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Abstract

Early diagnosis is an important challenge for the e↵ectiveness of breast can-
cer treatment. If the cancer is detected in the early stages, it can be more
e↵ectively treated, and a less invasive treatment can be achievable. To this
aim an accurate routine screening plays a key role. Modern breast diag-
nosis is based on the image analysis; nowadays Mammography is the gold
standard technique for breast screening. However, recent studies have shown
that the combined use of this imaging modality with Ultrasound examination
leads to an improved diagnostic accuracy. Therefore, an e↵ective first level
breast image exam combines both Mammography and Ultrasound, moreover
the careful comparison of prior mammograms is mandatory. Breast imaging is
rapidly evolving toward 3D examination: Digital Breast Tomosynthesis and
Automated Breast Ultrasound scanners represent the most innovative and
promising technologies. However, the 3D modalities increase dramatically the
number of images to evaluate and for these new techniques are not yet avail-
able adequate visualization tools that allow to properly develop the potentials
of the 3D imaging. Moreover the breast is a highly deformable structure, and
this greatly complicates the visual comparison of imaging modalities. Due
primarily to the challenges posed by the relevant non-rigid deformations, the
great variability in the breast anatomy and the lack of rigid structures, the
development of automated methods which enable registration of information
within and across breast imaging modalities remains an active research field,
which has still to translate suitable methods into clinical practice.
The present PhD research is a pioneering work in this field, especially in 3D
US registration. It focus on the feasibility of the most modern registration
techniques, properly customized for breast imaging. The aim is to provide
automated spatial correlation tools between two 3D breast images, addressed
to support physicians in the image analysis and comparison.
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This thesis involves concepts from two di↵erent scientific fields. On one
hand, methods and algorithmic tools from image processing are examined and
designed. On the other hand, technical issues coming from the medical field,
and more specifically from cancer diagnosis context, need to be studied and
understood. In this first chapter an overview of the clinical context is pre-
sented to introduce the motivation and main challenges of the work. Firstly,
the clinical problem and the current incidence of the disease on the popula-
tion are reported. Then, a background of the breast screening program and
imaging techniques is proposed, in order to explain the clinical needs faced
with this work.

1.1 Breast cancer and early detection

Cancer is a disease that a↵ects more and more people of all ages, being actu-
ally one of the most important causes of human deaths. It is a degeneration of
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the normal function of a cell. Due to some genetic abnormalities, cancer cells
have uncontrolled growth and can a↵ect healthy tissues. A malignant tumor
is a group of cancer cells that can grow into (i.e. invade) surrounding tissues,
and typically form a solid lesion, or spread (i.e. metastasize) to distant areas
of the body. Breast cancer is a malignant tumor that starts in the cells of
breast. It represents an important issue for medical research, because it is
a disease with a high incident rate and it causes the most cancer deaths in
women all over the world (T. Chen et al. 2012). The International Agency
for Research on Cancer (IARC), the specialized cancer agency of the World
Health Organization, in 2013 released the latest data on cancer incidence,
mortality, and prevalence worldwide (Ferlay et al. 2013). In this report, the
Agency highlights the priority should be given to cancer prevention and con-
trol measures for breast and cervical cancers and states that breast cancer is
the second most common cancer overall. Breast cancer represents about 12%
of all new cancer cases and 25% of all cancers in women (World Cancer Re-
search Fund International). In 2012, 1.7 million women were diagnosed with
breast cancer. Since the 2008 estimates, breast cancer incidence has increased
by more than 20% and it has been increasing in most regions of the world.
The highest incidence of breast cancer was in Northern America and Ocea-
nia; however, Belgium was the country with the highest rate of breast cancer,
followed by Denmark and France. Italy covered the thirteenth rank in this
breast cancer statistic. The lowest incidence is in Asia and Africa. Meanwhile
incidence rates remain highest in more developed regions, mortality is rela-
tively much higher in less developed countries due to a lack of early detection
and access to treatment facilities. For example, in western Europe, breast
cancer incidence has reached more than 90 new cases per 100,000 women an-
nually, compared with 30 per 100,000 in eastern Africa. In contrast, breast
cancer mortality rates in these two regions are almost identical, at about 15
per 100,000, resulting in a poorer survival in eastern Africa. An important
trend shown by statistics (referring to the population of the United States) is
that the death rates have been decreasing in the last decades; this decrease
is thought to be the result of treatment advances, earlier detection through
screening, and increased awareness (Breastcancer.org). Due to the invasive
nature of the disease, the detection in its early stage is crucial to reduce the
mortality for breast cancer. This increases the e↵ectiveness of the treatment
(Sivaramakrishna et al. 1997) and avoids cancer growth and extent in multi
foci (multifocal breast cancer), or in more sites inside the breast (multicentric
breast cancer), or even worse its spread from the original site to other parts of
the body (metastatic breast cancer). The larger the tumor size at detection
time, the smaller is the survival probability of the patient (Ducan et al. 1976)
and additionally more invasive is the treatment. If the breast cancer is in an
early stage, breast conservative surgery is possible against mastectomies or
other aggressive treatment like chemotherapy, that is an important issue for
the psychological implications in cancer patients. Research has proved that
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breast conserving treatment combined with radiotherapy works as well as mas-
tectomy at treating early breast cancer (Cancer Research UK ). The stage of
the breast cancer is usually expressed as a number on a scale of 0 through IV,
with stage 0 describing non-invasive cancers that remain within their original
location and stage IV describing invasive cancers that have spread outside the
breast to other parts of the body. The goal of screening is the detection of
breast cancer when it is stage 0, or stage I (i.e. cancers < 2 cm in size, invasive,
without spread to axillary lymph nodes). In particular, the best prognosis is
seen with cancers smaller than 1 cm in size (Tabar et al. 2000, R. Smith et al.
2004). Due to the unknown cause of breast cancer and the multiple advan-
tages of the early diagnosis, it is very important to convince the women of
the core role of regular breast screening. As explained in the following, X-ray
mammography is the standard imaging method for breast cancer screening.
Mammography screening has been shown in clinical trials to reduce breast
cancer mortality by 25% to 30% for women in the 50 to 70 age group (Tabar
et al. 1995, Tabar et al. 2001). Additionally, it is proved that the reduction
in mortality attributable to widespread mammographic screening is almost
entirely due to early detection (Paci et al. 2002). A mammogram can find
breast changes that could be cancer years before physical symptoms appear.
Results from many decades of research show that women who have regular
mammograms are more likely to have breast cancer found early, less likely to
need aggressive treatment, and more likely to be cured.

1.2 Breast imaging techniques

Breast cancer screening refers to exams used to check a woman’s breasts for
cancer, before symptoms of the disease appear. The goal of screening tests is
to find diseases at an early stage, when treatment is most likely to be success-
ful. Size and stage of breast cancer are some of the most important factors in
predicting the prognosis of a woman, and thus are crucial to the survival of
the patient. A number of screening tests are employed, including clinical and
self breast examination (i.e. palpation) to feel for lumps or other changes,
and imaging techniques used to screen for tumors and other nonpalpable ab-
normalities.

Sensitivity and specificity of a test

Commonly, the diagnostic accuracy of an imaging technique is evaluated by
means of the sensitivity and the specificity parameters. Sensitivity, also called
the true positive rate, stands for the ability of a test to correctly identify the
tumor when it is present (true positive). It measures the percentage of pos-
itives (people with disease) that are correctly identified as such. Therefore,
a test with 100% sensitivity, correctly identifies all patients with the disease;
a test with a lower sensitivity, for instance 80%, detects 80% of sick patients
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(true positive) but 20% of patients with disease go undetected (false negative
result of the test). Specificity, also called the true negative rate, refers to the
ability to correctly identify the nature of a suspicious mass, distinguishing
benign tumor from malignant (true negative). It measures the percentage of
negatives (healthy people without the disease) that are correctly identified as
such. Therefore, a test with 100% specificity, correctly identifies all patients
without the disease. A test with 80% specificity correctly reports a negative
test result for 80% of patients without the disease (true negatives), but 20%
patients without the disease are incorrectly identified as positive (false pos-
itives). Hence, high sensitivity is important for a screening test to identify
the disease, avoiding false negative result that may delay the medical care.
But if the test is not very specific, patient without disease could undergo the
treatment. There is usually a trade-o↵ between these parameters in the choice
of the imaging technique. A test used in a screening program must have good
sensitivity in addition to acceptable specificity, avoiding as more false posi-
tives as possible. A brief description of conventional imaging modalities used
for breast cancer diagnosis is now presented.

Imaging techniques

Di↵erent types of breast cancer exist and the examination through breast pal-
pation is often not su�cient to detect the cancer; some fibroadenomas are so
small that they cannot be felt by physician. The modern breast diagnosis is
based on image analysis. Medical imaging techniques measure some physi-
cal or chemical reaction of the patient’s body after using a specific stimulus
(e.g. X-rays, electromagnetic pulses, radioactive tracers, etc.), and image the
di↵erent responses of the tissues. Depending on the physical principle, each
technique is thus sensitive to specific tissue properties. In order to be suitable
for a diagnostic examination the imaging technique need to observe the fol-
lowing requirements: fast image acquisition; be a non-invasive exam (in term
of e↵ects on patient’s health); be a reliable exam, with high sensitivity and
acceptable specificity. The most common imaging modalities currently used
for breast cancer diagnosis are X-ray, Magnetic Resonance Imaging (MRI),
and Ultrasound (US). Each imaging technique has its own advantages and
weaknesses in term of diagnostic accuracy. Hence, there is not a unique so-
lution proper for all patients (that di↵er for age, history, physiological state,
breast anatomy, etc.). In addition, breast cancer is a heterogeneous disease,
and consequently, a single screening modality has limitations in imaging all
the di↵erent subtypes. A multimodality approach that combines techniques
providing complementary pathological information, should be used to diag-
nose asymptomatic women (Lander et al. 2011). The conventional system for
breast X-ray imaging is Mammography (MG), that provides a 2D projection
image (called mammogram) of the breast compressed between two flat pad-
dles. The mammogram describes the degree of X-rays attenuation inside the
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breast, where image intensity is related to the tissue’s density. The greater the
di↵erence between the densities, the greater the image contrast. MG is still
the imaging modality most widely accepted as gold standard for breast cancer
screening. Although the sensitivity of MG in women with fatty breast tissue
(less than 50% glandular) can be as high as 97% (Kolb et al. 2002), ability
of mammography to detect breast cancer dramatically decreases in women
with dense breasts, falling to as low as 48% (Inciardi 2012). A dense tissue
typically appearing bright in mammograms would hide structural abnormal-
ities such as cancerous tumors; furthermore most cancers and dense breast
tissues have similar appearance on mammogram. it results in an increased
number of false negatives (missed cancers) with screening MG in women with
dense breast tissue. It has been reported that mammography alone can miss
between 37 and 70 percent of breast cancers within dense breast population
(Jacob 2012). Therefore, MG alone cannot provide a reliable cancer diagnosis
of women with dense breasts and there is a significant clinical need for an
alternative or supplemental method. Many studies have shown that US and
MRI can help to detect breast cancers that may not be visible with MG. MRI
is a non-ionizing technique; it uses the magnetic properties of spinning hydro-
gen atoms and radiowaves, instead of X-rays, to produce high-resolution 3D
images of the breast anatomy. Typically MRI makes use of a contrast agent
to enhance the details of breast tissue and to provide dynamic information on
tissue vascularization. Therefore, MRI can be used especially to di↵erentiate
tissues with similar density. It is typically used with success in the diagnosis
of high-risk women (i.e. women with a lifetime risk of over 20%, women who
have a positive test result to the so-called BRCA genetic mutation, or have
multiple first-degree relatives with a history of premenopausal breast cancer).
It is also e↵ective for women with dense breast, however, its application for
breast examination is limited for the high cost of the exam and for the use of
the contrast agent. US uses high-frequency sound waves that allow a real-time
characterization of breast lesions. It has the potential to be an ideal diagnostic
tool because less expensive compared with the other modalities, well-tolerated
and safe. Breast US is commonly used as an adjunct to MG in patients with
palpable masses or symptomatic breast disease (Guo et al. 2006, Hooley et al.
2013) or to evaluate the mammographic findings for its ability to di↵erenti-
ate cystic to solid lesions. It is shown that combining MG and US cancer
detection is improved by about 2.9% (Girardi et al. 2013); nevertheless, US
may increase false-positive biopsies. Moreover, breast density does not seem
to influence ultrasound accuracy, therefore US can be used as supplemental
diagnostic tool to detect cancers missed by MG in dense breasts (Berg et al.
2008, Kaplan 2001, Berg, Z. Zhang, et al. 2012, Inciardi 2012). US breast ex-
amination is also considered in women at very high risk for breast cancer who
cannot tolerate breast MRI. In common practice US consists of a freehand
transducer that enables to collect images corresponding to a breast section,
captured in real-time during the breast examination. When the physician
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performs the targeted US, he has to direct the US transducer to the specific
parts of the breast of concern, where the suspicious mammographic findings
are potentially located. Hence, the physician normally reviews the mammo-
gram before US to know what to search and where to search the lesion. During
the examination, it is important to recognize and correlate the area that is
being examined with US with the lesions detected in MG. The correlation is
complicated by the fact that the breast is scanned in di↵erent positions and
that both modalities provide only 2D images. In addition, US captures only
a section of breast, where breast structures are not represented at the same
scale of analysis of MG (see figure 1.1). Therefore, US examination requires to
have a solid knowledge of breast anatomy, a good understanding of the imag-
ing techniques and strong interpretive US skills. A relevant shortcoming of

Figure 1.1: example of the appearance of a lesion on a mammogram, on the
left, and on a US capture, on the right. The di↵erent scale representation of
the lesion between the two modalities combined with the limited field-of-view
of the US image, make the correlation a very di�cult task. The correlation is
dependent to the skill of physician who interprets the MG and performs the
US examination. Note that in the US image any information about both probe
orientation and lesion location with respect to nipple position or surrounding
breast structures are lost and the same image plane at the same location is
not reproducible (Lin et al. 2011).

US is that only a 2D cross-sectional image of breast with limited field-of-view
can be captured. The lack of any spatial reference with respect to the whole
volume disallows to localize the image plane, and consequently, to correlate
it with other images of the same patient. A retrospective study with images
previously collected, especially if acquired with a di↵erent modality, such as
MG, is not feasible.

1.3 3D breast imaging

From the previous considerations it emerges that the comparison between
breast examinations is a highly operator-dependent procedure and a retro-
spective study of US images is not currently feasible. An important step
towards the overcoming of this limitations is represented by the technological
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advances that enable the collection of 3D images of breast. In the last decades,
many e↵orts have been made by industries for moving from 2D to 3D imag-
ing modalities. Recently, two innovative technologies have been introduced as
promising breast diagnostic techniques, the X-ray Digital Breast Tomosynthe-
sis (DBT) and the Automated Breast Ultrasound (ABUS) scanner. DBT is
an apparatus similar to the MG. The breast is positioned in the same way as
in a conventional MG, but the X-ray tube moves in an arc around the breast
taking multiple X-ray projections at di↵erent angles. A 3D dataset is then
reconstructed from this sequence of projections. The main advantage of DBT
is that lesion conspicuity is improved because overlaying tissue structures are
resolved. ABUS consists of a linear high-resolution US transducer placed over
the breast that automatically captures a spatial sequence of two-dimensional
cross-sectional slices to reconstruct a volumetric information of the breast.
It allows the collection of 3D high-quality images, with a standardized and
less operator-dependent procedure. Besides an improved diagnostic accuracy,
these systems represent also a plausible alternative to overcome some of the
before mentioned limitations of the conventional systems: 3D imaging pre-
serves the actual characterization of both tissues and abnormalities and their
location inside the breast; moreover two 3D scans of the same region are ex-
pected to represent all the structures in that region in both images. This
is crucial for a spatial correlation between two di↵erent exams of the same
patient.

1.4 Clinical needs

For a more accurate diagnosis, physicians compare di↵erent examinations for
each patient. Normally, two di↵erent types of image comparison could be
made: a cross-modality comparison between DTB and US images, as well as
the comparison of images collected with same modality but at di↵erent times.
Indeed, worldwide accepted indications (D’Orsi et al. 2013) for breast cancer
diagnosis recommend the comparison of the examination with prior ones for an
accurate and complete diagnosis. From the previous considerations it is clear
that an accurate image comparison is feasible only taking advantage of the
novel three-dimensional techniques. The comparison of two volumes, however,
is not straightforward and it is time-consuming if manually performed by
physicians. Currently the comparison between two di↵erent exams performed
by physicians is only qualitative (i.e. visual), and it requires a lot of experience
due to the complex anatomy of the breast and its non-rigid behavior that can
induce relevant local deformations.
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1.5 Image registration

Image registration is the mathematical tool that allows to determine a spatial
mapping function between two volumes. It is useful when di↵erent images of
the same patient are represented within di↵erent coordinate systems compared
to the reference of the patient or/and use di↵erent image intensities to repre-
sent the underlying anatomy. There are rigid methods that establish a global
transformation model between the reference systems of the two volumes, and
more complex non-rigid methods aimed to evaluate pointwise correlations be-
tween the volumes to handle local deformations. The deformable methods
are those more appropriate for breast images. The registration is an ill-posed
problem that requires to include a priori knowledge and constraints to solve
it. These constraints have to be specific for the application.

1.5.1 Challenges in breast applications

Image registration plays an important role in breast imaging, where repro-
ducible imaging and patient positioning are very di�cult due to the breast
morphology and the high degree of its mobility. It has the task of finding
corresponding locations between two breast images not always straightfor-
ward visible owing to relevant local deformations and the low image contrast
between breast tissues. Deformations, resulting from breast motion, compres-
sion or size change must be compensated during the registration. Hereafter,
a list of specific features of the breast is reported, that make breast image
registration a very challenge task. This includes also the technical issues to
be taken into account in the development of the registration methods.

Key issues

Highly deformable anatomy
Breast consists entirely of soft tissues. Thus it has an inherent non-rigid
behavior and can move freely because not constrained by any surrounding
organs. In case of highly deformable anatomies, the registration method has
to handle large deformations avoiding discontinuity of the registration field
and unrealistic distortions of structures. Usually smooth transformations are
preferred and large displacements, like deformations shown by tissues dur-
ing breast compression, are uneasy to be estimated. Moreover, breast shows
discontinuity in breast tissue deformations similar to sliding motion between
adipose and glandular tissue, as well as respect to chest wall, especially under
the pressure of the transducer during ultrasound acquisitions. This corre-
sponds to discontinuity in the transformations that generally is not allowed
in most registration methods. In addition, due to the large breast motion an
accurate and robust pre-alignment procedure is required and can be the key
issue for the success of the method.
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Heterogeneous composition
The inhomogeneous, anisotropic nature of the soft tissues within the breast,
as well as their low contrast characterization make the image interpretation
more complex.

Various imaging conditions
Breast imaging modalities typically investigate the breast with patient lying
in di↵erent positions: for instance, during X-ray imaging patient is standing
in front of the apparatus and breast is pulled out and squeezed between two
pads, in US she lies in supine position and breast is flattened and undergoes
the US probe pressure (figure 1.2). Therefore, geometric deformations can
appear between breast images as:

• local deformations due to di↵erent breast orientation and amount of
compression, as soft nature of breast tissue makes the imaging conditions
less reproducible;

• relevant both global and local deformations due to di↵erent patient po-
sitioning when images are collected with di↵erent modalities.

(a) (b)

Figure 1.2: breast position during MG (on the left) and US scanning (on the
right).

Physiological changes
Breast is an organ with a high anatomical variability, both in an individual
over time and even inter-subject. In a patient breast anatomy can change
over time for di↵erent physiological factors, like hormonal cycle as well as the
weight loss. These temporal changes are quite di�cult to predict or model.
Therefore, the appearance of breast tissue of two images collected at di↵erent
times could be significantly di↵erent, making the registration more compli-
cated. Further, the wide variability over the population does not contribute
to identify common consistent features inside breast (i.e allowing a reliable
classification of their shape and appearance) that could be taken as reference
for the registration task.
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Lack of a priori information
Normally the registration methods take advantage of a priori information on
the deformation model (i.e. on both the biomechanical properties of the organ
and the imaging technique) underlying the di↵erences shown by the images
to be registered. As it will be explained later, it results from the fact the
registration is an ill-posed problem. Therefore, in the registration method
additional constraints have to be integrated to solve the mathematical prob-
lem. Especially for highly deformable anatomies constrained methods are
usually proposed, and the constrains have to be carefully established to avoid
undesired results. In the context of medical imaging, a lot of supplemen-
tary information is usually used for improving the registration result. Among
them, manual or automatic organs segmentations can be incorporated, as well
as landmarks, rigidity constraints and biomechanical models. However, breast
lacks of these features: there are not structures with rigid behavior like bones,
the contouring of clinically relevant structures is not a common practice in
breast screening, and breast lacks of distinctive features to be used as reli-
able fiducial markers. Normally for breast the nipple is the unique reliable
reference feature. Moreover, due to its highly deformable behavior and its
heterogeneity an accurate biomechanical breast modeling is not an easy task.

Therefore, from these considerations can be concluded that the direct ap-
plication to breast images of general-purposes methods is not practicable and
the need of a customized solution emerges.

1.5.2 State-of-the-art of breast image registration

The development of innovative and sophisticated registration algorithms is an
active research field, that can count on the contribution of a wide scientific
community. Nevertheless the deformable registration is still an unresolved
issue for most applications, including breast imaging. Several reviews may
be found that report the most popular methods proposed in literature for
a wide range of applications (Maintz et al. 1998, Zitova et al. 2003, Crum
et al. 2003). Survey papers have been published also in the field of medical
image registration (Hill et al. 2001, Sotiras et al. 2013); however, very few
reviews are dedicated to breast application (Sivaramakrishna 2005, Guo et al.
2006). Several articles propose methods using deformable breast models based
on a finite-element method (FEM) to solve both intra- and inter-modality
registration tasks (Coman et al. 2004, Ruiter et al. 2004, Unlu et al. 2005, Hopp
et al. 2012). A recent project led by a group of researchers of the Institute
Fraunhofer MEVIS (Fraunhofer MEVIS ) is dedicated to study registration
solutions for multimodal breast imaging. Their aim is to map all breast images
into a unified breast model and synchronizes corresponding positions between
di↵erent images in real-time. In a recent work (Georgii et al. 2013) the authors
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presented a method to compute the spatial correlation between the two DBT
projections of the breast (i.e. MLO and CC). Recently, some studies have
been carried out to assess the clinical impact of the use of 3D automated US
in conjunction with DBT (Padilla et al. 2013, X. Zhang et al. 2014), but,
on my knowledge, there are not published works proposing a method for the
registration of 3D-US and DBT images.

1.6 Purpose of the PhD work

This work is aimed to study the feasibility of a customization of the gen-
eral deformable registration methods to the specific case of breast images:
the evaluation should estimate if it is possible to derive reliable and accu-
rate registration algorithms able to overcome the serious issues that such a
highly deformable organ poses, taking advantage of the advanced 3D acqui-
sition techniques mentioned in the previous sections, together with novel or
customized approaches to image registration. The main goal is to give support
to physicians in the comparison task of two breast volumes through software
tools able to automatically estimate pointwise correlations among data.

The specific tasks faced within the project are:

(a) temporal comparison of two examinations: it means the comparison
of two volumes of a breast collected using the same modality, for example
using DBT, but at di↵erent times. The goal is to remove image di↵er-
ences introduced by di↵erent breast positioning, allowing to highlight only
the changes in breast tissue over time. These changes often reflect sus-
picious changing of the normal breast tissue structures resulting in the
appearance of suspicious masses or some architectural distortions of tis-
sue. Therefore, it is important to evaluate these abnormalities comparing
with prior assessment as they can be new symptoms inherently suspicious
or suspicious because more extensive or with more irregular shape than
before. However, corresponding locations between two 3D images could
be not always straightforward visible due to local displacements intro-
duced by the imaging technique (i.e. di↵erent breast positioning, breast
compression, etc.) as well as physiological changes of breast tissues (i.e.
changing in parenchyma’s pattern, appearance of pathology, etc.). More-
over in case of breast dense tissue the overall image contrast decreases.
Therefore, manually comparison is not straightforward and, additionally,
takes time requiring to scroll the high number of slices of the two volumes.
The automated correlation is aimed to make faster the image comparison
task and more reliable the identification of corresponding regions between
the exams;

(b) comparison of two examinations from di↵erent viewpoints: it
means the comparison of two or more volumes of a breast collected from
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di↵erent viewpoints as the sensor has a limited field-of-view to image
the entire volume. This regards the particular case of the US volumes
collected with the ABUS (briefly introduced in the previous section of
imaging techniques, and explained in more detail in the second chapter).
This type of scanner requires the acquisition of at least three scans of
each breast at di↵erent viewpoint (i.e. collected positioning the US probe
onto di↵erent breast sections) to be sure of investigating the whole area
of interest of more likely cancer. In this case each view shows a section
of the breast (more details are reported in the second chapter). For a
complete diagnosis, the physician should analyze at least three volumes
comprising high number of slices. In addition, among these three di↵erent
scans relevant deformations are impressed under the compression of the
US probe. These deformations make the comparison of the sections a
complex task, increasing also the time required for the interpretation. In
this case, an automated correlation of the structures in the overlap area
among two adjacent views can be helpful for a more reliable and saving
time analysis;

(c) cross-modality comparison of two examinations: it refers to the
comparison of two breast examinations collected using di↵erent imaging
modalities, such as DBT and 3D US images. It is aimed to take advantage
from the combination of di↵erent information to improve the diagnostic
accuracy. In this case it is a very complex procedure due to the com-
pletely di↵erent patient positioning and the di↵erent physical principles
of the two modalities (that implies a di↵erent image interpretation), but
it is helpful to make use of complementary anatomical information. The
visual correlation of these two examinations requires specific skills and a
wide experience, enforced even by the huge variability of the breast tis-
sue among patients. In this case a simultaneous navigation inside these
volumes, automatically spatially correlated, could be useful to support
comparison of the two exams.

1.7 European Social Fund fellowship and col-
laborations

My PhD scholarship has been co-financed by the University of Trieste and the
Friuli-Venezia Giulia Region that participated to the S.H.A.R.M. (Supporting
Human Assets in Research and Mobility) project under the European Social
Fund 2007/2013 (Operational Programme Objective 2 - Regional Competi-
tiveness and Employment of the ESF 2007-2013 - Axis IV Human Capital).
The aim of this European project was to encourage the collaboration between
the academic environment and local small-medium enterprises (SMEs). In
accordance with this perspective, during the PhD project the collaborations

12



1.8. ORGANIZATION OF THE THESIS

with the R&D group of Tecnologie Avanzate TA Srl and Datamind Srl have
been established. Both SMEs are settled at the science and technological park
in Udine. Tecnologie Avanzate TA Srl is a leading company on the national
territory for the distribution of novel high-tech medical devices, specific for
imaging, quality assurance and treatment applications, o↵ering also technical
assistance on their products. The company is also active in the field of the
archiving and communication systems of medical data, developing advanced
tools for reporting, visualization and segmentation process. Datamind Srl is
a software house with strong experience in image processing and computer
vision with a wide range of applications. In addition to the mentioned col-
laborations, my research work was performed in close collaboration with the
physicians of the Radiology Department of A.O.U. Ospedali Riuniti of Trieste
and the Clinical Center Michelangelo in Florence specialized in prevention of
breast cancer, who have o↵ered their clinical expertise in breast diagnostic
examination. For the design and building of some custom-made hardware
components used for the project, I could counted on the collaboration of the
INFN mechanical workshop of Trieste and the electronics laboratory of the
Physics department of the University of Trieste.

1.8 Organization of the thesis

The document is structured as follows: a first part (chapters 2 and 3) that
describes the state-of-the art in the two main fields treated in this work, breast
imaging and image registration; and a second part (chapters 4-6) dedicated
to the original work of analysis, design, development and evaluation of the
framework for breast registration.
In Chapter 2 the two reference breast imaging techniques are treated exten-
sively describing their acquisition process and their physical principles. A
special attention is given to the improvements in their 3D configuration.
In Chapter 3 an overview of the image registration theory together is pre-
sented with the most commonly used tools and methods for both rigid and
non-rigid registration. It also introduces the formalism used in the subsequent
chapters.
Chapter 4 describes an experimental setup built for the reconstruction of 3D
US images used for preliminary studies in a controlled environment for the
image registration techniques to be integrated in the developed framework.
Additionally, the prototype, making use of conventional 2D US probes, sug-
gests a possible way that can be further investigated to apply the developed
registration algorithms even when an advanced 3D US scanner is not avail-
able.
Chapter 5 is focused on the architectural design of the whole framework and
on its modularity that allows an easy derivation, given a reference clinical
task, of an associated specialized registration algorithm. The last part of the
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chapter describes and analyzes a series of classical and novel techniques (inte-
grated in the framework) inherently bound to the registration process whose
pertinence with a specific problem can be tested and compared.
In Chapter 6 the derivation of three di↵erent algorithms for the three di↵erent
clinical tasks are taken into consideration in this work. This demonstrates the
ability of the framework to be customized for the breast registration problems,
regardless of the modality used and the type of deformation shown by breast
between the two volumes.
Finally, the results are discussed and future research directions are given.
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Chapter 2

Breast imaging techniques
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2.3.2 2D imaging: Handheld Ultrasound . . . . . . . . . 37

2.3.3 3D imaging: Automated Breast Ultrasound . . . . 39

This chapter focuses on the overview of the breast imaging techniques
used in this work. The basic principles underlying the image formation, the
apparatus description as well as their clinical application are explained. The
attention is addressed to the novel imaging systems that allow to collect three-
dimensional images of breast, i.e. X-ray Digital Breast Tomosynthesis and
3D Automated Breast Ultrasound scanners. The chapter starts with a brief
description of breast anatomy useful to interpret the breast images treated in
next sections.

2.1 Introduction to breast anatomy

Breast is the site of the mammary gland and it is an organ entirely composed
of soft tissue, comprising glandular, connective and fat tissues, surrounded by
skin. There are not muscles in this organ, but breasts overlay the pectoralis
major muscles that cover the chest wall. At the front of the chest, the breast
tissue can extend from the clavicle to the middle of the sternum. At the sides of
the chest, the breast tissue can extend into the axilla. Breast heterogeneous
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anatomy consists of ducts, lobes, lymphatics, blood vessels and nerves (see
figure 2.1). The glandular tissue (also known as parenchyma, or simply breast
tissue) is arranged radially about the nipple and separated from the skin
by a variable layer of subcutaneous fat. Typically each breast has 15 to 20
lobes, and each lobe has many lobules, which end in dozens of tiny bulbs
that can produce milk. The lobes, lobules, and bulbs are all linked by thin
tubes called ducts. These ducts lead to the nipple in the center of the area
of skin called areola. The spaces between lobules and ducts are filled with
fat. The structural integrity of the breast is maintained by the connective
tissue called Cooper’s ligaments. Fat tissue (also known as adipose or fatty
tissue) is present also behind the retromammary zone, in the prepectoral
space. Each breast also contains blood vessels and vessels that carry lymph
(or lymphatic) system. The lymph vessels lead to small lymph nodes, and
clusters of which are distributed under the arm (axillary nodes), above or
below the clavicle (supraclavicular or infraclavicular nodes), and inside the
chest (internal mammary nodes), as well as in many other parts of the body.
The breast can vary greatly in form, size, and composition, and is generally
symmetrical in shape. The anatomy varies in an individual over time, owing
to the mammary gland function regulated by hormones.

Figure 2.1: anatomy of the female breast: on the left a front view of breast;
on the right a cross-section scheme of the mammary gland. The nipple, lymph
nodes, lobes, lobules, ducts, and other parts inside of the breast are shown
(National Cancer Institute).

Breast density and cancer risk

The relative amounts of glandular, connective and adipose tissue inside the
breast establish the breast density. The amount of each type of tissue varies
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over women. Dense breast is defined as having a higher percentage of glandular
tissue within breast relative to fat: if more than 50% of breast is made up of
glandular tissue, then the breast is classified as dense. Approximately 40%
of women have dense breast tissue (Pisano et al. 2005). An evidence of the
link between the percentage of glandular tissue and other parameters such as
age of patient or breast size is not yet proved. Certainly, the breast density
varies over a lifetime of patient, depending on the hormone activity. Generally
breasts become less dense with increasing age: younger women have denser
breasts and post menopausal women have progressively an increase of adipose
tissue at the expense of a decrease of the amount of glandular tissue. (Checka
et al. 2012) reports that over 74% of women in their 40s, 57% of women in
their 50s, 44% of women in their 60s and 36% of women in their 70s have dense
breast tissue. Other factors can play a role in density changing; for instance,
women on estrogen therapy have denser breasts and women with significant
mass loss have denser breasts compared with images done previously. Dense
breasts require particular attention in screening, for the following reasons:

• breast density is an independent risk factor at any age: having dense
breasts can increase a woman’s risk to develop cancer by 6 times (Boyd
et al. 2007). Furthermore, cancer developed in dense breasts is typically
larger, of a higher grade and more frequently node-positive (found lymph
glands) with poorer prognosis and a higher chance of returning and
spreading than in fatty breasts (Boyd et al. 2007, Yaghjyan et al. 2011);

• dense breast tissue can compromise cancer detection on mammographic
imaging (i.e. the sensitivity of the exam, as it will be explained later),
because it can potentially hide breast cancers: glandular tissue has often
low contrast against cancer tissue in the images, making harder to detect
breast cancer.

Hence, determining the breast density of each patient is very important, in
order to define a proper screening program. And, consequently, the need of
establishing a common procedure to classify the density emerges.

2.2 Digital Breast Tomosynthesis

In this section a brief description of the X-ray image production is presented.
Then, the main features of MG and DBT systems are reported to introduce
the advantages of collecting 3D breast data.

2.2.1 X-ray imaging

It is an imaging technique that uses the penetrating ability of ionizing radia-
tion (i.e. X-ray photons that carry enough energy to ionize atoms and break
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up molecular bonds) to produce an image of internal structures of the hu-
man body. The image results from the di↵erent attenuation properties of the
soft tissues. X-rays used in diagnostic radiology have energies above 5–10 keV.

Basic principles
X-ray radiation for medical imaging is typically produced by an X-ray tube
by focusing and accelerating a beam of high-energy electrons towards a metal
target. The X-rays are produced when the electrons hits and interacts with
a metal target (called anode). The type of metal involved depends on the
application. In medical X-ray tubes the target is usually tungsten, but some-
times molybdenum is used in MG when softer X-rays are needed. When the
electrons hit the target, X-rays are created by two di↵erent atomic processes:
characteristic X-ray emission and Bremsstrahlung. Hence, a typical X-rays
spectrum consists of a broad continuous spectrum, generated when the inci-
dent high-energy electrons are slowed down rapidly in the target and release
X-rays (Bremsstrahlung production), and peaks superimposed on the contin-
uous spectrum, relating to the characteristic radiation for the target element.
The voltage used to accelerate the electrons determines the maximum energy
of the X rays, while tube charge determines the amount of radiation gener-
ated in the tube. Choice of the emitted radiation energies depends on the
application and the tissues being imaged. For instance, figure 2.2 shows as
low energies are preferred for breast imaging, where the contrast between adi-
pose and glandular tissues is higher. Too high radiation energies will result in
poor images since the radiation cannot be readily attenuated, however too low
energies will increase the radiation dose to the patient since they are totally
absorbed by the body, without contributing to the image (as it is explained
in the following paragraph). The lowest energy of the photons reaching the
patient is determined by the filtration of the beam. An X-ray filter consists of
a thin metal foil, usually aluminum or copper, is usually placed over the win-
dow of the X-ray tube, in order to absorb the low energy part of the spectrum;
this e↵ect is called beam hardening, since it shifts the center of the spectrum
towards harder, i.e. higher energy, X-rays. That means average photon ener-
gies in filtered spectra are higher than in the unfiltered ones. The selection
of appropriate thickness of the filter is a balance between image quality and
absorbed dose in the patient.

Interaction of X-rays with matter
Attenuation
Due to their high energy X-rays can penetrate into the material optically
opaque. However, the number of photons (or the intensity of the beam) of a
primary beam decreases exponentially as it passes through the irradiated ob-
ject, and it is proportional to the thickness of the material and to the number
of incident photons. This attenuation is described in a first approximation
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(for a monochromatic X-ray beam) by the Beer-Lambert law:

I(x) = I
0

e�
µ(E)

⇢ ⇢x (2.1)

where I
0

is the incident beam intensity, I(x) the intensity after passing through
a thickness x of homogeneous material; constant of proportionality µ(E) is
called linear attenuation coe�cient and depends on the density and the atomic
number of the material passed through, and on the energy of the beam. Typ-
ically the attenuation is expressed in terms of the mass attenuation coe�cient
µ(E)/⇢, where ⇢ is the density of the material. It is usually measured in
cm2/g. X-rays are more attenuated by denser and thicker materials. Gen-
erally µ decreases with increasing energy. It expresses the probability per
unit length that a photon of a given energy will interact during its passage
through the material and it is the sum of the interaction processes. Figure 2.2
shows the measured linear X-ray attenuation coe�cients of breast glandular
tissue, breast fat and infiltration breast tumor plotted versus X-ray energy. It
can be noted that there is a low contrast between the glandular and tumor
tissue, meanwhile the di↵erence between the attenuation coe�cients of the
fat and glandular tissues increases with decreasing energy. For X rays in the

Figure 2.2: Linear X-ray attenuation coe�cients of breast adipose and glan-
dular tissues versus X-ray energy (Ya↵e 2008).

diagnostic energy range, the main interaction processes that cause the beam
attenuation are absorption (photoelectric e↵ect) or scattering (Compton or
Rayleigh scatterings). The X-rays responsible to image formation are the
transmitted photons (i.e. primary photons emerging from the X-ray tube). A
photon that is absorbed does not contribute to the image. A photon that is
scattered changes its direction of motion and may lose some of its energy. This
can contribute to image, but decrease the image quality (i.e. it contributes to
increase the scatter to primary ratio (Bushberg et al. 2002)). The strength of
these interactions depend on the energy of the X-rays and the atomic number
of the material. Photoelectric absorption is the dominant interaction mecha-
nism in the soft X-ray regime and for the lower hard X-ray energies. At higher
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energies, Compton scattering dominates. For water and soft tissues absorption
dominates up to about 26 keV photon energy (figure 2.3(a)), where Compton
scattering takes over. For higher atomic number substances this limit is higher
(figure 2.3(b)).

(a) (b)

Figure 2.3: Contribution of photoelectric and Compton interactions to atten-
uation of X-ray in water (a) and bone (b) as function of the X-rays energies
(in the range of energies used for diagnostic and interventional radiology).
These plots show that for bones the photoelectric e↵ect occurs more likely,
meanwhile for water Compton scattering dominates.

• Photoelectric absorption
In a photoelectric absorption event, photon transfers all its energy to
the electron with which it interacts, thus ionizing the atom to which
the electron was bound and producing a photoelectron. The vacancy
in the electron shell is filled by an electron from an outer shell and a
new photon so-called characteristic photon is created. The probability
for absorption varies rapidly with the atomic number of the atom. It
decreases with increasing photon energy until the energy exceeds the
binding energy of the electrons in a shell. The high atomic number in
bones together with their high density explains why they are shown up
so clearly on medical radiographs.

• Compton scattering
Compton scattering is an inelastic scattering of the X-ray photon by
an outer shell electron. After the collision the photon deviates from
the incident direction and transfers part of its energy to the scattering
electron (also called secondary electron), thereby ionizing the atom. The
scattered photon can go in any direction, but a direction similar to
the original direction is a bit more likely, especially for high-energy X-
rays. The probability of Compton scattering depends on the incident
photon energy and on the density of the material, but it is approximately
independent of the atomic number.
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• Rayleigh scattering
It is an elastic scattering mechanism, where photons scatter without
losing energy. This is important only at low photon energies.

Image formation
An X-ray image is obtained by placing the part of the patient to be inves-
tigated in front of an X-ray detector and then illuminating it with an X-ray
beam. When a uniform beam passes through the body, it interacts with
the tissues, producing a variable transmitted X-ray beam that is dependent
on the attenuation along the beam paths. The transmitted fraction are then
captured by the detector. This produces a projection image of the object, that
screens anatomical information obtained measuring the radiation absorption
across the object. In this image materials with di↵erent absorption coe�cient
can be distinguished, and the image contrast increases as the attenuations of
materials di↵er. Object contrast is proportional to the di↵erence between the
numbers of photons transmitted through the patient’s body at two neighbor-
ing areas. It depends on di↵erences in thickness, density, and atomic com-
position along X-rays passing the body at di↵erent positions. Hence, there
is a low contrast between muscle and soft tissue, meanwhile high contrast
between air and tissues. The image shows the patient anatomy with varying
grey-levels: dark values refer to tissue where X-rays could easily pass through
the patient (e.g. lungs) and bright values represent tissue with high X-ray
absorption (e.g. bones). Hence, tissues of high density and/or high atomic
number cause more X-ray beam attenuation and are shown as brighter on a
radiograph. Less dense tissues cause less attenuation of the X-ray beam, and
appear darker on radiographs than tissues of higher density. That also means
that structures behind dense materials are less illuminated by the beam and
thus do not visible on image. Another parameters that can a↵ect the image
quality is the scattered radiation. Diagnostic relevant information is contained
in primary radiation (i.e. that has not interacted passing through the matter),
nevertheless, scattered radiation fraction (i.e. photons that have interacted
with matter and have a di↵erent direction with respect to primary radiation)
may be higher and is superimposed to the image, decreasing image quality.

2.2.2 2D imaging: Digital Mammography

Digital mammography is an X-ray imaging system specific for breast acquisi-
tions. The apparatus consists of (figure 2.4):

• a supporting plane at the height of the patient’s chest comprising the
detector, and on which is positioned the breast and then compressed by
means of a parallel plate of radiolucent material;

• an X-ray tube whose focal spot is typically distant about 60 cm from the
detector, and radiates the breast from the top (Bushberg et al. 2002).
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Figure 2.4: the main components of a standard MG apparatus are: an X-ray
tube (1); a compression paddle (2); and a detector (3).

During the exposure, the patient stands up in front of the apparatus. This
tube has an anode of molybdenum, or of rhodium in the case of particu-
larly dense breast. Typically low energy X-rays are used, by setting the tube
voltage below 30 kVp; indeed, at low energies the di↵erence between the
attenuation coe�cients of the tissues increases, and consequently even the
contrast increases. The parallel-plate compression is mainly used to flatten
the breast tissues, reducing their superimposition (breast is flatten until an
average thickness of 5 cm). Moreover this evens out the thickness of breast
to increase image quality by reducing the thickness of tissue that x-rays must
penetrate, decreasing the amount of scattered radiation that degrades image
quality, and reducing the required radiation dose. The compression also is
aimed to immobilize the breast during exposure that can take few seconds,
preventing motion blur. Due to the compression of the breast, this examina-
tion is painful for some patients. With this system a 2D projection of breast
(also called mammogram) is collected, where the entire breast (from nipple to
chestwall) is included in the field-of-view of the image. The image that is pro-
duced is a two-dimensional representation of three-dimensional space. Each
pixel is therefore an average of the information obtained through the full thick-
ness of the breast. The overlapping of tissue structure a↵ects the visibility
of abnormalities. The examinations is normally performed by a technician,
meanwhile the image are read and interpreted by a physician. A complete
breast screening comprises two di↵erent views of each breast taken from dif-
ferent angles: one is the Cranio-Caudal (CC), i.e. head-to-foot view, and the
other one is the Medio-Lateral Oblique view (MLO) (figure 2.5). This in or-
der to partially overcome the shortcoming of tissues superimposition that can
hide the behind structures. Indeed MG is characterized by lower specificity
in case of breast dense tissue that can hide cancer. During the acquisition of
the CC view, the patient stands in front of the apparatus and the breast is
imaged from nipple to chest wall. It must show the medial part as well the
external lateral portion of the breast as much as possible. The acquisition of
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the MLO view is carried out rotating X-ray source together with detector at
an angle of 45� with respect to the CC plane, and the patient stands on the
side in order to radiate the breast up to include on projection both pectoral
muscle and axilla. The limitation of this technique is that the two-dimensional

(a) (b)

Figure 2.5: (a) example of the CC view of MG. (b) a typical MLO view, where
the breast is compressed at a di↵erent angle of the MG apparatus as shown
in the picture.

nature of MG results in tissue superposition, which can create two problems:
dense glandular tissue located above and/or below a lesion of interest can re-
duce the visibility of the lesion (reducing sensitivity), or two or more normal
features that are only vertically separated can appear to be the projection of
a lesion of interest (reducing specificity) (Sechopoulos 2013). Moreover, the
ability of MG to detect breast cancer decreases significantly in women with
dense breasts.

Radiographic appearance of breast anatomy
In a typical mammogram, the whole breast is imaged, and glandular tissue
appears bright as it is radiodense, while fat tissue appears darker because ra-
diolucent (figure 2.6). Lesions usually appear brighter than the surrounding
tissue, because they are denser than fat. Problems emerge with dense tissue,
where lesions and breast tissue have low contrast and dense tissue appears as
a wide bright area that can mask underlying structures.

Role in breast cancer screening
MG is the standard imaging modality for breast cancer screening. The goal of
MG is the early detection of breast cancer on asymptomatic women, typically
through detection of characteristic masses and/or microcalcifications. MG is
also the reference modality for the assessment of breast density. Breast den-

23



CHAPTER 2. BREAST IMAGING TECHNIQUES

Figure 2.6: Normal breast anatomy: 1. pectoralis; 2. glandular tissue; 3.
nipple; 4. areola; 5. subcutaneous fat; 6. skin; 7. retromammary fat (Hong
et al. 2012).

sity is based on how fibrous and glandular tissues are distributed in the breast,
compared to the fraction of breast that is made up fat tissue. This distribu-
tion can be qualitatively assessed by radiologists evaluating the appearance of
breast on mammogram. Hence, density is expressed as a percentage (visually
estimated) of the mammogram occupied by attenuating tissue. The Ameri-
can College of Radiology (ACR) has defined a breast composition classification
(Breast Imaging-Reporting and Data System (BI-RADS) density assessment
(D’Orsi et al. 2013)). As dense breasts are linked to a higher risk of breast
cancer and to a decrease of sensitivity of MG, for each category an indication
on the possibility that a lesion could be obscured by normal tissue have also
been reported. Figure 2.7 shows examples of how the breast density appears
on a mammogram, corresponding to these BI-RADS categories.

2.2.3 3D imaging: Digital Breast Tomosynthesis

DBT is an evolution of MG technique, allowing a volumetric reconstruction of
the whole breast from a finite number of two-dimensional projections collected
at di↵erent angles (within a narrow angular range) around the breast. Each
projection is comparable to a mammogram, but acquired at low dose. It is
introduced to overcome the loss of information in the third dimension and the
shortcoming of overlapping structures. The apparatus is similar to MG, but in
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Figure 2.7: Breast composition illustrations. from left to right: almost en-
tirely fatty breast (< 25% glandular tissue); breast with scattered glandular
densities (25-50% glandular tissue); heterogeneously dense breast, which may
obscure small masses (50-75% glandular tissue); and extremely dense breast
(>75% glandular tissue), which lowers the sensitivity of mammography (GE
Healthcare).

this case X-ray source can move covering an arc with respect to breast and de-
tector (figure 2.8). The series of projections is then processed by a reconstruc-
tion algorithm which uses the di↵erent location in the projections of the same
tissues to compute their vertical position, thereby estimating the 3D distribu-
tion of the tissues. Various reconstruction algorithms can be used, including
shift-and-add, matrix inversion, filtered back projection, maximum likelihood
reconstruction, and simultaneous algebraic reconstruction technique. Certain
reconstruction methods may be better for masses and other methods better
for calcifications (Helvie 2010). For instance, the most simple method, the
shift-and-add algorithm, consists of a shifting and adding of the projections
to bring structures of a given plane in focus. By varying the amount of shift-
ing, planes at di↵erent depths inside breast thickness can be rendered in focus
(Dobbins et al. 2003). Hence, each reconstructed slice contains not only the
objects of interest in the focal plane, but also objects from every other plane
blurred out and superimposed on the plane of interest (out-of-plane artifact).
After the reconstruction algorithm a series of high-resolution parallel sliced
images are obtained. The number of slices varies with thickness of the breast
and the type of reconstruction method.

Resolution
Due to the limited angle of the projection acquisitions, DBT images is charac-
terized by anisotropic spatial resolution, with very high spatial resolution in
the planes parallel to the detector (in-plane resolution), the same resolution
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Figure 2.8: sketch of the DBT rotating gantry with respect to the breast
position.

of as a mammogram, and a considerably lower resolution in the perpendicular
direction (in-depth resolution).

System description
Several commercial DBT systems are available on the market. Currently, most
DBT systems consist of the same basic components as digital MG systems: a
detector, a compression plate, and an X-ray tube mounted on an arm. The
additional features that distinguish a DBT system from a MG are the ability
of the X-ray tube to rotate around a point close to or on the detector and
having a detector with fast readout. The systems di↵er for additional modi-
fications implemented by manufacturers to optimize their system and for the
choice of the detector’s type, X-ray tube target and filtration, angular range,
number of projections, as well as reconstruction method. The DBT images
used in this thesis are collected with Hologic Selenia Dimensions system and
High Definition Breast Tomosynthesis produced by Siemens Healthcare.

DBT volumes
The resulting 3D images consist of a series of high resolution projection im-
ages at di↵erent depths inside the breast (see figure 2.9). The number of slices
depends on the thickness of the compressed breast. Typically a frame every
1 mm is reconstructed. Thus, an average size of a volume is 55-60 frames.
The plane resolution depends on the equipment. Typically a resolution of
0.11⇥ 0.11mm2 is achieved (A. Smith 2011).

Advantages and limitations
The main advantages o↵ered by DBT over MG (Guo et al. 2006) are:
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(a) (b)

Figure 2.9: example of a reconstructed DBT volume, where the projection
images reported in (b) correspond to the green lines drawn in (a) at di↵erent
depths inside the breast.

• the reconstructed 3D images preserve depth information, allowing a 3D
lesion localization and overcoming the superimposition issue of normal
structures (in figure 2.10 is reported an example in which localization
and size information of a mass are preserved in DBT images on the con-
trary of the tissues overlapping resulting in the MG projection, and even
superimposition with surrounding breast tissue is resolved). These are
important improvements for a better morphological analysis of masses
and architectural distortions, that could improve detection and charac-
terization of breast lesions especially in women with dense breasts. As
a consequence a possible reduction of false negatives and false positives
recalls could result;

• improved contrast is provided. While for MG the dynamic range is used
to represent all the structures superimposed in a single projection of
the whole volume, on the contrary, in a DBT volume the structures
are imaged in di↵erent planes and thus the dynamic range is assigned
to view image variations in a single slice. It results in a higher overall
image contrast between breast structures.

Several early experimental clinical DBT studies have shown good patient ac-
ceptance, physician preference for DBT images, improvement in sensitivity,
improvement in characterization, and often longer physician reading times
(Lo et al. 2006, Helvie, Roubidoux, et al. 2007, Gur et al. 2009, Helvie, Chan,
et al. 2009, Teertstra et al. 2010, Dang et al. 2014, Ra↵erty et al. 2013).

A shortcoming of DBT images are the presence of out-of-plane objects, that
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(a) (b)

Figure 2.10: comparison between MG and DBT images of the same patient:
the MG projection (a) and three DBT reconstructed projections at di↵erent
depths (b). It can be noted that in each DBT slice only the in focus structures
corresponding to the reconstructed plane are reported. This allows to distin-
guish the lesions to the normal breast tissue, meanwhile in the mammogram
the same structures are overlapped in a single projection.

causes blur e↵ect. This artifact is mainly due to the limited angular aperture
and to the type of the reconstruction algorithm used.

2.3 3D Breast Ultrasound Imaging

In this section the second imaging modality used in this thesis is described:
the Ultrasound imaging technique (US). After a brief introduction of the basic
principle of US, a description of the important role played by this modality
in breast US examination and of the handheld technique commonly used are
presented. This preliminary section aims to introduce modern Automated
Breast Ultrasound (ABUS) scanners for the acquisition of 3D US images of
breasts. This represents the state-of-the-art available on the market.

2.3.1 Ultrasound imaging

US, also called sonography, uses high-frequency sound waves, that can be used
to investigate the internal structures of the human body. The waves are trans-
mitted by the contact between the transducer and the area of interest and can
travel into the human body. Therefore, an image of the anatomy of the body
can be formed. Medical image formation relies on the property of tissues to be
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transparent to US and the property of ultrasonic waves to undergo reflection
and refraction phenomena at the interface between tissues having di↵erent
acoustic properties. Hence, US has the ability to detect and localize bound-
aries between organs and any small structures or inhomogeneities (such as
tissue abnormalities) able to produce reflected US waves, and to characterize
tissues based on the properties of these echoes.

Basic principles (Bushberg et al. 2002, Middleton et al. 2004, Kremkau 2010)
Ultrasonic waves are transmitted through the matter by high-frequency parti-
cle vibrations. Thus US can travel through gases, liquids, and solids, but not
in vacuum. A US measure consists in the generation of US wave, its propaga-
tion through a medium and in the interpretation of the response subsequent
to the interaction between US and matter. The probe is the component of
the US equipment that is placed in direct contact with the patient’s body.
In medical US, the probe works both as a generator and a detector of US
waves (i.e. it is operating in pulse-echo mode), hence it sends US pulse into
tissue and then receives echoes back. A modern US probe comprises an ar-
ray of transducers, consisting of piezoelectric crystals, that convert electrical
pulses into mechanical oscillations which generate the sound waves. Then the
returned echoes are converted back into electrical pulses and are further pro-
cessed in order to form the US image presented on the screen. The diameter
of the disc of piezoelectric material determines the geometry of the ultrasonic
beam, and its thickness the frequency of resonance. The beam can then be
focused (by a lens or other technologies) to give it a specific size and shape at
various depths within the body. According to the number and layout of the
transducers, di↵erent shapes of US probe exist (see figure 2.11).
A broad classification divides the probes into:

• linear type: where a linear sequence of transducers produces a linear
beam (i.e. with a rectangular field-of-view) that results in a rectangular
image as wide as the width of the beam. The transducers are activated
sequentially, and each crystal element generates a scan line of image
information. The larger the number of scan lines, the better the lateral
resolution (i.e. spatial resolution in the direction of the length of the
array). It is often used for US of superficial structures, so the operating
frequency ranges from 3 to 12 MHz;

• convex or curved type: it consists of an array of transducers mounted
on an arc-shape probe and the resulting beam has a wider field-of-view,
with a sector shape, that produces a trapezoidal image. The shape and
size of the beam vary with distance from the transducer, that causes
the lack of lateral resolution at greater depths. The operating frequency
ranges from 1 to 5 MHz;

• phased or sector type: A phased array system may have the same ge-
ometrical configuration as either a linear or curvilinear array, but the
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procedure of activating the crystal elements is di↵erent. Instead of be-
ing activated sequentially, in a phased array all transducers are excited
together. For each pulse, the system produces only one scan line over
the whole area of the array. The US beam has a sector shape, almost
triangular, and produces a fan like image that is narrow near the trans-
ducer and increase in width with deeper penetration. It is use for small
acoustic window. It is useful when scanning between the ribs as it fits in
the intercostal space. The operating frequency ranges from 1 to 5 MHz.

The choice of the probe depends on the application. For breast imaging a
linear probe is typically used. Note that the term transducer is commonly
used also to refer to the US probe. Hence, in the following these two term
will be used interchangeably.

Figure 2.11: from left the following probe types are drawn with the corre-
sponding US beam: phased-array, linear and convex probes.

Image formation depends on the following main properties of the US waves:

• Frequency
One of the most significant characteristics of US is its frequency, which
is the rate at which the sound source vibrate. Thus the frequency of
sound is determined by the transducer’s characteristics. US refers to
a sound wave with a frequency greater than the upper limit of audible
frequencies for human, which is generally over 20 kHz. The frequencies
used in medical imaging range from 2 MHz to approximately 15 MHz.
Therefore, frequencies typically range from 2.5 MHz for deep abdomen,
obstetric and gynaecological imaging to 15.0 MHz for superficial struc-
tures and musculoskeletal imaging. Breast US requires a high frequency
transducer (8-15 MHz); a lower frequency transducer may be required
for large breasts and the axilla. Normally, in medical US pulsed US
beams are used, that do not have a single frequency; the transducers are
characterized by more than one operating frequency, i.e. a bandwidth
of frequency, and commonly its central value is the reference frequency.
The frequency of the transducer is chosen based on several factors, in-
cluding size of objects to be detected, depth of penetration, and tissue
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composition. It must be carefully selected to provide a proper balance
between image detail and depth of penetration. In general, high fre-
quency pulses produce higher quality images (i.e. short wavelengths are
required to produce good anatomical details), but cannot penetrate very
far into the body (the explanation will be discussed later). Therefore,
the higher the frequency, the smaller the detail that can be detected,
but the shorter the depth of penetration of US. This explains why high
frequencies are used for superficial body structures and low frequencies
are used for those that are deeper. After introducing even the other
properties of US, it will be clearer the criteria for choosing the proper
frequency.

• Propagation speed
The speed of sound varies by the medium it travels through and the
sound waves travel faster through solids, followed by liquids and gases.
Therefore, in the body, US travels fastest through bone tissue and slow-
est through air. Even the type of sound waves depends on the medium.
Sound travels through the gases and liquids as longitudinal waves (i.e.
particles vibrate along the wave propagation direction). Through solids
it can be transmitted as both longitudinal waves and shear (or trans-
verse) waves (i.e. particles oscillations are transverse to the wave prop-
agation direction), each is traveling with di↵erent speed. Hence, in
general, the US waves traveling into the soft tissues are longitudinal
waves, instead bones can transmit both longitudinal and transversal os-
cillations. For a longitudinal wave, the propagation speed, denoted by
the letter c (m/s), is related to the density ⇢ (kg/m3) of the medium
and the coe�cient of sti↵ness K (or the modulus of bulk elasticity for
gases) (Pa, corresponding to kg/ms2), by the following relationship:

c = (K/⇢)1/2 (2.2)

Thus the speed of sound increases with the sti↵ness (i.e. the resistance of
an elastic body to deformation by an applied force) of the material, and
decreases with the density. Note that the speed of sound is substantially
independent to frequency. The speed of sound in the most of soft tissues
has an average value around 1540 m/s, in the air is about 340 m/s, in
fat 1450 m/s, in water is 1480 m/s, and in bone as high as about 4080
m/s.

• Acoustic impedance
Acoustic impedance (Z) is a physical property of a material that de-
scribes how much resistance a US beam encounters as it passes through
it. It is of considerable importance in characterizing the propagation
of US waves at the interface between two tissues. It depends on speed
of sound (c, in m/s) and density of the medium (⇢, in kg/m3) by this
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relationship:
Z = ⇢c (2.3)

It means that a denser medium o↵ers greater impedance. So, as the den-
sity of a tissue increases, the impedance increases. Similarly, but less in-
tuitively, if the speed of sound increases, then impedance increases. The
SI unit for acoustic impedance is the Rayl, corresponding to kg/m2s.
As reference, air has low acoustical impedance (0.0004 ⇥ 106kg/m2s),
water has higher impedance than air (1.5⇥ 106kg/m2s), and bone have
higher impedance than water (7.8 ⇥ 106kg/m2s). Meanwhile fat has
an acoustic impedance quite less than that of soft tissues and water
(1.3⇥ 106kg/m2s).

Interaction of US with matter
As US pulse passes through matter, such as human tissue, it interacts in
several di↵erent ways. Some of these interactions are necessary to form an US
image, whereas others absorb much of the US energy or produce artifacts and
are generally undesirable in diagnostic examinations. The ability to interpret
the results of US examination depends on a thorough understanding of these
US interactions. When a beam of US pulses is passed into a body, several
things happen. Most of the US energy is absorbed and the beam is attenuated.
This is undesirable and does not contribute to the formation of an image (like
in X-ray imaging). Some of the pulses will be reflected by internal body
structures and send echoes back to the surface where they are collected by
the transducer and used to form the image. Therefore, the general US image is
a display of structures or reflecting surfaces in the body that produce echoes.

• Attenuation and penetration

As the US pulse moves through matter, it is gradually attenuated, i.e. it con-
tinuously loses energy. Two main mechanisms contribute to US attenuation:
absorption and scattering. The US attenuation generally depends on two fac-
tors: the material through which US is passing, and the frequency of the US.
US energy is more likely to be lost in gases, while it travels through liquids
or solids more e�ciently. And moreover, those with a higher frequency show
a higher attenuation factor. Attenuation is linearly dependent on frequency.
Attenuation rate is usually measured in decibels per centimeter of tissue and
it is expressed in terms of the attenuation coe�cient of the specific tissue type
(measured in dB/cm MHz). Bone has the higher attenuation coe�cient (20
dB/cm MHz), followed by air (12 dB/cm MHz). Soft tissues has an aver-
age attenuation coe�cient of 0.9 dB/cm MHz, meanwhile water produces the
least attenuation 2⇥10�3 dB/cm MHz). This means that water is a very good
conductor of US. This explains why a gel is placed between the transducer
and the skin to eliminate air for the best sound conduction. Water within
the body, such as in cysts and the bladder, forms windows through which
underlying structures can be easily imaged. Compared to the soft tissues of
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the body, bone has a relatively high attenuation rate. Bone is a good absorber
of US and this implies that shields some parts of the body against easy access
by US.
The attenuation influences the distance traveled by the US through the tissue.
Penetration is the term used to describe the distance from the sound source
at which 50% of the original energy remains. There is an inverse relationship
between absorption and penetration. As tissues absorb energy from a sound
wave, a reduced amount of energy remains to be carried forward by the wave,
thus the US penetration is decreased. Therefore, a high frequency wave is
associated with high attenuation thus limiting tissue penetration, whereas a
low frequency wave is associated with low tissue attenuation and deep tissue
penetration. This is an important factor for the selection of the appropriate
frequency of US, because the frequency controls the depth of penetration.

• Reflection and refraction

Generally, when an ultrasonic wave passes from one medium to another, some
energy is reflected (reflected echoes) and the remaining energy is transmitted.
The reflection of US pulse occurs at the interface between two dissimilar ma-
terials. In order to form a reflection interface, the two materials must di↵er in
terms of acoustic impedance, and the reflection is proportional to the di↵er-
ence in impedance between the tissues. The amount of reflection that occurs
in a perpendicular direction is expressed by:

Reflectionfraction = [(Z
2

� Z
1

)/(Z
2

+ Z
1

)]2 (2.4)

where Z
1
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represent the impedance in tissue 1 and tissue 2, respectively.
So there is no reflection for Z
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(i.e. echoes are not produced if there
is no di↵erence in a tissue or between tissues), very low reflection fraction
when Z
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<< Z
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) (i.e. sound
is completely reflected, resulting in total acoustic shadowing, such as occurs
behind bones). The larger the di↵erence in acoustic impedance between two
tissues, the more sound will be reflected back to the transducer and the less
sound carries on traveling through the tissue.

The human body consists of a variety of tissues and organs with acoustic
impedance di↵erent from each other. Hence, US repeatedly encounters bound-
aries and striking these tissues are reflected di↵erently. The acoustic proper-
ties of skin, fat, blood vessels, and muscle are similar. When US encounters
boundaries between acoustically similar tissue, such as adipose and muscle,
the amount of reflection is insignificant. On the contrary, at interfaces between
soft tissue and materials such as bone, calculi, and gas, strong reflections are
produced. Since within the body the impedances (except for air and bone)
are very similar, now it is clearer why US can easily penetrate into the body,
but the reflected echoes are weak. Because the impedance characteristics of
metal and air are so di↵erent, the amount of reflection at a metal-air interface
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is about 99%, which means that the amount of US transmitted from a metal
transducer to air is negligible (and the same for the interface air-skin, where
the impedance of air is very di↵erent to that of soft tissue). This is another
reason for using a coupling medium between the transducer and the skin dur-
ing US scan. Meanwhile, at a tissue-bone interface, about 15% of incident
energy is reflected. It explains why US is limited in evaluating structures
encased in bone like brain anatomy. When US is reflected from an interface
between two di↵erent soft tissue, as well as at a fat-muscle interface, or water-
fat, less than 1% of sound is reflected.

When US pulse is not perpendicular to a surface but passes through an inter-
face at a relatively small angle (between the beam direction and interface sur-
face), the penetrating pulse (i.e. transmitted across the boundary) direction
will be shifted by the refraction process. This can produce certain artifacts.
Meanwhile the reflected wave is directed away from the boundary on a new
path (i.e. reflected away from the transducer) that has same angle but is a
mirror image of the incident wave. Refraction is proportional to the di↵erence
in acoustic impedance of the boundary materials and to the incident angle of
the wave. Therefore, refraction at boundaries formed by layers of skin, fat,
blood, or muscle is very small. At tissue-air boundaries, however, because the
impedance characteristics of tissue and air are so di↵erent, the transmitted
wave changes direction by 90% (i.e. total internal reflection). This means that
the wave traveling along the boundary is totally reflected instead of crossing
it.
Refraction follows the Snell’s law:
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are measured with respect to the normal at the refractive
boundary, and ✓
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corresponds to the incident angle and ✓
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to refraction angle.
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represent the speed of sound, respectively, in the tissue 1 and tissue 2.

Image formation
The basic US image (or sonogram), called B-mode (brightness) image, is a
display of structures or reflecting surfaces (interface//or boundary) in the
body that produce echoes. These echoes contain both spatial and contrast
information of the objects need to form an image. In fact, the location in
the horizontal direction is determined by the position of the beam. In the
depth direction, it is determined by the time required for the pulse to travel
from source to the reflecting site and for the echo pulse to return back (time of
flight), that means the transducer can measure the delay between the emission
of the US pulse and the detection of the reflected echo. From this measure
and the knowledge of the speed of sound, the location of the reflecting in-
terface (i.e. its distance from the source) can be derived. The brightness
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(i.e. the image gray-level value) depends on the amplitude of the echo (with
respect to the amplitude of the incident wave), which is related to the di↵er-
ence in acoustic impedance at the interface. Hence, echoes show up as bright
(white) spots in the image. Most anatomical areas have inhomogeneous com-
position, that results in the well-known gray and white background. In the
contrary, liquid-based masses, such as a cyst, is dark in the image, since there
are no reflecting surfaces within a fluid. However, these structures present
bright boundaries owing to usually high di↵erence in acoustic impedance with
respect to the surrounding tissue (as explained before). Using appropriate
grayscale (i.e. dynamic range), tissues that give very weak signals can be bet-
ter distinguished (i.e. the image contrast can be increased). Generally, in US
the term hypoechoic or hyporeflective is used for low intensity regions, and
hyperechoic or hyperreflective for high intensity regions.
The spatial resolution of US image is determined by the cross sectional di-
mensions of the ultrasonic beam and by the duration of the ultrasonic pulse
(i.e. spatial pulse length). Generally it is divided in: axial (or longitudinal)
resolution, that is the ability to distinguish objects spatially close along the
direction of propagation of the beam, and depends on the duration of the
ultrasonic pulse (i.e. spatial pulse length); lateral resolution, that defines the
resolution in the scan plane direction, it is dependent on both the transducer
element height and width, and thus it is determined by the cross sectional
dimensions of the ultrasonic beam. As the beam size varies with depth, po-
tentially resulting in a depth-dependent image quality.

US artifacts
When forming a B-mode image, the imaging system makes a number of as-
sumptions about US propagation in tissue (Feldman et al. 2009). These in-
clude:

1. the speed of sound in human tissue is constant,

2. the US beam and its echo travel in a straight path,

3. the attenuation in tissue is constant, and

4. the pulse travels only to target that are on the beam axis and back to
the transducer (i.e. after a single reflection). That means that the depth
of an object is directly related to the amount of time for a US pulse to
return to the transducer as an echo.

Significant variations from these conditions in the target tissues are likely to
give rise to visible image artifacts. Most artifacts may be grouped into speed-
of-sound artifacts, attenuation artifacts or reflection artifacts according (i.e.
errors inherent to the US beam characteristics and the presence of multiple
echo paths) to which of the above conditions is violated (Meire et al. 2001).
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The ability to recognize US artifacts is important as artifacts have the poten-
tial to interfere with image interpretation. Some artifacts may cause structures
to appear in an image that are not present anatomically or a structure that
is present anatomically may be missing from the image. US artifacts may
also show structures as present but incorrect in location, size, or brightness
(Kremkau 1998. The most frequent US artifacts include the so-called rever-
beration, mirror image, speed displacement, attenuation errors, shadowing,
and increased through-transmission artifacts. Artifactual echoes, including
speckle and other spurious noise, as well as posterior acoustic patterns, in-
cluding posterior enhancement (characteristic of simple cysts) and posterior
acoustic shadowing (characteristic of some solid masses) are artifacts encoun-
tered routinely in clinical practice.

Role in breast cancer diagnosis
The ability of US in the discrimination of low contrast tissues is widely ac-
cepted, especially for the examination of substantially superficial organs and
entirely composed of soft tissues, such as breast. In the introduction its use-
fulness in case of dense breast tissue has been already highlighted. In breast
imaging US is widely used for the following advantages: it is almost free-cost
technique and widely available; it is safe and less invasive than other options
(like X-ray imaging or MRI). In fact, it does not use ionizing radiations for
investigation, it is painless exam and it is free of any other adverse side e↵ects,
so it is well tolerated by all patients (Mendelson et al. 1995, H. Wang et al.
2012). It is used even for pregnant women and for women at very high risk
for breast cancer who cannot tolerate breast MRI, as well as those women
with dense breast tissue (i.e. who have higher radiation-induced cancer risk
(Vachon et al. 2007)). US also allows real-time imaging (essential in case of
biopsy with US guidance). These are all important factors that could make
US a valuable tool for breast cancer diagnosis.

In common practice, US is used as supplemental tool or as a secondary di-
agnostic technique (i.e. recall exam in order to characterize mammographic
findings). Breast US is generally not used as a screening tool because it does
not always detect some early signs of cancer such as microcalcifications, and
moreover it may miss small lumps or solid tumors that are commonly detected
with MG. In current indications it is recommended as primary screening tech-
nique only in case of young women (usually under 30 years of age) or preg-
nant patients who are symptomatic. However, the use of US examination as
primary screening test is currently under investigation (Berg, Bandos, et al.
2016). Latest studies have demonstrated that cancer detection rate with US is
comparable with MG, with a greater proportion of invasive and node-negative
cancers among US detections, even if false positives are more common with
US examination.
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Sonographic appearance of breast anatomy
A typical breast US image shows up the following structures (figure 2.12):
the skin, approximately 2 mm thick with an hyperechoic appearance; the
premammary layer of subcutaneous fat, anterior to the brighter and hetero-
geneous premammary fascia, and Cooper’s ligaments shown as hyperechoic
bands coursing through the subcutaneous fat; the mammary zone composed
by glandular tissue, where the majority of breast cancers detectable by US are
located; the retromammary fascia and fat, posterior to the mammary layer;
and the most posterior structures that are the pectoralis muscle and then the
ribs. The sonographic appearance of malignant tumor is most often that of
a solid hypoechoic mass (compared with breast fat), i.e. cysts, tumors, and
distortions appear dark on the scan.

Figure 2.12: US capture of the normal breast anatomy, showing: the pre-
mammary zone, comprising skin and overlying breast fat; the mammary zone
composed by glandular tissue; the retro-mammary zone, including predomi-
nantly fat and the muscles of the chest wall.

2.3.2 2D imaging: Handheld Ultrasound

In a standard US examination the breast is scanned using a conventional 2-
dimensional transducer. The US is not performed by a technician as a mam-
mographic acquisition, but it is a real-time imaging examination performed
by physicians. During the examination, the patient lies in a supine posi-
tion, and the physician can easily investigate the whole breast, comprising
the axillary region, moving freely the transducer around the breast (hand-
held US scanning), and bi-dimensional images of specific areas of concern are
collected (US guidelines included in the ACR BI-RADS Atlas (D’Orsi et al.
2013) recommend 5 images for a diagnostic US negative exam). Typically a
broadband linear array transducer is used, with a bandwidth of frequencies
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of 5-12 MHz, for high resolution superficial applications. However, in women
with small breast (with breast thickness < 3 cm) or when performing tar-
geted US to evaluate a superficial lesion, a linear 5-17MHz transducer may
be used. Hands-on real-time scanning is a more flexible examination allowing
the physician to control pressure and orientation of the probe (to overcome
anisotropy and edge refraction from vessels, Cooper’s ligaments, edge of cysts)
to sharpen up the edges of a lesion. As a consequence, a deeper study of lesions
conspicuity and margins analysis is possible. Real-time scanning also allows
the operator to assess lesion mobility, location, and relationship to adjacent
structures (Hooley et al. 2013).

However, as the image quality is highly dependent on the probe pressure,
patient positioning and angle of insonation, the detection accuracy is related
to the acquisition skill and experience of the physician. (Berg et al. 2006)
reported radiologist performance regarding the detection, description, and
interpretation of breast lesions using handheld breast sonography. In their
study, the detection varied according to the lesion size, with only an approx-
imately 44% detection rate for lesions 3.1 to 5 mm, a 53% detection rate for
lesions 5.1 to 7.0 mm, a less than 70% detection rate for lesions 7.1 to 9.0 mm,
and reliable detection (97%) only when the mean lesion diameter was greater
than 11.0 mm.

Hence, despite the multiple advantages, the major shortcomings of hand-held
US (HHUS) can be summarized as follow:

• high degree of subjectivity: HHUS scanning technique requires specific
technical skill and the US result is highly dependent on the experience
and subjective judgments by the operator (Wojcinski et al. 2011);

• time-consuming: it needs long examination time, i.e. around 30 minutes
for a typical scan;

• operator dependence: that means considerable user variability and low
uniformity in the quality of examinations;

• HHUS provides only partial 2D view of the breast, that do not allow a
retrospective comparison with other examinations;

• lack of reproducibility: that prevents the possibility of a second evalu-
ation. In fact it is di�cult to localize a 2D image plane and reproduce
the same image plane at the same location (Lin et al. 2011, H. Wang
et al. 2012, due to the lack of position information relative to the entire
breast.

As such, HHUS is not clinically accepted to be used as a population screening
tool for breast cancers (Buchberger et al. 1999, Kopans 1999, Wojcinski et al.
2011).

38



2.3. 3D BREAST ULTRASOUND IMAGING

2.3.3 3D imaging: Automated Breast Ultrasound

Due to multiple advantages of this modality, recently many e↵orts have been
employed from industries to develop newer technologies for automatic and
repeatable acquisitions and for providing 3D images of whole breast volume.
Automated Breast US (ABUS) scanners have been introduced to provide a
potentially alternative to conventional handheld screening breast US.
Two di↵erent types of automated scanners have been currently proposed
(Chou et al. 2007:

• Automated whole-breast ultrasound (AWBUS), where patient lies in a
prone position and a tomographic acquisition of the whole breast (freely
suspended in a warm water bath) is captured through a ring array of
transducers. The existing systems include: SoftVueTM system produced
by Delphinus Medical Technologies, and SonixEmbraceTM system devel-
oped by Ultrasonix.

• ABUS scanner where the patient is in a supine position and the breast is
automatically scanned by a wide footprint linear transducer. The ABUS
systems currently available on the market are: ACUSON S2000TM Auto-
mated Breast Volume Scanner (ABVS) designed by Siemens Healthcare,
InveniaTM ABUS by GE Healthcare, and Adjunctive AWBUS system
developed by SonoCiné Inc.

The datasets used in this thesis refer to the Siemens ABVS system. There-
fore, the description of the apparatus will be focused on this system (note that
some general considerations about the equipment and the scanning procedure
are valid for this system as well as the other similar systems, independently
to the manufacturer).

The possibility to obtain an automated acquisition of 3D breast images is
the major interesting feature of this type of novel technology. Like conven-
tional HHUS, ABUS uses high-frequency sound waves targeted at the breast
examination to collect a set of closely spaced 2D images, from which a 3D
high-resolution volume of the breast can be reconstructed.
The main goals pointed by ABUS systems are:

• decrease of the physician’s examination time per case;

• produce a standardized, high quality examination that improves the
conspicuity of cancers, and at the same time decreases the operator
dependency of the examination result.

Clinical indications
ABUS is indicated for use as an adjunct to MG to increase breast cancer
detection, explicitly for breast cancer screening in asymptomatic women for
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whom screening MG findings are normal or benign (BI-RADS assessment cat-
egory 1 or 2), with dense breast tissue (BI-RADS composition C or D), and
have not had previous clinical breast intervention. The device is not intended
to be used as a replacement for screening MG.

System description
ABVS apparatus is equipped with a scan station, an examination table, and
a workstation to review the 3D images (see figure 2.13). The scan station
includes a flexible arm that ends with the transducer enclosed in a case, and
a touchscreen monitor that provides a real-time preview of the breast scan
state. A mesh membrane is fixed at the bottom of the transducer’s case (see
figure 2.14) to aid in acoustic coupling, compression and stabilization of the
probe over the breast. The US probe consists of a wide-frequency-bandwidth
linear transducer (5–14 MHz using a 9-MHz center frequency), with a large
footprint, with preset depth and gain. With this frequency bandwidth a thick-
ness up to 6 cm is investigable. The probe face is 15 cm wide, and a maximum
total field-of-view of up to 15⇥ 17cm2 can be covered (see figure 2.14). Tech-
nical properties of the transducer are summarized in the (table 2.1, Siemens
Healthcare). The system also provides conventional transducers for HHUS
scanning that can be combined with the automated scan.
The scan is performed with the patient lying on the back on the examina-

Figure 2.13: picture of tha Siemens ABVS equipment: (1) scan station; (2)
table for patient scanning; (3) flexible arm; (4) scan head assembly for the 3D
imaging.

tion table. The exam can be performed by a technician, who applies a layer
of gel over the breast to be examined, and then manually places the scan
head on the breast, positioning the transducer over the nipple (figure 2.15).
Before scanning, the breast has to be firmly compressed for breast immobiliza-

40



2.3. 3D BREAST ULTRASOUND IMAGING

(a) (b)

Figure 2.14: (a) mesh membrane to aid in acoustic coupling, compression and
stabilization; (b) comparison between the size of the ABVS and the HHUS
probes.

Parameter Value
frequency bandwidth 5.0-14.0 MHz

selectable 2D frequencies 7.0, 8.0, 9.0, 10.0, and 11.0 MHz
footprint 154mm⇥ 168mm

array length 154 mm
maximum field-of-view 154mm⇥ 168mm
maximum display depth 60 mm

line spacing 0.175 mm or 0.125 mm
resolution axial = 0.09 mm

lateral = 0.16 mm
sagittal = 0.44 mm

Table 2.1: technical specification of the 14L5BV transducer.

tion during the images acquisition avoiding motion artifacts and for ensuring
a good acoustic contact between the transducer and the breast. The com-
pression is automatically applied by the system; there are up to 3 levels of
compressions. In case of patient’s pain, the operator can manually act to
change the level of compression. The system automatically scan the entire
field-of-view covered by the transducer in a standard manner (from bottom
to top side of breast) with optimized imaging settings (depth, frequency, focal
zone placement and overall gain) on the estimated size of the breast and the
scan view (i.e. transducer position with respect to the nipple and chest wall).
As the transducer moves over the breast volume it acquires consecutive trans-
verse images at regular intervals. With a single pass of the US beam, a 3D
reconstructed image can be formed. The volume is displayed through a mul-
tiplanar reconstruction, where the coronal, sagittal, and transverse planes are
reconstructed and can be independently examined (figure 2.16). The ability
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to generate images from the coronal plane (i.e. from the nipple to the chest
wall) represents a unique feature provided by ABUS, which is not achievable
on conventional 2D US. A typical full examination consists in the acquisi-

(a) (b)

Figure 2.15: Initial position of the ABUS probe to be placed over the nipple as
reference. Then the scan starts from the bottom to the top of the breast. The
ABUS probe automatically collects a sequence of equally and closely spaced
2D images. By knowing the spatial interval along the scanning motion, a
volumetric information can be digitally reconstructed.

tion of three automated scans per breast in the anteroposterior (AP view)
and both oblique positions (i.e. medial, MED, and lateral, LAT, views), for
covering the entire breast volume. Three di↵erent views of each breast are
acquired, by moving the probe in adjacent positions (i.e. the scan head is
positioned on three di↵erent orientations), covering the area from the axilla
to the sternum (figure 2.17). Occasionally, additional views were required for
larger breasts and with the scans centered on either a palpable abnormality
or axillary lymph nodes.

A single scan requires an acquisition time of approximately 1 minute, and
the total acquisition time per patient, including the setup time, is 15 minutes.
Interpretation can take between 5 and 15 min, depending on the experience
of the radiologist and the complexity of the case (H. Wang et al. 2012). A
study on the interpretation times (Chae et al. 2015) reports that the mean
interpretation times for the 3 radiologists were 4± 2 minutes for the coronal
view and 6 ± 2 minutes for the transverse view. Although the di↵erence in
the interpretation times was significant for the coronal and transverse views,
both were dramatically shorter than the 19 minutes reported for handheld
sonography (Berg et al. 2008). These results suggest that ABUS system is a
time-e�cient tool that could be e↵ectively used in screening practice.

Breast US volumes
A typical dataset consists of 320 high resolution axial 2D images collected at
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(a)

(b) (c)

Figure 2.16: From the volumetric dataset, three orthogonal views are avail-
able: the transverse, coronal and sagittal planes. It allows breast to be viewed
and examined in multiple orientations. The transverse planes, i.e. the scanned
slices, can be scrolled to visualize the breast axial section from bottom to top
of breast. The coronal sections begin at the level of the skin and are layered
upon each other up to the chest wall.

regular slice intervals of 0.5 mm. The reconstructed frame resolution depends
on the acquisition parameters automatically selected by the system depending
on the breast size. A typical resulting voxel size is 0.21 ⇥ 0.11 ⇥ 0.52mm3 a
maximum volume up to 15.4⇥ 16.8⇥ 6cm3 can be captured.

Advantages and limitations
Several recent studies have investigated the role and impact of this new tech-
nology (KM Kelly, Dean, Lee, et al. 2010, Chang et al. 2011, K Kelly et al.
2011, Wojcinski et al. 2011, Isobe et al. 2011, Shin et al. 2011, V. Giuliano
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Figure 2.17: example of coronal planes extracted from three volumes of a
breast collected at di↵erent probe’s position: lateral (LAT, on the left), an-
teroposterior (AP, in the middle), and medial (MED, on the right) views.
Using the areola area (dark area in the images) as reference, it can be noted
the relevant deformation induced by probe pressure.

et al. 2012, Kim et al. 2014). ABUS reflects a promising modality in breast
imaging, however appears to be on a par with HHUS in terms of diagnostic
quality, showing a comparable diagnostic performance (KM Kelly, Dean, Lee,
et al. 2010, Stoblen et al. 2011).
The main proved advantages provided by ABUS are (KM Kelly et al. 2010):

• 3D imaging allows multiplanar analysis (proving unique transversal and
coronal views), thus a more accurate characterization of lesions is achiev-
able, with an improved analysis of their shape and margins due to
the volumetric information and the multiple scanning orientations. In
particular, spiculated margins are often observed in the coronal view,
whereas they cannot be well documented or are absent in the transverse
view (see figure). A spiculated margin has been known as the high-
est discriminating feature for characterizing malignant breast lesions.
(Stavros et al. 1995, Rotten et al. 1999) This additional value of the
coronal view has been reported (Cho et al. 2006).

• Furthermore, the standardized scanning of 3D images allows repro-
ducibility (i.e. consistency from one exam to another) and retrospec-
tively analysis. Although three scans are required to cover the entire
breast, the large transducer’s field of view allows the nipple to be in-
cluded in each scan, providing a reliable reference point.

• The standardization of the acquisition process allows technician to per-
form the scanning in place of physician, and thus image interpretation
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to be separated from the acquisition process As the transducer auto-
matically scans the breast, image quality is less operator dependent.

• Studies have demonstrated a substantial reduction in examination time,
with greater sensitivity and fewer false-positive (K Kelly et al. 2011).
When used in addition to MG, ABUS can improve breast cancer detec-
tion by 55% over MG alone (Inciardi 2012, Brem et al. 2015).

(a) (b)

Figure 2.18: schematic representation of how the reconstructed volumetric
information can improve conspicuity of lesions.

However, limitations of ABUS include that the device cannot provide a unique
scan of the entire breast, especially for large breast, it requires a time-consuming
review of a large number of images by the physician, and the technology lacks
real-time capability. As a consequence, the sonographer cannot clear an area
a↵ected by an artifact (even if the three di↵erent scans required for each
breast can overcome some artifacts due to the di↵erent probe positioning),
and moreover the need for a second US examination to re-evaluate indetermi-
nate findings implies the recall of patients. In addition, ABUS is still a high
cost technology, and consequently this type of system is not yet widespread
in Italy.

During the scanning, some critical issues require particular attention as can
a↵ect image quality. These include: the need to avoid dark US absorption ar-
eas through the volume due to an improper acoustic coupling between probe
and transducer (figure 2.19(b)), motion artifacts due to an improper stabi-
lization of breast during scanning (figure 2.19(a)), and the need to include in
the transducer’s field-of-view an overlap area among scans to ensure that the
entire breast has been scanned.
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(a)

(b)

Figure 2.19: Typical ABUS image artifacts. a) sagittal view with wave pattern
due to respiration or other patient motion. b): transversal view with air
artifact due to lack of contact between probe and breast.
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Image registration theory
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In this chapter, some basic mathematical concepts regarding image reg-
istration theory are presented, as well as the terminology that will be used
in the following. Image registration is the process of estimating the spatial
transformation between the coordinates of two images of the same or similar
objects. Di↵erent mathematical implementations exist to solve the registra-
tion mathematical problem, depending on the degrees of freedom of the in-
volved transformation model and the known a priori information. In the case
of rigid registration method, the task is to find the optimal parameters of a
transformation matrix that globally best matches the two images. In the case
of non-rigid registration the task consists in estimating a dense vector field
that should map each location of one image onto its corresponding location of
the second one. The displacement field can be evaluated by the optimization
of an energy functional (also known as objective function or cost function). In
this chapter an overview of the state-of-the-art solutions are presented. Note
that I will often refer to images and pixels, but the same concepts can be
easily extended to volumes and voxels.
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3.1 Introduction to image registration theory

Image registration is the process of determining a spatial mapping function
that correlates corresponding points between two images. It has a vast range of
applications and the reasons of registering two images can be multiple. Mainly,
the registration task consists of estimating the optimal spatial transformation
so that the images are matched either for representing data in a common
reference system or for exposing the di↵erences of concern between the images.
Therefore, the resulting correspondences can be used to change the appearance
(by rotating, translating, stretching etc.) of one image so it more closely
resembles another or to automatically correlate corresponding points, so the
pair can be directly compared, combined or analyzed. Image registration is an
active research field and in the last years there is growing interest in medical
imaging applications.

Mono- and multi-modal registration

The registration methods are classified into two main categories. When the im-
ages are taken with the same sensor, the registration is known as monomodal
or intra-modality registration; otherwise, when the aim is to compare images
collected using di↵erent imaging techniques, the registration refers to multi-
modal methods, also called inter-modality or cross-modality registration. In
the monomodal comparison significant intensity or contrast variations are not
expected, rather geometrical di↵erences due to displacements and deforma-
tions of the objects. For medical images, in the case of acquisitions at di↵er-
ent times the aim is to help to relate clinically relevant information useful for
monitoring changes in an individual over time. When the sensor has a limited
field-of-view or the quality of investigation and the amount of information
depend on the orientation of the sensor, it could be helpful to acquire more
images of the same subject from di↵erent viewpoints. The aim of registering
these images is to improve the visualization and the understanding of the sub-
ject’s anatomy. In this case di↵erences in image contrast among acquisitions
are expected. In the multimodal comparison the images may di↵er for im-
age intensities, geometric distortions caused by di↵erent patient positioning,
and even type of information, often complementary among images, depending
on the imaging technique. Due to the di↵erent physical phenomena that are
measured by the di↵erent modalities, there is no functional relation between
the intensity maps of corresponding anatomies. In addition, the two images
may be represented in di↵erent coordinate systems. Multimodal comparison
represents a very complex task with a lot of degrees of freedom. The pur-
pose is in fact to take advantage of the integration of more information of
the same subject for a more complete analysis. The correlation between the
two coordinate systems and the integration of information are the tasks of
image registration. The geometry of the anatomy is not the only interesting
property. Indeed, tissues can look similar but have di↵erent functionalities.

48



3.1. INTRODUCTION TO IMAGE REGISTRATION THEORY

Such functional information can improve the characterization of the tissues
(and help in the definition of clinical volumes).

Rigid and non-rigid transformation model

The transformation model that maps the two images can include a global
transformation function between the coordinate systems or a local transfor-
mation function that takes into account even relative displacements between
objects. In the first case, the model can involve any combinations of trans-
lation, rotation, scaling or even shearing motion (a�ne transformations) be-
tween the coordinate systems, and the transformation model is called rigid.
This type of transformation accounts for the overall motion of the object, that
means the distance between any two points in the first image is preserved when
mapped onto the second image. When the matching function between the two
images involves also relative motions and local deformations of the objects it
is called nonrigid or deformable transformation model. In this case correspon-
dence between structures in two images cannot be achieved without localized
stretching of the images. The term deformable denotes that the images are
associated through a dense vector field, representing a spatially varying defor-
mation model. For some medical applications a rigid body approximation can
be used. For example, brain images of the same subject, even if acquired with
di↵erent modalities, often present relatively little change in brain shape or
position within the skull over relatively short periods between scans. In most
cases, a rigid transformation is not adequate for representing the actual spa-
tial transformations. In particular, soft tissues and other deformable organs
can vary in shape as well as in position relative to surrounding structures.
Generally, the patient motion due to di↵erent positioning could be coarsely
corrected applying a global alignment of the images; meanwhile internal mo-
tions of the organs after di↵erent positioning or di↵erent breathing cycle, and
pathological changes between scans cause non-rigid deformations, which need
to be compensated using deformable models. In the case of breast images,
since the breast is entirely composed of soft tissue, it easily deforms during
di↵erent acquisitions, thus its behavior cannot be modeled simply as rigid
and a non rigid registration method is required. Today the most interesting
and challenging works in registration involve the development of application-
specific non-rigid matching techniques. These are known to produce promising
and satisfactory results; however, there are several problems with their appli-
cations. One is the fact that these approaches are computationally intensive
and time demanding. Frequently the algorithms can take many hours to reg-
ister images, which makes them unsuitable for interactive use, allowing only
o↵-line interpretation. The recent techniques of computer assisted surgery or
real time serial registration of intraoperative images require fast and sophisti-
cated implementations of the algorithms and high performance workstations.
Another point is that these techniques are sensitive to initial positioning of
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the images to be matched. If the initial global alignment is not enough accu-
rate getting closer corresponding points, the deformable matching procedure
may perform poorly, i.e. could not converge to the wanted result. Therefore,
a satisfying pre-registration step can be a key issue. A third obstacle to a
widespread clinical use of non-rigid registration is the di�culty in validating
the results, as explained below. For all these points deformable registration
has been, along with organ segmentation, one of the main challenges in mod-
ern medical image analysis. Accurate non-rigid motion estimation is still an
open issue, especially in highly deformable anatomies.

Ill-posed nature of image registration

The computation of the transformation function is complicated by the inher-
ently ill-posed nature of the registration problem. According to Hadamard’s
definition, a well-posed problem satisfies the following properties: existence,
uniqueness, and stability of the solution. Registration is usually an underde-
termined inverse problem (i.e. more unknowns than equations), meaning that
information is not enough to uniquely determine the solution and to constrain
this solution being stable (i.e. the solution’s behavior changes with continuity
with initial conditions).
This implies that:

• many transformations can produce very similar results reaching a simi-
lar good match between the images (Rohlfing 2006) (i.e. there are not
enough constraints from images only to define a unique optimal solu-
tion);

• optimal matching function does not guarantee a reasonable solution
reflecting real non-rigid deformations (i.e. there are not enough con-
straints from images to constrain the solution being physically meaning-
ful). Constraints have to be included for disallowing unrealistic folding
or tearing of the structures. It is generally very complex to incorpo-
rate all appropriate physical and mathematical constraints within the
objective function of an inverse problem;

• still worse, di↵erent methods lead to di↵erent solutions in function of
the internal modeling of the transformation (Rohlfing 2006). For ex-
ample, if geometrical features are used to match images, there will be
many di↵erent possible deformation fields which can align those features
but which behave di↵erently away from those features. Similarly there
will also be many possible deformation fields that can result in voxel in-
tensities appearing to be well matched between images. The estimated
solution strongly depends on the method and on the constraints;

• for most medical images, registration is a↵ected by the problem of local
minima, especially when images are noisy: the estimated solution is un-
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stable if falls into local minima, instead of converges to local maximum.
The local minima are one of the causes of the distortions mentioned
above.

In addition, another important issue that need to be addressed is the criterion
to validate the resulting solution. This has to evaluate how the match is accu-
rate, how the estimated solution is good among all the possibilities and it has
to establish if the solution is optimal and adequate for a particular applica-
tion. In addition, in case of non-rigid transformations the validation is not an
easy task. In fact, the validation criterion has to take into account that dense
fields, defined in each location of the images, are estimated. Then a pointwise
validation could be proper in these applications, but it is an impracticable
solution. This issue of current importance is still unsolved. All these consid-
erations explain the current emphasis on the development and validation of
application-specific non-rigid techniques.

3.2 Definitions

In this section a description of a common terminology and basic concepts of
image registration is presented.

Reference and template
When two images are being registered, one is conventionally regarded as static
and defines a frame of reference and the other is transformed to bring corre-
sponding features into alignment. The static image is variously known as the
reference, target or fixed image. The image undergoing transformation is also
known as the template, source, update or floating image. Given the two im-
ages, the goal of the image registration is to find a spatial transformation, such
that the deformed template matches the reference image according to a suit-
able distance measure between image features. The criterion used to register
the images is known as the similarity measure or the objective or cost function.

Displacement field and reverse mapping
The result of deformable registration is a vector field called displacement or
deformation field. It is a dense vector field, because defined for each loca-
tion of the reference domain. The displacement field describes the mapping
function of corresponding locations between the reference and the template.
Hence, it describes how to spatially transform the template in order to obtain
a deformed image (i.e. resampled to the space of the reference image) sim-
ilar to reference. When the vector field defines the transformation function
that maps points from the template to the resulting points of the transformed
template, the function refers to a forward mapping. If the template is consid-
ered as input space and the transformed template is the destination or output
space, in the forward mapping procedure, the function hereafter denoted by
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T maps each input image pixel (u
k

, v
k

) of the input space to the destination
point (x

k

, y
k

) of the output space (see figure 3.1). However, forward mapping

Figure 3.1: diagram illustrating the forward mapping procedure, where the
transformation T describes the destination (x

k

, y
k

) for every location (u
k

, v
k

)
in the input space, i.e. (x

k

, y
k

) = T (u
k

, v
k

).

has two main disadvantages: gaps and overlaps. This means that it could hap-
pen that some output pixels do not correspond to any input image pixels (i.e.
their value is undefined) or some output pixels corresponds to more than one
input image pixel. In both cases, it is challenging to figure out a reasonable
way to set the value of those output pixels. In the case of reverse or backward
mapping (see figure 3.2), the displacement field is defined for each location
on the destination image (i.e. transformed template), and it describes the
corresponding location in the source image (i.e. template). In this case the
value of each pixel of the transformed template is determined. The advantage
of this approach is that the field is directly defined on the sampling grid of
the destination image. This approach completely avoids problems with gaps
and overlaps. Only an interpolation method is needed to establish a rule for
determining the output pixel value (x

k

, y
k

) when the input location (u
k

, v
k

)
does not coincide to the center of an input grid pixel. If the mapping function
is invertible, the forward and reverse mapping are the same, and the reverse
mapping corresponds to the inverse spatial transformation used in the forward
mapping; otherwise, the reverse matching is more convenient. In this thesis
the displacement field refers to a reverse mapping estimation. Note that, the
term transformation (or warping) will be usually used to denote the applica-
tion of a transformation model or a vector field on an image, while deformation
denotes the internal non-rigid motion of a body in a physical point of view,
and displacement field is the dense vector field representing such non-rigid
transformations.

Field inverse consistency
An important property of a displacement field is its symmetry, also called field
inverse consistency, that guarantees the same result of the image registration
independently on which image is chosen as reference and template. In general
the resulting transformation is asymmetric, especially for deformable regis-
tration, as only one of the images is transformed during the process. Indeed,
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Figure 3.2: diagram illustrating the reverse mapping procedure, where the
inverse spatial transformation T�1 is applied to determine the corresponding
the location (u

k

, v
k

) in the input space for each destination pixel (x
k

, y
k

), i.e.
(u

k

, v
k

) = T�1(x
k

, y
k

). Using an interpolation procedure, an approximate
value for the destination pixel (x

k

, y
k

) is set from the input pixels nearest to
input location (u

k

, v
k

).

the registration from template to reference will not necessarily lead to the
inverse transformation as the registration from reference to template. As a
consequence, interchanging the order of the input images, there is no guaran-
tee that each point of the reference can be related to a corresponding position
in the template image using the inverse transformation of the resulting dis-
placement field that maps each point of the template to reference. An inverse
consistent registration method (that will be explained in the next section) can
be implemented to ensure the symmetry of the resulting displacement field.
It is achieved constraining the displacement field estimated from reference
to template images to be consistent and coherent with the displacement field
estimated from template to reference during the image registration procedure.

Feature vector and feature descriptor
Feature is a widely used term in image processing and it may have di↵erent
meanings depending on the application. A feature represents a relevant in-
formation in an image: it may refer to a distinctive local structure, like an
interest point, edge, corner or blob, as well as it may refer to a measurable
property that characterizes a structure, like its gray-level intensity value, ori-
entation and scale. In the first case, the feature represents a structure or a
whole object in an image and can be the result of a feature detection applied
to the image. A feature detector represents a method aimed at identifying
interesting points, i.e. features, in the image. In the second case, a feature
represents a property used to characterize a pixel. If more features are used to
describe a pixel, a feature vector is associated to the pixel. A feature vector
is an n-dimensional vector that contains information describing a structure’s
important characteristics. Given a pixel, the feature vector describes the im-
age structure in a neighborhood, i.e. a local image patch, around the pixel.
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The most basic vector is a set of numbers representing the intensity values
and its size corresponds to the number of pixels of the image patch. Other-
wise, a set of local image features can be extracted, where each feature can
identify the pixel location, the scale and the orientation in the local image
neighborhood, or other properties. Thus, the vector is a list of features and
its size depends on the number of features used to characterized the pixel. A
feature descriptor typically indicates a method used to extract a specific set of
information from an image, and the output of a feature descriptor is a feature
vector corresponding to each pixel. Its role is to characterize the local image
appearance around a pixel using the most representative features. The choice
of features to be determined depends on the specific problem.

3.3 Components of registration methods

This section provides a summary of the state-of-the-art techniques proposed
in literature (Zitova et al. 2003, Crum et al. 2004, Modersitzki 2004, Gosh-
tasby 2005, Sotiras et al. 2012, Sotiras et al. 2013) and introduces the basic
concepts useful to describe the nonparametric formulation of an image regis-
tration problem, that will be used in this thesis.

Given a reference image denoted by R and a template image denoted by T ,
both defined in the image domain ⌦ ⇢ Rd ! R, d = 2, 3, the goal of registra-
tion is to estimate a displacement field u : ⌦! Rd such that the transformed
template T 0 image is similar to the reference image R. For a particular point
x 2 ⌦, the quantity R(x) is the image intensity value at the spatial position x
of the reference and T (x) refers to the intensity at the position x of the tem-
plate. Then the purpose of the registration is to determine a displacement
field u such that T (x+u(x)) = T 0(x) = R(x) or similar to R(x). The optimal
displacement field is often achieved by an energy optimization problem, that
will be presented in detail in the following. Transformations used in non-rigid
registration range from smooth local variation described by a limited number
of parameters to dense displacement fields defined at each voxel. Depending
on the type of transformation a di↵erent formulation of the energy functional
results. Every image registration algorithm relies on defining three compo-
nents, that are selected according to the application: a similarity measure, a
transformation model, and an optimization strategy.

3.3.1 Similarity measure

The similarity measure, also called metric or matching criterion, determines
the quality of the match between images. The similarity is evaluated between
feature vectors extracted from both the images. The aim of registration is
to compute a displacement field such that these di↵erences are as small as
possible. Di↵erent similarity criteria exist, depending on the type of features
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used for the matching. Registration can be based on geometric information,
i.e. a small set of interest points detected from the images, or onto measures
computed directly on the image intensity values. Hence, generally registration
methods are classified into: landmark-based, intensity-based, and hybrid ap-
proaches. Therefore, the choice of the metric depends on the imaging modal-
ities and on the structures represented in the images to be registered.

Landmark-based registration
This approach exploits geometric information, i.e. anatomical information in
medical images, that usually are sparsely distributed throughout the images.
The landmarks are assumed to be placed in salient image locations which
are considered to correspond to meaningful anatomical locations. The most
common features include control points, edges, contours, surfaces, and so on,
which firstly need to be extracted and then are matched to their counterparts
found in the second image. These correspondences define the transformation.
Also fiducial markers can be used to guide image registration. In this case,
the metric can be simply the sum of distances between geometrical features
identified in both images, and the transformation results from the minimiza-
tion of this metric. After establishing explicit correspondences between the
pairs of landmarks, interpolation is used to infer the values of the displace-
ment filed throughout the rest of the image volume in a way consistent with
the matched landmarks. The use of such structural information ensures that
the mapping has biological validity. However, transformations that give a
good features similarity, often produce tearing as result of correspondence
problems. Moreover, if the features form a sparse set of correspondences, the
interpolation procedure results in a decrease in accuracy as the distance from
the landmarks increases. Two advantages of geometric registration are that it
is independent to image contrast variations and it is robust with respect to the
initial conditions and the existence of large deformations. The solution of the
registration problem is relatively straightforward once landmarks have been
extracted. On the other hand, it requires good landmark detection. This ap-
proach, in fact, relies on the accurate definition of these geometrical features,
which is possible when identifiable anatomical structures are visible in both
images, or when their manual segmentation is available. Their automated
identification may be complex in practice as it requires robust and accurate
feature detection algorithms. Geometry-based metrics are therefore more ap-
propriate when manual pre-processing is feasible. For all these reasons in case
of breast image registration this approach could be not advantageous.

Intensity-based registration
In this case the feature is the grayscale value of the pixel, and the image inten-
sities are directly exploited to compute the transformation. This approach, in
fact, uses mathematical or statistical criteria to describe and match intensity
patterns, but does not use anatomical knowledge. The intensity pattern in
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a location x is commonly extracted from a neighborhood of x, N(x) ⇢ ⌦,
that, in most cases, takes the form of a representative rectangular patch, or
sub-image, centered in x.
These methods define a measure that evaluates the similarity of intensity pat-
terns around two locations (one from the reference and one from the template)
and adjust the transformation until the summation over the whole image of
the similarity measures between corresponding locations is maximized. It is
convenient to define a function  : ⌦ ! R associated to a similarity metric
as follows: given the reference image R, the template image T and the dis-
placement field u,  (x;u, R, T ) is the function that measures the similarity
of each location x in R with its corresponding location in T . The quantity to
be maximized can be then expressed as:

X

x2R

( (x;u, R, T )). (3.1)

When compared to the geometric methods, this approach has the potential
to better represent the accuracy of the dense deformation field. Nonetheless,
it comes at the cost of increased computational expense.
Popular similarity measures include the sum of absolute si↵erences, the sum of
squared di↵erences, cross Correlation, and mutual information. These match-
ing criteria can be presented according to whether they tackle mono-modal or
multi-modal registration problems.

Sum of Absolute Di↵erences (SAD) and Sum of Squared Di↵erences
(SSD)

These are the simplest similarity measures; they assume that the image patches
have identical intensity patterns except for Gaussian noise. Using these met-
rics the similarity is maximized when the pointwise di↵erence between two
patches is as small as possible. SAD metric is expressed as:

 (x;u, R, T ) = �
X

y2N(x)

|T (y+ u(x))�R(y)| (3.2)

while SSD it is expressed as:

 (x;u, R, T ) = �
X

y2N(x)

(T (y+ u(x))�R(y))2 (3.3)

The minus sign before the summation indicates simply that SAD and SSD are
actually measures of dissimilarity and should be minimized to maximize the
similarity. Both are based on an intensity conservation hypothesis and are not
invariant to rotation and scale; hence, for these two similarity measures to be
successful, the assumption of comparable intensity between the same anatom-
ical structures is required. Therefore, their use is restricted to monomodal
registration tasks, where the images share the same imaging modality.
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Cross Correlation (CC)

If a linear relationship between the intensities of two images is assumed, the
optimal criterion is the cross correlation. CC value is expressed as:

 (x;u, R, T ) =
X

y2N(x)

T (y+ u(x)) ·R(y) (3.4)

It is usually computed on the zero-mean version of the patches (subtracting
each patch for its average intensity) and normalized dividing by the square
root of the auto correlation of both patches (Ibanez et al. 2003); in this form
is known as Normalized Cross Correlation (NCC).
NCC value is expressed as:

 (x;u, R, T ) =

P
y2N(x)

(T (y+ u(x))� T̄ ) · (R(y)� R̄)
qP

y2N(x)

(T (y+ u(x))� T̄ )2 ·
P

y2N(x)

(R(y)� R̄)2
(3.5)

where:

T̄ =
P

y2N(x) T (y+u(x))

|N | is the average of the neighborhood of x + u(x) in T ,
and
R̄ =

P
y2N(x) R(y)

|N | is the average of the neighborhood of x in R.

Multi-modal registration is more challenging, because the choice or the defi-
nition of an appropriate matching criterion that could extract discriminative
information, visible in both modalities, is a harder task. To solve this problem,
the similarity measure needs to define weaker relationships between intensity
that could highlight the underlying structures, and at the same time be less
a↵ected by the di↵erent intensity characteristics of the imaging modalities.
Most of the proposed approaches make use of information theoretic measures,
related by some statistical or functional relationship, like: entropy, joint en-
tropy, mutual information, and normalized mutual information.

Mutual Information (MI)

This is a metric derived from the information theory and measures the sta-
tistical dependency of two random variables. It is based on Shannon entropy
and aims to find a statistical intensity relationship across images that max-
imizes the amount of shared information between two images. MI does not
assume any relationship between the image intensities, but it only assumes
that a probabilistic relationship between pixel intensities is maximized at reg-
istration. Owing to its statistical nature, this metric is invariant to intensity
and is appropriate for the multimodal registration, where intensity changes
are assumed.
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If I is the intensity domain of the image R and T, the MI value is expressed
as:

 (x;u, R, T ) = H(N
R

(x)) +H(N
T

(x+ u(x)))� JH(N
R

(x), N
T

(x+ u(x)))
(3.6)

with H(N
R

(x)) the entropy of the patch neighborhood of x in R:

H(N
R

(x)) =
X

i2I

P (i, N
R

(x)) · log(P (i, N
R

(x))) (3.7)

H(N
T

(x+u(x)))) the entropy of the patch neighborhood of x+u(x)) in T :

H(N
T

(u(x))) =
X

i2I

P (j,N
T

(u(x))) · log(P (j,N
T

(u(x)))) (3.8)

and JH(N
R

(x), N
T

(x + u(x))) the joint entropy of the patch neighborhood
of x in R with the patch neighborhood of x+ u(x) in T :

JH(N
R

(x), N
T

(x+ u(x))) =
X

i2I

X

j2I

JP (i, j, N
R

(x), N
T

(x+ u(x)))

· log(JP (i, j, N
R

(x), N
T

(u(x))))

(3.9)

where P (i, N
R

(x)) is the probability to find the intensity value i in the neigh-
borhood of x in R, P (j,N

T

(x+ u(x))) is the probability to find the intensity
value j in the neighborhood of x+u(x) in T , and JP (i, j, N

R

(x), N
T

(x+u(x)))
is the joint probability to find the intensity values i and j in corresponding
locations in the neighborhoods of x in R and of x + u(x) in T respectively.
These probabilities are commonly represented by the normalized intensity his-
tograms extracted from the patch they refer to.

Since MI does not consider the spatial information of a particular pixel within
a patch, MI is not invariant to changes in image overlap. Thus, in certain cases
it may be possible that MI is maximized when the images get misaligned.
Therefore, the Normalized Mutual Information (NMI) has been pro-
posed to minimize the overlap problem. It is based on the assumption that a
lower entropy of the joint intensity distribution corresponds to a better align-
ment.

The NMI value is expressed as:

 (x;u, R, T ) =
H(N

R

(x) +H(N
T

(x+ u(x)

JH(N
R

(x), N
T

(x+ u(x)))
(3.10)

Although this formulation can solve the image-overlap issue, the lack of struc-
tural information is a serious drawback for most deformable registration tasks;
Di↵erent approaches have been proposed to include spatial context informa-
tion into MI: Pluim (Pluim et al. 2000) combined MI with image gradient
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information but clearly with this approach the modality invariance of the
metric is quite completely lost as the image gradient is a modality dependent
feature; other approaches (Studholme et al. 1999, Loeckx et al. 2010),like the
so called Conditional Mutual Information (CMI), increase the number of di-
mensions of the statistical variables used to compute the joint probabilities;
this is commonly implemented adding a third or forth channel in the joint
probability histogram that includes structural information. An obvious draw-
back of these approaches is their extremely high computational complexity
that makes them unsuited for a full resolution deformable field evaluation.

Hybrid registration
This approach exploits both the sparse geometric correspondences along with
an intensity-based criterion to improve the estimation of the spatial transfor-
mation. Combining geometric features and intensity features in registration
should result in more robust methods.

3.3.2 Transformation model

The transformation model defines how the template image can be warped
in order to match the reference. It should model the deformation relating
the two images. Hence, the choice of the class of geometric transformations
implies an assumption, i.e. knowledge of a priori information, regarding the
nature of the deformation to be recovered. Di↵erent types of transformations
exist, depending on the number of degrees of freedom of the model to be rep-
resented. As mentioned before in the introduction, rigid and non-rigid models
are possible. The registration methods can be broadly classified into para-
metric and non-parametric, depending on the method used to estimate the
transformation model.

Parametric methods aim at optimizing the parameters of a transformation
model in low-dimensional (e.g for rigid transformation) or high-dimensional
spaces. The number of parameters that the registration needs to estimate
corresponds to the degrees of freedom of the expected deformation model:
the more the number of parameters, the more flexible is the transformation
model and the more complex and time demanding is the computation. In-
stead non-parametric methods act directly on the displacement field (Holden
2008) and represent a multidimensional optimization problem. In the first
case the a priori information is directly included into the model used to de-
scribed the non-rigid transformation (implicit regularization achieved by the
parametrization of the displacement field), while in the latter, it has to be
included in the optimization process by using proper regularization technique
(explicit regularization, making use of constraints that the solution must sat-
isfy).
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Hereafter an overview of the existing techniques for both these approaches
is presented.

Parametric registration

Rigid and a�ne transformations
If the registration model is rigid, only a few parameters are needed to define
the global transformation. The rigid transformation corresponds to a problem
with 6 degrees of freedom; it is completely described by 6 parameters, 3 for
the translation vector and 3 for the rotation vector. The a�ne transformation
can require up to 12 parameters, including also 3 parameters for scaling and 3
for shearing. The transformation matrix is then applied to the whole image.

Parametric deformable registration
When local deformations are included, the non-rigid transformation needs
more parameters to be accurately modeled. A simple way of increasing the
number of degrees of freedom is to define the transformation as a combination
of k pre-defined transformations, or to define the transformation by interpo-
lation of the displacement computed in only l pre-defined control points (i.e.
through a definition of a mesh). The parametric registration consists then in
searching for the parameters (k parameters in the first case, and 3l in the sec-
ond case) that optimize the objective function. The most common methods
are the radial basis functions (Fornefett et al. 1999), the thin-plate splines
(Rohr et al. 1996), the B-spline based free form deformation (Rueckert et al.
1999), and the mesh-based finite element method (Ferrant et al. 2000). These
families of interpolation strategies use corresponding control points, defined
in the reference and the template image, and a basis function to define cor-
respondences away from these points. These points can be organized using a
regular grid (like in the B-spline method) or using a mesh (like in the finite
element method). Therefore, the displacement of these points are taken as
parameters for defining the global transformation. Hence, the displacement is
evaluated in this restricted set of locations in the image (that can be displaced
from their original location), and the displacement of all voxels can then be
computed using interpolation between these points. Parametric methods may
be computationally expensive, and can lead to some problems related to op-
timization in high-dimensional spaces when the objects to be registered are
highly deformable. Moreover, the choice of good control points is not always
an easy task. Indeed, in order to keep as few parameters as possible for the
optimization, the number of control points must be as low as possible, without
decreasing the accuracy of the transformation. Therefore, the points should
be located where there is the most useful information in the images (e.g. on
high contrast regions, edges, etc.) in order to get a good matching after reg-
istration. This makes such methods potentially di�cult to fully automate in
practice.

60



3.3. COMPONENTS OF REGISTRATION METHODS

• Radial basis functions (RBFs)
RBF is one of the most important families of interpolation strategies,
where the value of the resulting mapping function at an interpolation
point has the form of a linear combination of radial symmetric functions
(plus a linear term) of its distance from the known control points. A
characteristic of this method is that a deformation field can be interpo-
lated from a set of irregularly placed known samples, but the displace-
ment determined at one point influences the values of all other points
in the whole image domain. It means that each control point can vary
locally, but has a globally influence. Thus, an interpolation in sparsely
populated areas is feasible, but on the other hand, this behavior can be a
disadvantage when seeking local transformations. It limits the ability to
model complex and localized deformations. Hence, in order to counter
it, su�cient landmarks are required in the regions of interest. Neverthe-
less, as the number of control points increases, the computational cost
associated with moving a single point rises steeply.

• Thin-plate splines (TPS)
TPS is an interpolation method that uses a spline function, expressed
as a weighted sum of radially symmetric logarithmic functions, to define
correspondences away from the control points. Also in this case, each
control point belonging to a thin-plate spline has a global influence on
the transformation. Hence, also a thin-plate spline is not suitable for
the registration of images with local geometric di↵erences. TPS repre-
sents the equation of a plate of infinite extent deforming under loads
centered at the control points. The plate deflects under the imposition
of loads whose values correspond to the weight of the spline function.
Good accuracy is achieved at and near the control points, errors are large
away from the control points, and this can be attributed to the loga-
rithmic basis functions, which are radially symmetric, used to define the
transformation. When the arrangement of the points is nonsymmetric,
large errors are obtained in areas where large gaps exist between control
points.

• B-spline based free-form deformations (FFDs)
FFD is one of the most common types of transformation models used in
medical image registration. It consists of a regular grid (superimposed
on the image) that gets deformed under the influence of the control
points free to move independent on its neighbouring grid points. This
gives an optimization problem having several millions of variables. The
dense deformation field is given as a summation of cubic-B splines. By
contrast the thin-plate splines, B-splines are only defined in the vicinity
of each control point; perturbing the position of one control point only
a↵ects the transformation in the neighbourhood of the point. Thus,
B-splines are locally controlled and computationally e�cient. Neverthe-
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less, the local flexibility and the computational complexity of the local
motion model are related to the resolution of the B-spline control points
mesh. More control points may improve the registration accuracy, but
the computation time will also increase dramatically. Main disadvan-
tage of B-spline based non-rigid registration techniques is that special
measures are sometimes required to prevent folding of the deformation
field and these measures become more di�cult to enforce at finer reso-
lutions. In the implementations, the control point spacing, the stopping
criteria, and the weighting parameters in the cost function need to be
determined experimentally.

• Finite element method (FEM)
FEMs are mesh-based registration methods that model the biomechan-
ical properties of the tissues. These methods aim to include physical
behavior in specific registration applications. The main motivation of
using these methods is based on the assumption that by creating mod-
els of deforming organs that are consistent to their physical properties,
the plausibility of the estimated deformation improves and moreover the
registration is able to better cope with challenges due to the presence of
outliers or large deformations. Therefore, the knowledge regarding the
deformation may be achieved exploiting the knowledge about the de-
formability of the tissues and constructing biomechanical deformation
models using the FEM that mimic the properties of the tissues.
FEM allows more principled control of localized deformations. In fact,
FEM does not allow to get an accurate estimation of the displacement
of both the surface nodes of a volumetric mesh and the inside nodes
according to physical laws (such as linear elasticity). These models di-
vide the image into cells (note that the number of finite elements needs
to be found experimentally as trade–o↵ between accuracy and calcula-
tion time) and assign to these cells a local physical description of the
anatomical structure. For instance, soft tissue can be labelled as elas-
tic, bone as rigid, and so on. Then, external forces such as landmark
correspondences or voxel similarity measures are applied to the model,
which deforms according to the material behavior in each cell. However,
creating data-specific meshes is cumbersome for several reasons: geom-
etry is sometimes highly complex (especially for multi-body 3D images)
and placing nodes at good position (typically on high contrast voxels) is
not an easy task. As the method aim to faithfully represent anatomical
structures with the optimized model, the material properties as well as
the necessary geometry and boundary conditions are required and need
to be accurately defined. This is a challenging procedure because the
understanding of the material properties is often limited. And more-
over the definition of the geometry requires an accurate segmentation
of anatomical structures as well as appropriately meshing of the image
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domain. Uncertainty in the specification of these parameters may lead
to undesirable bias.

Non-parametric deformable registration

In non-parametric registration methods, the optimization is not performed
in a high-dimensional space of parameters, but directly on the displacement
field itself (involving a huge number of variables, equal to the number of voxels
times the 3 dimensions of the space). This family of methods is also denoted as
optical flow registration, owing to the first non-parametric registration method
(Horn et al. 1980). This was originally developed for video sequences, and it
is based on the constant intensity assumption. The supportive hypothesis of
this method is that the intensity of local time-varying structures is constant
under motion in the interval of time between two image acquisitions. Nev-
ertheless, this assumption is no longer valid in serial medical images, hence
optical flow methods have not been widely adopted for medical applications.

Most of these schemes proposed for solving the nonparametric image reg-
istration problem are typically expressed as an optimization problem of an
energy functional, combination of two terms:

J [u] = D[R, T 0;u] + ↵R[u] (3.11)

where D, called feature term, is a distance measure that quantifies the image
similarity between the reference image R and the template image T under
the influence of a displacement field u (the notation T 0 denotes that the tem-
plate is deformed). It represents the energy of the features that accounts for
the forces that move each pixel of the template image toward positions that
demonstrate similar characteristics in the image reference (i.e. the external
forces defined to obtain the desired registration result). The second one, R,
is the normalization or regularization term, that is related to the properties
of the transformation model and it regularizes the deformation field in order
to preserve its smoothness and invertibility (i.e. the internal forces designed
to keep the displacement field smooth during deformation and prevent unde-
sirable discontinuities). As displacement vectors are computed independently
for every voxel, the field might not be smooth due to image noise or to the spe-
cific behavior of the field calculation strategy. It is therefore crucial to include
more a priori knowledge into the registration model and constraints. There-
fore, the displacement field needs to be regularized in order to get a smoother
transformation and to avoid local minima. The parameter ↵ may be used to
control the strength of the smoothness of the displacement versus the similar-
ity of the images. The image is deformed until the forces reach an equilibrium.

Figure 3.3 reports an example created to highlight the e↵ect of the regulariza-
tion term. Figure 3.3(c) shows the result obtained optimizing the functional
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using only the feature term. The red channel of the image represents the refer-
ence, while the green channel represents the template after the application of
the resulting displacement field. It can be noted how the feature term moves
the structures of the template towards the similar structures on the reference,
but at the same time in some regions the optimization can lead to unrealistic
distortions. If the regularization is included, the artifacts disappear and a
more realistic solution is achieved (figure 3.3(d)). The regularization may be
achieved through the use of either hard constraints or soft constraints. Hard
constraints are the constraints that the solution must satisfy in order for the
registration to be successful, e.g. regularization based on physics-based mod-
els. The most common regularizers presented in the literature are: the elastic,
fluid, di↵usion, and curvature regularizers. These are inspired by the physical
behavior of the tissues under deformation. For instance, the elastic regular-
izer treats the template image as a linear, elastic body and deform it using
forces derived from the image similarity measure. Soft constraints are intro-
duced as additional terms in the energy function that penalize non-regular
configurations. Specific goals may be used such as: topology preservation (i.e.
equivalent to the invertibility of the deformation field), volume preservation,
and rigidity constraints. Volume preservation is of particular interest when it
is known that the imaged anatomical structure is not compressible and that
all changes are due to motion. A simple example is a bone structure; more
complicated cases include deformable structures that preserve their volume
such as breast, myocardium and liver. The rigidity constraint, instead, rep-
resents a term added to control the local rigidity of the transformation of
rigid anatomical structures. Of great importance for biomedical applications
are the constraints that may be applied to the transformation in order to
exhibit special properties, that include: inverse consistency, symmetry, di↵eo-
morphism. The inverse consistency constraint is aimed to avoid a bias on the
registration outcome due to the choice of one image to be the reference and
the other to be the template image. This constraint introduces a term that
penalize the di↵erence between the forward and backward transformations
during their simultaneously estimation (Avants et al. 2008, C. Chen et al.
2007, (Christensen et al. 2001). It also constrains the forward transformation
to be the inverse of the backward transformation. A di↵eomorphism is an
invertible geometrical transformation such that both the function and its in-
verse are smooth (Arsigny et al. 2006, Vercauteren et al. 2009). Imposing the
displacement field to be di↵eomorphic means that no physically implausible
folding of volume occurs. As organs can be compressed and deformed, but
cannot undergo non-invertible spatial transformations, this constraint should
be used to ensure that displacement fields represent physical deformations
(Arsigny et al. 2006).
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(a)

(b)

(c)

(d)

Figure 3.3: (a): reference (on the left) and template (on the right) images; (b):
overlap image, where the red channel of the image is used for the reference,
and the green one for the template. The last two images show the results
after the application of the estimated displacement field as moved only by
the features (c), or resulting by a balance between feature and normalization
terms (d).

3.3.3 Optimization strategy

Optimization refers to the manner in which the transformation is adjusted to
improve the image similarity. Hence, the aim of the optimization is to infer
the optimal transformation that best matches two images according to the en-
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ergy functional comprising the similarity and the regularization terms. As a
consequence, the choice of the optimization methods impacts on the quality of
the obtained result. Choosing a good optimizer requires a good understanding
of the registration problem, and the constraints that can be applied. A good
optimizer is one that reliably and quickly finds the best possible transforma-
tion. It means that the more the time required by the optimization method
to estimate the displacement field (i.e. it is a computationally demanding
strategy), the more the chance to converge to local minima, which can result
in a good image match that nevertheless is not the best one.

Optimization of the energy functional is achieved by solving the variational
(Gâteaux) derivative of J [u] (eq. 3.11), i.e. of the regularizer and similar-
ity measure. These results in the corresponding partial di↵erential equations
(PDE) known as Euler-Lagrange equations:

f(x,u) + ↵A[u](x) = 0 x 2 ⌦ (3.12)

with
f(x,u) = (R(x)� T (x+ u(x))) ·rT (x+ u(x)) (3.13)

where A is the partial di↵erential operator, and it is related to the Gâteaux
derivatives of the regularization term R; f is the Gâteaux derivative of the
distance measure D, and it may be thought o↵ as the driving force for the
associated PDE.

Numerical method for the minimization problem
Most non-parametric registrations are based on an iterative process. The idea
is to progressively build a proper displacement field by iteratively improving
the matching between the reference image and the template image warped by
this displacement field, according to the similarity metric. Hence, over the
last decade most of the research e↵ort into nonparametric image registration
has gone into the development and use of numerical approaches to solve the
Euler-Lagrange equations. There are various ways to define the previous pa-
rameters. For example, the step size may be constant, or decrease with each
iteration, or such that it minimizes the energy functional along the search
direction. The search direction can be specified by exploiting only first-order
information or, for example, by also taking into consideration second-order
information. It is the choice of these parameters that distinguishes di↵erent
methods. Most techniques apply a fixed-point iteration scheme directly to
the Euler-Lagrange equations, yielding an algorithm that requires successive
solutions of linear PDE systems until a stationary solution is found.

Many registration algorithms use existing optimization schemes. Commonly
used numerical methods include:

• Gradient descent method, where the energy functional is optimized by
following the direction that decreases the energy or its negative gradient.
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• Quasi-Newton method, that aims to accumulate information from the
previous iterations and take advantage of it in order to achieve bet-
ter convergence. More specifically, these methods aim to estimate the
inverse Hessian matrix and use it to define the search direction.

• Gauss-Newton method. It is of the same family of Newton’s methods,
but this algorithm does not require the computation of second deriva-
tives. The Hessian is approximated by ignoring derivatives higher than
first order.

• Levenberg-Marquardt algorithm. It is a method related to the previous
one, where the search direction in this case is given by the inverse Hessian
matrix and a weighting factor that regulates the performance of the
optimizer with respect to its speed and stability. By decreasing its
value, greater speed may be achieved. At the limit, when it equals to
zero, the algorithm falls to the previous one. On the contrary, when its
value increases, the stability increases as well.

Hierarchical strategy

In order to speed up the convergence of the iterative process or to increase
the registration accuracy (i.e. avoid local minima), the optimization can be
performed from coarse-to-fine scales (hierarchical strategy) (Lester et al. 1999,
Bajcsy et al. 1989). At each scale, the registration method is iteratively solved
until convergence. The transformation function that registers the images at
a lower scale, will only register the images approximately at a higher scale.
Therefore, after registering the images at a scale, the process should be re-
peated to find more correspondences in the images at a higher scale and
compute a more elaborate transformation that can compensate more accu-
rately for the local geometric di↵erence between the images. The idea of the
hierarchical approach is to register to coarse (low-resolution) image first and
then to use the result as the starting point for finer (high-resolution) image
registration, and so on. Hence, the process starts with a coarse estimation
of the displacement field, that is improved by using finer resolutions. As the
optimization starts, at each scale, from an initialization resulting from the
previous scale, this makes the method more robust against local minima. In
fact, performing the registration on sub-sampled images not only reduces the
computational time (because at the finest image resolutions fewer steps are
needed for converging to the optimal solution), but also allows the estimation
of large displacements that could not be estimated in the final resolution be-
cause of noise and local minima in the optimization process. As the scale of
the images is reduced, the geometric di↵erence between the images reduces,
making the images more similar and increasing the registration accuracy.

The coarse-to-fine approach can be applied to the image during the registra-
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tion method, and even to the patch for the definition of the feature descriptor
used for the similarity measure (i.e. coarse-to-fine hierarchical matching cri-
terion), as well as to the grid sampling of the displacement field.

3.4 Validation criteria for a deformable regis-
tration

Validation of the registration result is an important part of the image reg-
istration procedure. It consists of evaluating both the performance of the
registration algorithm and the accuracy of the estimated deformation model.
However, the measurement of the registration accuracy is still an ongoing
problem for deformable methods. It is a critical task because the ground truth
is generally not available (Guo et al. 2006, Sotiras et al. 2013). Registration
methods are often validated using external markers, anatomical landmarks,
or external fiducial frames as the gold standards (Woods 2000). For land-
mark approaches an error that expresses the distance between corresponding
landmarks post-registration can be computed. However, these landmarks are
not always available, and even more, although the error at landmarks can be
established, landmarks are not adequate to validate a deformable registration
model that varies locally. Therefore the registration error cannot be quanti-
fied for the whole image with certainty, as well as the pointwise estimation
cannot accurately refer to the whole image. Similarly, as already explained
above, a good match obtained with an intensity-based approach cannot guar-
antee a successful registration result neither give a measure of its accuracy, as
a transformation model that gives a good similarity match may be physically
not plausible and as many solutions can lead to similar image matching (ill-
posedness of the registration problem). Nevertheless, a pointwise accuracy
assessment over the whole image, even if possible, is meaningless, or in many
applications the true point-to-point correspondence may not even exist (e.g.
intersubject registration). These criteria have to be adapted to each specific
context.

In the recent years, many e↵orts have been made on the evaluation of the
registration in di↵erent contexts (e.g. in (Maintz et al. 1998, Christensen et
al. 2003, Urschler et al. 2007, Janssens et al. 2009, Klein et al. 2009, Brock et
al. 2010, Rodriguez-Vila et al. 2010). At the moment, no generally applicable
method for registration accuracy assessment is available. Anyway, a general
method suitable for all applications is not reachable. These validation criteria
have to be defined and adapted to each specific context. For instance, the
requirements for the registration computing time are di↵erent for applications
as intraoperative registration tools than in the context of o↵-line image pro-
cessing. As well as an estimate of the registration error evaluated satisfactory
for a specific task, on the other hand could be considered unacceptable for
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another application that requires a high level of accuracy. Therefore, valida-
tion usually means showing that a registration algorithm applied to typical
data in a given application consistently succeeds with a maximum (or aver-
age) registration error acceptable for the application.

Currently, for specific applications, the increasing availability of annotated
data sets (e.g. accessible medical image databases and online medical atlases)
has made possible evaluation studies. Moreover, the development of evalua-
tion projects for image registration (e.g. Non-rigid Image Registration Eval-
uation Project – NIREP (Christensen, Geng, et al. 2006) and the increasing
understanding regarding the use of surrogate measures for the measurement
of the accuracy of registration (Rohlfing 2012) will further facilitate the com-
parison between di↵erent algorithms.

Performance evaluation of deformable registration algorithms

Common criteria for the evaluation of image registration performance are
accuracy, reliability, robustness, and computing time.

• Accuracy

Accuracy refers to the di↵erence between true and estimated values. In image
registration, this di↵erence can be evaluated as the mean, median, maximum,
or root-mean-squared distance between points in the reference image and cor-
responding points in the template image after they have been resampled to
the space of the reference image (target registration error, TRE (Maurer et al.
1997)).
For a given displacement field u = (u, v, w) and a pair of controls point (p,p’),
where p’ = (x0, y0, z0) is the transformed location of a voxel p = (x, y, z), the
TRE is defined by:

TRE =
p

(x+ u(p)� x0)2 + (y + v(p)� y0)2 + (z + w(p)� z0)2 (3.14)

where the Euclidean distance serves as localization error. The smaller this dif-
ference, the more accurate the estimate will be. Accuracy is usually measured
in pixels (or voxels for volumes).

• Robustness and reliability

Reliability refers to the number of times an algorithm succeeds in finding a
satisfactory answer compared to the total number of tests performed. Robust-
ness refers to the reliability of an algorithm under variations in one or more
of its input parameters. Therefore, a registration method is characterized as
robust, when its performance does not drastically degrade for small devia-
tions of the input images from the nominal assumptions. For example, the
presence of a small fraction of artifacts or outliers results in small changes in

69



CHAPTER 3. IMAGE REGISTRATION THEORY

the result. Robustness is, for example, important when encountering images
of pathology, i.e. images characterized by the presence of tumors that can be
regarded as outliers.

• Computing time

The computing time required by the registration is one of the main concern of
the users, even if it depends on the specific application. Computational com-
plexity determines the speed of an algorithm and shows the practicality of the
algorithm in real situations. Also pre-processing computing time has to be
considered, i.e. the time required to prepare all data needed for the registra-
tion. In some cases, pre-process includes human manipulations (e.g. manual
delineations) which are usually much more critical than computer processing
time.

As already explained, another indicator of registration consistency is the
symmetry of the resulting transformations regarding the order of the inputs
(Christensen et al. 2003).

Validation criteria

The validation of the registration accuracy is particularly important. Di↵erent
methods to measure the accuracy can be used:

• landmark correspondences: one common approach is to identify corre-
sponding landmarks or features (i.e. anatomical landmarks or control
points landmarks) independently on the reference and template images
and evaluate the TRE. The landmarks can be manually or automati-
cally identified. Alternatively, fiducial markers may be placed in the
scene and the locations of the fiducials may be used to evaluate the
registration accuracy.

• using synthetic or simulation images where the coordinates of true cor-
respondences are known.

• phantom studies, where virtual and physical phantoms provide the gold
standards for validation.

• subtraction of images: it is a straightforward evaluation method, com-
monly used in intra-modality registration. It consists in performing sub-
traction pre- and post-registration images (i.e. between reference and
transformed template) together with quantitative similarity-measures,
such as SSD and correlation coe�cient.

• voxel-wise comparison between displacement fields: it can be achieved
using di↵erent kinds of field metrics (e.g. mean square of the di↵er-
ence between fields, median absolute deviation, maximum deviation,
etc. (Urschler et al. 2007)).
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• visual inspection (carried out by physicians): in most applications, care-
ful visual inspection remains the first and most important validation
check.
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This section refers to a prototype system built for the acquisition of 3D US
test images of phantoms using a conventional 2D US transducer. It basically
comprises a support for the probe and an application to drive the motion of
the US transducer and to control the image capture.

4.1 System components

A laboratory setup was developed to support the analysis of the implemented
tridimensional registration techniques (described in the next chapter). It com-
prises a prototypal US acquisition system and a number of ad-hoc designed
phantoms. Its primary target is to test elementary software components (for
example the expressiveness of a given feature descriptor) in a controlled en-
vironment. A secondary goal is to suggest a way, at least for what concerns
the US modality, to generate the required volumetric data from bidimensional
US probes, exploring the possibility to apply the developed registration tech-
niques also when only a bidimensional probe is available.

System description
The mechanical support for the probe was designed in collaboration with the
mechanics workshop of the Department of Physics at the University of Tri-
este; the automation required for the probe movement was produced with
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the assistance of the workshop of electronics. The physical support has been
tested with the following Ultrasound devices: Ultrasonix SONIC series with
linear transducerL14- 5W/60; Philips iU22 model with linear transducers L
17-5 and L 12-5.

The apparatus is composed by the following physical components:

• US two-dimensional linear probe;

• a support used to place the probe over the breast of the patient;

• a track system which constrains the movement of the probe along the
horizontal plane and allows the whole organ scan: the displacement
along the movement direction has a millimetric precision and guarantees
a constant-step image acquisition;

• an acoustically transparent membrane placed over or inside the support;
the membrane is elastic enough to fit the shape of the breast; during
the acquisition process it is filled with water in order to let the probe be
immersed in a water bath; this enables the transmission of the ultrasonic
signal without the need of a direct contact between the probe and the
breast.

Figure 4.1(a) show how an US probe is fastened to the support by means of
the vertical arm; the probe acquires frames in the xy plane and moves along
the z-axis; the x-motion is controlled by the stepper motor visible on the
bottom-left corner of the picture. In figure 4.1(b) the support is seen from
above: the track system constrains the arm and let it move only along the
x-direction but can be repositioned along the y-direction. In this configura-
tion the membrane is fixed to the bottom of a container and filled with water;
a CIRS 051 Triple Modality Breast Biopsy Training Phantom is protected
by the elastic membrane and it is about to be scanned. This system allows
to avoid the relevant deformations impressed during the scanning performed
with ABVS probe (as explained in the second chapter).

To make the overall system work it was also necessary to implement:

• the automated movement of the physical support through the small
unipolar stepper motor driven by a programmable microcontroller board
(Arduino Uno model);

• a software module that synchronizes the movement system with the
proprietary capture software associated with the di↵erent manifacturer’s
equipments; to make it more flexible a programmable mouse simulation
tool, able to mimic the actions required for capturing an image, was also
provided.
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(a) (b)

Figure 4.1: pictures of the designed support for US probe. In (a) the red
boxes highlight the stepper motor used to move the probe along the x-axis
(shown in picture (b)), and the equally spaced holes (at intervals of 2 cm) for
the acquisition at di↵erent positions along the y-axis (shown in picture (b)).
The depth of the probe can be manually set in order to place the probe closer
to the object to be scanned, avoiding the contact between probe and object
to guarantee the probe’s motion.

Figure 4.2(a) shows the connections between a conventional US system with
the other components of the experimental prototype for 3D US acquisition.
The black box on the bottom contains the electronic part of the prototype
(figure 4.2(b)): the programmable microcontroller board controls the stepper
motor of the support and handles the communication with the synchronization
software module (installed on the conventional US system) via USB cable. The
interactions between the di↵erent parts of the system are represented in the
sequence diagram in figure 4.3: when the synchronization module program
starts, it sends a reset command to the microcontroller; the board reacts
activating the stepper motor and making the probe move to the x=0 position;
then the synch program enters a cycle in which: the micro is told to move
the probe to other known positions; once reached, the synch program asks
to the acquisition software associated with the manifacturer’s US system to
acquire one or more frames. The complete path of the probe in the 3D space
is depicted in figure 4.4(a). Thanks to the synchronization program each
acquired frame is associated with a known position of the probe thus allowing
the automated reconstruction of the whole breast volume from the complete
series of saved images. It is worth noting that the probe moves backwards and
forwards in space covering di↵erent sections of the breast and two consecutive
sections have in common a large overlap area. In addition to this spatial
redundancy the system allows also to obtain a time redundancy, acquiring
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(a) (b)

Figure 4.2: (a) picture of the whole system comprising the US apparatus and
the designed prototype. Figure (b) shows a detail of Arduino board and the
printed circuit board made to drive the stepper motor.

more than one frame in a fixed position as shown in figure 4.4(c). Both these
redundancies turn out to be useful in the volume reconstruction process as
explained in the following sections.

4.2 Stitching and Super-resolution

Lateral stitching
Although the probe is constrained to move along fixed directions during the
acquisition process, small displacements with respect to its expected position
can take place. Moreover the sensed organ or object can be subjected to a
slow, hardly detectable, motion. These kind of events are generally negligi-
ble between two consecutive frames but can a↵ect more seriously the space
mapping of corresponding frames in two consecutive sections. To avoid the
creation of gaps in the reconstructed 3D image data an additional check is
required. It is assumed that a simple translation model can describe the
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Figure 4.3: Sequence diagram of the basic interaction between the synchro-
nization module with the micro controller board that manages the stepper
motion (on the right) and with the conventional US acquisition system (on
the left) that saves a given number of frames in the same position.

(a) (b)

Figure 4.4: Acquisition sequence: (a) path of the probe required to retrieve all
the slices that makes up the whole volume.; (b) sequence of frames acquired
in a single position to obtain the time redundancy.

displacement between two consecutive sections (figure 4.5). The expected dis-
placements (given by the synchronization module) are used to initialize these
models. For each couple of consecutive sections a Nelder-Mead (Nelder et al.
1965) optimizer is then run to evaluate the translation that results in the best
Normalized Cross Correlation (NCC) between their overlapping region.

77



CHAPTER 4. EXPERIMENTAL ACQUISITION SYSTEM SETUP

Figure 4.5: Example of a possible small misalignment that will be compen-
sated correlating the information in the overlapped regions.

The simple gradient-blending technique (Rancov et al. 2005) is finally used to
create the composite volume without intensity discrepancies near the edges of
each section.

Super-resolution
The quality of the acquired frames depends mainly on the characteristic of
the available probe. The noise that a↵ects the meaningful signal is a common
degradation phenomenon in US images. Moreover the layout of the prototype
system and the fact that the probe is not in direct contact with the breast
can further reduce the image quality adding unwanted water reflections to the
sensed signal. To partially reduce these artifacts and make the resulting im-
age data suitable to be used in deformable registration processes, the available
time redundancy is exploited.

To this aim an extension of the Non Local Means algorithm (NLM) has
been used. The NLM algorithm was originally proposed for image denois-
ing (Buades et al. 2005). It takes advantage of the high degree of information
redundancy commonly embedded in a single image: if we consider an image I
and we define for each pixel x of I a neighborhood N(x, w), as the rectangular
patch around x of dimensions [2⇥ w + 1, 2⇥ w + 1], the intensity value in x
is changed by the NLM algorithm in:

NLM(x) =
1

C(x)

X

y2I

I(y) · expGa

⇤ kN(x, cw)�N(y, cw)k
h2

(4.1)

where y is a generic pixel of I, G
a

is the Gaussian function with sigma a,
kN(x, cw) � N(y, cw)k is the SSD value between the two patches around x
and y of aperture cw (comparison window), h is a filtering constant, and C(x)
is the normalization factor:

C(x) =
X

y2I

I(y)exp
G

a

⇤ kN(x, cw)�N(y, cw)k
h2

. (4.2)

Defining the similarity measure w between pixel x and pixel y as:

w(x,y) = exp
G

a

⇤ kN(x, cw)�N(y, cw)k
h2

. (4.3)
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The NLM formula reduces to:

NLM(x) =
1

C(x)

X

y2I

I(y) · w(x,y) (4.4)

with

C(x) =
X

y2N(x,sw)

w(x,y). (4.5)

The net result is that the new value in each pixel x is the weighted average of
all the original image pixels y whose Gaussian neighborhood is similar to x,
thus removing noisy pixels from the image. The same approach remains valid
if the set of pixels y is restricted to a search window (sw) around x:

NLM(x) =
1

C(x)

X

y2N(x,sw)

I(y) · w(x,y). (4.6)

This approximation is motivated by the fact that it is more likely to find
similar structures near the pixel under analysis. This approach can easily be
extended to the case where more than one image representing the same field
of view is available: if a series of such images is at hand, the previous formula
can simply be changed with a double summation over the whole set of im-
ages. In this case also small changes in the position of the sensed underlying
structures (or of the sensor) are correctly handled, provided that the spa-
tial misalignment is lower than the search window size. It was demonstrated
(Protter et al. 2009) that, besides the deblurring e↵ect, this extension is an
optimal solution also for the super resolution problem: in fact if the image
pixel spacing is reduced, the information retrieved from a single source image
can only fill a part of the target high-resolution matrix (figure 4.6(a)); but
the additional information retrieved from the set of quasi-aligned frames can
be used to fill the remaining locations (figure 4.6(b)). Each pixel value of the
original series of images contributes to the final solution in di↵erent locations
following the same fuzzy logic of the NLM first formulation. In this case how-
ever there’s also the possibility to extract a complete patch, called extraction
window, around each source pixels y in the multi-frame search window, and
let it fill the target matrix near the location x with the relative weight that
represents the similarity between y and x.

The NLM algorithm can be applied directly to US data but a further cus-
tomization has been implemented to improve the homogeneity of the result:
the h filtering constant used in the patch similarity evaluation represents the
standard deviation of a Gaussian function that normalizes the SSD computed
between two patches: if this parameter is high the similarity weight don’t
change much whether the SSD between the patches is low (they are e↵ec-
tively similar) or not. The net result is a more blurred target image. On
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(a) (b)

Figure 4.6: Comparison between a simple upscale operation and super resolu-
tion: (a) the information contained in a single source image does not change
if the image is upscaled; it is possible to fill the blank positions in the grid but
this operation does not provide additional information content. (b) if more
source images are used, the high resolution grid can be filled also with the
additional information content that derives from the image redundancy.

the contrary if the h parameter is low the result is sharper and more super-
resolved, but the algorithm has reduced denoising e↵ect. An average value
for h is generally used to obtain a good compromise; but US data, contrary
to common-life pictures, exhibit a high degree of variability in the local im-
age contrast and makes the choice for the h parameter more di�cult. The
customization proposed makes the h parameter dependent on local contrast
augmenting the denoising e↵ect for background areas, but preserving the su-
per resolution capability if high-contrast structures are detected.

The integration of this super resolution technique in the prototype system
for 3D reconstruction is straightforward: when the probe is moved in a given
position a series of frames are acquired sequentially in time and are used to
build up a high-resolution frame. Then the stitching process described in the
last section uses the high-resolution frames taking into account the associated
rescaling factor.

4.3 Example of a breast phantom 3D recon-
struction

An example of 3D reconstruction is given to show how the prototype acqui-
sition system together with a conventional bi-dimensional US equipment can
produce an US volume suitable to be used in deformable registration processes.

The CIRS Triple Modality Breast Biopsy Training Phantom (model 051, see
figure 4.7(a)) is used as the sensed object in an acquisition session. The
phantom is squeezable and contains contrasted structures similar to cysts and
cancer masses of di↵erent dimensions. This is a compressible phantom that
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has density and attenuation characteristics simulating an average 50 percent-
age glandular breast (BR-12 equivalent) for X-ray, US and MRI. It consists
of 6 cystlike and 6 dense masslike objects, where dense mass is 2-8 mm in
diameter for core biopsy and cystic mass is 3-10 mm in diameter for needle
aspiration. The acquisition process is configured to scan 5 sections of the

(a) (b) (c)

Figure 4.7: (a) picture of the CIRS breast phantom; (b) the home-made latex
membrane to isolate the object to be scanned from the water. An example
of its use in the US water-bath scanning is reported in (c): the phantom is
covered by the membrane, that is then filled with water. During the scan the
probe is dipped into the water.

object with an expected overlap of half the image width (figure 4.8). For

Figure 4.8: Example of a series of images corresponding to a phantom section
as acquired at di↵erent positions along y-axis, but at the same x-coordinate
(refer to the figure 4.1(b) and figure 4.4(a) for a description of the scanning
procedure).

each position 9 frames are acquired and the super-resolution is set to produce
high-resolution images with a ⇥2 up-sampling factor.
The lateral stitching technique then blends the corresponding planes and fi-
nally creates the 3D volume (figure 4.9).
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Figure 4.9: three planes of the reconstructed volume: reconstructed plane
corresponding to a fixed y position (first row at the bottom), plane resulting
from the lateral stitching procedure of the acquired images (secod row, on the
left), and the top view corresponding to the coronal plane (second row, on the
right).

4.4 Analysis in a controlled environment

With the prototype system a great number of reconstruction parameters can
be controlled and changed to test how they can influence the di↵erent charac-
terizations of data required in a deformable registration framework to map a
structure in a volume to the corresponding structure in another volume. Ad-
hoc phantoms were implemented to help this analysis: the underlying idea in
their design is to isolate some basic features of the represented objects. In fact
in a deformable registration task a lot of components can influence the overall
result; reducing the number of such elements (including the artifacts due to
the acquisition process, as noise) gives a great support to the study of the
behavior of the features analyzed during a registration process. Moreover the
prior knowledge about the nature, geometry and sensibility to deformation of
these isolated real features can be exploited to evaluate their potential as reli-
able reference points in the volume mapping. In the next section an example
of analysis that takes advantage of ad-hoc designed phantoms and the con-
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trolled environment constituted by the experimental setup is given. It briefly
describes one of the tests performed before the integration of super-resolution
into the prototype acquisition system to evaluate the feasibility and usefulness
of such a tool. Although it is not explicitly focused on the evaluation of a
deformable model, it indirectly demonstrates how a software tool applied to
the raw analyzed data can help in the feature-feature mapping between two
representations of the same object in di↵erent images enhancing the meaning-
ful information and removing disturbing artifacts.

Super-resolution evaluation
The prototype system was used to collect a sequence of US images of ad-
hoc phantoms made for testing the super-resolution algorithm performance.
The phantoms have been prepared with agar, and di↵erent simple-shaped
insertions have been included to image objects with di↵erent contrast. Fig-
ure 4.10(a) shows one of these phantoms, that consists of an agar cube with
a regular pattern of circular holes. When it is located inside the water-filled
box for US immersion scanning, all the holes are saturated with water. The
coupling between agar and water produces low contrast US image, and these
low contrast structures have been used to assess the image quality under real-
istic and not optimal conditions. Hence, the super-resolved images have been
compared with the original acquisitions, in order to qualitatively and quanti-
tatively measure the image quality improvement after the image processing.
In figure 4.10 the original scanned image and the corresponding super-resolved
image are depicted; the double-resolution image results from the processing of
a series of 10 scanned images acquired at a fixed probe position. In figure 4.11
a detail of one of the water-filled circular patterns from the original resolution
image series is compared with the same detail of the super-resolved image. A
considerable reduction of noise and image definition can be noted in the pro-
cessed image; this consideration is quantitatively supported by the signal to
noise ratio (SNR) estimated both in water-based and agar-based areas. The
results obtained in terms of SNR in two regions of interest (ROI), inside the
detail (yellow selection) and the surrounding area (red selection), are reported
in figure 4.11(c). An average improvement of about 20% has been obtained in
the super-resolved image. A higher image quality is obviously a remarkable
result, but in this context it is also important to evaluate how much this en-
hancement can be useful in a registration process. In fact a registration task
is required to correctly evaluate (explicitly or implicitly) a great number of
correspondences between physical structures imaged in two di↵erent acquisi-
tions: even when an object does not change between an acquisition and the
other, the imaged data could be very di↵erent due to noise, artifacts or de-
formations introduced by the acquisition process. In the artificial example in
figure 4.12(a) the first row shows a circular object imaged at an ideal resolu-
tion and without noise, before and after a simple translation. The same object
subjected to exactly the same movement is represented in the second row as
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(a) (b)

(c) (d)

Figure 4.10: (a) picture of an agar-based phantom with a regular pattern
of holes. The acquisition is made using water as coupling medium (b); (c)
example of one of the collected images of phantom; (d) super-resolved image
resulting from a sequence of 10 di↵erent images acquired with the probe at a
fixed position. c) and d) are here represented at the same spatial resolution
for a more straightforward image quality comparison.

acquired by a low resolution, noisy sensor. It is clear that in the last case even
the estimation of such a simple translational model is not trivial and can pos-
sibly lead to an inaccurate result. Viewed another way it can be said that the
nearer the imaged data is to an ideal representation of the objects, the more
likely the registration could lead to an accurate and reliable result. To analyze
this subtle but important aspect the holes of the phantom have been mod-
eled by an ideal circle and a simple contouring algorithm has been adopted
to outline the borders of each insertion both in the raw low-resolution images
and in their super-resolved counterpart. The contouring algorithm is based
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(a) (b)

(c)

Figure 4.11: comparison between the original (a) and super-resolved image
(b) of one of the inner circular details imaged inside the phantom. In (a)
the detail is represented as appear in four images chosen among the collected
series. (c): comparison between the original (left) and super-resolved image
(right) of one of the inner circular details imaged inside the phantom. In
both images the SNR values corresponding to the drawn ROI are reported.
The yellow ROI refers to a region inside the detail and red ROI to a uniform
region in the surrounding area. The values are estimated at the same scale of
analysis (i.e. same image resolution).

on the well-known active-contour method and makes the border expand from
the center of each insertion driven by gradients in image intensity. The algo-
rithm is executed until convergence and once obtained a stable solution the
points of the resulting contour are fitted to a circle. Hence, the mean distance
between each point of the resulting contour and the corresponding reference
point on the circle fit has been estimated. This measure reflects the achievable
accuracy in the extraction of simple structures boundaries in the acquired US
data. Figure 4.12(b) reports the distributions of these distances for both the
low-resolution and the super-resolved images. The comparison highlight s the
higher accuracy in the contour estimation using the super-resolved image (i.e.
a lower mean error in the estimate of the contour points). For a more complete
analysis, the same procedure is been repeated for an insert with a rectangular
shape. The results have confirmed the same trend also in case of di↵erent
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(a)

(b)

Figure 4.12: (a): the best fit model is delineated in white, while the blue
contour represents the result of the automatic contour algorithm. The result
obtains on the original image is shown on the left, while the more accurate
contour obtained on the super-resolved image on the right. It can be noted
as in the case of the original image the estimated contour is more a↵ected by
noise and deviates from the reference model. This result is confirmed by the
average distance between the estimated points and those of best fit, as shown
in the histogram in figure (b), where in pink the distances relating the original
image are reported and in blue those relating the image at higher resolution.

shape of the objects. In summary, a home-made 3D US was developed for
the acquisition of test images for the study of the image registration that is
the goal of the work. For this development the super-resolution technique has
been adapted and applied to images captured with the prototype, proving a
powerful and promising technique for this application.
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5.1 The registration framework

A complete set of tools to support testing, comparing and deriving auto-
mated multimodal breast registration algorithms (AMBRA) has been devel-
oped. This framework takes into account the requirements that arise from
the before mentioned breast related tasks; its architectural design is general
enough to handle all these use cases: for example it supports both single and
cross modality registration of images acquired with the patient in similar or
very di↵erent positions, complete or only partial overlapped images. On the
other hand it implements a number of specialized techniques explicitly cus-
tomized for breast; most of them are extensions of more classical and general
tools; thus a modular design has been adopted to easy substitute the classical
with the novel techniques. In addition it allows a user-independent compari-
son of di↵erent registration methods.

From an architectural point of view the framework is organized in two main
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processing blocks (figure 5.1): the initialization and the optimization modules.
Both of them define a precise software interface but allow a straightforward
customization to address the specific problems and handle the specific images
associated to a given clinical task.

Figure 5.1: The framework’s components diagram. The dark arrows represent
how image data pass from one component to another. The bright arrows
represent the displacement field that is first created by the global alignment
module in the initialization block, and then passed to the optimizer that
modifies it iteratively. The dotted arrows link di↵erent specialized instances of
a given interface that can be selectively used during the optimization processp.

5.1.1 Initialization

The purpose of the initialization block is to convert the couple of input images
from their original DICOM format (DICOM 1997) to a couple of volume ma-
trices of, if possible, the same size and spatial resolution. A first estimate of
the displacement field between the two images should also be provided: this
field should represent at least the raw rigid global alignment of the two images
and its evaluation can take advantage of prior knowledge about the specific
analyzed input data: for example, given a specific clinical task, this knowledge
can be represented by the patient expected position or by a reliable segmen-
tation of organs (or other kind of landmarks) that are expected to be seen in
the modality-dependent response provided by the acquisition processes asso-
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ciated to that task. The initialization block is therefore further subdivided in
three conceptually separated procedures: Preprocessing, Modality-dependent
Segmentation and Raw Field Initialization or Global Alignment.

Preprocessing

Uniform Sampling
The preprocessing module is necessary to make the available input data con-
form to a common representation that can be easily handled by the framework.
The aim of this block is to convert each volume instance from its original DI-
COM representation into a 3D matrix, hereafter named Volume, defined as
follows:

typede f s t r u c t Volume
{

i n t type ; /⇤ datatype o f the volume ⇤/
i n t depth ; /⇤ z�depth o f the volume ⇤/
i n t width ; /⇤ width o f the volume ⇤/
i n t he ight ; /⇤ he ight o f the volume ⇤/
void ⇤ data ; /⇤ ptr to volume data bu f f e r ⇤/
Rect3D r o i ; /⇤ r eg i on o f i n t e r e s t ⇤/

}Volume ;

Contrary to the DICOM formats, this data structure has a common and
uniform spatial sampling along the three orthogonal directions x, y, z in a
Cartesian 3D space. The re-sampling operation makes use of trilinear inter-
polation to evaluate the value of the signal in the out-of-planes locations and
takes into account possible rotations of the original slices with respect to the
target coordinate system.

Segmentations

As stated before a disadvantage in breast imaging, especially in breast im-
age registration, is the lack of rigid or semi-rigid, easy recognizable organs.
Anyway, depending on the modality, the acquisition process and the signal
nature, it is sometimes possible to identify one or more morphological struc-
tures or regions. For example the nipple location or the skin surface can be
detected in quite all the modalities while the chest wall region is visible only in
a limited subset of them. The framework segmentation module is a collection
of predefined modality-dependent segmentation methods that can be used in
the initialization process; in fact the automatically detected position of one or
more structures in both the reference and the template volume can obviously
help to define an alignment procedure regardless of the single or cross modal
nature of the problem.

The outcome of each segmentation method is a 3D mesh defining the seg-
mented object surface. The data structure used to represent the objects is a
Vertex System (C. Smith 2006):
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typede f s t r u c t VertexSystem
{

i n t ver t i ce s num ;
Vertex ⇤⇤ v e r t i c e s ;

}VertexSystem ;

with Vertex-Vertex connectivity:

typede f s t r u c t Vertex
{

void ⇤ i n f o ;
i n t neighboors num ;
dmVertex⇤⇤ ne ighboors ;

}Vertex ;

where each Vertex is a 3D point of the surface.

The framework segmentation component allows also a straightforward way
to integrate other segmentation procedures (for example for MRI) to the set
of algorithms already developed (mainly for US and DBT): the only require-
ment for such additional methods is to conform to the framework interface and
produce a Vertex System representing the surface of the segmented object.

Global Alignment

The global alignment is a user-defined, clinical task-dependent, procedure
that produces a first raw displacement field between the reference and tem-
plate volumes. The goal here is to handle the macroscopic di↵erences in pose
and location that a↵ects the two volumes that are mainly due to their pos-
sibly di↵erent acquisition processes. For this reason it can take advantage of
DICOM tags extracted from the original DICOM volumes (accessed by the
pre-processing step) and automatically segmented objects (computed in the
segmentation step) to estimate, at least, an acceptable global roto-translation
from template and reference data.

Even though this rigid transformation can be represented by a limited set
of parameters (for example a 3⇥3 or 4⇥4 transformation matrix), the frame-
work requires a fully defined Displacement Field DF as the outcome of the
initialization block. The field itself is represented by a triplet of Volumes (dX,
dY and dZ), representing the displacements along x, y and z in each location
of the domain of the reference Volume:

typede f s t r u c t Disp lacementFie ld
{

Volume⇤ dX;
Volume⇤ dY;
Volume⇤ dZ ;

}Disp lacementFie ld ;

Given a reference location V ref = {x, y, z} the corresponding location in
the template Volume can then be found in V tem = V ref + DF (V ref) =
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{x+ dX(V ref), y + dY (V ref), z + dZ(V ref)}.

It is worth noting that this kind of output for the initialization block can
be easily obtained once a rigid model is available but, at the same time, al-
lows a more complex and localized definition of the deformation (an example
can be seen in the use-cases in the last chapter).

5.1.2 Optimization

The output of the first block, the two input volumes data in the form of 3D
uniformly-sampled matrices and the initialized field, is the input of the second
one, which represents an iterative optimization process that has been designed
according to the mentioned general scheme from the registration theory. The
two parts of the functional to be minimized give rise to two independent soft-
ware interfaces – one for the feature term and one for the normalizer. Di↵erent
implementations for both of them have been developed. For what concerns the
feature term each single implementation represents a specific feature metric
and the associated distance; some of these metrics are modality independent
to fulfill the cross-modality requirement of the whole framework. A similar
approach is used for the second term but in this case the selection of the
normalizers to be developed and inserted into the framework, followed a dif-
ferent motivation. It was in fact driven by the need of specialization for the
breast tissue characteristics (elasticity) and the kind of movements and de-
formations expected inside the organ (sliding motion of sub structures). The
overall optimization process has been arranged in a cyclic procedure that, at
each iterative step, makes use of both the feature and the normalizer modules,
sequentially updating the displacement field by small di↵erential quantities.
In addition to this basic approach other options were embedded in this part
of the framework to support more advanced techniques: the adoption of the
inverse consistent constraint is supported by an optional module that coop-
erates with the feature and normalizer terms; a multi-resolution optimization
is implemented by re-executing the iterative process at di↵erent scales from
coarse to fine and taking advantage of support tools to automatically rescale
both the field and the volumes data.

In the following sections these concepts are explained in more detail start-
ing from the feature and normalizer interfaces.

Feature Metrics Interface

The aim of this interface is to provide an abstraction, common layer for the
feature term of the optimization functional (eq.3.11). Each implementation
should provide a way to estimate how much a voxel in the reference Volume is
similar to another voxel in the Template Volume taking into account only the

91



CHAPTER 5. AUTOMATED MULTIMODAL BREAST
REGISTRATION ALGORITHMS (AMBRA)

data (modality signal response) in those locations or in their neighborhood.
Two main concepts are associated with the idea of a similarity measure:

• Feature Descriptor: each location can be characterized by a synthetic
description of its underling data. This description is organized in an or-
dered set of real scalar values named feature vector or feature descriptor:

FV = {f
i

} with f
i

2 R, i 2 0, L (5.1)

where L is the descriptor length. In most cases this array is computed
retrieving the information from the grayscale values of voxels in a neigh-
borhood of (a patch around) the voxel under analysis. The most im-
portant properties associated to a specific kind of feature descriptor are
its distinctive power and its degree of invariance. The distinctive power
measures its capability to discriminate among similar structures, while
its degree of invariance is related to the fact that the provided description
remains distinctive even if certain properties of the image data (global or
local brightness or contrast, ...) or of the represented structures (scale,
rotation, . . . ) change and thus cannot be assumed constant. For ex-
ample the most simple, though in most cases useless, feature descriptor
is given by the one dimensional feature vector whose unique entry is
the original grayscale value of the associated voxel; clearly such a de-
scriptor cannot even distinguish bright noise from a location belonging
to a bright region; instead a feature descriptor that is made up by the
compound, lexicographically-ordered grayscale values of a squared patch
around the target voxel is more able to detect similar structures avoiding
the extreme sensitivity to local noise. Anyway the enhanced descriptive
power of the second descriptor comes at a cost: voxels that belong to the
same structure in the two volumes can be evaluated as very dissimilar
if the structure itself is rotated or if the signal in the second acquisition
is globally more bright or dark. Other kinds of descriptors can handle
these situations thus increasing the degree of invariance. The best com-
promise between the two properties should be generally found for each
specific problem.

• Distance Metric: the metric used to evaluate the similarity measure
between two locations is bound to the feature descriptor. The type
of feature descriptor in fact defines a L-dimensional feature space over
which is possible to define di↵erent kinds of distances:

Dist = RL ⇥RL ! R. (5.2)

It is important to note that the distance function is intended as a signed
distance and can have also negative values. Generally the distance met-
ric derives directly from the feature descriptor nature but in some cases
more than one metric can be associated to the same descriptor influenc-
ing the invariance degree or the general behavior of the evaluation.
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It is worth noting that the feature descriptors are characterizations of single
locations and depend only on the data around those locations. So they can
be computed before starting the optimization process for each single voxel of
the two input volumes independently.

With these considerations in mind the framework feature vector interface was
defined as follows:
typede f s t r u c t FeatureDetector3DInter face

{
i n t (⇤ Detector3DCreate ) ( Volume⇤ vol , void ⇤ s t a t i c pa r ame t e r s ) ;

void (⇤ Detector3DCompute ) ( Volume⇤ vol , void ⇤ dynamic parameters ) ;

i n t (⇤ Detector3DFeatureLenght ) ( ) ;

char ⇤ (⇤ Detector3DGetDescr iptorPtr ) ( Voxel⇤ vox ) ;

double (⇤ Detector3DGetDescr iptorDistance ) ( char ⇤ desc1 , char ⇤ desc2 , i n t l ) ;

}FeatureDetector3DInter face ;

where:

• The Detector3DCreate method allocates the concrete instance of the
specific Feature Detector.

• The Detector3DCompute method computes all the feature descriptors
associated to every location of the input Volume according to the se-
lected concrete instance logic. It should be called for both the reference
and the template volumes before starting the optimization process.

• The Detector3DGetDescriptorPtr retrieves at iteration time the descrip-
tion associated with the given Voxel location.

• The Detecttor3DGetDescriptorDistance computes at iteration time the
similarity distance between two descriptors previously retrieved (one
from the reference and the other from the template volume).

It has to be noted that each kind of Feature Descriptor is generally associated
to a set of specific parameters: these parameters are classified as static if they
can influence the size of the descriptor (and hence its allocation), or as dy-
namic, if they influence only the values of the computed feature vector entries.

The framework includes also a set of concrete implementations of the Feature
Metric Interface that can be conceptually divided in two subsets: modality-
dependent and modality-independent. In the following sections the two di↵er-
ent sets of Feature Metrics implemented inside the Framework are described
in detail focusing the attention on a comparative analysis of their distinctive
power in breast images.

Normalizers Interface

A similar polymorphic approach was used for the second term of the opti-
mization functional: also in this case an abstract interface defines the set of

93



CHAPTER 5. AUTOMATED MULTIMODAL BREAST
REGISTRATION ALGORITHMS (AMBRA)

operations that each normalizer is required to implement. In this case each
specific instance should provide a way to preserve certain properties of the
Displacement Field (for example smoothness), binding it to an acceptable
and realistic solution. This means that, contrary to the feature term, the
normalizer takes into account the ’shape’ of the field and not (only) the two
volumes data. In an iterative process this concept can be reformulated in the
following terms: at each iteration the normalizer should know how to change
the Displacement Vectors towards new values that are more compatible with
the desired śhapeór geometrical property of the entire field; this evaluation
should be based only on local properties.

Therefore, the formal definition of the normalizer interface is the following:
typede f s t r u c t F i e ldNorma l i z e r3DInte r f ace

{
i n t (⇤ Normalizer3DCreate ) ( Volume⇤ r e f , void ⇤ s t a t i c pa r ame t e r s ) ;

void (⇤ Normal izer3DSetInf luenceArea ) ( i n t l ) ;

void (⇤ Normalizer3DCompute ) ( Volume⇤ r e f ,

Disp lacementFie ld ⇤ f i e l d , void ⇤ dynamic parameters ) ;

void (⇤ Normalizer3DGetNormalizedField ) ( Voxel⇤ vox , f l o a t ⇤ dx , f l o a t ⇤ dy ,

f l o a t ⇤ dz ) ;

}Fie ldNorma l i z e r3DInte r f ace ;

where:

• The Normalizer3DCreate method allocates the concrete instance of the
specific Normalizer.

• The Normalizer3DSetInfluenceArea method indicates how much local
the estimation of the desired field properties should be.

• The Normalizer3DCompute method computes the new estimate of the
Displacement Field according to the rules that should preserve the ex-
pected geometrical field properties.

• The Normalizer3DGetNormalizedField retrieves the new local estimate
of the field in a given Voxel location.

It has to be noted that also the original Volume data (from the reference
volume) is passed as argument to the Normalizer3DCompute method, in this
case it could be used only as a ćontext́ınformation for the regularization logic:
in other words the field-reshaping rules of the normalizer can be expressed
also in terms of some structural properties of the underling volume data. For
example the normalizer can be designed to preserve the smoothness of the field
only in su�ciently bright regions, or to apply a piecewise smooth constraint,
using the original modality data to detect the regions over which the smooth-
ing e↵ect should be maximized. This idea will be explained in more detail
in the next section where the concrete instances of normalizers already im-
plemented in the Framework will be described and where this specific feature
of the normalizer interface will be used to handle the breast sliding motion
geometric representation problem.
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Iterative Process

With these tools in hand the optimization process consists in iteratively up-
dating the Displacement Field starting from its configuration after the Ini-
tialization process. The selected Feature Metric and Normalizer instances act
in turn to change the field in every location by small di↵erential quantities.
The current Displacement Vector DF = {dX, dY, dZ} in a reference location
V ref = {x, y, z} determines its temporary association with the template lo-
cation V tem = {x + dX(V ref), y + dY (V ref), z + dZ(V ref)}. The feature
term component searches in a neighborhood of Vtem (within the template
Volume) a new location that is more similar to the reference location Vref ac-
cording to the implemented feature metric distance Dist, and moves the vector
towards that local optimum. To do this, the feature descriptor FV of every
template location in the searched area is retrieved and compared with the
Feature Descriptor FV associated to the reference location. The temporary
new configuration of the Displacement Field is then changed by the Normal-
ization module that tries to re-establish, for every location, the geometrical
properties desired for the field. The Normalization module updates locally
each Displacement Vector towards a new value that is more compatible with
the regularization rules. Both the updates due to the Feature Metric and the
Normalizer terms are influenced by an associated weight parameter in a range
of 0 to 1: 0 means that the Displacement Vectors are left unchanged; 1 that
the Displacement Vectors are moved to their optimal value (estimated locally
in the current iteration); other values of the weight parameters mean that the
Displacement Vectors are moved to intermediate positions. These parameters
represent also the strength of their associated term in the overall process. An
additional parameter, named search aperture, is shared by the two terms: it
controls the search region for the Feature term and the influence area for the
Normalizer term.

typede f s t r u c t DisplacementFieldUpdateParams
{

i n t s e a r ch ape r tu r e ;
f l o a t f e a tu r e we i gh t ;
f l o a t norma l i za t i on we ight ;
f l o a t i n v e r s e c o n s i s t e n t w e i g h t ;
f l o a t c on s t r a i n s we i gh t ;

}DisplacementFieldUpdateParams ;

The optimization process repeats these incremental updates until the field
is su�ciently stable (no feature vector changes for more than a given small
quantity) or a maximum number of iterations is reached.
An Optimizer is then represented by the following structure:

typede f s t r u c t Optimizer
{

Disp lacementFie ld ⇤ f i e l d ;
Volume⇤ r e f e r e n c e ;
Volume⇤ update ;
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FeatureDetec tor3DInter face r e f e r e n c e f e a t u r e s ;
FeatureDetec tor3DInter face upda t e f e a tu r e s ;
F i e ldNorma l i z e r3DInte r f ace normal i z e r ;

}Optimizer ;

that is composed by the Reference and Template Volumes, the Displacement
Field, two instances (of the same kind) of the FeatureMetric interface (to
maintain the pre-computed feature vectors of both the reference and template
volume) and an instance of the Normalizer interface. The elementary update
operations are performed by the following methods:

DisplacementFieldUpdateWithFeaturesTerm (
Optimizer ⇤ opt ,
DisplacementFieldUpdateParams⇤ pars
) ;

Disp lacementFie ldNormal ize (
Optimizer ⇤ opt ,
DisplacementFieldUpdateParams⇤ pars
) ;

Extensions

Besides the basic optimization process the Framework allows to enable some
extended features.

Multi-resolution Optimization. The Feature Descriptors that drive the
optimization process represent a description of the neighborhood of each lo-
cation. Though the size of the neighborhood patch can be customized it
remains fixed during the optimization process. This fact implies that the Fea-
ture term is more sensible to data structures of a given size. On the other
hand also the Normalizer indirectly depends on the resolution of the input
images, in fact the discrete approximations of the field derivatives, required
to correctly apply the regularization rules, are computed within a fixed-size
window expressed in the same coordinate-system of the reference volume. To
make the optimization process able to capture data structures of di↵erent
sizes and to conform to normalization rules defined at di↵erent wavelengths a
multi-resolution approach can be used: the Displacement Field and the Vol-
umes can be automatically rescaled to di↵erent resolutions. It can be noted
that, for what concerns the Field, rescaling a↵ects also the values of its vectors
as they represent displacements in the reference space. The Framework sup-
ports a sequential repetition of the optimization process over di↵erent scales
and manages automatically the required transformations of the volume data
and the field. For each scale a di↵erent set of iterations parameters and dif-
ferent choices for the Feature and the Normalizer modules can be assigned. A
coarse-to-fine analysis is performed, ending up with a full-resolution process
in the last repetition.
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Inverse consistent constraint. The domain of the Displacement Field DF
is the same of the reference Volume as it should map each reference location
to the corresponding template location. This means that the inverse field IDF
mapping the template locations to the reference space is not always derivable:
the function is not a one-to-one correspondence , especially after the opti-
mization process. The only way to compute this inverse mapping is to swap
the reference and the template volumes and to repeat the whole process for
a displacement field defined over the template space. If this approach is fol-
lowed without constraints the two resulting fields are not one the reverse of the
other as both can converge to di↵erent local minima. A well known solution
is to embed the so-called inverse consistence constraint (Y. Chen et al. 2010,
Heinrich, Jenkinson, Papiez, et al. 2013) in an optimization functional that
takes into account both the DF and IDF. It represents a force that tends to
preserve the one-to-one correspondence of the displacements vectors in such
a way that, given a location Vref in the reference space the corresponding
location V tem = V ref + DF (V ref) in the template space obtained apply-
ing the direct DF, is mapped back by the IDF in the original location. This
term contributes, together with the feature and the normalization terms, in
the simultaneous optimization of the two fields leading to a more stable result.

The Framework supports this option making available the method:

Disp lacementFie ldApplyInverseCons i s tenceContra int (
Disp lacementFie ld ⇤ f i e l d ,
Disp lacementFie ld ⇤ f i e l d i n v ,
DisplacementFieldUpdateParams⇤ params ) ;

where the weight parameter has the same characteristics and meaning as the
weight parameters associated to the feature term and the normalizer. If this
option is enabled two Optimizers (one for DF and one for IDF) are allo-
cated with shared (but swapped) FeatureDetector3DInterface instances for
the reference and the template volumes. Their di↵erent DisplacementFields
are iteratively and simultaneously updated following, at each iteration, the
sequence of actions described for the basic process, but adding the previous
method that merges the current direct and inverse fields.

Constrained optimization. When the position of a structure is precisely
known both in the reference and in the template image, this knowledge can be
used to improve the outcome of the whole optimization process. The displace-
ment vector in the reference position of the structure can be forced to point
to the position of the same structure in the template; this prevents possible
errors in that location. An indirect benefit of such a constraint is that also the
displacement vectors in locations near the forced point are induced to remain
in the correct region, reducing the possibility for them to be attracted and
captured by wrong local minima.
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The Framework allows to define a complete set of such point-to-point cor-
respondences:

Opt imizerSetConst ra int s (
Optimizer ⇤ opt ,
VoxelSet ⇤ r e f e r e n c e po i n t s ,
VoxelSet ⇤ t emp la t e po in t s ) ;

Anyway, rather than forcing explicitly the field in these locations, it only
pushes them towards their designated values with a weight parameter that
controls the strength of this force: the constrains are treated as if they were
an additional term in the optimizer functional.

Disp lacementFie ldApplyConstra ints (
Optimizer ⇤ opt ,
DisplacementFieldUpdateParams⇤ pars ) ;

This weighted approach turns out to be very useful when the known correspon-
dences are reliable but not precise. The contoured regions or surfaces resulting
from the segmentation block, for example, can be used to establish known and
certain correspondences but in most cases they lack in point-to-point accu-
racy. The weighted approach allows to use these coarse correspondences but,
at the same time, gives an opportunity to the other optimization terms to
correct them.

5.1.3 Testing and comparison

The architectural design of the Framework allows the derivation of di↵erent
algorithms and customizations of the optimization process. Some additional
software components were added to support testing and comparison proce-
dures:

• Testing Sets. For each clinical task a whole set of predefined couples of
Volumes are defined. This addition is straightforward but at the same
time is very useful to automate the statistical evaluation of a specific
method for a given clinical task.

• Control Points. A set of manually delineated landmarks can be asso-
ciated to each couple of Volumes of the Testing Set. It is constituted of
a list of point-to-point correspondences used to verify the quality of the
resulting Displacement Field.

• Estimation Metric. The Target Registration Error (TRE) of these
control points is optionally computed after each single optimization pro-
cess. The average TRE distance computed over a Testing Set can be
used as a quantitative measure in the estimation of the method under
evaluation.
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The modular structure of the Framework allows two di↵erent levels of com-
parison and testing:

Module Comparison. The polymorphism introduced with the two main
interfaces of the Optimizer allows to easily substitute a specific implementa-
tion of the Feature Metric (or of the Normalizer) with another one. This leads
to the fact that, for example, the expressiveness of a Feature Descriptor in a
given modality or clinical task can be easily compared with the expressive-
ness of others: once defined a Testing Set with its control points and enabled
the TRE computation, the optimization process can be run over the whole
collection of test cases obtaining the average TRE. The same process can be
re-run after the substitution of the Feature Descriptor under analysis with
other implementations. As the only changed framework component is the
Feature Descriptor module, the average TRE can be considered an index of
the descriptor distinctive power in the situation characterized by the Testing
Set.

It has to be noted that, as each kind of Feature Descriptor (or Normalizer)
has a specific set of associated parameters, such a comparison is meaningful
only if the best parameter configuration (over the Testing Set) is used for all
the metrics or normalizers to be compared. It is crucial in fact to avoid the
under-estimation of a metric or of a normalizer due to a wrong parameters
selection. To this aim the TRE computation is re-run a lot of times for each
Feature Descriptor (or Normalizer), changing its parameters in a range of pos-
sible values, and selecting the configuration with the best performance.

Optimization Technique Comparison. The same approach extends to
a complete optimization method. The Feature and Normalizer terms, the set
of weight parameters, the single- or multi-resolution approach, the applica-
tion of the di↵erent kinds of constraint are included in the definition of the
method. The only fixed part of the Framework must be the displacement
field initialization strategy. The clear separation of the initialization block
from the optimization block allows to compare di↵erent optimization meth-
ods avoiding the influence of each method’s sensitivity to the starting image
data dis-alignment.

5.1.4 Algorithm derivation

A registration algorithm for a specific breast clinical task can be derived from
the Framework following a number of adaptation steps. The customization
required for the initialization block is very di↵erent from the customization ap-
plied to the optimization block so they are treated separately in the following
paragraphs.
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Customizing the Initialization

As previously described, the initialization block is the part of the framework
that can take advantage of prior knowledge about the data acquisition process.
As this part is more a↵ected by customization, depending on the specific task.
The global alignment method has been designed as a virtual, user-defined
procedure. Thus each single clinical task requires an ad hoc algorithm. As the
aim of this step is a coarse initialization of the field, in most cases the problem
has a straightforward solution. Anyway for situations in which the global
alignment is a challenging task, the availability of the predefined, modality-
dependent segmentation tools of the framework can help to reach a reliable
method. For example the nipple segmentation procedures, that have already
been implemented for US and DBT, can help identifying a coarse translation
or rigid transformation between the images: it is always possible in fact to
align the detected nipple positions whether the modality of the images is the
same or not.

Customizing the Optimization

s Contrary to the initialization block, the optimization process customization
does not require any addition to the framework implementation, but only to
evaluate the best modules to be used in a specific task. The evaluation includes
the estimation of the best parameter configuration for each of these modules.
Given a Testing Set with a set of manually delineated landmarks (as described
in the Testing and Comparison section) an automatic procedure that compares
the TRE average distance of every possible combination of the implemented
feature terms and normalizers is available. For each feature descriptor and
normalizer, the best specific parameters configurations are retrieve over the
set of testing cases; then their TRE average distances are compared to find out
the combination of terms that performs better in the case under analysis. It is
clearly possible to repeat this procedure over di↵erent scales taking advantage
of the fact that the scale is a parameter of the whole optimization block.
The best configuration of parameters, Feature Metric, Normalizer and the
optimization extensions to be applied, are then automatically derived from
the data in the Testing Set.

5.2 Feature detectors and normalizers

In the next two sections the series of Feature Metrics and Normalizers already
implemented as modules inside the AMBRA Framework will be listed and
described. More attention is given to the more advanced instances that were
developed to answer to specific breast registration problems, while the most
common and well-known among them will only be indicated, briefly describ-
ing the way they are integrated in the framework.
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The approach used to develop the advanced descriptors and normalizers fol-
lowed a common work-flow: first their behavior was analyzed on US data
acquired with the experimental setup, to take advantage of the control on the
acquisition process and of the possibility to isolate some expected data features
(using phantoms) in a context where only simplified transformation model are
considered; then the same instances are tested and their performance is quan-
titatively compared using clinical testing sets in which a number of disturbing
phenomena are always present. The comparative measures were taken both
for US and DBT modality data.

Feature metrics

The feature metrics used as mono-modal reference are the well-known Sum of
Absolute Di↵erences (SAD) and Normalized Cross Correlation (NCC). Both
are described in the Registration Theory chapter and do not require any addi-
tional theoretical consideration. From an implementation point of view both
are designed so that a location is described with a feature vector that is es-
sentially formed by the lexicographically ordered series of gray values in a
3D rectangular patch around the location itself. It is convenient to define
this patch as a grid of neighbors defined by two parameters: the aperture -
that is the number of samples to reach the end of the neighborhood in ev-
ery direction - and a sampling unit – that is the number of voxels between
two consecutive sampled neighbors. The feature vector for each location is
computed when the volume data is available. On the other hand they dif-
fer in the used distance metric; contrary to the feature vector the distance
is computed during the optimization process, as the association between two
locations (and hence two feature vectors) is determined by the displacement
field and changes dynamically. More in detail:

• SAD: to each location is associated a feature vector that is formed
by the sequence of gray values extracted from a rectangular 3d patch
around it. The original gray values in this case are left unchanged. The
distance between two locations is simply the L1 distance between their
associated feature vectors.

• NCC: a feature vector FV is associated to each location that is essen-
tially the same feature vector computed by SAD but in this case each
FV entry is subtracted by the average value computed over the patch
itself. So the FV represents the zero-mean patch intensities. The dis-
tance between two locations is then computed as the inverse of the cross
correlation between the two zero-mean feature vectors divided by the
square root of the product of their auto correlations.

Dist(FV 1, FV 2) = �
P

L�1

i=0

FV 1[i] · FV 2[i]qP
L�1

i=0

(FV 1[i)2] ·
P

L�1

i=0

(FV 2[i)2]
(5.3)
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To avoid the re-computation of the auto correlations and the square
root at each distance evaluation during the iterative process the feature
vector in a location is concatenated with its auto correlation root squared
before starting the optimization:

F̄ V [i] = FV [i] for 0 < i < L (5.4)

F̄ V [i] =

vuut
L�1X

i=0

(FV [j])2 for i = L (5.5)

reducing the iteration-time distance computation to:

Dist( ¯FV 1, ¯FV 2) = �
P

L�1

i=0

¯FV 1[i] · ¯FV 2[i]
¯FV 1[L] · ¯FV 2[L]

(5.6)

Depending on the expected variation in local image intensity and con-
trast (see the third chapter) the SAD or NCC can be selected. These
metrics are intrinsically dependent on the modality representation of the
breast structures and can be used in all mono-modal tasks.

The reference feature metric used as reference for multimodal tasks is instead
the Normalized Mutual Information (NMI) that comes from the information
theory.

• NMI: also in this case the feature vector FV associated to a given
location is the sequence of gray values extracted from a rectangular
3D patch around it. Similarly to NCC an additional entry in the last
position of the feature vector is used to maintain a precomputed quantity
that in this case is the marginal entropy H of FV.

F̄ V [i] = FV [i] for 0 < i < L (5.7)

F̄ V [i] = H
j20...L�1

(FV [j]) for i = L (5.8)

The distance between two locations is then computed as the so-called
variation of information normalized in the range of 0 to 1: the joint
entropy of the two feature vectors JH is calculated at iteration-time with
the first L-values of each feature vectors and the distance is expressed
by:

Dist(FV 1, FV 2) = 2� H( ¯FV 1[L] +H( ¯FV 2[L]))

JH
j,k20...L�1

( ¯FV 2[j], ¯FV 2[k])
(5.9)

As described in the third chapter this metric has been commonly and
successfully used in rigid registration tasks but do not scale well to
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intensity-based full-field deformable registration models because of its
statistical nature: the local metric evaluation required in the context
of these registration methods does not allow, in most cases, to collect
enough information inside the space-limited neighborhood of a single
location to make the description distinctive; so the significant improve-
ment in the degree of invariance comes at the cost of an augmented
weakness in the descriptive power. This is a major problem especially
for breast applications where also the number of clearly distinguishable
structures and their distinctiveness is low.

An advanced feature metric recently introduced (Heinrich, Jenkinson, Bhushan,
et al. 2012) to handle multi modal tasks is the Modality Independent Feature
Descriptor (MIND). Contrary to MI the topological structure of the intensity
pattern inside the patches to be compared is taken into account. Moreover
the descriptor does not support unnecessary kinds of invariance apart from
the modality independence, thus limiting the loss of descriptive power (for
example it is not rotation invariant). A version of this descriptor proposed
(Heinrich, Jenkinson, Papiez, et al. 2013) recently to handle noisy data (and
hence particularly appropriate when at least one of the scans is an US volume)
is the Self Similarity Context (SCC) descriptor. The last part of the section
describes these two descriptors focusing the attention on the Self-Similarity
concept.

Self-Similarity
The concept has firstly been introduced in the domain of image denoising
with the before mentioned NLM algorithm (Buades et al. 2005): recalling
the equations (eq.4.1) from the forth chapter on the experimental setup, the
NLM algorithm obtains a noise-free pixel in a given location x computing the
weighted average of all the original image pixels y whose Gaussian neighbor-
hood is similar to x; the weights w(x, y) used for the averaging are based on
the SSD between a patch which surrounds the pixel x and all other patches in
the image. The basic NLM assumption is that every image has a high degree
of self-similarity or, in other words, that a high number of pixels y are similar
to x considering the patch-based similarity measure w(x, y). This assump-
tion is generally correct even if the search of such locations y is limited to a
neighborhood of x.

The basic idea of MIND and SSC is to describe a region surrounding a loca-
tion x with the topologically ordered map of the similarities w(x, y) in each
y instead of the raw intensity values of y. The modality independence of
this kind of description assumes that even if an object is sensed by di↵erent
sensors the similarity map associated to the same physical structure in the
two images should be similar, regardless to the specific intensity response of
the object to the two di↵erent sensors.
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This concept can be explained also considering the visual example in fig-
ure 5.2. From CT image (figure 5.2(a)) and MRI (figure 5.2(b)) image the
same location (green arrow) at the boundary between fat and non-fat tissue
are selected. In figure 5.2(c) and 5.2(d) the region around this location is rep-
resented by the raw intensity values extracted from the original modality data;
obviously the intensity pattern is very di↵erent. In figure 5.2(e) and 5.2(f) the
self-similarity of the central location with its neighbors computed using the
intra-modal w(x, y) measure and organized in the small rectangular images
is shown: irrespectively of the modality all pixels along the boundary share a
similar patch-neighborhood and their similarity measure is high. Out of the
boundary the similarity with the central pixel is low but also in this case this
is true for both CT and MRI resulting in the same location description. Two
parameters are related to and influence the computation of the self-similarity
entries: the aperture of the patch (half-width in every direction) used to esti-
mate the similarity between neighbors, and the Gaussian sigma of the weight
function w(x, y).

• MIND: a feature vector is associated to each location x that is formed by
the ordered sequence w(x, y) of patch-similarities with a set of locations
y in the neighborhood of x. It is possible to define di↵erent schemes for
the neighbors that contribute to the description. A basic layout used
in the framework is represented in figure 5.3(a). AMBRA also allows
the definition of other configurations as, for example, a complete grid of
neighbors sampled at a constant distance from x, making use of the same
convenient definition of the 3D patch defined by the patch aperture and
sampling previously considered for the other descriptors. The w(x, y)
entries for each location are computed before starting the iteration and
yielded in the correspondent feature vector. The distance between two
locations is then simple the L1 or L2 distance between their associated
feature vectors. This is an additional advantage in full-field registration
with respect, for example, to MI: it embeds the multi-modal invariance
inside the feature descriptor so the metric evaluation at iteration-time
is very fast.

• SSC: the underlying concepts and even the implementation details of the
SSC descriptor are exactly identical to MIND. The only di↵erence is the
layout scheme for the similarity correspondences used in the description
of a location x. In this case x itself is never considered but the feature
vector is formed by the similarity distancesw(y, z) between two di↵erent
neighbors y and z of x as shown in figure 5.3(b).

The motivation for this layout is to avoid the sensitivity of the MIND descrip-
tion to the central location. This layout prevents in fact the misleading e↵ect
of potential noise in x; it makes the feature vector describe the x location
through its context in the underlying image. This characterization makes the
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(a) (b)

(c) (d) (e) (f)

Figure 5.2: proposed concept for the use of MIND for multimodal registration
(Heinrich, Jenkinson, Bhushan, et al. 2012). An example using a CT (a) and
MRI (b) images is reported in figure. MIND is calculated in a dense manner in
both the images. In (c) and (e) an exemplary location with a boundary feature
between fat and non-fat tissue is shown. The corresponding descriptors (green
colored boxes in (d) and (f), respectively for CT and MRI) are independent
of the particular intensity distribution across two images and provide a very
good representation of the local shape of an image feature. MIND descriptor
is based on the assumption that even though the intensity distribution of
an anatomical structure may not correspond across modalities, it is reliable
within a local neighbourhood in the same image. In the example even the
boundary has di↵erent intensity distribution across CT e MRI images, the
corresponding descriptors (where high intensities correspond to small patch
distances) are independent to the respective modality and can be compared
using a simple intensity based metric.

descriptor particularly well-suited for US data. Also in this case the set of
neighbors to be compared can be defined through the same grid-patch pa-
rameter used for all other descriptors: in this case the layout in figure 5.3(b)
is expanded a number of times equal to the patch aperture and the space-
multiplier is given by the patch sampling.

Measures

To evaluate the performance of the feature descriptors a comparative test was
run on di↵erent testing sets. The rationale here was to compare all the de-
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(a) (b)

Figure 5.3: concept of self-similarity context (SSC, (b)) compared to MIND
(a) with six-neighbourhood (6-NH, Heinrich, Jenkinson, Papiez, et al. 2013).
The patch around the voxel of interest is shown in red, all patches within its
immediate 6-NH are shown in grey. (a): all patch distances (shown with blue
lines) used for MIND within 6-NH take the centre patch into account. (b):
geometrical and structural context can be better described by SSC using all
patch-to-patch distances, none of which is dependent on the central patch.

scriptors implemented in the framework in a common environment. To this
aim the analysis was limited to US-US and DBT-DBT contexts, in which also
the mono-modal descriptors can be used.
The first test was run over a testing set of 10 clinical breast US pairs.
Taking advantage of the framework structure a common global alignment pro-
cedure was used as the starting point of the deformable registration iteration.
The best parameter configuration for each descriptor was first found, running
the optimization process multiple times on the whole testing set as described
in the previous chapter. The optimal results obtained for all descriptors were
then compared, using the global alignment as basic reference (figure 5.4, ta-
ble 5.1).

Parameter SAD NCC MI MIND SSC
Scale 4 2 2 4 4

Search Aperture 6 3 3 3 3
Patch Aperture 3 1 6 2 2
Patch Sampling 2 1 1 1 2

Self Similarity Patch Aperture - - - 1 1
Self Similarity Sigma - - - 30 55

Table 5.1: estimated values corresponding to the optimal configurations for
the feature descriptors in case of breast US data.

A similar procedure was adopted for a DBT-DBT testing set (figure 5.5,
table 5.2). These results suggest that MIND performs generally better than
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Figure 5.4: Cumulative distribution of TRE, expressed in mm, evaluated for
202 landmarks annotated on 10 US clinical datasets.

Parameter SAD NCC MI MIND SSC
Scale 2 2 2 2 2

Search Aperture 3 3 3 3 3
Patch Aperture 1 3 6 1 2
Patch Sampling 1 2 1 2 2

Self Similarity Patch Aperture - - - 2 2
Self Similarity Sigma - - - 20 20

Table 5.2: estimated values corresponding to the optimal configurations for
the feature descriptors in case of DBT data.

SAD and NCC also in single modality registration tasks. The additional
modality-invariance does not a↵ect, at least for what concerns breast images,
its descriptive power. This can be explained by the fact that the self-similarity
concept is able to preserve the relevant structural information of underlying
data equally or even better than the other tested descriptors. This consid-
eration is supported also by the comparison with NMI that performs poorly
precisely because its high degree of invariance at the cost of lower distinctive
power. It is also worth noting that SSC performs better than MIND for the
US datasets but does not significantly a↵ect the results for what concerns the
DBT datasets. This behavior was expected since the main advantage of this
descriptor is to reduce the MIND sensibility to noise and hence is more suited
for the US noisy data.
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Figure 5.5: Cumulative distribution of TRE, expressed in mm, evaluated for
4 DBT clinical datasets.

Normalizers

In a deformable registration context normalizers represent the way in which
the field is expected to change the reference in the template image, supplying
the rules the field is subjected to during the optimization; from this point
of view they can be seen as relaxed constraints - especially if compared with
the fixed constraints implicitly embedded in all rigid transformation models.
They act only on the shape of the field and are frequently expressed only in
terms of its spatial derivative with the principal aim to preserve the field lo-
cal smoothness and continuity. Common normalizers have been derived from
physical models and the most common among them is the one derived from
the di↵usion model. For this reason the di↵usion regularization term has been
taken as reference in the AMBRA framework.

In this section the implementation details of this normalizer and of the more
advanced regularization via bilateral filtering are described in more detail.

For the sake of clarity a visual example that demonstrates the e↵ects of these
kinds of Normalizer is presented. In figure 5.6(a)-(c) two di↵erent breast US
scans of the same patient are depicted. In figure 5.6(b)-(d) the same images
are represented with overlays that represent the adipose tissue’s structures (in
yellow) and the glandular tissue’s structures (in blue). In the figure 5.6(d) two
arrows draw the attention to the motion that these structures are subjected
to: the adipose tissue’s structures move globally to the left while the glandular
tissue’s structures to the right.

• Di↵usion: the di↵usion normalizer is based on the heat equation: the
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(a) (b)

(c) (d)

Figure 5.6: Sliding motion example. In (a) a US slice of a breast acquisition is
shown. In (b) the adipose structures in the same image are outlined in yellow
and the glandular structures in blue. In (c) a di↵erent US acquisition of the
same breast region is represented, but in this case the breast is subject to a
di↵erent compression. Figure (d) shows how the adipose structures slid to the
left under probe pressure, while the glandular structures moved to the right,
compared to the image (b).

Laplace operator is applied with a constant weight alfa to the deformable
field as regularization term in the functional to be minimized:

@
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(u(x)))
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where u is the displacement field, Vref is the reference volume, x a loca-
tion in the reference volume, FV

ref

and FV
tem

the feature vectors in the
reference and template volumes, Dist their distance (as defined in the
previous chapter and treated in the previous section) and dt is a small
increment in time representing each iteration in the optimization pro-
cess. Thus this normalizer represents an energy that tries to minimize
the first order spatial derivatives of the displacement field. A common
implementation of the isotropic di↵usion regularization (Thirion 1998)
is to apply a Gaussian convolution to the field components at each iter-
ation:
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where N(x) is the neighborhood of x defined by the kernel size, sigma is
the standard deviation of the spatial Gaussian function and W(x) is a
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normalization factor for the neighborhood of x.

The e↵ect of this regularization method can be seen in figure 5.7. Fig-
ure 5.7(a) shows some vectors with di↵erent orientation that represent
local attractive forces due to the feature term in the yellow region from
figure 5.6(d). As can be seen, although most of the vectors point to
the (correct) left direction, some of them are captured by local minima
and, more in general, the field appears very discontinuous. An iterative
convolution of the displacement field with a Gaussian kernel removes
the discontinuities giving to the deformation a more acceptable repre-
sentation (figure 5.7(b)).
The integration in the AMBRA framework was straightforward: it re-
quires only to implement the Normalizer update field method through a
Gaussian separable convolution 3D kernel and with a dynamic parame-
ter representing sigma.

(a) (b)

Figure 5.7: Di↵usion operator e↵ect: in (a) the raw local forces due the
attraction of similar features are depicted; they point on average to the left
according with figure 5.6(d). Nevertheless some vectors fell to local minima.
Figure (b) shows the resulting field in the same locations when the di↵usion
operator is applied. In this case the displacement filed exhibits a more smooth
and proper deformation.

In complex scenarios however the estimation of plausible deformations re-
quires the application of additional rules to the ill-posed registration problem:
when multiple organs move independently towards di↵erent directions, a good
compromise between the general smoothness of the field and a correct descrip-
tion of local discontinuities could hardly be found. Several approaches have
been proposed to overcome this problem but most of them are not practica-
ble in this context: the parametrization of the strength of the normalizer as
well as the direction dependent regularization (DDR) schemes based on local
structures boundaries (Schmidt-Richberg et al. 2012) are unfeasible due to
the fact that both require initial reliable segmentations that are very di�cult
to obtain for inner breast structures; implicit anysotropic di↵usion based on
image gradients is a choice but the image contrast depend on modality and
cannot be generalized easily (Hermosillo et al. 2002). Other approaches ex-
ploit the image local intensities to distinguish tissues properties that can be

110



5.2. FEATURE DETECTORS AND NORMALIZERS

used to modulate the regulation term based on prior knowledge (for example
Hounsfield units in CT data).

To handle the severe sliding motion of structure inside breast an advanced
regularization via adaptive bilateral filtering (Papiez et al. 2014) has been
followed and a normalizer based on this approach has been integrated in AM-
BRA.

• Bilateral filtering: this Normalizer extends the di↵usion concepts ap-
plying to the displacement field the advanced non-linear filtering tech-
nique originally proposed for image denoising (Tomasi et al. 1998) known
as bilateral filter. Instead of iteratively convolving the field with a sim-
ple spatial Gaussian kernel it uses two combined Gaussian kernels, one
defined on the spatial domain and the other defined on the intensity
domain:

u
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⇤G
⇢

⇤u
t

(x) = W (x)
X

y2N(x)

u
t

(y)exp(
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2�2
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(5.12)
where I(x) and I(y) are the intensities of the reference volume in the lo-
cations x and y, sigma is the standard deviation of the spatial Gaussian
function, while rho is the standard deviation of the intensity Gaussian
function. The net e↵ect is that the field is averaged in every location only
with the neighbors that have a similar intensity. With the assumption
that, regardless to the modality used, a breast sub-structure made out of
the same tissue is likely to be represented by an almost constant inten-
sity, the bilateral normalizer is expected to allow discontinuities along
the borders of di↵erent objects preserving at the same time the smooth-
ness of the field in their inner region. In figure 5.8 the behavior of the
Bilateral Normalizer is compared with the Di↵usion Normalizer: given
that the Feature Term pushes the top region correctly to the left and the
bottom region to the right (as in figure 5.6(d)), the Di↵usion operator
(figure 5.8(b)) is likely to make the optimization converge to a displace-
ment field that has a smooth transition between the top and bottom
regions. The sliding motion is instead well handled by the Normalizer
based on Bilateral Filtering (figure 5.8(a)) as the field is smoothed in
top region with only other values from the top region and in the bottom
region with only other values from the bottom region.
The integration of this Normalizer inside AMBRA followes the same
logic used in the case of Di↵usion instance, with the only di↵erence
that in this case at iteration-time the update function makes use of the
reference volume (passed as argument in the framework Normalizer In-
terface) as the context for the local evaluation of the intensity Gaussian
weight.
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(a) (b)

Figure 5.8: Bilateral operator e↵ect: (a) shows the most likely configuration
of the vector field resulting by the application of the di↵usion operator to two
regions moving in opposite directions under pressure. As a result a smooth
transition of the field between the two regions is obtained. Figure (b) shows
the result after the application of a bilateral filtering operator; in this case
the Gaussian averaging rule is only applied over similar regions (in terms
of intensity values). It results in a more acceptable and proper deformation
model, allowing a discontinuity of the field at the boundary of the two di↵erent
regions.

Measures

Comparison tests were run also for the normalizers evaluation. The same
testing sets used for the Feature Metric term were chosen.

For what concerns US-US registration the comparison between the optimal
results (SSC was chosen as Feature Descriptor) obtained using the Di↵usion
normalizer and the one based on Bilateral Filtering shows that the seconds
performs better and improves the target registration error (figure 5.9).
(table 5.3) The DBT results instead does not show any remarkable benefit in

Parameter Di↵usion Bilateral
Spatial Standard Deviation 4.0 3.5
Intensity Standard Deviation - 0.2

Table 5.3: optimal values for normalizer’s parameters for US data.

the use of the Bilateral Filtering regularization. The TRE rates outlined in
the following graph di↵erences only by small quantities. (figure 5.10).
(table 5.4) These di↵erent behaviors can be better analyzed exploiting the op-

Parameter Di↵usion Bilateral
Spatial Standard Deviation 4.0 4.0
Intensity Standard Deviation - 16.0

Table 5.4: optimal values for normalizer’s parameters for DBT data.

timal parameter configuration in the two cases: for the US-US testing set the
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Figure 5.9: Comparison of the cumulative distributions of TRE, expressed in
mm, obtained using the di↵usion and the bilateral filtering regularization for
the US clinical datasets.

spatial standard deviation of the Bilateral Normalizer is slightly higher than
the standard deviation of the Di↵usion Normalizer and the intensity standard
deviation is small. Instead in the best configuration for the DBT-DBT case
the intensity standard deviation is very high while the spatial standard de-
viation of both the Di↵usion and the Bilateral regularization instances are
equal. This means that in the second case the optimal solution of the Bilat-
eral Normalizer approximates a Di↵usion Normalizer because the normalized
convolution with its intensity-based Gaussian function does not have any in-
fluence in the field averaging among neighboring locations. This result can be
easily explained by the fact that the sliding motion in the DBT images (ac-
quired in di↵erent times) is limited if compared with the US images (acquired
in di↵erent positions and with di↵erent compressions applied to the breast).
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Figure 5.10: Comparison of the cumulative distributions of TRE, expressed
in mm, obtained using the di↵usion and the bilateral filtering regularization
for the DBT clinical datasets.

114



Chapter 6

Case studies
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In this chapter three applications of the registration framework are inves-
tigated. Each of them represents a specific derivation of the framework that
involves the customization of both the initialization and the optimization part.
In each of the following sections, a specific clinical task is addressed. First
a brief description of the problem is presented. Then the method derived
from AMBRA is explained. Since each of the presented customizations of
the framework involves one or more segmentation algorithms (to support the
initialization block), the description starts outlining these segmentation proce-
dures. Then the algorithms used for the initialization block is presented. The
description of the configuration adopted for the optimizer of the deformable
registration algorithm in the case under analysis follows. Finally the regis-
tration results are presented. In addition a specific application of the whole
algorithm is proposed. As mentioned before, this work is currently focused on

115



CHAPTER 6. CASE STUDIES

applications regarding the novel 3D imaging technologies for breast. Hence,
the proposed case studies refer to DBT and ABUS datasets.

6.1 Intra-modality registration of di↵erent Ul-
trasound breast sections

For the breast examination using the currently available ABUS system, three
di↵erent scans for each breast need to be collected. As reference point, the
area under the nipple has to be imaged in each scan. These three breast views
are scanned in the same imaging session and performed by the same techni-
cian. Hence neither time-related di↵erences in breast anatomy nor operator-
dependent image acquisition di↵erences are expected. The main issue in these
datasets are related to the di↵erent position of the US probe, that implies a
di↵erent pressure applied by the probe to the breast during acquisition. As
the breast has a non-rigid behavior, the di↵erent probe positioning lead to a
relevant breast tissues deformations among the scans. Although the ABUS
systems allow to save physician’s time as the breast scanning is performed
by a technician, the images interpretation requires usually a lot of time. In-
deed the physician has to read three di↵erent volumes for each exam, and the
estimated interpretation time is on average 10 minutes for each breast (see
the section 2.3 for more details). ABUS workstation allows to display the
multiplanar reconstruction of a volume (i.e. transverse, coronal and sagittal
planes) and to easily navigate inside a volume. In addition in the same screen
two views (i.e. AP, LAT or MED views) referring to two di↵erent scans can
be displayed. Although the two views present an overlapping area, it appears
di↵erently due to the deformations impressed during the scanning. Hence,
the same region has to be examined three times. Although the workstation
assists the physician in the image reading, for each breast three di↵erent vol-
umes have to be scrolled and completely examined. Currently, there is no
tool that helps to correlate and compare the highly deformed overlap areas
among scans. The purpose of the image registration in this case is to estimate
a mapping function between the same breast area imaged in two di↵erent US
scans. It is aimed to an automatic correlation between the volumes, allowing a
more accurate and faster ABUS images interpretation. A dataset for this task
consists in two US volumes representing adjacent breast sections and compris-
ing an overlapping area. This area shows relevant deformable displacements
of breast tissues. The datasets used for this task were collected using the
Siemens ABVS scanner.

Given two scans, for the image registration the nipple is the reference point to
perform a global alignment of the input volumes. Then the displacement field
in the overlap area between the volumes is estimated. The displacement field
can be used to perform an automatic synchronization of the cursor positions
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between two di↵erent breast views. However, for this task a novel application
is proposed. The displacement field is used to deform both volumes in order
to perform a fusion of the input volumes in a single one with an extended
field-of-view.

For the explanation of the method’s steps a test dataset has been selected
and the results are presented on bidimensional images for the sake of a clearer
visualization. For an easier interpretation, images showing well defined and
easily recognizable structures have been chosen (see figure 6.1).

(a)

(b)

Figure 6.1: an example of two ABVS volumes corresponding to a left breast.
Figure (a) shows an axial image extracted from the AP view, while (b) is an
axial image of the LAT view.

6.1.1 Nipple segmentation

Irrespectively of the position of the 3D US probe the nipple is always present
in the scanned image data as it is used by the physician as a reliable land-
mark. The nipple solid structure attenuates the US signal in its underlying
region (figure 6.2). This characterization of the nipple area has been used
for its automated detection. The volumetric data of a breast section is first
re-sampled to a matrix with uniform spatial resolution of 0.4 mm in all direc-
tions. Then the component tree of all the dark extremal regions of the volume
matrix is computed (Matas et al. 2002). A dark extremal region is the dark
connected component of an image binarized at a certain threshold level. The
component tree is a rooted, connected tree whose nodes are the dark extremal
regions for all possible threshold levels. They are linked in such a way that a
region R obtained with a threshold T has a parent node (navigating the tree
upwards) corresponding to a region that includes R and is obtained with a

117



CHAPTER 6. CASE STUDIES

(a) (b)

Figure 6.2: Attenuation of the US signal in the region under the nipple in the
AP view (a) and the LAT view (b).

threshold Tp < T ; it has also a set of child nodes (navigating the tree down-
wards) corresponding to regions included in R and obtained with a threshold
Tc > T . Finally the maximally stable extremal 3D regions (MSER) are se-
lected (Donoser et al. 2006). The property that characterizes these regions is
to slowly change their cardinality (size) moving upwards and downwards the
branch of the component tree they belong to. The net e↵ect is to select a
set of dark connected components of the volume whose size does not change
much if the volume data is binarized with thresholds in a wide range around
the threshold associated to the region itself.

The dark MSER set always includes the region underlying the nipple but
additional selection steps are required to prevent two major issues:

1. Exclude dark regions whose attenuated signal is caused by other phe-
nomena. An example is the lateral attenuation of the signal due to the
lack of coupling between breast and probe as well as a smaller breast
size than the probe.

2. Select among the remaining MSERs the one that best fits the nipples
area. In fact in some cases the attenuation under the nipple area merges
with other attenuated regions, at least for a threshold level that is not
su�ciently low.

To this aim first a clustering algorithm is used to connect the MSER that
share a common MSER ancestor along the component tree. Each group of
regions is represented by this common ancestor (that is the largest MSER of
the group). Some characteristics of these representative regions are computed:
size, extension (bounding rectangle), location (center of mass) and the three
first central spatial moments including variance and skewness. Only regions
that are not too small or large and whose bounding rectangle is not too lateral
are selected. A special treatment is reserved for the lateral regions: their
variance and skewness are used to establish if they are compact (the region
is discarded) or not (the region is selected for further analysis); in fact if the
nipple region merges partially with a lateral region their union can be classified
as lateral but looses the compactness. The group of MSER in the same cluster
of the not-discarded lateral region is explored downwards selecting, if any, the
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first MSER that fulfills all the desired requirements (figure 6.3). Finally a

(a) (b)

(c) (d)

Figure 6.3: Figure (a) shows the representative region (highlighted in white)
of the selected cluster in the AP view. Figure (b) shows that the cluster for the
LAT view is correctly selected by the algorithm; however, as the representative
region is quite extended and on the side of the image, it includes also the
unwanted lateral black region (due to the uncoupling between the probe and
the breast). Hence, in the first case, the segmented region (drawn in violet in
(c)) corresponds to the parent of the cluster (in the graph model), meanwhile
in the second volume the component tree is searched downwards and a sub-
region is selected (drawn in violet in (d)). This selection allows to prevent the
lateral region.

classifier based on these computed features evaluates the region that is more
likely to represent the nipple area. The center of mass of the selected region
projected into the skin plane determines the nipple position (figure 6.4). The
e�ciency and accuracy of the proposed method was tested on a test dataset
of 90 US scans. The nipple was detected with a detection rate of 90% inside
a range of 15 mm with respect to the ground truth manually annotated by
an expert. The procedure succeeded also when the nipple was not completely
scanned in the field of view. The average distance between the automated
detected nipple position and the reference is 5.1± 3.1mm. The computation
time is 3 seconds on a 2.5 GHz processor.

6.1.2 Method

Initialization

For the current application the initialization block of the framework is im-
plemented with a procedure that begins computing the nipple location in
both the reference and template volumes using the nipple segmentation tool
described in the previous section. A raw global translation vector:

T
gl

= (dx
gl

, dy
gl

, dz
gl

) (6.1)
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(a) (b)

Figure 6.4: The automatically detected nipple positions in the AP (a) and
LAT view (b).

is coarsely evaluated as the displacement between the resulting locations of
the nipple in the two volumes. Though the attenuation of the signal in the
nipple region could be useful in determining a stable landmark location in
both reference and template images, its decreased intensity constitutes a se-
vere artifact. An adaptive intensity enhancement filter based on a sigmoid
transfer function (Tao et al. 2006) is then applied to the image data. The
filter is modulated by a weighting mask that takes into account both the spa-
tial position of the nipple and the inverse intensity of the original image, in
order to restore the original tissue contrast in the region a↵ected by the loss
of information (figure 6.5). An additional step regards the estimation of the

(a) (b)

Figure 6.5: (a) example of an image of the breast tissues corresponding to
the region under the nipple where a high signal attenuation is shown. The
result obtained applying a local contrast enhancement filtering is reported in
fIgure (b). It can be noted how the filter selectively normalizes the intensities
in the areola region without a↵ecting the surrounding regions, resulting in an
equalization of the image intensities distribution.
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local movements of the inner structures. In the algorithm workflow, it links
the rigid model estimated in (eq. (6.2)) to the deformable model that will be
used as the starting configuration for the optimization phase, represented by
the displacement field:

F (p) = (dx(p), dy(p), dz(p)) (6.2)

defined in every spatial position p of the reference geometrical space.

To this aim first the reference space is partitioned in a grid of middle-scale
blocks, whose dimensions are comparable to the expected size of distinctive
subcutaneous adipose objects or structures embedded in mammary gland that
are well characterized in US scans; then a patch window, obtained extending
the block dimension to include the neighboring structures, is associated to each
block. Finally, taking advantage of the global translation vector (eq. (6.2)),
each patch window is searched in the template image only in the neighborhood
of its expected location (figure 6.6). The best evaluated local displacement is
temporary assigned to the block central position (p

block

):

F
loc

(p
block

) = (dx
loc

(p
block

), dy
loc

(p
block

), dz
loc

(p
block

)) (6.3)

Unfortunately, due to the floating nature of the anatomical structures rep-
resented in breast scans, the size of the search neighborhood for each block
needs to be large; this implies a low degree of reliability for the single block
local displacement evaluation, particularly where the reference data within
the patch window is not enough distinctive. For this reason the local block
matching process is associated with a reliable validation procedure: Speeded
Up Robust Features (SURF) are extracted from highly characterized points in
the scale-space representation of both the reference and the template images
(Bay et al. 2006). Next, the two sets of points are cross-matched excluding
the couples that do not mutually match (Brown et al. 2007).
For each estimated local translation a confidence index c block is computed
as the rate of the SURF points found inside the reference block region, whose
matching SURF points lie inside the corresponding template block (figure 6.6
and figure 6.7). The final step in this phase is the initialization of the full res-
olution deformable registration field in the reference space. First a weighted
vector F (p

block

) is assigned at each p
block

:

F (p
block

) = w(c
block

)F
loc

(p
block

) + (1� w(c
block

))T
gl

(6.4)

where w(c
block

) is an increasing function that maps in [0,1] the value of the c
block index to the actual weight to be applied to the local translation estima-
tion. Then a trilinear interpolation procedure fills the remaining locations of
the field.
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(a)

(b)

Figure 6.6: On the left an example of the local block matching procedure
between the reference (a) e template (b). On the right a detail of the SURF
validation of block matching: the points lying inside reference patch window
are drawn in gray; among these the ones found also in the estimated template
block are displayed in white.

(a)

(b)

Figure 6.7: (a) case of good local matching confirmed by a high confidente
index of 0.6, that means that the 60% of SURF points found inside the ref-
erence block are correctly mapped in the corresponding block selected in the
template; on the contrary, figure (b) shows an example with a low value of the
confidence index (equal to 0.2) that suggests a possible error in the matching.

Optimization

The optimization process embedded in AMBRA was customized by selecting
the following configuration:
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• For what concerns the Feature Metric the Self Similarity Context (SSC)
descriptor was selected for its ability to handle US noise and speckle.

• The Bilateral Normalizer was the choice for the regularization term to
preserve the severe sliding motion of the most relevant structure inside
the breast.

• A Multi Resolution approach in two stages for two di↵erent scales was
followed: in the first one the field is optimized at low image resolution,
with a scale comparable to half size of the blocks defined in the local
alignment during initialization; this choice aims to improve the local
estimate obtained in that phase with a non rigid transformation model
but capturing features of comparable size. The second stage instead
makes use of the finest scale to get a full resolution preciseness for the
deformable field.

• The inverse consistent constraint option was enabled to grant that the
correspondence between the two volumes is invariant to the choice of
source and target.

Thus the optimization process ends up with the forward and backward dis-
placement fields F and G whose inverse consistency will be used in the appli-
cation described in the next section.

Results

In figure 6.8(a) a reference (top) and a template (bottom) volume are shown.
Figure 6.8(b) shows the registration of the template volume (in green) in the
reference space (red). The improvement after the deformable registration (c)
with respect to global (a) and local (b) alignment can be noticed. The pro-
cedure has been applied on 9 datasets acquired with Siemens ABVS scanner.
141 landmarks have been carefully selected by experts. The evaluation of the
results is based on the TRE of anatomical landmarks embedded in the frame-
work. The cumulative distribution of landmark localization error is plotted
in figure 6.9. The average error in mm (2 ± 2) achieved with the proposed
algorithm is significantly lower than the one (3± 3) obtained with the state-
of-the-art MIND method (Heinrich, Jenkinson, Bhushan, et al. 2012). The
average displacement of landmarks before deformable registration is 4 ± 3 in
mm (table 6.1). In table 6.4 the computing times of the algorithm are re-
ported. They refer to two US volumes with the characteristics indicated in
tabletable 6.2 processed using a computer with the performance reported in
table 6.3.

6.1.3 Image stitching

An interesting application of the presented registration method is a novel
merging procedure of two US breast sections (source volumes) in a single ex-
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Parameter avgTRE (mm) standard deviation (mm)
Global alignment 4 3

MIND 3 3
Proposed method 2 2

Table 6.1: the averageTRE, with the relative standard deviation, estimated
after the global alignment, the application of MIND procedure and the pro-
posed method.

US dataset characteristic Value in mm Value in pixel
width 1̃52 712
height 4̃5 420
depth 1̃67 318

voxel size 0.21⇥ 0.11⇥ 0.52
uniform sampling 0.2⇥ 0.2⇥ 0.2

Table 6.2: technical specifications of the 3D US data.

Computer’s property Value
CPU speed 2.50 GHz

# of processors 12
# of cores 2

RAM 48.0 GB

Table 6.3: overview of the properties of the processor used for the algorithm
computing.

Algorithm’s step Time
pre-processing 1’
step #1 (global) 10”
step #2 (local) 5’

step #3 (deformable registration) 1h

Table 6.4: computation time for each step of the registration method.
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(a) (b)

Figure 6.8: (a): reference (top) and template (bottom) input images. (b):
registration of the template image (green channel) in the reference space (red
channel of image) after: a) global alignment (on the top); b) local block
matching (in the middle); c) deformable registration with inverse consistency
constraints (on the bottom).

tended 3D view (target space). The proposed method is an extension to 3D
and to deformable field models of the algorithm based on homographic trans-
fer models used in (Brown et al. 2007) to render a stitched panorama. In that
work, once established the rigid transformation model between the two source
images, a parameter t with values between 0 and 1 indicates the point of view
for the resulting panorama: if t = 0 the point of view is the one of the first
image and the second image is projected on it; if t = 1 the point of view is the
same of the second image and the first image is projected on it; for all other
values of t, for example 0.5, both images are projected onto a target space
that is halfway between the two original points of view. Irrespectively of the
value of this parameter the two images are rendered in the target space and
the blending operation is applied to the rendered projections. For the sake
of simplicity and without loss of generality the novel merging procedure pro-
posed is described in two dimensions (images instead volumes) and assuming
that the template image is placed to the bottom-left of the reference image
as in figure 6.10. This means that the direct deformable field F is on aver-
age lower than 0 for both the x and the y coordinate; and that the inverse
deformable field G is on average greater than 0. The average displacement
vector Tavg estimated from F and G represents a translation that turns out
to be useful to define an appropriate domain for the possible target space of
the merged image: this domain is defined as the sum of the original image
size and |T

avg

|. Source images are rendered in the obtained target space with
a hybrid approach, that combines the deformable and the rigid translation
model associated to T

avg

. Relying on the rigid model three regions can be
identified in the target space: the intersection region IR corresponding to the
overlapping area, and the two non-overlapping regions, R

ref

and R
tem

(fig-
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Figure 6.9: Cumulative distribution of target registration error, in mm, eval-
uated for 141 expert landmarks identified on 9 datasets. Comparison of the
results obtained: before registration (only with images alignment, delineated
in green line), with the proposed method (blue line) and with the MIND
procedure (as proposed in Heinrich, Jenkinson, Bhushan, et al. 2012, orange
line).

(a) (b)

(c)

Figure 6.10: two axial images of the reference (a) and template (b) volumes
and the schematic overlap (c).

ure 6.11). In the analysed configuration the template image is translated in
the R

tem

by T
avg

. Instead in the IR area a weighted combination of both
the rigid and the deformable models is applied: calling q the position inside
the IR region, the closer q is to the R

tem

the more the template projection is
a↵ected by the rigid model; the influence of the deformable field F increases as
the point q becomes closer to the region R

ref

. A similar procedure is followed
for the reference image: in this case R

ref

is filled with the reference image
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Figure 6.11: �(q) pattern representing the relative weight used to obtain the
source images rendering in the extended view. The target space partition into
the following three regions are shown: non-overlapping area R

ref

correspond-
ing to the reference space (bounded by the green line); non- overlapping area
R

tem

corresponding to the translated template space (bounded by the blue
line); intersection region IR, within the red line, representing the overlapping
space.

left unchanged (or translated by zero); in IR, the closer the position q is to
the R

ref

the more the reference projection is a↵ected by the translation by
zero; the influence of the deformable field G (that maps the reference image to
the template space) increases as the point q becomes closer to the region R

tem

.

Thus the displacement fields (G
ext

(q), F
ext

(q)) used to render the reference
and template data in the extended target space are computed by the equa-
tions:

G
ext

(q) = �(q)G(q � T
avg

) + (1� �(q))

= �(q)G(q � T
avg

)
(6.5)

F
ext

(q) = (1� �(q))F (q � 0) + �(q)T
avg

= (1� �(q))F (q) + �(q)T
avg

(6.6)

where �(q) is a weight function that depends on the L1 distance of q from the
regions R

tem

and R
ref

defined as:

�(q) =
L1(q, R

tem

)

L1(q, R
tem

) + L1(q, R
ref

).
(6.7)

Once rendered both images in the extended target space, a Multiband Blend-
ing strategy (Burt et al. 1983) is used to produce the final image.

The blending technique is completely automatic and produces the extended
volume shown in figure 6.12 (axial plane) and in figure 6.13 (coronal plane).
It can be noted how structures located in the overlapping area between im-
ages are mapped in the extended view with the best representation layout: the
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(a) (b)

(c)

Figure 6.12: (a) reference axial image (related to the left breast’s AP view);
(b) template axial image (related to the left breast’s LAT view); (c) axial
section of the volume resulting from the proposed merging procedure of the
reference and template images.

central areas of the original images contribute to form the information in the
extended view, while lateral regions, that present more severe deformations
(right area in the AP view and left area in LAT view, respectively) are ex-
cluded in the final representation. The external structures shown in only one
acquisition are translated to the target without any geometrical or intensity
distortion.

6.2 Intra-modality registration of breast To-
mosynthesis images for temporal compar-
ison

The breast cancer screening indications recommend the physicians to define
their examination report using both the current and the prior patient’s ex-
aminations (collected with same imaging modality), in order to feel more
confident in the image interpretation and consequently in the cancer detec-
tion and prognosis. Given di↵erent examinations referring to two di↵erent
times, local deformations for di↵erent breast positioning and compression as
well as structural di↵erences owing to physiological anatomy changes are ex-
pected. Currently, only a visual comparison can be performed. Typically
the physician displays on the same workstation both volumes and scroll the
planes one volume at a time until corresponding structures are found. It takes
a lot of time and it is not a straightforward task. Moreover, usually a plane-
by-plane correspondence is not feasible, as the breast tissues undergo to local
deformations and, consequently, corresponding features could be visualized on
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(a) (b)

(c)

Figure 6.13: a coronal plane of the reference (a), template (b) and the resulting
merged volume (c).

di↵erent slices. It means that during the images examination the physician
has to continuously scroll the planes searching correspondences in order to
compare the two volumes. Here a specific application of the image registra-
tion to DTB images collected at di↵erent times is proposed (an example of
two DBT volumes is reported in figure 6.14). In this case the purpose is to
estimate a mapping function between the two volumes aimed at supporting
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the physician by automatically synchronizing the cursor positions inside the
two volumes. Hence, the physician can scroll the planes inside one volume
and simultaneously examine the corresponding regions inside the other one.
For this task the datasets collected using two di↵erent equipments were avail-
able: the 3D images of the Siemens and Hologic DBT systems. Negligible
di↵erences are noted using these di↵erent datasets in terms of the image reg-
istration performance.

Given two DBT images, firstly the skin segmentation and the nipple detec-
tion are performed for both volumes. These information are used to compute
a global alignment, and then the deformable registration field is estimated.
Since structural di↵erences including lesion appearance are expected between
di↵erent examinations, an accurate pointwise correlation is not always fea-
sible, and the displacement field is used to automatically find spatial corre-
lations that allow to simultaneously display corresponding regions inside the
two volumes.

6.2.1 Skin and nipple detection

The segmentation of the skin surface in DBT images is straightforward due
to the absence of response signal out of the breast; the exact nipple location
detection is more di�cult but can take advantage of the knowledge derived
from the tomosynthesis reconstruction process together with the fact that the
density of the nipple is higher than the other breast tissues. The process is
divided in two parts.

The first part acts independently on each DBT slice (the planes on the x-
y coordinates of the DBT reference system) extracting the skin 2D contour
Skin(z) and a candidate nipple location Nipple(z), with z corresponding to
the third coordinate in the DBT reference system.

To find the contour Skin(z) each slice (figure 6.15(a)) is binarized with a
threshold that corresponds to the 5% of the cumulative distribution function
associated with the image histogram (figure 6.15(b)). The edges of the mask
are extracted and the border points are ordered from top to bottom (fig-
ure 6.15(c)). The resulting contour is uniformly re-sampled along its curvi-
linear coordinate s with a point distance of 0.2 mm. The candidate Nipple(z)
location is found considering the contour Skin(z) curvatures:

• For each point P(s) of Skin(z) the outgoing normal N(s) is first computed
as the minor axis of the ellipse that fits the set of its 5 neighbor points
(figure 6.16(a)-(b)).

• The field of normal vectors N(s) shown in figure 6.16(c)is further ana-
lyzed computing the divergence in every location.
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(a)

(b)

Figure 6.14: comparison of two DBT volumes of the same patient collected at
di↵erent times: (a) shows four projections extracted from the volume collected
in 2011; figure (b) shows the sequence of the projections (selected at the
same depths inside the breast of the volume (a)) corresponding to the volume
collected in 2012.

• The candidate Nipple(z) is detected in the point that exhibits a concave-
convex-concave pattern (figure 6.16(d)).

The second part of the algorithm moves to a 3D analysis taking advantage of
the series of contours Skin(z) and of the candidate nipple locations Nipple(z)
for each plane.

The 3D representation of the whole skin surface is simply obtained merg-
ing the Skin(z) contours.

The detection of the 3D nipple location requires instead a slightly more com-
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(a) (b) (c)

Figure 6.15: Skin detection: the DBT slice in (a) is first binarized to exclude
the region outside the breast (b); the a contour is extracted from the edges of
the binary image mask (c).

plicated procedure whose goal is to select the right candidate in the set of
Nipple(z) locations: the rationale here is to select the z-slice in which the nip-
ple structure is more in focus, taking advantage of the peculiar characteristic
of the DBT reconstruction process.

To this aim, first the 3D normal direction to the skin surface is computed in
each Nipple(z) location using a method that extends to 3D its bi-dimensional
counterpart; then, along each of these directions a uniformly sampled line
segment is defined as the set of locations L(z,t) with t representing the dis-
placement from Nipple(z) towards the outgoing direction; the sampling unit
of the t-coordinate is 0.2mm while its range, expressed in sampling units, is
[-50;+50], resulting in a segment extension of 10 mm both in the outer and in
the inner directions.

For implementation convenience it is possible to define a 2D matrix, called
the normal projection image (NPI), and its coordinate system {z, t} with z
and t as in the preceding description.

The algorithm fills the NPI matrix with values extracted from the original
DBT volume in each locations L(z, t) by trilinear interpolation. Figure 6.17(a)
shows how the bright signal corresponding to the nipple density (near the im-
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(a) (b)

(c) (d)

Figure 6.16: Nipple detection: the normal orientation in each contour point
(a) is computed as the minor axis of the ellipse that fits its neighbors (b);
the normals vectors along the whole contour are plotted in (c); the concave-
convex-concave pattern of the contour characterizes the nipple location that
is delineated with the purple cross in (d).

age center in the vertical direction t) spreads across all the volume depth
(horizontal direction z) but it loses focus and intensity in marginal slices; to
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enhance this property the NPI matrix is convolved with a fine-scale vertical
Sobel filter resulting in the image shown in the second row. The nipple posi-
tion is found in the point where the bright signal concentrates (figure in the
bottom row); this position is finally reverse-mapped in to the original DBT
reference system figure 6.17(b)).

(a) (b)

Figure 6.17: Nipple localization along the z axis: the top figure in (a) repre-
sents the matrix L(z,t) whose each column is extracted from the DBT volume
by the trilinear interpolation along the normal segment to the skin surface
in the location N(z); t is in the range [-50, 50] with a sampling unit of 0.2
mm both in the inner (top side of the figure) and outer (bottom side of the
figure) directions. The matrix L(z,t) is convolved with a fine-scale Sobel edge
detection along the vertical direction (central figure in (a)) and the location
with the higher response is selected (bottom figure in (a)). In figure (b) the
selected location in the L(z,t) space is remapped to the original DBT volume.
The purple cross now indicate the estimated nipple position in the volume.
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6.2.2 Method

Initialization

Contrary to the previous problem in which the two di↵erent sections of the
breast overlap only partially, in this case the reference and template volumes
are both expected to show the whole breast. Moreover, a lower amount of
local distortion is expected. For these reasons the initialization block is im-
plemented evaluating only the global average translation between the source
images.
However, in this case not all the available data in a scan is meaningful: the
region outside the breast is completely black and, besides the fact that it is
useless for a deformable registration algorithm, it can also be misleading for
a global alignment procedure based on an intensity-based metric computed
over the whole volume.
To this aim the tools for the DBT nipple and skin segmentation are used.
Based on the skin segmentation a 3D rectangular region of interest (ROI) is
selected on the reference. More in detail the selected ROI(ref) is the right-
most 3D rectangle of a fixed size completely contained inside the breast region;
a padding or minimum distance to the skin surface is also required (width,
height and depth and padding of the ROI are expressed as a fraction of the
whole volume dimensions).

Then a rectangular ROI(tem) of the same dimensions of ROI(ref) is searched
in the template volume. Also in this case the region must be completely
contained inside the skin surface but no padding is used; the selection crite-
rion is the minimum SSD distance between ROI(tem) and ROI(ref) patches.
The method used to search the best correspondence is a Nelder-Mead simplex
optimization of the displacement vector T=dx,dy,dz between the ROI(ref)
position and the ROI(tem) position.
In figure 6.18(a) the ROI(ref) rectangle is enlightened in yellow while the
bright area around it represents the required padding. In figure 6.18(b) the
best match ROI(tem) computed by the Nelder-Mead optimizer with an SSD
metric is shown in bright in the template volume. Finally the displacement
field on the whole reference space is initialized with the value of the estimated
global translation T.

Optimization

The optimization process was instead customized by selecting the following
configuration:

• For what concerns the Feature Metric the Self Similarity Context (SSC)
descriptor was used. The Normalized Cross Correlation (NCC) can also
be used with similar performances but SSC was selected due to its higher
degree of invariance to modality data. It is worth noting, in fact, that
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(a) (b)

Figure 6.18: In figure (a) the rectangular patch ROI(ref) in the reference DBT
volume used for the global alignment is highlighted in yellow; while the re-
quired padding from the skin surface corresponds to the brighter region around
it. The patch ROI(tem) in the DBT template volume that best matches the
patch ROI(ref) is shown in figure (b).

using the same descriptor for both US ( the previously analysed clinical
problem) and DBT (the current task) lays the foundations for the cross-
modality applications.

• The Di↵usion Normalizer was the choice for the regularization term. In
this case there is no need to handle severe sliding motions as the breast
is sensed in both the acquisitions with a similar layout. Moreover in the
period of time between the first and second scan some internal struc-
tures could have changed their dimensions and shape but these kind of
deformations are exactly what the physician wants to detect. A di↵usion
regularization model is more indicated to move such structures in the
correct position based on their background context without deforming
them locally.

• Constrained optimization: the correspondence between the nipple lo-
cations detected in the two source image is used as reliable and precise
point-to-point mapping constraint. The strength of the constraints term
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limited to this association is relatively high (0.9) with respect to the fea-
ture and normalizer terms but has only a local influence. In addition
a selection of points on the skin surfaces that depart from the nipple
in all directions (angular sampling of 10 degrees) at fixed radial sam-
pling (1.0 mm) is used as a series of weak constraints (weight < 0.2).
These additional constraints force the optimization process to maintain
the skin-to-skin correspondence during the iterations. The weakness
is motivated by the fact that, contrary to the nipple position, these
point-to-point correspondence (at least for what concerns their surface
curvilinear coordinates) are not precise, and the energy term they should
add to the optimization functional is only intended to influence rather
than e↵ectively force it.

Results

The algorithm was tested on 8 data sets and the mean TRE error has been
computed. The results were compared with the ones reported in Sinha et al.
2009 using a method based on the NMI metric that is theoretically invariant
to modality as the SSC metric used here. Exploiting the comparison capa-
bilities of the AMBRA framework the results of an implementation of same
algorithm using the NCC metric that is intrinsically monomodal were reported
(table 6.5). Figure 6.19(a) shows two di↵erent planes of an original DBT cou-

avgTRE
(mm)

std dev
(mm)

Number of
control
points

Number of
datasets

Proposed method 1.2 1.0 25 8
AMBRA with NCC 1.3 1.2 25 8
Reference method

based on MI
1.8 1.4 15 6

Table 6.5: comparison of the results obtained with two di↵erent implemen-
tations of AMBRA with a similar application proposed in literature (Sinha
et al. 2009).

ple are superimposed with the reference in the green channel and the template
in red the channel. The same reference planes are shown in figure 6.19(b) with
the template projected on the reference space after the registration process.
In figure 6.19(c) the visible accuracy of the registration can be noticed on a
detail, extracted from the top section of the first plane placed far from the
nipple. The nipple alignment and the neighboring structures superimposition
can be seen in figure 6.19(d).
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(a) (b)

(c) (d)

Figure 6.19: some details of overlap image obtained showing the reference
volume in the red channel and the template volume in the green channel. In
each sub-figure, on the left the overlap before the registration is shown, while
on the right the result of the registration is reported.

Dynamic reproiection

A useful application of the proposed algorithm is the derivation of a tool able
to remap dynamically a point in a DBT scan acquired in a given date with the
corresponding point in another DBT scan acquired before or after the first one.

Applying the proposed algorithm with the first scan as reference and the
second as template, the direct displacement field F computed after the algo-
rithm execution is enough to obtain the desired result dynamically; in this
case the reverse mapping from target to source is not required: each ref-
erence voxel v = {x, y, z} is associated by forward mapping to the point
v0 = {x+ F (x(v), y + Fy(v), z + Fz(v)} in the template image.

In figure 6.20(a) a selected point in the reference is instantly depicted in the
template volume figure 6.20(b).

138



6.3. CROSS-MODALITY REGISTRATION BETWEEN BREAST
TOMOSYNTHESIS AND ULTRASOUND IMAGES

(a) (b)

Figure 6.20: result of the automatic synchronization between a DBT volume
collected in 2011 and one collected in 2012. This example shows how the
physicians can select a point of interest in one volume, and a corresponding
location inside the other volume is automatically displayed using the estimated
displacement field.

6.3 Cross-modality registration between breast
Tomosynthesis and Ultrasound images

Breast cancer diagnosis can take advantage of complementary information
provided by di↵erent modalities. 3DUS and DBT are two novel technologies
that can be used to scan the breast for diagnostic examinations. The images
provided by these modalities are quite di↵erent in terms of spatial resolution,
image contrast between breast tissues, and moreover are acquired compressing
the breast by di↵erent positions. Therefore, the breast diagnostic accuracy
can be improved combining the data from both these modalities. However,
this task involves many issues, firstly the computation of a global mapping
function able to co-register the two volumes. After, the relevant di↵erences
due to local deformations need to be estimated. Hence, for the multimodal
registration task the main purpose is to test if corresponding features between
3D US breast and DBT images can be detected and automatically correlated.
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Both volumes were collected with Siemens equipments. As the DBT and
ABUS systems are not yet widespread, especially if used in conjunction, the
number of datasets available for this study is limited. Currently, only 5
datasets were used. At the current status of the research, the study is re-
stricted to the CC view of DBT images and the AP view of 3D breast US
images.

The main issue of this application is that the volumes are represented in
di↵erent coordinate systems. Hence, given the breast US and DBT images,
the first important step refers to compute a reliable alignment of these vol-
umes. As reference point, the automatically detected nipple position is used.
Then the skin surface segmented on DBT images and the chest wall segmen-
tation performed on US images are used to define the e↵ective volumes to be
matched.

Multimodal breast registration is a very challenging task, that include many
issues to overcome. This work represents an initial study towards a cross-
modality correlation between 3D breast images.

6.3.1 Chestwall segmentation

The bones of the chest wall attenuate the US signal even more than the nip-
ple but they are less easy to detect in breast images because of their deeper
position inside the patient body; only the last few rows in the image generally
show this attenuation. Anyway the automated detection of these structures
can take advantage of the characteristic pattern of the chest wall with the al-
ternation of bright and dark stripes (where the dark stripes correspond to the
bones, see figure 6.21). The algorithm starts re-sampling the US volumetric
data exactly with the same resolution adopted for the nipple detection (0.4
mm in all directions). In this case however only half the volume is considered,
leaving out the anterior part. For simplicity the y and z axis of the original
reference system are swapped in such a way that the x-y planes represent the
coronal views while the z-axis is in the anterior-posterior direction (from front
to back). The bright-dark pattern characterizing the bones of the chest wall
is detected using a multi-scale hessian filter: more in detail the partial second
derivatives are computed by convolution of the volume data with 3D box fil-
ters that approximate the Laplacian of Gaussians (Bay, Ess, et al. 2008) at
each scale s (figure 6.22). The bones detector at scale s is obtained by the
response of the vertical second derivative image Lyy subtracted to the hori-
zontal second derivative image Lxx. The range of analyzed scales has been
chosen taking into account the possible vertical displacement between two
consecutive bones. Finally the scale associated with the maximum average
response over the whole volume is selected. A similar approach is adopted
to detect the orientation of bones: in most cases in fact (especially in lateral
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(a)

(b) (c)

Figure 6.21: (a) transverse, (b) sagittal and (c) coronal planes extracted from
a US volume showing the chest wall.

breast scans) the bones are not perfectly horizontal. Rather than considering
the mixed second derivative Lxy, the volume is first masked by a cylinder with
the axis corresponding to the central z axis of the volume, than rotated by
di↵erent angles; for each angle the average response of the bone detector is
computed and the angle with the maximum response is selected.

Once the angle and the scale are found, the corresponding response mask
is equalized and the Maximally Stable Volume (MSV, already described in
the nipple detection section) is run. This time the MSV algorithm is applied
to the response mask and find brights regions with a cardinality compatible
with the expected bones size. The borders of these regions are extracted to
create a set of bone candidates (figure 6.23). The last check consists in the
shape evaluation of these regions: the Random Sample Consensus (RanSaC)
algorithm (Fischler et al. 1981) is used to fit the points of each of these con-
tours with an ellipsoid model with the major axis normal to the z-direction.
RanSaC is able to find the best fit handling and discovering possible outlier
points.
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Figure 6.22: From left to right: the (discretised and cropped) Gaussian second
order partial derivative in y- (Lyy) and xy-direction (Lxy), respectively; box
filter approximations of Lyy and Lxy. The grey regions are equal to zero (Bay,
Ess, et al. 2008).

Once found the ellipsoid three cases are possible:

• all points are inliers (their distance to the ellipsoid surface is lower that
a given tolerance): the region is considered a valid bone as it is;

• a few points are outliers (caused by small signal anomalies near the
bone structure): these points are rejected. If these rejected points cover
a specific area the contour is fixed in that part of the surface adding
samples derived from the ellipsoid model.

• A lot of points are outliers (this is the case, for example, of a bone un-
derlying the nipple area, in fact the dark region of the nipple can merge
with the dark signal inside the bone, creating an unnatural elongation
of the response along the z-axis): the most distant outliers are rejected
and Ransac is run another time using only the remaining points.

The resulting 3D contours are then converted back in the original reference
system and up-sampled to the original volume resolution (figure 6.24). The
chest wall surface can be optionally computed approximating the representa-
tion of the body trunk with a cylinder of ellipsoidal base whose orientation is
fixed and the based dimensions are constrained in a range of values compati-
ble with the human body; the cylinder is fitted to image data in such a way
that it must include the detected bones structures but cannot be expanded
far beyond them.

6.3.2 Method

Initialization

A multi-modal registration problem like the one faced in this section is more
complex if compared with intra-modality registration, not only for what con-
cerns the choice of a suitable feature descriptor able to evaluate correctly the
similarity of the same physical structures imaged in a di↵erent manner by the
two modalities, but also because the images acquisition processes are generally
very di↵erent, especially for what concerns the patient pose. In the case of
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(a) (b)

(c) (d)

Figure 6.23: (a): example of the cylindrical mask as applied to the volume
for the segmentation of the chest wall. (b)-(d) figure show the detected bones
structures, delineated with violet contours.

3DUS and DBT scans the problem is further complicated by the fact that the
breast is squeezed in opposite directions and the deformations are very strong.
Moreover the area of overlap do not coincide. To handle all these issues the
initialization block should take advantage of all the available segmentations
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(a) (b)

(c)

Figure 6.24: resulting segmentations in a transverse (a), sagittal (b) and coro-
nal (c) section of the US volume.

and prior information.

Two slices of the DBT and US input volumes of the same breast are shown
in figures 6.25(a) and 6.25(c). Figures 6.25(b) and 6.25(d) show the struc-
tures detected by the segmentation of nipple (red), skin (green) and chest
wall (blue). It has to be noted that the estimated chest wall region in US
should be expanded to coarsely compensate the fact that it is not detectable
in DBT due to the patient pose during acquisition. Both volumes are then
projected into a common geometrical representation. This target representa-
tion is obtained by a rotation of the DBT original configuration that places the
chest wall-line from the vertical to the bottom horizontal axis (figure 6.26(a)),
followed by the inversion of the horizontal direction (figure 6.26(b)). Since
the two volumes do not completely overlap on the transverse plane as the US
represents only a section of the breast, the DICOM tags of the DBT can be
accessed to obtain the actual width in mm of the image. From the nipple seg-
mentation in image coordinates it is straightforward to compute the length in
mm of the two red lines in (figure 6.26(c)). A similar process is applied to US
and the distances in mm of the nipple from the left and right margins of the
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(a) (b)

(c) (d)

Figure 6.25: (a) DBT and US (c) input images. In figures (b) and (d) are
displayed the automatically detected nipple position (red cross), and the skin
(green line) and chest wall (blue line) segmentations.

imaged US data are reported in figure 6.26(d) as the two yellow lines. The two
vertical yellow lines in figure 6.26(e), define approximately the overlap region;
and hence, after having expanded these lines by a constant horizontal padding
to handle marginal deformations, the target geometrical representation is cut
as in figure 6.26(f). A similar procedure is adopted for the selection of the
images depth common range. The DBT is projected into the target represen-
tation simply applying these transformations to image data. The US data is
instead stretched using the chest wall blue line and the skin green line to drive
the re-sampling operation. Two possible stretching models are available: the
first one simply stretches data along the vertical direction (figure 6.27(a));
the second one tries to model the motion of the lateral region of the breast
that, during the acquisition, is squeezed and tend to be pushed even more
laterally. With this option the blue and green lines are re-sampled in a fixed
number of equally spaced segments. The stretching of the US data is than
implemented filling the target representation extracting the source data along
these lines from the original US volume (figure 6.27(b)). It is worth noting
that this second option is only available when the chest wall is clearly visible;
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(a) (b) (c)

(d) (e) (f)

Figure 6.26: sequence of steps aimed to automatically define the e↵ective
breast volume imaged in both modalities. The input volume refers to the
figure 6.22 (a) and the segmentations delineated in the 6.22 (b). The sub-
figures (a) report the result after: the rotation (a), the horizontally data
inversion (b) of the input volume; (c) shows the distance of the nipple position
to the lateral boundaries of the DBT image (measured in mm), while in (d)
the yellow arrows delineate the distance (measured in mm) of the nipple to
the US image boundaries; the yellow region drawn in (e) represent the breast
volume the section of the breast volume estimated to be included in both
modalities’ field-of-view; (f) is the reduced DBT volume resulting from the
matching with the US volume.

otherwise the first option is the only choice. Once found the two mapping

(a)

(b)

Figure 6.27: schematic representation of the feasible stretching models be-
tween the original US space (on the left) and the common target space (on
the right).

function between the original volumes and the target space, the volumetric
data can be used to fill both the projections; actually the intensity values are
not retrieved directly from the original volumes but filtered volumes are used
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instead: for what concerns DBT the anisotropic deblurring procedure pro-
posed by Sun et al. 2007 is applied to partially compensate the out-of-focus
e↵ect and to obtain a better localization of the underling structures. The US
data is instead processed by the adaptive intensity enhancement filter already
used in the US-US case, to restore the signal in the dark region under the
nipple.

An example of the resulting projections of the DBT and US volumes can
be seen in figures 6.28(a) and 6.28(b) respectively. It is worth noting that

(a) (b)

Figure 6.28: results of the remapping procedure applied to the DBT data (a)
and US data (b) in a common and hybrid target space.

the initialization procedure in this case does not compute a displacement field
between the two original volumes, but instead transforms input data in the
target representation while the initialized field is everywhere zero and is de-
fined in the new common target space. The main motivation for this is to
prepare data for the feature descriptors of the optimization phase that does
not handle large rotations and reflections. This choice is preferable to the
alternative that is represented by the adoption of rotation-invariant feature
descriptor: in fact, as was seen in the previous chapters, the addition of more
degrees of invariance makes generally the feature metric less descriptive and
the complexity of breast multimodal deformable registration requires to avoid
any unnecessary complication. Anyway the mappings of both volumes in the
target space are well defined and invertible transformations could be stored
and used for further processing.

Optimization

The customization of the optimization block in this case faced some addi-
tional di�culties, the most relevant was the choice of reliable fiducial marker
correspondences between the reference (DBT) and the template (US) volume:
as it was explained in the Framework description a set of reliable and pre-
cise correspondences is crucial to find automatically the best configuration
of the feature descriptors and to compare them over a Testing Set. But in
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this case, due to the di↵erent geometry and the di↵erent signal response,
the choice of these correspondences showed a high inter-operator variability
(greater than 1.0 mm on average). On the other hand the variation in the
average performance of the feature descriptors and normalizers – as computed
in the mono-modal tasks or in the quantitative comparison examined in the
previous chapter - is generally lower than 1.0 mm. Clearly these considera-
tions imply that the e↵ectiveness of the automatic comparison and selection
of the best modules to be used in such a task is subjected to reasonable doubts.

Anyway the configuration selected was the following:

• For what concerns the Feature Metric the Self Similarity Context (SSC)
has been chosen. The comparison in this case was limited in a set of
descriptors that include only SSC, MIND and NMI for their multi-modal
nature.

• The Bilateral Normalizer was the choice for the regularization term as
in this case the sliding motion of the most relevant structure is even
more severe than in the previous tasks.

• A Multi Resolution approach was followed to make the larger structures
- that are easier to detect in both modalities - drive the first part of the
optimization process to an acceptable temporary solution; then a full
resolution step is performed giving an opportunity to the normalizer and
the feature term to adjust the correspondences where it is practicable.

• The inverse consistent constraint option was enabled to take advantage
of the correct fits and mediate the weaknesses of the direct and inverse
registration processes.

• Di↵erent constraints were enabled to exploit the segmentations at hand:
the nipple location is set as a strong constraint due to its good local-
ization; the skin surface is only used as a weak constraint to prevent its
dis-alignment, but, at the same time, to let the inner structures glide on
the surface; the chest-wall was not used at all as it is not detectable in
the DBT.

Figure 6.29 depicts an example of the field optimization: figure 6.29(a) shows
the result after 100 iterations of the deformable registration and in figure 6.29(b)
the more relevant changes in the deformable field are highlighted.

Multimodal correlation

Given the direct field F from the DBT in the target space to US in the target
space and the two invertible mapping functions MapDbt and MapUs from
original DBT to target DBT and original US to target US respectively, a
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(a) (b)

Figure 6.29: the transformed US data after the registration and schematic
representation of the estimated displacement field (b).

location in the original DBT can be translated to the corresponding location
in the original US volume through the composition:

MapDbt � F �MapUs�1 (6.8)

while a location in the original US can be projected in the corresponding
location of the original DBT through:

MapUs �G �MapDbt�1 (6.9)

Clearly this possibility is limited to locations in the overlapping region be-
tween the two regions. A possible straightforward application is to develop a
tool similar to the one proposed for the dynamic re-projection of two DBT
scans acquired in di↵erent times; but in this case the correlation is obtained
between di↵erent modalities.

In figure 6.30(a)-6.30(b) some rectangular regions in di↵erent planes of a DBT
are selected. The corresponding location in the US image are found and shown
in figure 6.30(c) and 6.30(d).
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(a) (b)

(c)

(d)

Figure 6.30: figure (a) and (b) show two selected frames inside the DBT
input volume. Figure (c) and (d) report the corresponding locations found
into the US image using the spatial mapping function estimated between
the two volumes. The red and green boxes shown how work the automatic
synchronization of corresponding regions selected inside the DBT and US
volumes.
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Chapter 7

Conclusions

Breast screening is widely accepted as an e↵ective tool to significantly re-
duce the incidence of breast cancer deaths in women population as it allows
a detection of tumors in early stages, making the treatment more likely to be
successful. Due to the di↵erences in the breast tissue composition in di↵erent
women and the di↵erent kind and nature of cancers that can a↵ect this organ,
it is worldwide accepted that there is no imaging technique able to always de-
tect all types of cancer. The imaging technique (or modality) most commonly
used is the X-ray mammography that is expected to show the di↵erences in
tissue density and discriminate the cancer from the fat tissue; young women,
or more specifically women whose breast is made up mostly by glandular or
connective tissue, are instead tested with other imaging techniques as these
kind of tissues have an appearance similar to cancer in mammograms. US
and MRI are two possible alternatives techniques able to detect cancers that
are not visible or well characterized in X-ray imaging. It is commonly ac-
cepted that each type of exam has its own advantages and drawbacks among
which the rate of false positive findings is taken into consideration. For these
reasons a comparative analysis of the di↵erent kinds of available exams for a
single patient is considered an e↵ective solution and it is recommended by the
American College of Radiology: it not only allows to detect a larger number of
cancer types but also helps to prevent over diagnosis (and consequently over
treatment) taking advantage of the compound information that comes from
all the modalities together. The same considerations apply to the comparison
of exams of the same patient acquired in di↵erent times. Until now these
indications are commonly implemented by physicians in di↵erent ways de-
pending on the modalities and their specific acquisition protocol. The major
di�culty in this type of comparison is the di↵erent geometrical representation
of the imaged data: X-ray mammography represents an integration of the X-
signal along the projection axis, while hand-held US probes acquire di↵erent
bi-dimensional sections of the breast that, without any other additional infor-
mation, are impossible to be reliably remapped on the mammogram. In recent
years the technological advances have brought the opportunity to move the
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breast imaging modalities from 2D to 3D, with Digital Breast Tomography
(the 3D version of X-ray mammograms) and 3DUS scanners (the advanced
application of the bi-dimensional US probes). These novel modalities were
described in detail in Chapter 2. The volumetric information allows a great
improvement in terms of cancer detection and characterization; nevertheless,
the novel 3D techniques recently introduced in the clinic context are not yet
supported by adequate visualization tools to actually exploit their potential-
ity. This thesis investigated a fascinating frontier for the technical challenges
to be addressed and for new applications with a straightforward impact in the
medical context.

The aim of this work is the evaluation of the feasibility of automated registra-
tion methods for breast applications. The main di�culty is that the breast
is completely made up of soft tissue whose motion under di↵erent compres-
sions is hard to predict and to model also for the presence of the sliding mo-
tion between breast sub-structures. Another additional complication occurs
whenever a cross-modality registration is required as the same structures are
represented di↵erently in the two images. Deformable registration algorithms
(whose theory has been studied and briefly reported in Chapter 3) are the
mathematical tools that can solve these kind of problems. These algorithms,
whose aim is to find a dense displacement field between di↵erent location in
the two images to be registered, had been used in a wide range of contexts
and in a great number of medical application. They are generally based on a
compromise between two opposite forces: the first one moves the locations of
an image towards corresponding locations in the other image, the second one
tries to maintain the deformation acceptable and realistic. In most cases they
take advantage of some sort of pre-segmentation of expected organs, bones, or
rigid structures; in other cases they assume a smooth motion of all the physi-
cal structures involved. These partial constraints on the overall displacement
estimation are used to help the otherwise ill-posed mathematical problem.
However these options are not always available for breast applications. So the
study conducted for this research had to find alternative techniques to make
the deformable registration approach well suited and feasible in this specific
clinical context.
In this thesis two 3D imaging modalities (DBT and 3DUS) have been con-
sidered and three specific tasks analyzed. These tasks were chosen as rep-
resentative of the major clinical needs related to breast images examination:
registration of partially overlapped volumes with di↵erent compressions in
breast tissues (especially for US images), spatial correlation of exams taken at
di↵erent times (developed for DBT images) and finally the most challenging
cross-modality registration (between DBT-US images).
An experimental setup for the controlled acquisition of 3D US data was pre-
sented in Chapter 4. A complete set of software tools was organized in a frame-
work (implemented in C language) that allows the automated comparison and
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the straightforward derivation of automated multi-modal breast-oriented reg-
istration algorithms (AMBRA). The architectural design (see Chapter 5) of
this framework is general enough to handle all the mentioned breast-related
tasks, supporting both single and cross modality registration, similar of very
di↵erent patient positions, complete or only partial overlapped images. On
the other hand it implements a number of specialized techniques customized
for breast; most of them are extensions of more classical and general tools;
thus a modular design has been adopted to easy substitute the classical with
the novel techniques. It is conceptually divided in two main processing blocks:
the first one is the more flexible and customizable part, that should poten-
tially embed in a single tool all the a priori information about the specific
task of interest. This part of the framework provides a coarse alignment of
the images. The second block represents the deformable registration proce-
dure implementing a generic non-parametric registration scheme. It has a
modular structure that enables an easy replacement, testing and comparison
of di↵erent implementations of the two forces that drive the registration field
to the final solution: the metric adopted to describe the similarity between
corresponding location in the images, and the rules that should be applied to
obtain a deformation compatible with a realistic solution.
Therefore, preliminary evaluations were made to investigate the response of
the implemented tools in case of US data. The assessments were carried
out isolating simple structural features in US image data (extracted from
ad-hoc home-made phantoms) and adopting simple transformation models
taking advantage of the US experimental acquisition system, avoiding the rel-
evant deformations impressed by the commercial 3D US system. Afterwards,
due to the good results obtained in the preliminary tests, the implemented
techniques have been integrated into the framework and compared on clinical
datasets. Novel methods recently proposed in literature were compared to the
state-of-the-art techniques as reported in the last part of Chapter 5. From
this analysis a novel feature metric, named Self Similarity Context (SSC),
emerged. It showed a more accurate response than other common descriptors
both with US and DBT clinical datasets used for testing. Moreover, this fea-
ture descriptor provides an inherently modality-independent representation
of data, allowing its application even for cross-modality registration tasks.
For what concern the other force involved in the registration method, the so-
called normalizer, the recently proposed bilateral filtering field regularization
emerged as a suitable solution to handle the sliding motion of inner breast
structures. This method showed a higher accuracy in case of US data, but
similar behavior to the classical di↵usion model for the DBT testing datasets,
where the sliding motions are less evident.
Finally the framework with all these novel techniques has been evaluated for
the three clinical tasks taken as reference study cases. For each task a spe-
cific algorithm has been derived from AMBRA as described in Chapter 6. In
this Chapter modality-specific breast segmentation algorithms are presented;
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these are an essential part included in the AMBRA initialization block, as
reference methods for nipple (one method for US data and on for DBT), skin
(for DBT images) and chest wall (for US images) segmentation. The most
e↵orts were indeed dedicated to the customization of the initialization blocks:
the alignment procedures combined with the segmentation methods represent
the original part of the work. Another innovative contribution is the study
of both the best parameters configuration of the feature descriptors and the
deformation model applied to breast US and DBT data. The evaluations were
performed on a representative testing datasets using a set of pairs of control
points, properly annotated for the validation of the results. The most critical
issue in this workflow is related to the fact that, in some cases, the physi-
cians were not completely confident in a point-wise localization of a su�cient
number of landmarks points. This is due to the lack of reliable and marked
features inside the breast that make di�cult a pointwise manual correlation,
and, in the meantime, because 3DUS and DBT are recent technologies and
require a highly specific training. This critical issue is encumbered especially
in the case of the cross-modality comparison. The di�culties encountered in
the annotation of correspondences between two breast volumes could a↵ect
the reliability of the evaluations and suggests to study more robust and spe-
cific criteria to validate the application of deformable registration techniques
to breast images. On the other hand, this problem highlights the e↵ective
impact that an accurate and automatic images correlation could have sup-
porting the breast images interpretation.

The first customized algorithm derived from AMBRA referred to the map-
ping of corresponding structures in the overlap region between two 3D US
breast sections collected with the Siemens ABVS system. In this case the
large sliding motion and the di↵erent compression of the breast represented
the main issue to face. A novel alignment procedure that makes use of a
hybrid method (based on both intensity-based patches and robust localized
feature points matches) was implemented; this aimed to determine the cor-
respondences between the middle-sized structures in the two images in order
to define an initial displacement field. After these structures got su�ciently
close, a multi-resolution deformable registration procedure was derived from
the framework, to go through subsequent refinements of the displacement
field at di↵erent scales of analysis. Satisfactory results were obtained using
the proposed algorithms, compared with those achieved using other methods
in their general-purpose implementation. As expected the normalizer with
the best performance was the one based on bilateral filtering. The SSC fea-
ture descriptor has been confirmed as the best one for US data. It results
probably from its ability to make the description of a feature less a↵ected by
noise, compared to other descriptors. This application led to propose a novel
technique for blending the two 3D US sections in a target space characterized
by an extended field-of-view. The element of innovation is represented by the
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use of a deformable transformation model in the stitching procedure. The
obtained results suggest the possibility to process the partial input volumes
in a single-view output volume to examine. The good quality of the result-
ing images, that does not present intensity distortions, confirmed at the same
time the accuracy in the displacement field estimate.
The second faced task concerns the mapping of two DBT exams of the same
patient acquired at di↵erent times. In this case a lower local displacement
of the breast tissues was expected than the previous application, neverthe-
less physiological or pathological changes could be occurred. The aim was to
compensate the spatial deformations of the unchanged structures due to the
di↵erent breast positioning, in order to highlight the anatomical di↵erences.
Indeed, in this application the deformable registration field was not used to
modify and merge the input volumes, increasing the chance to occlude or
change some clinically relevant features; on the contrary it was used for an
automatic correlation of the volumes in order to provide a simultaneous visu-
alization of corresponding regions. Although extensive evaluations on clinical
datasets with evident anatomical di↵erences was not yet performed, in order
to validate the method a quantitative assessment of the registration errors of
corresponding control points was achieved. For DBT data the di↵usion oper-
ator was selected than the bilateral regularization; this means that a globally
smooth deformation was preferred and anomalies such as a tumor growth are
not di↵erently treated, but rather follow their neighborhood’s deformation
model.
The last tackled task is the most challenging one as it regards the derivation
of a multi-modal registration algorithm between DBT and US scans of the
same breast. Here the alignment procedure takes advantage of all the seg-
mentations tools embedded in AMBRA. A chest wall segmentation for US
images was develop to automatically exclude the regions visible in the US
dataset but not scanned in the DBT exam. A complex remapping of the
data was then applied to both volumes and the registration was computed on
the intermediate space representing the overlapping regions imaged in both
the modalities. An application of the estimated displacement field was finally
proposed; the automatic synchronization of corresponding locations between
the volumes was shown. Up to now the achievable accuracy does not allow
an actual pointwise correlation, however the identification of small volumes of
interest is feasible. In this case the di�culty to mark reliable pairs of control
points, widespread in the volumes for an accurate validation of the results,
was more evident: the inter-operator average precision was estimated (>1
mm) greater than the expected variation in the average TRE metric used to
evaluate the performances of AMBRA. Nevertheless these initial results are
promising enable further investigations. To the best of my knowledge, meth-
ods suitable for a comparative study have not yet been proposed in literature
for this application.
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CHAPTER 7. CONCLUSIONS

In summary, the present thesis is a pioneering work in the breast image regis-
tration field, especially in 3D breast US registration. The AMBRA framework
was developed ab initio and the reported results are promising, even in com-
parison with the limited papers published in this field. The most interesting
recent techniques (MIND, SSC, bilateral regularization, etc.) were included
and customized for the three proposed breast applications. The derived algo-
rithms demonstrated to be successful and suitable to overcome the challenging
issues showing by the breast, related to its soft nature and its inherently non-
rigid behavior, and it’s intrasubject variability related to the hormone cycle.
In this work specific implementations for US and DBT images were developed;
however, the flexible and modular architectural structure of the registration
framework enable further integrations, including other modalities like MRI.
On the basis of this work a research project was developed and submitted to
Friuli-Venezia Giulia Region obtaining positive evaluations.
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