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Abstract We introduce the concept of quasi upper semicontinuity of a not necessar-
ily total preorder on a topological space and we prove that there exists a maximal
element for a preorder on a compact topological space provided that it is quasi upper
semicontinuous. In this way, we generalize many classical and well known results in
the literature. We compare the concept of quasi upper semicontinuity with the other
semicontinuity concepts to arrive at the conclusion that our definition can be viewed
as the most appropriate and natural when dealing with maximal elements of preorders
on compact spaces.
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1 Introduction

The deep and rich literature concerning the existence of maximal elements for prefer-
ence relations (typically acyclic binary relations) on a compact topological space from
an economical viewpoint dates back essentially to the seminal papers of Bergstrom
(1975), whose fundamental result states that an acyclic binary relation < on a
compact topological space (X, t) has a maximal element provided that < is upper
semicontin-uous (i.e., [(x) = {z € X : z < x} is an open subset of X for every x € X).
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Campbell and Walker (1990) introduced a semicontinuity concept concerning an
acyclic binary relation called weak lower continuity (weak upper continuity in the
present paper).

Several authors presented generalizations of the fundamental result of Bergstrom,
To this aim, suitable notions of semicontinuity besides weak lower continuity were
introduced. For example, Mehta (1989) and Subiza and Peris (1997) considered trans-
fer lower continuity.

More recently, sufficient conditions for the existence of maximal elements for
ordered preferences on a compact topological space were presented by Tian and Zhou
(1995), Bosi and Zuanon (2013), Luc and Soubeyran (2013) and Nosratabadi (2014).
In particular, the concept of transfer weak upper continuity introduced by Tian and
Zhou (1995) appears by now as the most general and appropriate. Kukushkin (2008)
was concerned with the existence of maximal elements for an interval order on a
compact metric space.

In a slightly different context, conditions for the existence of undominated maximal
elements for preferences with intransitive indifference on a compact topological space
are found in Alcantud et al. (2010).

The problem concerning the existence of maximal elements over non-compact
subsets of linear topological spaces was solved by Yannelis (1985), who used an
extension of Browder’s fixed point theorem.

In this paper, we concentrate our attention specifically on the existence of maximal
elements for preorders on a compact topological space. We introduce the concept of a
quasi upper semicontinuous preorder on a topological space and we show that such a
concept is the most suitable to be considered in connection with the aforementioned
problem of determining the maximal elements. Such a notion generalizes the already
encountered concepts of upper semicontinuity of a preorder on a topological space
(which were studied both in connection with the existence of maximal elements and
of an upper semicontinuous order-preserving function). In particular, we show that
while there are quasi upper semicontinuous preorders on compact spaces which are not
transfer weakly upper continuous, quasi upper semicontinuity implies transfer weak
upper continuity under some conditions. We also discuss the representability of quasi
upper semicontinuous preorders and in particular we show that such an assumption is
necessary and sufficient for the existence of an upper semicontinuous weak utility for
the strict part of the preorder in case that the topological space is second countable.

2 Notation and preliminaries

Let = be a preorder (i.e., a reflexive and transitive binary relation) on a set X. As
usual, the strict part of 3 will be denoted by < (i.e., forall x,y € X, x < y if and
only if (x = y) and not(y = x)). For the sake of convenience, we shall occasionally
write (x, y) €< instead of x < y. For any subset A of X and any element x € X, the
scripture A X x means “z X x forallz € A”.

Denote by > the incomparability relation associated to a preorder =< on a set X
(i.e., for all x,y € X, x >< y if and only if not(x = y) and not(y 2 x)). For any



element x € X, I(x) stands for the set of all the elements that are incomparable with
x,1.e., I (x) ={z€x:zpxx}.

The indifference relation ~ associated to a preorder = on X is denoted by ~ (i.e.,
forall x,y € X, x ~ yifandonly if (x = y) and (y 3 x)). It is an equivalence, and
the associated quotient space is denoted by X|~. Further, 3|~ is the quotient order on
the quotient space X|~ (i.e., for any two elements x, y € X, [x] |~ [y] if and only
ifx 3 y). Ajump jin (X|~, Z~)is apair j = ([x], [y]) such that forno z € X it
occurs that [x] <|~ [z] <|~ [y]. The set of all the jumps in (X|~, <|~) will be denoted
by J.

Let us consider, for every point x € X, the following subsets of X:

Ix)={yeX|y=<x}, rx)={yeX|x=<y}
dx)=1{zeX|z23x}, ix)={zeX|x 2z}

A point xg € X is said to be maximal with respect to = if for no x € X it occurs that
xo < x (i.e., r(xg) = 0).

A subset D of a related set (X, R) is said to be R-decreasingif{y € X | yRx} C D
for all x € D.

If (X, 2) is a preordered set, then a function u : (X, Z) —> (R, <) is said to be

(i) increasing if, forevery x,y € X, [x 2y = u(x) < u(y)],
(11) order-preserving if it is increasing, and forevery x,y € X, [x <y = u(x) <

u(y)].

In the economic literature, an order-preserving function is often referred to as a
Richter—Peleg utility function (see e.g., Richter 1966). Denote by 1y, the natural
topology on the real line R.

A real-valued function u on X is said to be a weak utility for the strict part < of a
preorder = on a set X (see Peleg 1970) if, for all x, y € X,

x <y=ulx) <u(y).

We say that a real-valued function u on X is a quasi utility for the strict part < of a
preorder < on a set X if, for all x, y € X,

x <y=ulx) <u(y).

It is clear that an increasing function u for a preorder = on a set X is in particular a
quasi utility for its strict part <, while the converse is not true since a quasi utility for
< does not necessarily preserve the associated indifference relation ~.

Definition 2.1 A preorder = on a topological space (X, t) is said to be

(1) upper semicontinuous of type 1, 1f [(x) = {z € X | z < x} 1s an open subset of
X, for every x € X;

(i1) upper semicontinuous of type 2, if i(x) = {z € X | x 3 z} is a closed subset of
X, for every x € X;



(i11) weakly upper semicontinuous, if for every pair (x, y) € < there exists some open
Z-decreasing subset Oy, of X such that x € Oy y and y € X\ Oy y;

(iv) weakly upper continuous, if for every pair (x, y) € < there exists some open set
V (x) containing x such that V (x) = y;

(v) transfer weakly upper continuous, if for every pair (x, y) € < there exist some
point y' € X and an open set V (x) containing x such that V (x) 3 y’;

(vi) partially upper continuous, if the set J of jumps in X|~ is countable and for
every pair (x, y) €< \{(z,v) : t € [t'], v € [V'], ([¢'], [V']) € J} there exists an
open set V (x) containing x such that V(x) = y.

Remark 2.2 Ttis known from the literature that a preorder = on a compact topological
space (X, t) admits a maximal element provided that it satisfies any of the semicon-
tinuity conditions of Definition 2.1 In particular, the sufficiency of condition (i) was
proved by Bergstrom (1975), of condition (ii) by Evren and Ok (2011), of condition
(ii1) by Bosi and Zuanon (2013, Theorem 3.3), of conditions (iv) and (v) by Tian and
Zhou (1995, Proposition 2) and of condition (vi) by Nosratabadi (2014, Theorem 2).
Further, Nosratabadi (2014) showed in the proof of Theorem 2 that a partially upper
continuous preorder on a compact space is actually transfer weakly upper continuous.

Let us introduce the main definition of this paper.

Definition 2.3 A preorder = on a topological space (X, 7) is said to be quasi upper
semicontinuous if there exists an upper semicontinuous of type 2 preorder < on (X, 7)
such that <C <.

The following proposition presents a characterization of a quasi upper semicontin-
uous preorder.

Proposition 2.4 Let = be a preorder on atopological space (X, t). Then the following
conditions are equivalent:

(i) 3 is quasi upper semicontinuous.

(i1) For every pair (x,y) € < there exists some open <-decreasing subset O, y of
X such that x € Oy y and 'y € X\ Oy y.

(iii) For every x € X that is not a minimal element with respect to 3 there exists a
uniquely determined open <-decreasing subset [°(x) of X such that x ¢ 1°(x)
and I(x) C 1°(x).

(iv) For every pair (x,y) € < there exists an upper semicontinuous function uy y :
(X, 3, 1) — (R, <, toa) that is a quasi utility for < such that uy y (x) <

' ~U?

Uy,y ).

Proof (i) = (ii). Let = be a quasi upper semicontinuous preorder and let < be an upper
semicontinuous of type 2 preorder on (X, 7) such that <C <. For any pair (x, y) € <,
define O,y = X\i<(y) = X\{z € X : y < z} to immediately verify that O, , is an
open <—decreasing§ubset of X such that x € Oy y and y € X\ Oy y.

(i1) = (ii1). Define, for every x € X that is not a minimal element relative to <,



1°(x) = U U {OZ,X : Oz x1s an open < —decreasing subset of X such

{zeX:z=x}

thatz € O,y and x € X\ O, }.

(ii1)) = (iv). Consider a pair (x, y) € <, and assume that property (iii) is verified. Then
one may define the desired upper semicontinuous quasi utility u, , for < such that
Uy,y (x) < uy,y (y) by setting for all z € X:

[0 if zelOy)

(iv) = (i). Let =X be a preorder on (X, 7). Then we denote by U (2) the set of all upper
semicontinuous quasi utility functions u for the strict part < of = such that there exists
some pair (x, y) €< with u(x) < u(y) and set

S={ ) X X X [ VueUR) (ulx) =u(y))

Clearly, < is preorder on (X, t) such that <C <. Hence, it suffices to verify that <
is upper semicontinuous of type 2. Let, therefore, (x, y) be a pair of X x X such
that not (y < x). Then there exists some function u € U(Z) such that u(x) < u(y).
The upper semicontinuity of # guarantees that u1(] = oo, u(y)[) is an open subset
of X such that x € u~1(] — oo, u(Y)[), y ¢ u~'(] — 0o, u(y)[). Finally, it is almost
immediate to check that u~!(] — oo, u(y)[) is <-decreasing, which obviously implies
that u=1(] — oo, u(y)) Ni(y) = 0. Therefore, the preorder = on (X, t) is quasi upper

semicontinuous. O

It is clear that the notion of a quasi upper semicontinuous preorder generalizes that
the concept of a weakly upper semicontinuous preorder.

Remark 2.5 Itis easily seen that a preorder = on (X, 7) is quasi upper semicontinuous
provided that it is either upper semicontinuous of type 1 or upper semicontinuous of
type 2 (see Herden and Levin 2012) or else there exists an upper semicontinuous weak
utility u for the strict part < of = (in particular, = admits an upper semicontinuous
order-preserving function).

From a result in Nosratabadi (2014), we immediately deduce the following propo-
sition.

Proposition 2.6 Let = be a total preorder on a second countable topological space
(X, ©). If = is partially upper continuous, then it is quasi upper semicontinuous.

Proof Since = is total, and (X, 7) is second countable, from Nosratabadi (2014, The-
orem 1) we have that there exists an upper semicontinuous order-preserving function
for <, This fact implies that = is quasi upper semicontinuous (see Remark 2.5). O

The following example shows that there exist quasi upper semicontinuous total
preorders which are not partially upper continuous.



Example 2.7 Let X be the set [1, 3] U [9, 10] endowed with the natural (induced)
topology Ty, and consider the total preorder = on X defined as follows forallx, y € X:

xSyey<zZ=x<z® foralzeX.

Then the strict part < of = is defined as follows:

2 <y forsomez e X.

X<Yy=Xx=<z
The economic motivation of the present example is related to the consideration of
preferences with nontransitive indifference. Indeed, it can be noted (see Bosi and
Zuanon 2014, Example 2.1) that 3 is one of the traces associated to the interval order
=’ on X defined as follows for all x, y € X:

x Xy e x <y

Since we have that /(10) = [1, 3]U{9} is not an open set, and therefore, i (10) =]9, 10]
is not a closed set, we have that 3 is neither upper semicontinuous of type 1 nor upper
semicontinuous of type 2. Further, since (X, that) is second countable and = is a
total preorder, we have that = cannot be partially upper continuous since otherwise
by Nosratabadi (2014, Theorem 1) there would exist an upper semicontinuous utility
function u, contradicting the fact that the preorder is not upper semicontinuous of
type 1. Nevertheless, = is quasi upper semicontinuous since the identity function ix
is an (upper semi)continuous weak utility for <. It is easily seen that every element in
19, 10] is a maximal element for <.

We now furnish an example of a quasi upper semicontinuous preorder which fails
to be transfer weakly upper continuous.

Example 2.8 Let X be the set [1, 3] U [9, 10] endowed with the natural (induced)
topology Thae and consider the non-total preorder < on X defined as follows for all
x,y € X:

x <y (x,yell,31U{9)U{10)
xiy‘i’[xsy(x,yew,lom@) ’

Asinthe previous example, = is quasi upper semicontinuous since the identity function
is an (upper semi)continuous weak utility for <. On the other hand, we have that9 < 10
but there is no open subset V (9) of X containing 9 such that for some element y € X it
happens that V (9) = y.Indeed, every open subset of X containing 9 contains elements
z €]9, 10[\Q which are incomparable with any other element of X.

The following example of the lexicographic order is very popular in the literature.
We presentitas an illustration of the simplicity of quasi upper semicontinuity compared
to the other existing concepts of semicontinuity of a preorder.



Example 2.9 Let = be the lexicographic order on X = [0, 1] x [0, 1] C R>. It is
known that =7 is transfer weakly upper continuous, not partially upper continuous
(see Nosratabadi 2014, Example 3). It is simple to check that =Xy is quasi upper semi-
continuous. Consider two elements x, y € X such that x = (x1, x2) <z (y1, y2) = .
If x; < yi1, then, for example, [0, )@[x [0, 1[ is an open <[ -decreasing subset of
X containing x and excluding y. Analogously we can proceed when x; = y; and
X2 < y2.

Recall that a topology t on a set X is said to be 77 if all its singleton sets {x} are
closed (in other words, if “points are closed”). Such a condition, which is obviously
satisfied by every metric space, was already used by Campbell and Walker (1990).

We present a condition under which every quasi upper semicontinuous preorder is
weakly upper continuous (therefore transfer weakly upper continuous).

Proposition 2.10 Let = be a quasi upper semicontinuous preorder on a Ty topological
space (X, 1). If 1 (x) = {z € X : z > x} is a finite set for all x € X, then = is weakly
upper continuous.

Proof Let = be a quasi upper semicontinuous preorder on (X, 7) and consider any two
elements x, y € X such that x < y. Then, from condition (ii) of Proposition 2.4, there
exists some open <-decreasing subset Oy, of X suchthatx € Oy yandy € X\ O, .
Observe that, since (X, t) 1s 71, we have that I (x) is the union of finitely many closed
sets, and therefore, it is itself closed. Define V (x) = Oy ,\I (x) to immediately notice
that V (x) is open. Finally, it must be V(x) 3 y since y < z € V(x) C O,y implies
that y € Oy y since O, is <-decreasing, and this is contradictory. This consideration
completes the proof. O

We finish this section by presenting a representation result concerning quasi upper
semicontinuous preorders.

Theorem 2.11 Let 2 be preorder on a second countable topological space (X, T).
Then the following conditions are equivalent:

(i) There exists an upper semicontinuous weak utility u for the strict part < of =;
(i1) = is quasi upper semicontinuous.

Proof The implication (i) = (ii) is clear (see Remark 2.5). To prove the implication
(ii) = (i), denote by B = {B,, : n € N1} a countable base of (X, ), and define, for
alln € NT,

B =B,U | °w),

z€B,

where the sets [°(z) are defined in condition (iii) of Proposition 2.4. It is immediate
to check that B,? is a <-decreasing subset of X for every n € NT. Consider, for every
n € NT, the upper semicontinuous real-valued function on (X, 7) defined as follows:

u(2) = 0 if zeBY
0 ze X\BY



to easily observe that u := > _+ 27"u, is an upper semicontinuous weak utility for
<. So the proof is complete. O

Since a compact metric space (X, d) is separable, and therefore, second countable,
we arrive at the following corollary, whose easy proof is left to the reader.

Corollary 2.12 Let = be a quasi upper semicontinuous preorder on a compact metric
space (X, d). Then there exists a maximal element xo which is obtained by maximizing
an upper semicontinuous weak utility u for the strict part < of 2.

3 Existence of maximal elements

We present the main result of this paper, which guarantees the existence of a maximal
element for a quasi upper semicontinuous preorder on a compact topological space.
We recall just before that a multi-utility representation of a preorder = on a set X (see
e.g., the seminal paper of Evren and Ok 2011) is a family U of functions u : (X, 3)
—> (R, <), with the property that for each x, y € X,

x 3y < [ux) <u(y), forallu € U]. (1)

A preorder = on a set X is said to be nontrivial if there are two elements x,y € X
such that x < y.

A classical and widely used result, whose attribution is nevertheless unknown,
states that there exists a maximal element x( for every upper semicontinuous of type
2 preorder = on a compact topological space (X, ) (see e.g., the application of
paragraph 2 in Evren and Ok (201 1), who used the concept of an upper semicontinuous
multi-utility representation to prove this theorem). Now we have that the following
more general theorem holds.

Theorem 3.1 Let = be a nontrivial quasi upper semicontinuous preorder on a com-
pact topological space (X, t). Then there is a maximal element xq for 2.

Proof Since there exists an upper semicontinuous of type 2 preorder < on (X, t) such
that <C <, and < has a maximal element xo from the popular theorem we mentioned
above, we have that xg is also a maximal element for 3. O

Corollary 3.2 Let = be a preorder on a set X. Then the following conditions are
equivalent:

(i) There exists a maximal element xq for 3.
(i1) There exists a compact topology T on X such that 3 is quasi upper semicontinuous
with respect to T.

Proof (i1)) = (1). Immediate by Theorem 3.1. (1) = (i1). If there exists a maximal
element x¢ for =, then from Alcantud (2002, Theorem 4), there exists a compact
topology 7 on X such that = is upper semicontinuous of type 1 with respect to t.
From Remark 2.5, we have that = is in particular quasi upper semicontinuous on
(X, 7). This consideration finishes the proof. O



4 Conclusions

In this paper, we have presented a new concept of upper semicontinuity of a preorder
on a topological space, namely quasi upper semicontinuity. Such a concept is inherited
from utility theory and appears more suitable than the other notions of semicontinuty
to deal with maximal elements of preorders on compact spaces. Quasi upper semicon-
tinuity of a preorder is naturally associated to the existence of an upper semicontinuous
weak utility for its strict part. We have presented a condition under which quasi upper
semicontinuous preorders are also transfer weakly upper continuous.
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