrees of freedom used in equation
(69).

pi Absolute nodal position vector for the ith
link.

qd Vector of elastic modal coordinates.
qi Modal coordinates of the ith link.
qr Vector of rigid-motion modal coordinates.
R Local-to-global rotation matrix for the whole

mechanism.
Si Matrix for the selection of the joint displace-

ments among the nodal displacements.

Ti,j Local-to-local transformation matrix
between the local reference frames of ith
and jth link.

ui Nodal displacement vector of the ith link.
Ui Eigenvectors of the ith link.
Ûf Submatrix of U.

Ur, Ud Rigid-body and elastic mode eigenvectors,
respectively.

Vo
i Block diagonal selection matrix used in equa-

tion (69).

a Absolute angular acceleration.
! Diagonal matrix of the squares of natural

frequencies of each link.
h Vector of joint positions.
r Vector of virtual rotational displacements.
( Matrix of absolute rotational displacement.

dW Virtual work.
d( Skew-symmetric matrix of virtual rotational

displacements represented in the local refer-
ence frame.

u Absolute angular velocity.
: Matrix of angular speeds for the whole

mechanism.
: Skew-symmetric matrix of absolute angular

velocities.

Appendix B. The B̂ matrix

Using the skew-symmetric matrix definition

a b c
� �Th i

X
¼
def

0 �c b
c 0 �a
�b a 0

2
4

3
5

employed for the cross-product operation

B̂ ¼
def

I 0
I �ðP1 � P0Þ

� �
X

I �ðP2 � P0Þ
� �

X

2
4

3
5 ð76Þ

Appendix C. Development of the terms
involving rotational matrices

Let us find a new formulation for the terms containing
the rotational matrix, namely � �R

T �R, �R
T _�R and �R

T €�R.
The following equations hold true

RTT ¼ I, RT _R ¼ : and RT €Rþ _R
T _R ¼ A ð77Þ

Vidoni et al. 15
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where

: ¼
def

0 �!z !y

!z 0 �!x

�!y !x 0

2
64

3
75 ð78Þ

and

A ¼
def

0 ��z �y

�z 0 ��x

��y �x 0

2
664

3
775 ð79Þ

are the skew-symmetric matrices referring to the abso-
lute angular velocity and absolute angular acceleration
of the link, respectively.

Since _R
T _R ¼ :TTTT: ¼ :T:, it yields RT €R ¼

A�:T:. Moreover, _R ¼ T: and, thus, dT¼Td(,
where

�( ¼
def

0 ���z ��y

��z 0 ���x

���y ��x 0

2
64

3
75 ð80Þ

is a skew-symmetric matrix; its components are the vir-
tual rotational displacements expressed with respect to
the local frame of the link. By pre-multiplying the pre-
vious equation by dTT, one obtains

�TTT ¼ �(TTTT ¼ �(T ð81Þ

In conclusion, extending the results to the matrix �R,
which contains on its main diagonal the single rota-
tional matrices referred to each link, one obtains

� �R
T �R ¼ � �(

T
, �R

T _�R ¼ �: and �R
T €�R ¼ �A� �:

T �:

ð82Þ

Appendix D. Development of the
constant inertial matrices related
to a single link

The terms related to the inertial matrix of equations
(50) and (51) can be written as

UTM �AU ¼ UTM �x �A1 þ �y �A2 þ �z �A3

� 

U ð83Þ

where

A1 ¼
def

0 0 0

0 0 �1

0 1 0

2
64

3
75, A2 ¼

def

0 0 1

0 0 0

�1 0 0

2
64

3
75 and

A3 ¼
def

0 �1 0

1 0 0

0 0 0

2
64

3
75

By introducing the notation X1 ¼ UTM �A1U,
X2 ¼ UTM �A2U, and X3 ¼ UTM �A3U equation (83)
becomes

UTM �AU ¼ �xX1 þ �yX2 þ �zX3 ð84Þ

Following the same reasoning, the term UTM �:U of
equation (51) can be written as

UTM �:U ¼ !xX1 þ !yX2 þ !zX3 ð85Þ

Moreover, since UT� �(
T
MU ¼ UTM� �(U

� 
T
, it yields

UT� �(
T
MU ¼ ��xX

T
1 þ ��yX

T
2 þ ��zX

T
3 ð86Þ

Note that the product :T: is

:T: ¼

ð!2
y þ !

2
zÞ �!x!y �!x!z

�!x!y ð!2
x þ !

2
zÞ �!y!z

�!x!z �!y!z ð!2
x þ !

2
yÞ

2
64

3
75 ð87Þ

Thus, it can be written as

:T: ¼ ð!2
y þ !

2
zÞS1 þ ð!

2
x þ !

2
zÞS2 þ ð!

2
x þ !

2
yÞS3

þ !x!yS4 þ !x!zS5 þ !y!zS6 ð88Þ

where

S1 ¼
def

1 0 0

0 0 0

0 0 0

2
664

3
775, S2 ¼

def

0 0 0

0 1 0

0 0 0

2
664

3
775,

S3 ¼
def

0 0 0

0 0 0

0 0 1

2
664

3
775,
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S4 ¼
def

0 �1 0

�1 0 0

0 0 0

2
664

3
775, S5 ¼

def

0 0 �1

0 0 0

�1 0 0

2
664

3
775 and

S6 ¼
def

0 0 0

0 0 �1

0 �1 0

2
664

3
775

Now, introducing the variables Y1 ¼
def

UTM �S1U,
Y2 ¼

def
UTM �S2U, Y3 ¼

def
UTM �S3U, Y4 ¼

def
UTM �S4U,

Y5 ¼
def

UTM �S5U and Y6 ¼
def

UTM �S6U, one can write

UTM �:
T �:U ¼ ð!2

y þ !
2
zÞY1 þ ð!

2
x þ !

2
zÞY2

þ ð!2
x þ !

2
yÞY3 þ !x!yY4

þ !x!zY5 þ !y!zY6 ð89Þ

Thanks to the introduction of �A1, �A3 and �A3, the
previous equation can be written as

UT� �(
T
M �AU ¼ UT ��x �A

T

1 þ ��y
�A
T

2 þ ��z
�A
T

3


 �
M �x �A1 þ �y �A2 þ �z �A3

� 

U ð90Þ

and, after multiplications

UT� �(
T
M �AU ¼ ��x �xZ11 þ �yZ12 þ �zZ13

� 

þ ��y �xZ21 þ �yZ22 þ �zZ23

� 

þ ��z �xZ31 þ �yZ32 þ �zZ33

� 

ð91Þ

in which

Zr,d ¼ UT �A
T

r M
�AdU ð92Þ

for r¼ 1,2,3 and d¼ 1,2,3. At the same time

UT� �(
T
M �:U ¼ ��x !xZ11 þ !yZ12 þ !zZ13

� 

þ ��y !xZ21 þ !yZ22 þ !zZ23

� 

þ ��z !xZ31 þ !yZ32 þ !zZ33

� 

ð93Þ

The term

UT�UT� �(
T
M �:

T �:U

¼ UT ��x �A
T

1 þ ��y
�A
T

2 þ ��z
�A
T

3


 �

�M

ð!2
y þ !

2
zÞ

�S1 þ ð!
2
x þ !

2
zÞ

�S2

þ ð!2
x þ !

2
yÞ

�S3 þ !x!y
�S4

þ !x!z
�S5 þ !y!z

�S6

0
BBBB@

1
CCCCAU ð94Þ

can be written as

UT� �(
T
M �:

T �:U

¼ ��x

ð!2
y þ !

2
zÞW11 þ ð!

2
x þ !

2
zÞW12

þ ð!2
x þ !

2
yÞW13 þ !x!yW14

þ !x!zW15 þ !y!zW16

0
BBB@

1
CCCA

þ ��y

ð!2
y þ !

2
zÞW21 þ ð!

2
x þ !

2
zÞW22

þ ð!2
x þ !

2
yÞW23 þ !x!yW24

þ !x!zW25 þ !y!zW26

0
BBB@

1
CCCA

þ ��z

ð!2
y þ !

2
zÞW31 þ ð!

2
x þ !

2
zÞW32

þ ð!2
x þ !

2
yÞW33 þ !x!yW34

þ !x!zW35 þ !y!zW36

0
BBB@

1
CCCA ð95Þ

where

Wr,t ¼ UT �A
T

r M
�StU ð96Þ

for r¼ 1,2,3 and t¼ 1,2,3,4,5,6.

Appendix E. Development of terms hati

If the nodes do not have rotational degrees of freedom,
only gravity forces (not torques) are applied to them. In
this case

î1 ¼ 1 0 0 1 0 0 1 0 0 1 0 0 � � �
� �T

î2 ¼ 0 1 0 0 1 0 0 1 0 0 1 0 � � �
� �T

î3 ¼ 0 0 1 0 0 1 0 0 1 0 0 1 � � �
� �T

ð97Þ

It is worth to introduce the notation:

Î ¼ I I I I � � � I
� �T

ð98Þ

where I are 3� 3 identity matrices. Conversely, if nodes
have rotational degrees of freedom, îi are defined as

î1 ¼ 1 0 0 0 0 0 1 0 0 0 0 0 � � �
� �T

î2 ¼ 0 1 0 0 0 0 0 1 0 0 0 0 � � �
� �T

î3 ¼ 0 0 1 0 0 0 0 0 1 0 0 0 � � �
� �T

ð99Þ

and the matrix Î, is in this case

Î ¼ I 0 I 0 � � � 0
� �T

ð100Þ
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where I and 0 are 3� 3 unit and zero matrices. Note
that matrix I has been defined for the case where all the
nodes have rotational degrees of freedom or for the
opposite case, where none of them has rotational

degrees of freedom. In the case where nodes with rota-
tional degrees of freedom and nodes without are pre-
sent in the same link, the development of the definition
of I is straightforward.
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