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Chapter 1

General introduction

In this thesis we first review some results concerning the real represen-
tation of preferences. Different kind of preferences are considered and a
particular attention is devoted to the case of intransitivity of the associated
indifference relation. Therefore, interval orders and semiorders appear as
relevant types of binary relations for which indifference is not transitive. It
is particulary interesting to guarantee the existence of continuous or at least
upper semicontinuous representations.Homogeneity of the representations
is studied in connection with the aforementioned continuity when the space
of preferences is endowed with an algebraic structure.

As relevant applications of the above results, we are then concerned with
the space L1+ (L 2

+ ) of integrable (respectively, square integrable) random vari-
ables which very frequently comes into consideration in the literature.In the
case of a total preorder, we deal with the concept of a certainty equivalent and
some results are presented involving both positive homogeneity and trans-
lation invariance. We then prove some results concerning the existence of a
certainty equivalent for interval orders.As a further relevant application, we
study catastrophic risks and present various impossibility theorems excluding
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the existence of (upper semi)continuous representations in connection with
a property of a preorder called safety-first principle.Such a property, which
has been recently investigated in the literature, seems natural when dealing
with catastrophic risks, but actually it is extremely restrictive.

The thesis is structured as follows.

�Chapter 2 presents the classical axioms concerning binary relations
which are defined on a set.In general, such a set is not endowed nei-
ther with a topological nor with an algebraic stucture. The concept of
an order-preserving function on a preordered set is presented.We also
define the concept of an interval order together with its real represen-
tation by means of a pair of real-valued functions.The semiorder case
appears as a very interesting particular case of an interval order.Typi-
cally, the possibility of a threshold representation (u, δ) is investigated.

�Chapter 3 recalls the main topological notions concerning a metric
space and more generally a topological space. The notion of upper
semicontinuity and continuity of a binary relation on a topological space
is here presented.

�Chapter 4 presents the concepts of semicontinuous and continuous func-
tions. Continuity of interval orders on a topological space is considered.

�Chapter 5 concerns binary relations among random variables.Homoge-
neous representations are studied for both total preorders and interval
orders.

�Chapter 6 is devoted to certainty equivalence.The relevant properties
of translation invariant and subadditivity of a certainty equivalence
functional are considered.We introduce some possibilities for defining
a certainty equivalence functional for interval orders.
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�Chapter 7 concerns catastrophic risks.The classical concepts of stochas-
tic dominance are recalled.The safety-first principle excludes the pos-
sibility of various types of semicontinuous representations.Therefore
we present some new impossibility results excluding various semicon-
tinuous representations.
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Chapter 2

Binary relations and their
representation

2.1 Introduction

In this chapter we present the basic concepts concerning the binary re-
lations and their real representations.These are the basic models that are
adopted in order to describe individual preferences in economics and social
sciences.

We are concerned not only with (partial) preorders, but also with interval

orders and semiorders. Indeed, these two latter models of preferences are
known to be of particular interest since not only the intransitivity of the
indi erenceff  is allowed, but also because, under not very restrictive assump-
tions, preferences ofthis kind can be fully characterized by means of two
real-valued functions. In particular, after the section where we present the
general definitions,we introduce in particular the interval orders in Section
2.3, and then the semiorders in Section 2.4.

Since the seminal work of Fishburn [30], it is of particular interest to
consider the so called traces associated to an intervalorder or a semiorder.
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These are total preorders naturally associated to the originalinterval order
(or semiorder). Needless to say, the consideration of the traces is particularly
important not only for theoretical, say, reasons but also in order to guarantee
more easily the existence of a real representation.

The adoption of interval orders is motivated by introducing examples.
We further present the set theoretical characterizations of interval orders
(i.e., the characterizations of interval orders based on convenient assumptions
concerning the set of all the lower sections). Indeed, it is shown that a
preference is an interval order if and only if the set of all the lower sections
is linearly (totally) ordered by set inclusion.

2.2 Definitions and preliminaries

In the following definition we summarize the basic assumption that may
concern a binary relation on a set.

Definition 2.2.1 [axioms concerning binary relations].A binary
relation R on a nonempty set X (i.e. a subset of the Cartesian product
X × X) is said to be 1

(i) ref lexive, if xRx ∀x ∈ X,

(ii) irref lexive, if xRy  ¬⇒ (yRx) ∀x, y ∈ X,

(iii) transitive, if (xRy) ∧ (yRz) ⇒ xRz ∀x, y, z ∈ X,

(iv) negatively transitive, if ¬(xRy)  ¬∧ (yRz)  ¬⇒ (xRz) ∀x, y, z ∈ X,

1In what follows, given a binary relation R on a set X, for any two elements x, y ∈ X

we shall write xRy instead of (x, y) ∈ R.
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(v) symmetric, if xRy ⇒ yRx ∀x, y ∈ X,

(vi) asymmetric, if xRy  ¬⇒ (yRx) ∀x, y ∈ X,

(vii) antisymmetric, if (xRy) ∧ (yRx) ⇒ x = y ∀x, y ∈ X,

(viii) acyclic, if (x 0 R x 1) ∧ (x2 R x 3) ∧ ... ∧ (xn−1 R x n )  ¬⇒ (x n R x 0)∀n ≥

1, ∀x0, ..., xn ∈ X,

(ix) total, if (xRy) ∨ (yRx) ∀x, y ∈ X,

(x) complete, if (xRy) ∨ (yRx) ∀x, y ∈ X such that x ̸= y.

The pair (X, R) will be referred to as a related set.
Let us observe that, given any related set (X, R),

(i) if R is total, then it is reflexive;
(ii) if R is asymmetric, then it is irreflexive;
(iii) if R is irreflexive and transitive, then it is acyclic;
(iv) if R is acyclic, then it is asymmetric and not necessarily transitive.

Definition 2.2.2 [preorders].A preorder - on a nonempty set X is
a binary relation on X which is reflexive and transitive. If in addition - is
antisymmetric, then we shall refer to - as an order. If X is a nonempty set,
and - is a preorder (order) on X, then the related set (X, -) will be referred
to as a preordered set (respectively, an ordered set ).
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Definition 2.2.3 [total preorder].A preordered set (X, -) is said to
be totally preordered if the binary relation - on X is total. (i.e. if (x-y) ∨
(y-x) ∀x, y ∈ X).

Definition 2.2.4 [strict part].The strict part ≺ of a preorder - is
defined as follows for all x, y ∈ X: x ≺ y ⇔ (x - y) and not (y - x).

Definition 2.2.5 [non trivial].A preorder - is said to be non trivial

if there exist x, y ∈ X such that x≺ y.

Definition 2.2.6 [increasing function]. Given a preordered set (X, -),
a function f : (X, -) → (R, ≤) is said to be a real-valued increasing function

on (X, -) if

(x, y ∈ X) ∧ (x - y) ⇒ f (x) ≤ f (y)].

The existence of a real-valued increasing function f on a preordered set
(X, -) does not give enough information on the preorder -. Indeed, given
any constant real-valued function f on an arbitrary set X, for every preorder
- on X we have that f is increasing on the preordered set (X, -). Neverthe-
less, given any preorder - on an arbitrary set X, if there exists a countable
family {f n } n∈N + of real-valued increasing functions on (X, -) such that for
every x, y ∈ X there exists n ∈ N + with f n (x) < f n (y), then the real-
valued function f on (X, -) defined by f =

∑ ∞
n=1 2−n f n is order-preserving.

So there is a strict connection between the existence of an order preserving
function for a given preorder - and the existence of a countable family of
increasing functions which separate points in the graph of the asymmetric
part ≺ of -.
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Definition 2.2.7 [order-preserving function].Given a preordered
set (X, -), a function f : (X, -) → (R, ≤) is said order-preserving function
on (X, -) if it is increasing on (X, -) and

(x, y ∈ X) ∧ (x ≺ y) ⇒ f (x) < f (y).

In this case, f is also said to be a utility function on (X, -).

If f is a real-valued function on a totally preordered set (X, -), then, for
every x, y ∈ X,

x - y ⇔ f (x) ≤ f (y).

This is the classical definition of a utility function.

Given an order-preserving function f on a preordered set (X, -), it is
clear that the composition f ′ = ϕ ◦ f of f with any strictly increasing real-
valued function in f(X) (i.e., a function ϕ : (f (X), ≤) → (R, ≤)) is also an
order-preserving function on (X, -).

2.3 Interval orders

In order to allow non-transitivity of the indifference relation the concept
of interval order was introduced (see Fishburn[30]).

Definition 2.3.1 [intervalorder]. A binary relation - on a set X is
said to be an interval order if - is reflexive and the following condition holds
for all x, y, z, w ∈ X :

(x - y) ∧ (z - w) ⇒ (x - w) ∨ (z - y) ∀x, y, z, w ∈ X.

Interval orders are particular interesting since they are not transitive in
general. It is clear that a total preorder is in particular an interval order.
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Nevertheless we observe that the strict part ≺ of any interval order - is
transitive. Moreover, an interval order - on a set X may be fully described
by means of a pair of real-valued functions. This fact will be illustrated in
the sequel.

Example 2.3.1 [An intuitive idea of what an interval order means].

Suppose that two new models of cars (say A and B) appear in the market.
The price of any of them could vary from a car-seller to another depending of
bargaining, so that the car A could be sold at prices that vary in an interval
[m A , MA ] ,where mA is the minimum price of the car A among the car-sellers,
and MA is its maximum price. Obviously the same thing will happen to the
car B, that could be sold at prices varying in an interval [mB , MB ] . It is plain
that one will consider that the car B is (undoubtably) more expensive than
the car A if M A < m B . Also, if the intervals [m A , MA ] and [m B , MB ] meet,
there is at least a price at which both cars could be sold, so that it could be
said that those cars are, in some sense,indifferent. The indifference is not
transitive, in general.

A more classical example which is usually referred to when justifying the
adoption of a model of preferences with intransitive indifference refers to the
cup of sugar. It is due to Armstrong [4].

Considers a man that prefers a cup of co ee with a whole portion offf

sugar, to a cup of co ee with no sugar at all.ff If such man is forced to declare

his preference between a cup with no sugar at all and a cup with only one

molecule of sugar, he will declare them indi erent.ff The same will occur if he

compares a cup with n molecules and a cup with n + 1 molecules of sugar.
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However, after a very large number of intermediate comparisons we would

finally confront him with a cup that has a whole portion of sugar that he is

able to discriminate from the cup with no sugar at all. Here, we observe a

clear intransitivity of indi erences.ff

Definition 2.3.2 [pair of functions representing an interval order].
An interval order - on a set X is represented by a pair (u, v) of real-valued
functions on X if for all x, y ∈ X,

x - y ⇔ u(x) ≤ v(y).

Notice that we must have u(x) ≤ v(x) for all x ∈ X due to the fact that
- is reflexive. We are particularly interested in the existence of a pair (u, v)
of functions that satisfy algebraic and/or topological properties when the set
X is endowed with some algebraic and topological structure.

If - is any binary relation on X such that there exists a pair (u, v) of
real-valued functions on X with x - y ⇔ u(x) ≤ v(y) for all x, y ∈ X, and
u(x) ≤ v(x) for all x ∈ X, then - is necessarily an interval order. Indeed, it
is clear that - is reflexive. Further, since for all x, y, z, w ∈ X, (x - y) ∧ (z -
w) ∧ (x ̸- w) is equivalent to (u(x) ≤ v(y)) ∧ (u(z) ≤ v(w)) ∧ (v(w) < u(x)),
which in turn implies that u(z) ≤ v(y). Therefore, - is an interval order
according to Definition 2.3.1.

It is immediate to check that an interval order - on a set X is pseudo-
transitive, in the sense that, for every x, x′ , y, y ′ ∈ X,

x ≺ x ′ - y ′ ≺ y ⇒ x ≺ y.

The interpretation of the existence of a pair of real-valued functions (u, v)
representing an interval order - on a set X is the following: it is possible to
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associate to each element x ∈ X a closed interval [u(x), v(x)] in such a way
that, for all x, y ∈ X, we have that x ≺ y if and only if the interval [u(x), v(x)]
associated to x is completely to the left with respect to the interval [u(y), v(y)]
associated to y.

In general a binary relation - on X is said to be total if for two elements
x, y ∈ X, either x - y or y - x. It is clear that an interval order is not
necessarily transitive, and that a total preorder is also an interval order.Fur-
ther, an interval order is total (see Oloriz, Candeal and Indur´ain [37]).

Proposition 2.3.1 [an interval order is total].Let - be an interval
order on a set X. Then - is total.

Proof. Let - be an interval order on a set X and assume that - is
not total. Then there exist x, y ∈ X such that x ̸- y and y ̸- x. Hence
either x ̸- x or y ̸- y, and this is contradictiory since - is reflexive. This
consideration completes the proof.

Definition 2.3.3 [associated binary relations].Let - be an interval
order on a set X. Then define two binary relations (traces) - ∗ and - ∗∗ on
X as follows:

x - ∗ y ⇔ (z - x ⇒ z - y, ∀z ∈ X) (x, y ∈ X),

x - ∗∗y ⇔ (y - z ⇒ x - z, ∀z ∈ X) (x, y ∈ X).

Definition 2.3.4 [partialorders].A partial order ≺ on a nonempty
set X is a binary relation on X which is irreflexive and transitive. In this
case, the related set (X, ≺) will be referred to as a partially ordered set.
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Definition 2.3.5 [incomparability relation].Given a partial order ≺
on a set X, define, for every x, y ∈ X,

(2.1) x - y  ¬⇔ (y ≺ x),

(2.2) x ∼ y  ¬⇔ (x ≺ y)  ∧ ¬(y ≺ x).

The binary relations - and ∼ defined above will be called the preference-

incomparability relation and the incomparability relation associated to the
partial order ≺.

Definition 2.3.6 [weak orders].A weak order ≺ on a nonempty set X
is a binary relation on X which is asymmetric and negatively transitive. In
this case, the pair (X, ≺) will be referred to as a weakly ordered set.

Proposition 2.3.2 [weak orders and total preorders].Let (X, -) be
a totally preordered set. Then the asymmetric part ≺ of - is a weak order

on X. Conversely,if (X, ≺) is a weakly ordered set, then the preference-
indifference relation - associated to ≺ is a total preorder on X.

Proof. Let (X, -) be a totally preordered set, and consider the binary
relation ≺. Since it is clear that ≺ is asymmetric, let us show that ≺ is
negatively transitive. Consider x, y, z ∈ X such that ¬(x ≺ y)  ¬∧ (y ≺ z).
Then, using the fact that - is total, we obtain (y - x) ∧ (z - y), which in
turn implies z - x since - is transitive. Therefore x ≺ z is contradictory.
Conversely, let (X, ≺) be a weakly ordered set, and consider the preference-
indifference relation -. Since ≺ is irreflexive, it is clear that - is reflexive.
Observe that transitivity of - is equivalent to negative transitivity of ≺.
Finally, let us show that - is total. Assume that there exist two elements
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x, y ∈ X such that ¬(x - y)  ¬∧ (y - x). Then we have (y ≺ x) ∧ (x ≺ y),
and this is contradictory since ≺ is transitive and asymmetric.

Proposition 2.3.3 [associated total preorders].Let - be a reflexive
binary relation on a set X. Then - is an interval order if and only if the
associated binary relations - ∗ and - ∗∗ in Definition 2.3.3 are both total
preorders.

Proof. Let - be any reflexive binary relation on a set X. First assume
that - is an interval order. Let us prove that the associated binary relation
- ∗ in Definition 2.3.3 is a total preorder. In order to show that - ∗ is tran-
sitive, consider x, y, z ∈ X with x - ∗ y - ∗ z. Then for all w ∈ X, w - x
entails w - y, which in turn entails w - z, and therefore we have x - ∗ z from
the definition of the binary relation - ∗. In order to show that - ∗ is total,
assume by contraposition that there exist two elements x, y ∈ X such that
neither x - ∗ y nor y - ∗ x. Then from the definition of - ∗ there exist two
elements z, w ∈ X with z - x, z ̸- y, w - y, w ̸ - x, and this contradicts the
fact that - is an interval order. Hence - ∗ is a total preorder. Analogously
it can be proven that - ∗∗ is a total preorder. Conversely,assume that the
binary relations - ∗ and - ∗∗are both total preorders. In order to show that
- is an interval order, consider x, y, z, w ∈ X such that x - y and z - w. If
neither x - w nor z - y, then the asymmetric property would be violated
since w ≺ x - y ⇒ w ≺ ∗ y and y ≺ z - w ⇒ y ≺ ∗ w, we have that
both w ≺ ∗ y and y ≺ ∗ w, and this is contradictory since ≺∗ is a weak order
by Proposition 2.3.2. Hence - must be an interval order and the proof is
complete.

It easy to prove that, in addition, an interval order - is transitive (that
is - is a total preorder) if and only if -, - ∗, and - ∗∗coincide.
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Definition 2.3.7 [i.o.-separability and strong i.o.separability].
We say that an interval order - on X is ( strongly) i.o.-separable if there
exists a countable set D ⊆ X such that, for every x, y ∈ X with x ≺ y, there
exists d  D∈  with x ≺ d - ∗∗ y (respectively, there exists a countable set
D ⊆ X such that, for every x, y ∈ X with x ≺ y, there exists d  D∈  with
x ≺ d ≺ ∗∗y). D is said to be a ( strongly) i.o.-dense subset of X (see Oloriz,
Candeal and Indur´ain [37]).

It is clear that the assumption of strong i.o.-separability is weaker that the
assumption of strong separability introduced by Chateauneuf [23], according
to which there exists a countable set D ⊆ X such that, for every x, y ∈ X

with x ≺ y, there exist d 1, d2  ∈ D with x ≺ d 1 - d 2 ≺ y.

Set theoretical characterizations

Definition 2.3.8 [lower and upper sections].If (X, R) is a related set,
then define, for every x ∈ X,

(2.3) LR (x) = {z ∈ X : zRx}, UR (x) = {z ∈ X : xRz}.

LR (x) and U R (x) are said to be the lower section and respectively the upper
section of the element x ∈ X according to the binary relation R.When there
is no ambiguity about the binary relation involved, the subscript R will be
omitted, and we shall simply write L(x) and U (x). Moreover define

(2.4) LR = {L R (x) : x ∈ X}, UR = {U R (x) : x ∈ X}.

As usual, reflexive and irreflexive binary relations will be denoted by -,
and respectively by ≺.
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Let us define L(X) - as the collection of all the weak lower sections of an
interval order (in particular a total preorder) - on a set X, that is

L(X) - = {L - (x) : x ∈ X}.

Proposition 2.3.4 [lower sections in a totally preordered set].Let
(X, -) be a preordered set. Then the preorder - on X is a total if and only
if L(X) - is totally ordered by set inclusion.

Proof. Consider any preordered set (X, -). If - is total, then for two
elements x, y ∈ X either x - y or y - x. Hence, by transitivity of -, either
L - (x) ⊆ L - (y) or L - (y) ⊆ L - (x), and therefore L(X) - is totally ordered
by set inclusion. In order to show that if L(X) - is totally ordered by set
inclusion then the preorder - on X is total, assume by contraposition that
- is not total. Then there exist two elements x, y ∈ X such that neither
x - y nor y - x. Hence we have x ̸∈ L - (y) and y ̸∈ L - (x). Since it is
clear that x ∈ L - (x) and y ∈ L - (y) by reflexivity of -, L(X) - is not totally
ordered by set inclusion,since neither L- (x) ⊆ L - (y) nor L - (y) ⊆ L - (x) .
This consideration completes the proof.

The following proposition is well known and it is due to Rabinovitch [41]

Proposition 2.3.5 [lower sections of an interval order].Let - be a
reflexive binary relation on a set X. Then - is an interval order if and only
if L(X) - is totally ordered by set inclusion.

Proof. Let - be a reflexive binary relation on a set X.First assume that - is

20



an interval order and consider any two elements x, y ∈ X.If L - (x) ̸⊆ L - (y)
then there exists an element z ∈ L- (x) \ L - (y). Since z - x, z ̸ y, we have
that w ∈ L - (y) entails w ∈ L - (x). Indeed, z - x and w - y entails either
z - y or w - x, and z - y is not true. Hence,L(X) - is totally ordered
by set inclusion. Conversely,assume that L(X) - is totally ordered by set
inclusion, and consider four elements x, y, z, w ∈ X such that x - y and
z - w. If x  w, then we have x ∈ L - (y) and x ̸∈ L - (w), and therefore
L - (y) ̸⊆ L - (w). Since it must be L - (w) ⊆ L - (y), z - w entails z - y. So
the proof is complete.

Proposition 2.3.6 [sections ofassociated preorders].Let - be
an interval order on a set X. Then the following assertions hold for every
x, y ∈ X:

(i) x ≺ y ⇒ (L ≺∗(x) ⊂ L ≺(y)) ∧ (U≺∗∗(y) ⊂ U ≺(x));
(ii) x ≺ ∗ y ⇒ U ≺(y) ⊆ U ≺(x);
(ii) x ≺ ∗∗y ⇒ L ≺(x) ⊆ L ≺(y).

Proof. Let - be an interval order on a set X.
(i). Consider any two points x, y ∈ X such that x ≺ y. If z ∈ X is any
point such that z ≺∗ x, then from the definition of the total prorder - ∗ there
exists ξ ∈ X such that z ≺ ξ - x ≺ y, and therefore it must be z ≺ y since
- is an interval order. Further, x ≺ y but clearly x ̸≺ ∗ x. Hence we have
shown that L≺∗(x) ⊂ L ≺(y) whenever x ≺ y. Analogously it can be proven
that U ≺∗∗(y) ⊂ U ≺(x) whenever x ≺ y.
(ii). If x, y ∈ X are such that x ≺ ∗ y, then there exists ξ ∈ X with x ≺ ξ - y,
and therefore y ≺ z entails x ≺ z for every z ∈ X. Hence U≺(y) ⊆ U ≺(x)
whenever x ≺∗ y.
(iii) The proof is perfectly analogous to the proof of the statement (ii).
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2.4 Semiorders

Let us now consider the relevant case of a semiorder (see e.g. Pirlot and
Vincke [40]).

In many fields connected with decision-aid (economy, operations research,
acturial sciences,finance), the potencial decisions (projects,candidates,...)
are evaluated on quantitative criteria, so that comparing decisions is equiv-
alent to comparing numbers.The classical model underlying all these fields
is the following:

if A is the set of potencial decisions and g the function which associates

a value g(a) to every element a of A, then, decision a “is at least as good as”

decision b (a % b) i  g(a)ff ≥g(b).

Making the distinction between the relation “is strictly better than” and
the relation “is as good as” (i.e. the asymmetric and symmetric parts of
relation %) one obtains,

{
a ≻ b if f g(a) > g(b)
a ∼ b if f g(a) = g(b)

.

However, reflection suggests that it is not very reasonable to consider
that a decision a is strictly better than b as soon as the value of a is higher
than the value of b; the unavoidable imprecisions on the evaluations of the
decisions often force to consider as equal, values which are very close to each
other. This leads to the introduction of a positive threshold q (indifference,
sensitivity or tolerance threshold) such that, ∀ a, b ∈ A,

{
a ≻ b if f g(a) > g(b) + q

a ∼ b if f | g(a) = g(b) |≤ q
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a % b if f g(a) ≥ g(b) − q.

Such a relation % will be called a semiorder and its asymmetric part ≻
will be called a strict semiorder.

It is important to note that % is reflexive and total so that the knowl-
edge of ≻ (“strictly better” relation) implies that of % (“at least as good ”
relation); this is due to the fact that the “as good as” relation is given by

a ∼ b if f ¬(a ≻ b )and ¬(b ≻ a).

More generally, the threshold q may vary along the numerical scale of
the values of g. This will be the case, for example, if a and b are consid-
ered as indifferent when the difference between their values is smaller than a
percentage of the smallest of them.It can be proved that if, ∀a, b ∈ A,

g(a) > g(b) ⇒ g(a) + q a ≥ g(b) + q b,

(where qa and qb are thresholds respectively associated to g(a) and g(b)),
then relation % is still a semiorder (which means that % has the same
mathematical properties as when the threshold is constant). The concept
of semiorder is also encountered when the evaluation of each decision is an
interval between a minimal (pessimistic) value and a maximal (optimistic)
value. A possible attitude consists, in such a situation, to declare that deci-
sion a is strictly better than b if the interval associated to a lies entirely to
the right of the interval associated to b.Both decisions are then considered as
indifferent when their intervals have a non-empty intersection.If no interval
is strictly included in another, we obtain again a semiorder; indeed, denoting
g(a), the left end point of the interval associated to a and g(a) + qa its right
end point leads to the proceding situation.
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Definition 2.4.1 [semiorder].A binary relation - on a set X is said
to be a semiorder if - is an interval order and the following condition holds
for all x, y, z, w ∈ X :

(x - y) ∧ (y - z) ⇒ (x - w) ∨ (w - z) ∀x, y, z, w ∈ X.

Definition 2.4.2 [threshold representation].A semiorder - on a set
X is represented by a real-valued function u on X and a threshold δ > 0
(that is, it admits a representation (u, δ) for short) if for all x, y ∈ X,

x - y ⇔ u(x) ≤ u(y) + δ.

The concept of a semiorder was apparently first introduced by Luce [35]
to deal with inaccuracies in measurements where a nonnegative threshold
of discrimination is considered. The original idea of Luce was to present a
mathematical model of preferences enable to capture situations of intransitive
indifference with a threshold of discrimination:

Suppose, for instance, that a man is not able to declare di erentff two

quantities of a same thing when such two quantities do not di er more than aff

threshold of discrimination or perception, α. This threshold is a non-negative

real number, and it is supposed to be the same for every individual. That is,

if a ≺ b means here a man is able to realize that the quantity a is smaller

than b, then we have a ≺ b ⇔ a + α < b.

We recall that the concept of semiorder first appears in Wiener [45] with
a different name. It was Luce [35] who developed this important concept.
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Then Fishburn [30] presented a deep study about preferences with intransi-
tive indifferences and their real representations. The threshold representa-
tions were first studied By Scott and Suppes [43].The famous Scott-Suppes

Theorem shows that every semiorder - on a finite set X admits a threshold
representation (u, 1).

Remark 2.4.1. It should be noted that the definition of a threshold
representation could be formulated in terms of the strict part ≺ of -. In-
deed if a semiorder - admits a threshold representation (u, δ) then, for all
x, y ∈ X, x ≺ y ⇔ u(x) + δ < u(y).

Let us now prove the following simple proposition which motivates the in-
troduction of a threshold representation (u, δ) in connection with semiorders.

Proposition 2.4.1 [threshold implies semiorder].Let - be any bi-
nary relation satisfying the following condition for some real-valued function
u on X and a threshold δ > 0;

x - y ⇔ u(x) ≤ u(y) + δ for all x, y ∈ X.

Then - is a semiorder.

Proof. It is clear that - is reflexive due to the fact that u(x) < u(x) + δ

for all x ∈ X. In addition, the pair (u, u + δ) represents - as interval order.
Finally, if for some x, y, z, w ∈ X it occurs that w ≺ x - y - z ≺ w, then we
have that u(w)+δ < u(x) ≤ u(y)+δ ≤ u(z)+2δ < u(w)+δ, a contradiction.

Definition 2.4.3 [weak order associated to a semiorder].If ≺ is a
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preference relation on a set X, then define, for x, y ∈ X,

x ≺ 0 y ⇔ (x ≺ ∗ y) or (x ≺∗∗y).

Fishburn (1970) proved that if ≺ is a semiorder, then ≺0 is a weak order,
and therefore the associated preference-indifference relation -0 is a total
preorder. It is straightforward to prove that this result may be strengthened
as follows.

Proposition 2.4.2 Let ≺ be an interval order on a set X. Then ≺0

is asymmetric if and only if ≺ is a semiorder, in which case - 0 is a total
preorder.

Proof . Let ≺ be an interval order on a set X. Then both ≺∗ and ≺∗∗

are asymmetric.If ≺ is a semiorder, then x ≺∗ y entails x - ∗∗y, and x ≺∗∗y

entails x - ∗ y, as well. So it is easily seen that ≺0 is asymmetric.Conversely,
assume that ≺ is an interval order, and that ≺0 is asymmetric. Suppose that
there exist x, ξ, η, y with x - η ≺ y ≺ ξ - x. Hence x ≺ ∗∗y and y ≺ ∗ x, and
this is impossible because ≺0 is asymmetric. This contradiction completes
the proof.

It is clear that if - is an interval order for which ≺ ∗=≺ ∗∗, then - is
semiorder. Indeed, in this case ≺0=≺ ∗=≺ ∗∗ is asymmetric by Proposition
2.3.3.

From Proposition 2.4.2, we may refer to - 0 as the total preorder inti-
mately connected with the semiorder ≺. Is is easily seen that if ≺ is a
semiorder, then

x - 0 y ⇔ (U ≺(y) ⊆ U ≺(x)) and (L ≺(x) ⊆ L ≺(y)).

The following corollary relates the utility functions representing the total
preorder - ∗ and - ∗∗, respectively, to the utility function representing - 0.
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Corollary 2.4.1 Let ≺ be a semiorder on a set X.If u and v are utility
functions for - ∗∗and - ∗, respectively, then u + v is a utility function for - 0.

Proof. Let ≺ be a semiorder on a set X, and assume that u and v are
utility functions for - ∗∗ and - ∗, respectively. From Proposition 2.4.2, - 0

is a total preorder. First consider x, y with x - 0 y. Then both x - ∗∗ y

and x - ∗ y. So x - 0 y entails u(x) + v(x) ≤ u(y) + v(y). Now consider
x, y with y ≺ 0 x, that is not(x - 0 y). Then either y ≺ ∗ x or y ≺ ∗∗ x. If
y ≺ ∗ x, then v(y) < v(x), and this entalis u(y) ≤ u(x). So y ≺ 0 x entails
u(y) + v(y) < u(x) + v(x). In a perfectly analogous way we proceed in case
that y ≺ ∗∗x. Now the proof is complete (see Bosi [14, Corollary 1]).

Numerical representations of interval orders

We recall that a pair (u, v) of real-valued functions on X is said to rep-
resent an interval order - on X if, for all x, y ∈ X,

x - y ⇔ u(x) ≤ v(y).

It should be noted that a strict interval order ≺ on a set X is then
represented by a pair (u, v) of real-valued functions on X if, for all x, y ∈ X,

[x ≺ y ⇔ v(x) < u(y)].

Definition 2.4.4 [weak utility].A real-valued function u on X is said
to be a weak utility for an interval order ≺ if for all x, y ∈ X,

x ≺ y ⇒ u(x) < u(y).
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It is immediate to check that if (u, v) is a representation of an interval
order - on X, then u is a weak utility for the weak order ≺∗∗. More generally,
the following proposition holds.

Proposition 2.4.3 Let - be an interval order relation on a nonempty
set X that is represented by a pair of real-valued functions (u, v). Then we
have that

�u is a weak utility for ≺ ∗∗.

�v is a weak utility for ≺ ∗.

Proof . x ≺ ∗∗ y  ⇐⇒ ∃ξ ∈ X : x - ξ ≺ y ⇒ u(x) ≤ v(ξ) < u(y) ⇒
u(x) < u(y). 

Proof. x ≺ ∗ y  ⇐⇒ ∃η ∈ X : x ≺ η - y ⇒ v(x) < u(η) ≤ v(y) ⇒
v(x) < v(y). 
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Chapter 3

Topological and vector related
spaces

3.1 Introduction

In this chapter we recall the basic definitions concerning metric spaces (more
generally topological spaces) and vector spaces. Indeed, we shall then be
concerned with the real representation of preferences on such structures.
Typically, algebraic and/or continuity properties concerning the represent-
ing functions are required with a view to the applications to economics.After
reviewing the basic concepts concerning metric and topological spaces in Sec-
tion 3.2, we are then concerned in Section 3.3 with topological related spaces.
In particular the concept of continuity of a binary relation is presented.Such
a concept is particularly interesting in connection with the existence of con-

tinuous or at least upper semicontinuous representations of binary relations.
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3.2 Basic definitions

Definition 3.2.1 [metric space].A metric space (X, d) consists of a non-
empty set X and a function d : X × X → [0, ∞) such that the following
conditions are verified:

(i) Positivity. For all x, y ∈ X, d(x, y) ≥ 0 with equality if and only if
x = y.

(ii) Symmetry. For all x, y ∈ X, d(x, y) = d(y, x).

(iii) Triangle Inequality. For all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

A function d satisfying conditions (i)-(iii), is called a metric on X.

Definition 3.2.2 [vector space].A vector space is a set V on which
two operations + and · are defined, called vector addition and scalar multi-

plication:

The operation + (vector addition) must satisfy the following conditions:

(1) Closure: If u and v are any vectors in V , then the sum u+v belongs
to V.

(2) Commutative law : For all vectors u and v in V , u + v = v + u

(3) Associative law : For all vectors u, v , w in V , u+(v +w) = (u+v)+w

(4) Additive identity : The set V contains an additive identity element,
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denoted by 0, such that for any vector v in V , 0 + v = v and v + 0 = v.

(5) Additive inverses: For each vector v in V , the equations v + x = 0
and x + v = 0 have a solution x in V , called an additive inverse of v, and
denoted by - v.

The operation · (scalar multiplication) is defined between real numbers
(or scalars) and vectors, and must satisfy the following conditions:

(6) Closure: If v is any vector in V , and c is any real number, then the
product c · v belongs to V .

(7) Distributive law : For all real numbers c and all vectors u, v in V , c ·
(u + v) = c ·u + c ·v

(8) Distributive law : For all real numbers c, d and all vectors v in V ,
(c + d) ·v = c ·v + d ·v

(9) Associative law : For all real numbers c, d and all vectors v in V, c ·

(d· v) = (cd) · v

(10) Unitary law : For all vectors v in V, 1 · v = v

Definition 3.2.3 [norm of a metric].

If V is a (real) vector space, a function | · | : V → R is called a norm if
the following conditions are satisfied:

(i) For all x ∈ V , |x| ≥ 0 with equality if and only if x =0.
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(ii) |αx| = |α||x| for all α ∈ R and all x ∈ V .

(iii) |x + y| ≤ |x| + |y| for all x, y ∈ V .

Convergence and continuity.

We begin the study of metric spaces by defining convergence of sequences.
A sequence {xn } in a metric space X is just a collection {x1, x2, x3, ..., xn , ..}of
elements in X enumerated by the natural numbers.

Definition 3.2.4 [Convergence].Let (X, d) be a metric space. A
sequence {xn }in X converges to a point a ∈ X if for every ε > 0 there exists
an N ∈ N such that d(x n , a) < ε for all n ≥ N. We write lim n→∞ x n = a or
x n → a.

Lemma 3.2.1.A sequence {xn } in a metric space (X, d) converges to a

if and only if lim n→∞ d(x n , a) = 0.

Proof. The distances {d(xn , a)} form a sequence of non negative num-
bers. The sequence converges to 0 if and only if there for every ε >0 exists
an N ∈ N such that d(x n , a) < ε when n ≥ N. But this is exactly what the
definition says.

Proposition 3.2.1.A sequence in a metric space cannot converge to
more than one point.

Proof. Assume that lim n→∞ x n = a and lim n→∞ x n = b. We must show
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that this is only possible if a = b. According to the triangle inequality
d(a, b)≤d(a, x n ) + d(x n , b). Taking limits, we get :

d(a, b) ≤ lim n→∞ d(a, x n ) + lim n→∞ d(x n , b) = 0 + 0 = 0

Consequently,d(a, b) = 0, and according to point (i) (positivity) in the
definition of metric spaces, a = b.

Open and closed sets.

Definition 3.2.5 [Open ball].Let a be a point in a metric space (X, d),
and assume that r is a positive, real number. The (open) ball centered at a

with radius r is the set :

B(a; r) = {x ∈ X|d(x, a) < r}

Definition 3.2.6 [Closed ball].Let a be a point in a metric space
(X, d), and assume that r is a positive, real number.The closed ball centered

at a with radius r is the set :

B̄(a; r) = {x ∈ X|d(x, a) ≤ r}

If A is a subset of X and x is a point in X, there are three possibilities:

(i) There is a ball B(x; r) around x which is contained in A. In this case
x is called an interior point of A.
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(ii) There is a ball B(x; r) around x which is contained in the complement
A c. In this case x is called an exterior point of A.

(iii) All balls B(x; r) around x contains points in A as well as points in
the complement Ac. In this case x is a boundary point of A.

Note that an interior point always belongs to A, while an exterior point
never belongs to A.A boundary point will some times belong to A, and some
times to A c.

Proposition 3.2.2.A subset A of a metric space is open if it does
not contain any of its boundary points, and it is closed if it contains all its
boundary points.

Most sets contain some, but not all of their boundary points, and are
hence neither open nor closed.The empty set ∅ and the entire space X are
both open and closed as they do not have any boundary points.Here is an
obvious, but useful reformulation of the definition of an open set.

Proposition 3.2.3.A subset A of a metric space X is open if and only
if it only consists of interior points, i.e. for all a ∈ A, there is a ball B(a; r)
around a which is contained in A.

Observe that a set A and its complement Ac have exactly the same bound-
ary points. This leads to the following useful result.

Proposition 3.2.4.A subset A of a metric space X is open if and only
if its complement Ac is closed.
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Proof. If A is open, it does not contain any of the (common) boundary
points. Hence they all belong to A c, and A c must be closed. Conversely,if
A c is closed, it contains all boundary points, and hence A can not have any.
This means that A is open.

We can also phrase the notion of convergence in more geometric terms.If
a is an element of a metric space X, and r is a positive number, the (open)
ball centered at a with radius r is the set:

B(a; r) = {x ∈ X|d(x, a) < r}

as the terminology suggests,we think of B (a; r) as a ball around a with

radius r. Note that x ∈ B(a; r) means exactly the same as d(x, a) ≤ r. The
definition of convergence can now rephrased by saying that {xn } converges to
a if the terms of the sequence {xn } eventually end up inside any ball B(a; ε)
around a. So this proof is complete.

Definition 3.2.7 [Continuity in metric spaces].Assume that (X, dx ),
(Y, d y ) are two metric spaces.A function f : X → Y is continuous at a point
a ∈ X if for every ϵ > 0 there is a δ > 0 such that d Y (f (x), f (a)) < ϵ

whenever dX (x, a) < δ.

This definition says exactly the same as the usual definitions of continuity
for functions of one or several variables; we can get the distance between f (x)
and f (a) smaller than ϵ by choosing x such that the distance between x and
a is smaller than δ. The only difference is that we are now using the metrics
dX and dY to measure the distances.A more geometric formulation of the
definition is to say that for any open ball B(f (a); ϵ) around f (a), there is an
open ball B(a, δ) around a such that f (B(a; δ)) ⊂ B(f (a); ϵ).
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There is a close connection between continuity and convergence which re-
flects our intuitive feeling that f is continuous at a point a if f (x) approaches
f (a) whenever x approaches a.

Definition 3.2.8 [continuity in metric spaces].A function f : X →

Y between two metrics spaces is called continuous if is continuous at all
points x in X.

3.3 Topological related spaces

Definition 3.3.1 [topologicalspace]. A family τ of subsets of a
nonempty set X (called the family of all the open sets) is a topology on
X if the following conditions are verified:

(i) X,  ∅ ∈ τ ;

(ii) the union of an arbitrary family of sets all belonging to τ belongs
to τ ;

(iii) the intersection of a finite family of sets all belonging toτ belongs
to τ .

The pair (X, τ ) is said to be a topological space.

Definition 3.3.2 [closure].Given a topological space (X, τ ), the (
topological) closure U of any subset U of X is the intersection of all the
closed subsets of X containing U .
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Definition 3.3.3 [continuous function].A function f of a topological
space (X, τ ) into a topological space (Y, θ) is continuous if f −1 (V ) = {x ∈

X : f (x) ∈ V } ∈ τ for every V ∈ θ.

Definition 3.3.4 [directed sets and nets].A directed set (I, <) is any
nonempty set endowed with a binary relation < such that:(i) < is transitive;
(ii) for every a, b  I∈  there exists c  I∈  such that (a < c) ∧ (b < c). A net
in a topological space (X, τ ) is any mapping ϕ of a directed set (I, <) into
(X, τ ). We shall denote a net by {xα }α I∈ .

An example of a net in a topological space (X, τ ) is provided by a sequence
{x n } n∈N of points in X. Indeed, the set N of the natural numbers endowed
with the natural order < is obviously a directed set.

Definition 3.3.5 [convergence of a net].A net {x α }α I∈ in a topolog-
ical space (X, τ ) converges to a point x ∈ X if for every neighborhood U of
x there exists α  I∈  such that x β ∈ U for every β  I∈  such that α < β.

Definition 3.3.6 [topologicalrelated space].A triplet (X, τ, R) is
said to be a topological related space if (X, R) is a related set and (X, τ ) is
a topological space.

Definition 3.3.7 [continuity of a transitive binary relation].Given
a topological related space (X, τ, R), the binary relation R is said to be (τ -
)continuous if either R is reflexive and transitive and L R (x) and U R (x) are
closed sets for every x ∈ X, or R is irreflexive and transitive and LR (x) and
UR (x) are open sets for every x ∈ X.

Remark 3.3.1.We recall that a topology τ on a set X is said to be
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principal if τ is closed under arbitrary intersections. If a topological space
(X, τ ) is principal, then every point x ∈ X has a minimal neighborhood
with respect to the partial order of strict set inclusion. It is clear that any
topology on a finite set X is principal.
A topology τ on a set X is said to be T 0 if, given x, y ∈ X with x ̸= y, there
exists U ∈ τ such that either x ∈ U, y ̸∈ U or y ∈ U, x ̸ ∈ U.

Example 3.3.1.The usual topology (the natural topology) τ nat on the
real line is not a principal topology. Indeed consider for every n ∈ N+ the
open interval In =] − 1

n
, 1

n [ . We have that
∞
∩

n=1
In = {0} which is not open (

actually it is closed).

Theorem 3.3.1.Let X be a nonempty set. There is a bijection ϕ from
the set of all the T 0-principal topologies on X into the set of all the partial
orders on X.

Proof. Consider a T0-principal topology τ on X, and, for every x ∈ X,
denote by Ux the open set which is the intersection of all the open sets
containing x. Observe that Ux is open since τ is principal. Define a binary
relation ≺ on X as follows:

x ≺ y ⇔ y ∈ U x \ {x}.

It is clear that ≺ is irreflexive. In order to show that ≺ is transitive,
first observe that, since τ is principal, y ∈ U x \ {x} entails U y ⊆ U x (in-
deed Uy is the minimal open set containing y and y ∈ U x ). Further, τ

is T 0 and therefore y ∈ U x \ {x} entails x ̸∈ U y \ {y}. Hence (x ≺ y)∧
(y ≺ z) ⇔ (y ∈ U x \ {x}) ∧ (z ∈ U y \ {y}) ⇒ z ∈ U x \ {x} ⇔ x ≺ z.
So ≺ is a partial order on X. Define an application ϕ from the set of all
the T0-principal topologies on X into the set of all the partial orders on X
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by letting ϕ(τ ) =≺. In order to show that ϕ is injective, we just observe
that, if τ 1 and τ2 are two different T0-principal topologies on X, then there
exists x ∈ X such that the minimal τ1 neighborhood of x is different from
the minimal τ2 neighborhood ofx, so that ϕ(τ 1) ̸= ϕ(τ 2). To show that ϕ
is surjective, let ≺ be any partial order on X, and consider the T0-principal
topology τ on X such that U ≺(x)  {∪ x} is the minimal neighborhood of x.
It is clear that ϕ(τ ) =≺. So the proof is complete.
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Chapter 4

Semicontinuous utility
representations

4.1 Introduction

In Section 4.2, we first recall the definition of a real-valued upper (lower) semi-
continuous function on a topological space.We then present the concepts of
continuity of a total preorder and a proof of the classicalRader’s theorem,
according to which there exists an upper semicontinuous utility represen-
tation for every upper semicontinuous total preorder on a second countable

topological space (in particular, the reader may recall that this is the case
of a separable metric space). In Section 4.3, we present a slightly modified
version of an already existing characterization of the existence ofa pair of
upper semicontinuous functions representing an interval order on a topolog-
ical space. Finally, in Section 4.4 we dealwith the semiorder case,and we
present a necessary condition for the existence of an upper semicontinuous
thereshold representation.We further present an example, illustrating the
fact that the existence of an upper semicontinuous threshold representation
doesn’t imply that the traces are upper semicontinuous.
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4.2 Basic definitions and preliminary results

Definition 4.2.1 [upper semicontinuous real-valued function].A real-
valued function f on an arbitrary topological space (X, τ ) is said to be upper

semicontinuous (lower semicontinuous) if f −1 (] − ∞, α[) = {x ∈ X : f(x) <
α} ∈ τ for every α ∈ R (respectively, f −1 (]α, +∞[) = {x ∈ X : α < f(x)} ∈

τ for every α ∈ R). Further, f is said to be continuous if and only if it is
both upper and lower semicontinuous.

Alternative characterization ofa real-valued semicon-
tinuous function on a metric space.

It is easy to show that a real-valued function on a topological space (X, τ )
is upper semicontinuous if and only if the following condition is satisfied (see
e.g. Herden and Mehta [34]):

For every point x ∈ X and every net {x α }α I∈ in (X, τ ) converging to x

the equation f (x) = lim α I∈ sup f (x α ) holds.

In the case when the topology is induced by a distance (i.e.,(X, τ ) is a
metric space) the following easier definition holds true, which actually applies
to every real-valued function on a first countable space1:

1A topological space (X, τ ) is said to be first countable if for every x ∈ X there exists
a countable family B x = {B x

n : n ∈ N} ⊆ τ such that for every nonempty open subset O
of X containing x there exists n ∈ N with x ∈ B x

n ⊂ O.
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For every real number α, every sequence {xn : n ∈ N} ⊂ X and ¯ x ∈ X

with x n → x̄, f (x n ) ≥ α for all n ∈ N entails f (¯ x) ≥ α.

Definition 4.2.2 [semicontinuity of a preorder].A preorder - on a
topological space (X, τ ) is said to be upper semicontinuous (lower semicon-

tinuous) if U - (x) (L - (x)) is a closed set for every x ∈ X. Further, - is said
to be continuous if it is both upper and lower semicontinuous.

Remark 4.2.1 [upper semicontinuous preorder on a metric space].
It should be noted that, in the particular case when we consider a preorder
- on a metric space (X, τ ), we have that - is upper semicontinuous if and
only if the following condition holds:

For all points x, x̄ ∈ X and every sequence {x n : n ∈ N} ⊂ X with
x n → x̄ and x - x n for all n ∈ N, we have that x - ¯ x. Therefore,we can
say that an individual whose preferences are described by a semicontinuous
preorder - on a topological space (X, τ ) is consistent in the small.

Separation and continuity for a total preorder.

Proposition 4.2.1 [condition for continuity of a total preorder].
Let (X, τ, -) be a totally preordered topological space.Then - is continuous
if the following condition is verified:

(i) for every x, y ∈ X such that x ≺ y there exists a real-valued contin-
uous increasing function f x,y on (X, τ, -) with values in [0, 1] R such that
f x,y (x) = 0 and f x,y (y) = 1.
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Proof. Let (X, τ, -) be any totally preordered topological space, and assume
that condition (i) is verified. Since - is total, it is continuous if and only if
L≺(x) = {z ∈ X : z ≺ x} and U ≺(x) = {z ∈ X : x ≺ z} are open sets for
every x ∈ X. Consider any point x ∈ X, and let z ∈ L≺(x). By condition (i),
there exists a real-valued continuous increasing function fz,x on (X, τ, -) with
values in [0, 1]R such that f z,x (z) = 0 and f z,x (x) = 1. Then f −1

z,x ([0, f z,x (x)[)
is an open subset2 of L≺(x) containing z, and therefore L≺(x) is an open set.
Analogously it can be shown that U≺(x) is an open set for every x ∈ X. So
the proof is complete.

Definition 4.2.3 [weakly order-separable].A preorder - is weakly

order-separable if there exists a countable set D ⊆ X such that for every
x, y ∈ X with x ≺ y there exist d 1, d2  ∈ D such that x - d 1 ≺ d2 - y.

Theorem 4.2.1.Let (X, τ, -) be a topological totally preordered space.
Then the following conditions are equivalent:

(i) There exists a real-valued continuous order-preserving function f on
(X, τ, -) with values in [0, 1] R ;

(ii) The total preorder - on X is weakly order-separable and continuous.

We recall that a topological space (X, τ ) is said to be second countable if
there exists a countable base3 B = {B n : n ∈ N} for (X, τ ).

2Consider that f −1
z,x ([0, f z,x (x)[) ̸⊂ L ≺ (x) would imply the existence of w ∈ X such that

f z,x (w) < f z,x (x) and w ̸≺ x, but this is impossible since w ̸≺ x is equivalent to x - w
due to the fact that - is total, and f z,x is increasing.

3A family B ⊆ τ is said to be a base for a topological space (X, τ ) if every nonempty
open subset of X can be represented as the union of a subfamily of B.
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We furnish a proof of Rader’s classic theorem [42].

Theorem 4.2.2 [Rader’s theorem]. Let - be an upper semicontinuous
total preorder on a second countable topologicalspace (X, τ ). Then there
exists an upper semicontinuous utility function u : (X, -, τ ) −→ (R, ≤, τ nat ).

Proof. Let - be an upper semicontinuous total preorder on L 1
+ . Then

denote by τL the topology generated by the family L = {L ≺(x)} x∈X . Since
τL is a linearly ordered subtopology of τ and τ is second countable, we have
that also τL is second countable (see Bosi and Herden [12]).Let {O n } n∈N be
a countable base for the topology τL on X consisting of (open) decreasing
subsets ofX. Since the preorder - on (X, τ ) is upper semicontinuous, we
have that for all x, y ∈ X such that x ≺ y there exists n ∈ N such that
x ∈ O n ⊂ L≺(y), y ̸∈ L ≺(y).
Now consider, for every n ∈ N , the upper semicontinuous increasing function
with values in [0, 1] defined as follows:

un (x) =

{
0 if x ∈ O n

1 if x ̸∈ O n
.

It is now almost immediate to check that the function

u =
∑

n∈N

2−n un

is an upper semicontinuous utility function for - on (X, τ ). Indeed, it is
clear that u is upper semicontinuous since un is upper semicontinuous for all
n ∈ N. Further, u is a utility function for the preorder - on X since u is
increasing and for all x, y ∈ X such that x ≺ y there exists some n ∈ N with
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un (x) = 0 and u n (y) = 1 (clearly, if x ≺ y then u n (x) ≤ u n (y) for all n). So
the proof is complete.

4.3 Upper semicontinuous representations of
interval orders

Definition 4.3.1 [upper semicontinuous intervalorders].An in-
terval order - on a metric space (X; d) is said to be upper semicontinuous if
L≺(x) is an open subset of X for every x ∈ X. Clearly, upper semicontinuity
of the traces ≺∗ and ≺∗∗ is defined in a perfectly analogous way.

In order to illustrate the fact that the existence of a pair of upper semi-
continuous real-valued functions(u, v) representing an interval order - on a
metric space (X, d) does not imply that the associated weak order ≺ ∗∗ is
upper semicontinuous (i.e.L≺∗∗(x) = {y ∈ X : y ≺ ∗∗ x} is an open subset
of X for all x ∈ X) let us consider the following example.

Example 4.3.1.Let X be the set [1,3] ∪[9,10] endowed with subspace topol-
ogy and consider the interval order - on X defined as follows for all x, y ∈ X:
x - y ⇔ x ≤ y 2.

Then it is clear that (u, v) is (upper semi) continuous representation of -
as soon as we define u(x) = x and v(x) = x 2 for every x ∈ X. We have that
the associated weak order ≺∗∗ is not upper semicontinuous.Indeed, consider
for example that L≺∗∗(10) = [1,3]  {∪ 9} is not open set. Notice that x 2 < 10
for all x ∈ [1, 3], 9 ≺∗∗ 10 since 9 ≤ 3 2 < 10 but for no 9 < x < 10 we
have that x ≺ ∗∗ 10 because this would imply the existence ofη ∈ X such
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that 9 < x ≤ η 2 < 10. Notice that in this case the topology on X fails to be
connected.

Lemma 4.3.1[characterization of an upper semicontinuous rep-
resentation of an interval order in terms of sets].

Let - be an interval order on a topological space (X, τ ). Then the fol-
lowing conditions are equivalent:

(i) There exists a pair (u, v) of upper semicontinuous real-valued functions
on (X, τ ) representing the interval order -;

(ii) There exist a countable family {(A n , Bn )} n∈N + of pairs of open sub-
sets of X satisfying the following conditions:

(a) x ≺ y and y ∈ B n imply x ∈ A n for all x, y ∈ X and for all
n ∈ N+ ;

(b) x - y and y ∈ A n imply x ∈ B n for all x, y ∈ X and for all
n ∈ N+ ;

(c) for all x, y ∈ X such that x ≺ y there exist n ∈ N + such that
x ∈ A n , y ̸∈ B n .

Proof. (i) ⇒ (ii). If (u, v) is a continuous representation of the interval
order - and u and v are both upper semicontinuous, then just define, for
all q ∈ Q, A q = {x ∈ X : v(x) < q}, B q = {x ∈ X : u(x) < q} in order
to immediately verify that the set of pairs {(A q, Bq)} q∈Q satisfies the above
conditions (a), (b) and (c).
(ii) ⇒ (i). Assume that there is a countable family {(An , Bn )} n∈N + of pairs
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of open subsets of X satisfying the above conditions (a) through (c).Define,
for all n ∈ N + , the following upper semicontinuous functions un and vn :

un (x) =

{
0 if x ∈ B n

1 if x ̸∈ B n

, vn (x) =

{
0 if x ∈ A n

1 if x ̸ ∈ A n

.

Then define two functions u, v : X → [0, 1] by

u(x) =
∞∑

n=1

2−n un (x), v(x) =
∞∑

n=1

2−n vn (x).

It is clear that (u, v) is a pair of upper semicontinuous functions on (X, τ ).
We claim that the pair (u, v) represents the interval order -. In order to
prove this fact, first consider any two elements x, y ∈ X such that x - y,
and observe that, for every n ∈ N+ , if y ∈ A n then it must be that x ∈ B n by
the above condition (b). Hence,it must be u(x) ≤ v(y) from the definition
of u and v. Now consider any two elements x, y ∈ X such that x ≺ y. Then
we have that vn (x) ≤ u n (y) for every n ∈ N + by condition (a). Further, by
condition (c), there exists n ∈ N+ such that x ∈ A n , y ̸∈ B n . Hence, we have
that v(x) < u(y). This consideration completes the proof.

Theorem 4.3.1 [characterization of an upper semicontinuous rep-
resentation of an interval order].Let - be an interval order on a topo-
logical space (X, τ ). Then the following conditions are equivalent:

(i) There exists a pair (u, v) of upper semicontinuous real-valued functions
on (X, τ ) representing the interval order -;

(ii) The following conditions are verified:

(a) The interval order - on X is i.o.-separable;
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(b) - is upper semicontinuous;

(c) There exists an upper semicontinuous weak utility u for ≺∗∗,

Proof. (i) ⇒ (ii). Assume that there exists a representation (u, v) of the
interval order - on (X, τ ) with u and v upper semicontinuous. Since the
interval order - on X is representable by a pair of real-valued functions on
X, then - is i.o.-separable (see Bosi et al. [6]) and therefore condition (a) is
verified. It is clear that - is upper semicontinuous (condition (b)) and u is
an upper semicontinuous weak utility for the weak order ≺∗∗by Proposition
2.4.3 (condition (c)).

(ii) ⇒ (i). Let - be an i.o.-separable and upper semicontinuous interval
order on a topological space (X, τ ) which in addition satisfies the above
condition (c). Without loss of generality, from very well known topological
properties of the real line we can assume that the i.o.-order dense set D is
such that, for all z ∈ X and n ∈ N+ , if z ∼∗∗dn ∈ D then there exists dm ∈ D

such that dm ∼∗∗dn and u(dm ) ≤ u(z) (u is an upper semicontinuous weak
utility for ≺ ∗∗). Indeed, let us start from an i.o.-order dense set D ′ ⊂ X.
Consider, for every n ∈ N + , the set of numbers Cn = {u(z) : z ∼ ∗∗ dn }. If
there exists min Cn = α n , then just consider any element xn ∈ u −1 ({α n }).
If inf C n = α n does not belong to Cn , then consider any sequence {cnk } k∈N +

converging to αn , and for every c nk choose an element xnk ∈ u −1 ({c nk }).
Then consider a new i.o.-dense set D resulting from the union of D′ and the
elements xn and the elements cnk , in order to realize that D is a countable
i.o.-dense subset of X such that, for all z ∈ X and n ∈ N + , if z ∼ ∗∗dn ∈ D

then there exists dm ∈ D such that d m ∼∗∗ dn and u(d m ) ≤ u(z). Denote
this observation and property by (∗).
Define, for all n ∈ N+ ,

A n = L ≺(dn ),
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B n = u −1 (] − ∞, u(d n )[)

We claim that {(A n , Bn )} n∈N + is a countable family of pairs of open subsets
of X satisfying conditions (a) through (c) of Lemma 4.3.1. Please observe
that each set Bn is open as a consequence of the fact that u is upper semi-
continuous.
In order to first show that condition (a) of Lemma 4.3.1 is satisfied, consider
x, y ∈ X, and n ∈ N + such that x ≺ y, u(y) < u(d n ). Then we must have
x ≺ d n because otherwise dn - x ≺ y implies that d n ≺∗∗y and therefore we
arrive at the contradiction u(d n ) < u(y).
In order to show that condition (b) is valid, consider x, y ∈ X, and n ∈ N +

such that x - y ≺ d n . Then x ≺∗∗dn , and we must have that u(x) < u(d n ),
or equivalently x ∈ B n .
Finally, in order to show that also condition (c) of Lemma 4.3.1 is veri-
fied, consider x, y ∈ X such that x ≺ y. Since we considered an i.o.-order
dense subset ofX satisfying property ( ∗) above, there exists dn ∈ D such
that x ≺ d n - ∗∗ y and u(d n ) ≤ u(y). Hence x ∈ A n = L ≺(dn ) and
y ̸∈ B n = u −1 (] − ∞, u(d n )[). This consideration completes the proof.

Remark 4.3.1 [upper semicontinuous representations on finite
sets]. It is immediate to check that any topology τ on a finite set X is
principal. Indeed,since there are finitely many subsets of X, and therefore
finitely many open subsets of X, the intersection of any family of open sets
is necessarily the intersection of finitely many open sets, which is necessarily
open. Therefore, if for all x ∈ X we denote by Ux the minimal neighbourhood
of x, and - is an interval order on X, we have that - is upper semicontinuous
if and only if U z ⊂ L ≺(x) for all z ∈ X such that z ≺ x. If this condition is
verified and in addition there exists an upper semicontinuous weak utility u′

for ≺∗∗, we have that there exists a pair (u, v) of upper semicontinuous real-
valued functions on (X, τ ) representing the interval order - by Proposition
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4.2. Indeed, it is clear that - is i.o.-separable due to the fact that X is finite
(X itself is an i.o.-dense of itself).
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4.4 Upper semicontinuous threshold represen-
tations of semiorders

Let us prove the following proposition which makes explicit the natural
necessary conditions for the existence ofa semicontinuous threshold repre-
sentations of a semiorder.

Proposition 4.4.1 [condition for a semiorder].Let ≺ be an interval
order on a set X. If there is a real-valued function u on X that is a weak
utility for both ≺ ∗ and ≺∗∗, then ≺ is semiorder.

Proof. Consider x, y, z, w ∈ X with w - x ≺ y ≺ z - w, then w ≺ ∗∗y ≺∗ w.
Hence a function u cannot be a weak utility for both ≺ ∗ and ≺∗∗, since
otherwise we have that u(w) < u(y) < u(w). Then the proof is complete.

Proposition 4.4.2 [su cient condition for semicontinuous thresh-ffi

old representations]. Let ≺ be a semiorder on a topological space (X, τ ).If
≺ is upper semicontinuous and ≺∗=≺ ∗∗, then there exists a pair (u, v) of up-
per semicontinuous real-valued functions on (X, τ ) representing ≺ provided
that there exists a pair (u′ , v′) of real-valued functions on X representing ≺.

Proof. The proposition is a consequence ofTheorem 4.3.1. Indeed, since
≺ is upper semicontinuous and ≺∗=≺ ∗∗. we have that the trace ≺∗∗ is also
upper semicontinuous.Since it is not difficult to realize that there exists an
upper semicontinuous weak utility u′ for ≺∗∗ due to i.o. separability of ≺,
the thesis follows from Theorem 4.3.1.
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Proposition 4.4.3 [necessary conditions for semicontinuous thresh-
old representations].Let - be a semiorder on a topological space (X, τ )
which admits a threshold representation (u, δ) with u upper semicontinuous.
Then the following conditions are verified:

(i) - is upper semicontinuous;

(ii) u is an upper semicontinuous weak utility for both ≺∗ and ≺∗∗(therefore
for ≺0).

Proof. Since u is upper semicontinuous, it is clear that also u + δ is upper
semicontinuous.Therefore,L≺(x) = {z : u(z) + δ < u(x)} = (u + δ) −1 (] −
∞, u(x)[) is an open subset of X for all x ∈ X, or equivalently - is upper
semicontinuous.Hence,(i) is proved. In order to show that also condition
(ii) is satisfied, we just observe that this fact is an immediate consequence
of Proposition 2.3 (for all x, y ∈ X, x ≺ ∗ y implies u(x) + δ < u(y) + δ ⇔

u(x) < u(y)). The proof is now complete.

In order to support the assertion that in a threshold representation (u, δ)
not necessarily u is a (two-way) utility for the traces, we present the following
example.

Example 4.4.1 [u is not a utility for the traces].Let X = [1, 2] ∪
[
√

5,
√

6] be the union of two real intervals on the real line R endowed with the
usual natural induced topology, and consider the semiorder ≺ on X defined
as follows for all x, y ∈ X

x ≺ y ⇔ x 2 + 1 < y 2.

Then it is clear that (u, 1) is an (upper semi)continuous representation of ≺
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when we define u(x) = x 2 for all x ∈ X. We have that the associated weak
order ≺∗∗ is not upper semicontinuous. Indeed, consider for example that
L≺∗∗(

√
6) = [1, 2]  {∪

√
5} is not an open set. Notice that x ≺

√
6 for all

x ∈ [1, 2],
√

5 ≺∗∗
√

6 since
√

5 - 2 ≺
√

6 but for no
√

5 < x <
√

6 we have
that x ≺ ∗∗

√
6 because this would imply the existence of η ∈ X such that

5 < x 2 ≤ η 2 + 1 < 6.
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Chapter 5

Preferences among random
variables and their
representations

5.1 Introduction

We are now concerned with preferences defined on a normed space of
random variables on a common probability space.

In Section 5.2 we refresh the concept of L p
+ space and we define

homotheticity of a preference with to the aim of then presenting results guar-
anteeing the existence ofan homogeneous representation. The concept of
Choquet integral is viewed as a relevant example of a positively homogeneous
functional. Then the classical concepts of stochastic dominance are presented
as fundamental examples of preorders.

In section 5.3 we restate the main concepts of continuity in our context
and we present a proposition which furnishes a characterization of conti-
nuity of a positively homogeneous functionalwhich is in addition a utility
functional for some total preorder.
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Section 5.4 is dedicated to the existence of positively homogeneous utility
representation of total preorders,while Section 5.5 is devoted to positively
homogeneous representability of interval orders.

5.2 Basic concepts

Denote by R ( R + ) the set of all real numbers (respectively,the set of
all nonnegative real numbers).Further R++ stands for the set of all positive
real numbers and Q++ stands for the set of the positive rational numbers.

Let (Ω, F , P) be a probability space, and denote by χ F the indicator
function of any subset F of Ω, that is

χ F (x) =
{

1
0

if x∈F
if x /∈F .

Let L+ be a vector space of nonnegative real random variables on (Ω, F , P).
In particular, L + could be specialized as the space L1

+ (L 2
+ ) of integrable (re-

spectively, square integrable) nonnegative random variables on (Ω, F , P).
In the sequel we shall be concerned with an interval order (or in particular

a total preorder) - on L 1
+ (L 2

+ ) and we shall consider its real representation
which may satisfy appropriate conditions.

Homogeneous representation

We recall the well known general definition of Lp-space (1 ≤ p < ∞).

Definition 5.2.1 [Lp-space]. The space Lp(Ω) (the short version of
L p(Ω, F , P)) consists of all measurable functions X :Ω −→ R such that

∫
| X | p dP = E | X p |< ∞.

56



The L p-norm of X ∈ L p(Ω) is defined by

|| X || L p =
( ∫

| X | p dP
) 1

p

.

For the sake of convenience,in the sequel we shall write L
p
+ instead of

L p
+ (Ω).

Example 5.1.A classical example of a L2-norm continuous utility func-
tional is

U(X) = E[X] − αV ar[X] (α > 0).

If for two X, Y ∈ L
p
+ we have that X(ω) - Y (ω) for ω ∈ Ω, P-almost

surely, then we shall simply write X ≤ Y . We have that - is a preorder on
L p

+ .

Definition 5.2.2 [homothetic preorder].A preorder - on L 1
+ is said

to be homothetic if, for every X, Y ∈ L 1
+ and t ∈ R++ ,

X - Y ⇔ tX - tY.

Definition 5.2.3 [first order stochastic dominance].The first-order
stochastic dominance relation -F SD on L1

+ is defined as follows:

X - F SD Y  P{⇔ ω ∈ Ω : X(ω) ≤ k} ≥ P{ω ∈ Ω : Y (ω) ≤ k} ∀ k ∈ R.

It is immediate to check that - F SD is homothetic.

Example 5.2.2 [Choquet integral].Consider a space L1+ of nonneg-
ative real random variables on a common probability space (Ω, F , P). Let
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γ : F → [0, ∞) be a monotone finite set function (i.e. γ(∅) = 0, γ(Ω) = 1,
A, B  F∈ , A ⊆ B ⇒ γ(A) ≤ γ(B)). The Choquet integral of X ∈ L 1

+ is
defined as follows:

∫

Ω
X dγ =

∫ ∞

0
γ{ω ∈ Ω : X(ω) > u}du.

Let - be the total preorder on L 1
+ defined by

X - Y ⇔
∫

Ω
X dγ ≤

∫

Ω
Y dγ.

Then - is homothetic.

Definition 5.2.4 [Positively homogeneous function].A real-valued
function f on a space L 1

+ (L 2
+ ) is said to be positively homogeneous of

degree one (for brief, positively homogeneous) if, for every t ∈ R ++ and
X ∈ L 1

+ (L 2
+ ),

f (tX) = tf (X).

Example 5.2.3 [Positively homogeneous function].A classical ex-
ample of a L2-norm continuous and positively homogeneous function is :

U(X) = E[X] − α
√

V ar[X] (α > 0).

We prove this fact.

Proof. We have to prove that U (tX) = tU (X) for all t > 0.

In fact: ∀t > 0 . U(tX) = E(tX)−α
√

V ar(tX) ⇒ t(EX)−α
√

t2V ar(X) ⇒
t[E(X) − α

√
V ar(X)]| {z } = tU (X).
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Stochastic Dominance

Introduction

Stochastic Dominance (SD) is a fundamental concept in decision theory
with uncertainty. It describes when a particular random prospect, say a lot-
tery, is better than another random prospect based on preferences regarding
outcomes (which may be expressed in terms ofmonetary values or utility
values). Essentially the question boils down to in what sense(s) can we say
X ≤ Y , where X and Y are two random variables. The simplest example of
SD is state-by-state dominance:X(w) ≤ Y (w), ∀ (w) ∈ Ω or slightly more
weakly, absolute or almost sure dominance:we say that X ≤ Y almost surely

if P(X ≤ Y ) = 1. In other words, a random variable or lottery Y is said to
be (almost surely) state-by-state dominant over lottery X when Y provides a
better outcome than X for each possible state of nature, except possibly for
a set of states with probability 0. For example, if one pound is added to one
or more prizes in a lottery, the new lottery is state-by-state dominant the old
one. In this chapter, we focus on a more probabilistic sense in which X ≤ Y ,
namely that Y has more chance of being bigger than X. We shall mainly
be concerned with two major types of SD, namely, the first-order stochastic
dominance (FSD) and the second-order stochastic dominance (SSD).

Absolute and First-Order Stochastic Dominance

�Definition 5.2.5 [(Absolute dominance/almost-sure dominance)].
Y is absolutely dominant over X (X - AD Y ) if P (X ≤ Y ) = 1.

It is clear that Y is absolutely dominant over X under state-by-state
dominance of Y over X.
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The following definition is much more popular and frequently encountered
in the literature.

Definition 5.2.6 [(First-order stochastic dominance )].Y is first-

order stochastically dominant over X if F Y (y) ≤ F X (y) for all y (equivalently
F̄X (y) ≤ F̄Y (y) for all y). In addition, it is natural to say that Y is strictly

first-order stochastically dominant over X if Y is first-order stochastically
dominant over X and in addition there is at least one y such that F Y (y) <
FX (y) (equivalently F̄X (y) < F̄Y (y)). In other words, Y has more chance
than X of being bigger than any given value y.

If Y is first-order stochastically dominant over X, we write Y ≥ sd X. It
is clear that ≥ sd is a not necessarily total preorder.This concept is profitably
used in connection with suitable monotonicity assumption of an original pre-
order -. Indeed, we may introduce the following definition, that is very
common in the literature.

Definition 5.2.7 [(Monotonicity ofa preorder with respect to
First-order stochastic dominance )].A preorder - is said to be mono-
tone with respect to first-order stochastic dominance if, for all random vari-
ables X,Y, X ≤ sd Y implies that X -Y. In addition a preorder - is said to
be strictly-monotone with respect to first-order stochastic dominance if it is
monotone with respect to first order stochastic dominance and in addition,
for all random variables X,Y if, F Y (y) ≤ F X (y) for all y and there is at least
one y such that FY (y) < F X (y), then X ≺ Y .

We shall meet again this concept when introducing suitable properties of
a certainty equivalence functional.
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Definition 5.2.8 [(Monotonicity of a functionalwith respect to
First-order stochastic dominance )].A functional C is said to be mono-

tone with respect to first-order stochastic dominance if, for all random vari-
ables X, Y , X ≤ sd Y implies that C(X) ≤ C(Y ). A functional C is said to
be strictly monotone with respect to first-order stochastic dominance if it is
monotone with respect to first order stochastic dominance and in addition,
for all random variables X, Y , if, FY (y) ≤ F X (y) for all y and there is at
least one y such that FY (y) < F X (y), then C(X) < C(Y ).

Second-Order Stochastic Dominance

Definition 5.2.9 [(Second-order stochastic dominance)]. Y is second-
order stochastically dominant over X if

∫ x

−∞

FY (y)y ≤
∫ x

−∞

FX (y)y

for all x, and there is at least one x for which the above inequality is strict.

It should be noted that FSD is stronger than SSD (i.e.FSD ⇒ SSD).
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5.3 Representation of Preferences on L1
+ , L 2

+

Definition 5.3.1 [order separable preordered set].From Bridges and
Mehta [18], a preordered set (X, -) is said to be order separable if there
exists a countable set A(⊆ X) such that

(x ≺ y) and (x, y ∈ X)  ⇒ ∃a ∈ A : x ≺ a ≺ y.

A is termed a countable order dense subset of X.

Definition 5.3.2 [upper semicontinuous function].A real-valued
function f on L 1

+ (L 2
+ ) is said to be upper semicontinuous if

f −1 (] − ∞, α[) = {Z ∈ L 1
+ (L 2

+ ) : f(Z) < α}

is an open set for every α ∈ R (i.e., if for every sequence {Zn }⊆ L 1
+ (L 2

+ ) and
Y ∈ L 1

+ , (L2
+ ) such that Z n → Y , f(Z n ) ≥ α ∀n ∈ N entails that f (Y ) ≥ α).

We also present the concept of a lower semicontinuous function, since it is
widely used in the theory of premium functionals in Insurance Mathematics.

Definition 5.3.3 [lower semicontinuous function].A real-valued
function f on L 1

+ (L 2
+ ) is said to be lower semicontinuous if

f −1 (]α, +∞[) = {Z ∈ L 1
+ (L 2

+ ) : α < f(Z)}

is an open set for every α ∈ R (i.e., if for every sequence {Zn }⊆ L 1
+ (L 2

+ ) and
Y ∈ L 1

+ , (L2
+ ) such that Z n → Y , f(Z n ) ≤ α ∀n ∈ N entails that f (Y ) ≤ α).

Definition 5.3.4 [Closed sections].Let - a reflexive binary relation
on L1

+ (L 2
+ ).Then for every X ∈ L 1

+ we define:

d- (X) = {Z ∈ L 1
+ : Z - X}
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i- (X) = {Z ∈ L 1
+ : X - Z}

Definition 5.3.5 [Upper semicontinuity].Let - an interval order on
L1

+ , (L2
+ ). Then - is upper semicontinuous if i - (X) is a closed set for every

X ∈ L 1
+ , namely if for every sequence {Zn } ⊆ L 1

+ , (L2
+ ) and Y ∈ L 1

+ , (L2
+ )

such that Zn → Y ⇐⇒ lim n→∞ E(|Y −Z n |) → 0 (lim n→∞ E(|Y −Z n |2) → 0).

X - Z n for every n ∈ N entails X - Y ⇐⇒ Y ∈ i - (X).

Definition 5.3.6 [Lower semicontinuity].Let - an interval order on
L1

+ , (L2
+ ). Then - is lower semicontinuous if d - (X) is a closed set for every

X ∈ L 1
+ , namely if for every sequence {Zn } ⊆ L 1

+ , (L2
+ ) and Y ∈ L 1

+ , (L2
+ )

such that Zn → Y ⇐⇒ lim n→∞ E(|Y −Z n |) → 0 (lim n→∞ E(|Y −Z n |2) → 0).

X % Z n for every n ∈ N entails X % Y ⇐⇒ Y ∈ d - (X).

Definition 5.3.7 [Continuity ofintervalorder]. Let - an interval
order on L1

+ , (L2
+ ), then - is continuous if i - (X) and d - (X) are closed sets

for every X ∈ L 1
+ , (L2

+ ).

Remark 5.3.1 [Continuity of total preorder].Since a total preorder
is an interval order it is clear that the same definition holds for a total
preorder too. (i.e., a total preorder is continuous if i- (X) and d - (X) are
closed sets for every X ∈ L 1

+ , (L2
+ )).

In the sequel we shall denote by 0 the constant random variable equal to
0.
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Proposition 5.3.1.Let - be a nontrivial total preorder on L1
+ , such

that 0 - X for every X ∈ L 1
+ . Assume that there exists a homogeneous of

degree one utility function u for -. Then u is continuous if and only if - is
continuous.

Proof. The only if part of the lemma is obvious, since if a total preorder
- admits a continuous utility representation u then it is continuous. In-
deed in this case we have that i - (X) = u −1 ([u(X), +∞[) and d - (X) =
u−1 (] − ∞, u(X)]) , which are closed sets. So assume that - is a non-
trivial, total and continuous preorder on a L1

+ , such that 0 - X for every
X ∈ L 1

+ . Let u be a homogeneous of degree one utility function for -,
which is assumed to be continuous.Then it must be u(0) = 0, so that u is
nonnegative. Let X 0 ∈ L 1

+ be such that 0 ≺ X 0, and therefore 0 < u(X 0).
In order to prove that u is upper semicontinuous, consider X ∈ L 1

+ and
α  ∈ ℜ, such that u(X) < α. Observe that there exists t ∈ R++ such that
u(X) < tu(X 0) < α. Since u is homogeneous ofdegree one,the previous
inequalities can be equivalently written as u(X) < u(tX 0) < α. Further - is
continuous, we have that ] ←, tX0[= {Z : Z≺ tX 0} is an open set containing
X, such that u(Z) < α for every Z ∈] ←, tX 0[. Similarly it may be proven
that u is lower semicontinuous.So the proof is complete.

Now we are able to present necessary and sufficient axioms for the exis-
tence of a homogeneous of degree one and continuous utility fuction u for a
total preorder - on L 1

+ .
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5.4 Positively homogeneousrepresentations
of total preorders

Some authors were concerned with the existence of a positively homogeneous
and (semi)continuous real-valued functionalu representing a total preorder
- on a space L 1

+ (L 2
+ ) (see, e.g., Dow [25] and Werlang , Bosi [5] , and Bosi,

Candeal, and Indur´ain [9]).
We now present a caracterization of the existence of a positively homo-

geneous and continuous utility function for a total preorder.
To this aim, we introduce a new condition that substitutes another one

that appears in Bosi [5] and consists of a separability assumption. Before
presenting the aforementioned result,we need the following lemma which
guarantees the order separability of a total preorder admitting a positively
homogeneous representation.

Lemma 5.4.1.If there exists a positively homogeneous utility function
u ′

for non trivial total preorder - and (0 - X) for every X ∈ L 1
+ then

(L 1
+ , -) is order separable and A = {qX 0 : q ∈ Q ++ } is a countable order

dense subset of L1+ , (L2
+ ) for every X 0 ∈ L1

+ , (L2
+ ) such that (0 ≺ X 0).

Proof. Consider X0 ∈ L1
+ such that (0≺ X0). Then u

′
(0) = 0 since u is

positively homogeneous and 0 < u
′
(X 0), since u

′
is a utility function for - .

Let A = {qX 0 : q ∈ Q++ }. If X ≺ Y , X, Y ∈ L 1
+ , then ∃ q ∈ Q++ : u ′

(X) <
qu′

(X 0) < u
′
(Y ) ⇐⇒ u

′
(X) < u

′
(qX 0) < u

′
(Y ) ⇔ X < qX 0 < Y . So the

proof is complete.
We are now ready to furnish a characterization of the existence of a

positively homogeneous representation of a total preorder.
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Theorem 5.4.1 [positively homogeneous utility].Let - be a non
trivial total preorder on L 1

+ and assume that (0 - X) for every X ∈ L 1
+ .

There exists a nonnegative-positively homogeneous and continuous utility
function u for - if and only if the following conditions are verified.

(i) - is homothetic,

(ii) - is continuous,

(iii) There exists a positively homogeneous utility function u
′

for - on
L1

+ .

Proof. Let - be a nontrivial total preorder on a L 1
+ , and assume that

0 - X for every X ∈ L 1
+ . It is easily seen that conditions (i), (ii) and (iii)

are necessary for the existence of a nonnegative, homogeneous of degree one
and continuous utility function for -. Indeed condition (i) is verified since,
for all X - Y X, Y ∈ L 1

+ ) and t > 0(t ∈ R ++ ), we have that:

X - Y ⇔ u(X) ≤ u(Y ) ⇔ tu(X) ≤ tu(Y ) ⇔ u(tX) ≤ u(tY ) ⇔ tX - tY.

Further, it is clear that condition (ii) is verified since a total preorder is
continuous as soon at it admits a continuous utility function. Finally, it is
trivial to observe that also condition (iii) holds.

So assume that axioms (i), (ii) and (iii) are verified. By nontriviality of
-, there exists X 0 ∈ L1

+ such that 0 ≺ X0. By condition (iii), there exists a
positively homogeneous utility function u

′
for -. Since - is homothetic and

continuous,we have that X ≺ tX for every X ∈ L 1
+ such that 0 ≺ X, and

for every real number t > 1. Otherwise, by homotheticity of -, there exist
X ∈ L 1

+ with 0 ≺ X, and t ′ ∈ (0, 1) such that X - (t ′)n X for every n ≥ 1.
Since the operation of scalar multiplication is continuous, (t ′)n X → 0 as
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n → ∞, and therefore X - 0 by upper semicontinuity of - (this part of the
proof of theorem 1.7 in Dow and Werlang [25] works under our assumptions).
So there are no maximal elements relative to -, and the range of u

′
is actually

[0, +∞). Moreover, it is u
′

(0) = 0 since u
′
is positively homogeneous.Hence,

it must be u
′
(X 0) > 0. Define, for every X ∈ L 1

+ ,

u(X) = inf {qu
′

(X 0) : X ≺ qX 0, q ∈ Q++ }.

By axiom (i), u is well defined since there are no maximal elements relative
to -. Clearly u is nonnegative. We first prove that u is a utility function
for -. Consider X, Y ∈ L 1

+ such that X - Y . By axiom (i), using the fact
that there is not a maximal element relative to -, there exists q̄ ∈ Q++ such
that Y ≺ ¯qX 0, u(Y ) < q̄u′

(X 0). Moreover,Y ≺ qX 0 entails X ≺ qX 0, and
therefore u(X) ≤ u(Y ) from the definition of u. If Y ≺ X, then by Lemma
5.4.1 there exists q̄ ∈ Q ++ such that Y ≺ ¯qX 0 ≺ X, u(Y ) < q̄u′

(X 0), and
therefore it must be u(Y ) < u(X).
Now let us prove that u is homogeneous of degree one.First assume that there
exist t ∈ R ++ and X ∈ L 1

+ such that u(tX) < tu(X). Hence,from the def-
inition of u, there exists q′ ∈ Q++ such that u(tX) < q ′u ′

(X 0) < tu(X), tX ≺
q′X 0.
So, by homotheticity of -, it is X ≺ q′

t
X 0, and therefore u(X) < q′

t
u ′

(X 0)
from the definition of u. This is contradictory, since q′u

′
(X 0) < tu(X). Now

assume that there exist t ∈ R ++ and X ∈ L 1
+ such that tu(X) < u(tX).

Hence, from the definition of u, there exists q′ ∈ Q ++ such that u(X) <
q′u ′

(X 0) < 1
t u(tX), X ≺ q ′X 0. Since it is also tq ′u ′

(X 0) < u(tX), it must
be tq′X 0 - tX from the definition of u. Hence, by homotheticity of -, it is
q′X 0 - X, and this is contradictory. So u is homogeneous of degree one.
Finally, since u is a homogeneous of degree one utility function for -, and
- is continuous, then u is continuous by Proposition 5.3.1. So the proof is
complete.
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5.5 Positively homogeneous representation of
interval orders

In the previous paragraph a characterization has been presented of the ex-
istence of a positively homogeneous and continuous representation for a total
preorder. However, the restrictivity of such a representation has been already
underlined in the literature and the consideration of interval orders instead
has been justified. Indeed, one can argue that from a decision-theoretic
viewpoint the transitivity assumption concerning the binary relation - is
too restrictive. In order to explain such an assertion, consider the following
situation.

Given a (reflexive) binary relation - (to be interpreted as a preference-
indifference relation) on L1

+ , assume that - is homothetic (i.e., [X - Y ⇔

tX - tY ] for every X, Y ∈ L 1
+ , and t ∈ R++ ) and upper semicontinuous (i.e.,

{Z ∈ L 1
+ : X - Z} is a closed subset of L 1

+ ). If - is a total preorder (i.e.,
a transitive and total binary relation) on L 1

+ , it seems that a too accurate
assessment of the preferences is required.Indeed, it is easily seen that, for
every strictly positive real number ε, and for every real random variable
X ∈ L 1

+ such that 0 ≺ X, it must be X ≺ (1 + ε)X (otherwise, we have that
X - (1 + ε) −n X for every integer n ≥ 1 by homoteticity and transitivity of
-, so that, by continuity of scalar multiplication and upper semicontinuity
of -, we arrive at the contradiction X - 0).

Therefore, a more general model for the preference-indifference - allowing
nontransitivity could be thought of as more realistic. It is well known that
the simplest model of this kind is represented by an interval order - (i.e.,
a reflexive binary relation - on L 1

+ such that, for every X, Y, Z, W ∈ L 1
+ ,

[(X - Z) ∧ (Y - W ) ⇒ (X - W ) ∨ (Y - Z)].
We now discuss the existence ofa pair ⟨u, v⟩ of real-valued functionals
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representing a given interval order - on L 1
+ (in the sense that, for every

X, Y ∈ L 1
+ , [X - Y ⇔ u(X) ≤ v(Y )]), such that u is lower semicontinu-

ous, v is upper semicontinuous, and u and v are both positively homogeneous.

Definition 5.5.1 [Homothetic intervalorder]. An interval order - on
L1

+ is said to be homothetic if for all X, Y ∈ L 1
+ and t > 0 we have that

X - Y ⇔ tX - tY.

In the following theorem we provide a characterization of the existence
of a pair of semicontinuous positively homogeneous real-valued functionals
representing an interval order on a L 1

+ . This theorem generalizes the pre-
vious theorem on the continuous and homogeneous representation oftotal
preorders.A lemma is needed in order to facilitate the proof.

Lemma 5.5.1. If there exists (u
′ , v′

) representation of an interval order
- on L 1

+ with (u
′ , v′

) positively homogeneous, then

Q++ (X 0) = {qX 0 : q ∈ Q++ }

is a strongly i.o.dense subset of (L1+ , -) for every X 0 ∈ L1
+ such that 0 ≺ X0.

Proof. Consider any 0 ≺ X0 and let X ≺ Y . Then v
′
(X) < u ′

(Y ) and
v(0) = 0 < u

′
(X 0) ≤ v

′
(X 0). Therefore there are q1,q2 ∈ Q ++ such that

v ′
(X) < q 1u ′

(X 0) < q 2v ′
(X 0) < u

′
(Y ). Hence X ≺ q1X 0 - q 2X 0 ≺ Y , imply

that X ≺ q 1X 0 ≺∗∗Y . So the proof is complete.

Lemma 5.5.2. If an interval order - on L 1
+ is homothetic, then the

associated total preorders -∗ and - ∗∗are both homothetic.

Proof. Just consider that, for all X, Y ∈ L 1
+ ,

X - ∗ Y ⇔ (t(Z) - t(X) ⇒ t(Z) - t(Y ), ∀X, Y, Z ∈ X), t ∈ R ++
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X - ∗∗Y ⇔ (t(Y ) - t(Z) ⇒ t(X) - t(Z), ∀X, Y, Z ∈ X), t ∈ R ++

Theorem 5.5.1.Let - be an interval order on a L1
+ , and assume that

0 - ∗ X for every X ∈ L 1
+ . There exists a pair ⟨u, v⟩ of nonnegative posi-

tively homogeneous real-valued functionals on L1
+ representing -, such that

u is lower semicontinuous and v is upper semicontinuous,if and only if the
following conditions are verified:

(i) - is homothetic;

(ii) - is continuous;

(iii) There exists a pair (u
′ , v′

) of positively homogeneous functions rep-
resenting -.

Proof. It is clear that conditions (i), (ii) and (iii) are necessary for the
existence of a representation ⟨u, v⟩ with the indicated properties.So, assume
that conditions (i), (ii) and (iii) hold. From Lemma 5.5.2,homotheticity of
the interval order - implies homotheticity of the associated total preorder
- ∗∗. Further, it is clear that, since it must be 0 - X for every X ∈ L 1

+ ,
we have that 0 - ∗∗ X for every X ∈ L 1

+ . From condition (iii) and Lemma
5.5.1 we have that,for every X 0 ∈ L 1

+ such that 0 ≺ X 0, given X, Y ∈ L 1
+

with X ≺ ∗∗ Y , there exists q ∈ Q++ such that X ≺ ∗∗ qX 0 ≺∗∗ Y (i.e., the
totally preordered set (L1

+ , - ∗∗) is order separable,and {qX 0 : q ∈ Q ++ } is
an order dense subset of(L 1

+ , - ∗∗) for every X 0 ∈ L 1
+ such that 0 ≺ X 0).

Condition (ii) implies lower semicontinuity of - ∗∗, since, for every X  L∈ 1
+ ,

{Z ∈ L 1
+ : X ≺ ∗∗ Z} =

∪
{Z ′ ∈L 1

+ :X-Z ′ } {Z ∈ L 1
+ : Z ′ ≺ Z}. Then, it

can be shown that there exists a nonnegative,positively homogeneous and
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lower semicontinuous real-valued utility functionalu for - ∗∗ (see the proof
of Theorem 5.4.1 ). Given any element X0 ∈ L1

+ such that 0 ≺ X0, define a
nonnegative real-valued functional v on L1+ as follows:

v(X) =

{
inf {tu(X 0) : X ≺ tX 0, t ∈ R++ } if 0 - Z ≺ X for some Z ∈ L 1

+

0 otherwise

We claim that the pair ⟨u, v⟩ represents the interval order -, and that v is
positively homogeneous and upper semicontinuous.It is clear that tv(X) ≥ 0
for all X ∈ L 1

+ .
Let us first show that ⟨u, v⟩ is a representation of -. First consider any
two elements X, Y ∈ L 1

+ such that X ≺ Y . Then, from condition (iii)
and Lemma 5.5.1, there exists q ∈ Q ++ such that X ≺ qX 0 ≺∗∗ Y , and
therefore, from the definition of v and since u is a positively homogeneous
utility functional for - ∗∗, it is v(X) < qu(X 0) < u(Y ), which obviously
implies v(X) < u(Y ). Now consider any two elements X, Y ∈ L1

+ such that
X - Y . If X ∼ ∗∗0, then it is u(X) = 0, and it is clear that u(X) ≤ v(Y ),
since v is nonnegative.So assume that 0 ≺∗∗X. Then there exists Z ∈ L 1

+

such that 0 - Z ≺ X - Y . Since Y ≺ tX 0 entails X ≺ ∗∗ tX 0, it is clear
that u(X) ≤ v(Y ).
Now let us prove that v is positively homogeneous.By contradiction, assume
that there exist X ∈ L 1

+ , and t ∈ R++ , such that v(tX) < tv(X). Then there
is t ′ ∈ R++ such that v(tX) < t ′u(X 0) < tv(X), tX ≺ t ′X 0. Then, since - is
homothetic, it is also X ≺ t −1 t ′X 0, and therefore,using the fact that ⟨u, v⟩

is a representation of -, and u is positively homogeneous,we arrive at the
contradiction v(X) < t −1 t ′u(X 0). Analogously,it can be shown that for no
X ∈ L 1

+ , and t ∈ R++ , it is tv(X) < v(tX).
Finally, let us show that v is upper semicontinuous. Consider any X ∈ L 1

+ ,
and α ∈ R ++ , such that v(X) < α. Since u is positively homogeneous,
there exists t ∈ R ++ such that v(X) < u(tX 0) < α, X ≺ tX 0. By upper
semicontinuity of -, {Z ∈ L 1

+ : Z ≺ tX 0} is an open set containing X such
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that v(Z ′) < α for every Z ′  ∈ {Z ∈ L 1
+ : Z ≺ tX 0}. This consideration

completes the proof.

We also have the following corollaries.

Corollary 5.5.1. Let - be an interval order on a L 1
+ . Assume that

0 - ∗ X for every X ∈ L 1
+ , and - ∗∗ is upper semicontinuous.There exists a

pair ⟨u, v⟩ of nonnegative positively homogeneous real-valued functionals on
L1

+ representing -, such that u is continuous and v is upper semicontinuous,
if and only if - is homothetic and continuous.

Proof. It is clear that, if there exists a representation ⟨u, v⟩ of the interval
order -, such that u is continuous, v is upper semicontinuous and u and v

are both positively homogeneous, then - is homothetic and continuous.So
assume that - is homothetic and continuous. Since the total preorder - ∗∗

is upper semicontinuous, from considerations in the proof of the previous
theorem we have that - ∗∗ is actually continuous, and therefore, from the
corollary in Bosi, Candeal and Indur´ain[9] , there exists a nonnegative, pos-
itively homogeneous and continuous utility functional u for - ∗∗. Hence,it
suffices to show that, under our assumptions, condition (iii) of the previous
theorem is verified.Consider X0, X, Y ∈ L 1

+ such that 0 ≺ X0, X ≺ Y . De-
fine α = sup{t ∈ R + : tX 0 - X}, β = inf{t ∈ R ++ : Y - ∗∗ tX 0}. Observe
that β is well defined, since, if tX 0 - ∗∗Y for every t ∈ R ++ , then X 0 - ∗∗0
by upper semicontinuity of - ∗∗, and this is contradictory. From continuity
of -, and upper semicontinuity of - ∗∗, it is αX 0 - X, Y - ∗∗βX 0 ( α < β).
Then, for every q̄ ∈ Q++ such that α < q̄ < β, it must be X ≺ ¯ qX 0 ≺∗∗Y ,
and this means that Q++ (X 0) is a strongly i.o. dense subset of (L1+ , -) for
every X 0 ∈ L 1

+ such that 0 ≺ X 0. This consideration completes the proof.
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Corollary 5.5.2. Let - be an interval order on a L 1
+ . Assume that

0 - ∗ X for every X ∈ L 1
+ , - ∗∗ is upper semicontinuous and - ∗ is lower

semicontinuous.There exists a pair ⟨u, v⟩ of nonnegative, positively homo-
geneous and continuous real-valued functionals on L1

+ representing - if and
only if - is homothetic and continuous.

Proof. It is clear that, if there exists a representation ⟨u, v⟩ of the interval
order -, such that u and v are both positively homogeneous and continuous,
then - is homothetic and continuous. So assume that - is homothetic and
continuous. From Corollary 5.5.1, there exists a pair ⟨u, v⟩ of nonnegative
positively homogeneous real-valued functionals on L1+ representing -, such
that u is continuous and v is upper semicontinuous. Observe that, under
our assumptions, the total preorder -∗ is continuous, since continuity of the
interval order - implies upper semicontinuity of - ∗. Indeed,we have that,
for every X ∈ L 1

+ , {Z ∈ L 1
+ : Z ≺ ∗ X} =

∪
{Z ′ ∈L 1

+ :Z ′ -X}
{Z ∈ L 1

+ : Z ≺ Z ′}.
Let us show that the real-valued functional v defined in the proof of the
theorem is a utility functional for - ∗. First consider X, Y ∈ L 1

+ such that
X - ∗ Y . If v(X) = 0, then it is clear that v(X) ≤ v(Y ), since v is nonneg-
ative. If v(X) > 0, then there exists Z ∈ L 1

+ such that 0 - Z ≺ ∗ X, which
implies 0 - Z ≺ ∗ Y . Hence,Y ≺ tX 0 implies X ≺ tX 0, and therefore it is
v(X) ≤ v(Y ) from the definition of v. Now consider X, Y ∈ L 1

+ such that
X ≺ ∗ Y . Then there exist Z ∈ L 1

+ such that X ≺ Z - Y . Since ⟨u, v⟩ is
a representation of -, it is v(X) < u(Z) ≤ v(Y ), which obviously implies
v(X) < v(Y ).
From the proof of theorem 5.5.1,v is positively homogeneous utility func-
tional for the continuous total preorder - ∗, and therefore v must be contin-
uous ([13] Lemma 1).So the proof is complete.
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Remark 5.5.1.The real-valued functional u in the representation ⟨u, v⟩

whose existence is guaranteed in the theorem is actually a utility functional
for the total preorder -∗∗. Further, from the proof of Corollary 5.5.2, the real-
valued functional v defined in the proof of the theorem is a utility functional
for - ∗. In the particular case when the interval order - in Corollary 5.5.2 is a
total preorder, we have that -=- ∗=- ∗∗. Then, it must be u = v (this is not
always the case, as Bridges[18] observed).Indeed, if there exists X ∈ L1

+ such
that u(X) < v(X), then from positive homogeneity of v there exists t ∈ R ++

with u(X) < v(tX) < v(X), and therefore we arrive at the contradiction
X - tX ≺ X. Therefore, Corollary 5.5.2 provides a generalization ofthe
Corollary in Bosi, Candeal and Indur´ain [9] in the case when 0 - X for
every X ∈ L 1

+ , since we have that there exists a nonnegative, positively
homogeneous and continuous utility functional u for a total preorder - on a
L1

+ , such that 0 - X for every X ∈ L 1
+ , if and only if - is homothetic and

continuous.

Example 5.5.1. Given any positive real number α, define the real-valued
functional uα on L2

+ by

uα (X) = E(X) + α
√

V ar(X).

If - is the binary relation on L 1
+ defined by X - Y ⇔ u α (X) ≤ u β (Y )

(α ≤ β), then - is an interval order on L 1
+ which is represented by the

pair ⟨u α , uβ ⟩ of nonnegative, positively homogeneous and L2-(pseudo)norm
continuous real-valued functionals.

Example 5.5.2.Let L 1
+ be a real space of nonnegative real random

variables in Lp(Ω, A, P ), endowed with the Lp-(pseudo)norm topology (p is
any positive real number). Given any increasing function g : [0, 1]→ [0, 1]
such that g(0) = 0, g(1) = 1, the Choquet integral of X ∈ L 1

+ with respect
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to the distorted probability g ◦ P is defined as follows:
∫

Ω
Xdg ◦ P =

∫ ∞

0
g ◦ P{ω ∈ Ω : X(ω) > t}dt.

Given two increasing, concave and continuous functions gu , gv : [0, 1] → [0, 1]
such that g u (0) = g v (0) = 0, gu (1) = g v (1) = 1, gu (t) ≤ g v (t) for every
t ∈ [0, 1], let u(X) =

∫
Ω

Xdg u ◦ P, v(X) =
∫

Ω
Xdg v ◦ P (X ∈ L 1

+ ), and
consider the binary relation - on L 1

+ defined by [X - Y ⇔ u(X) ≤ v(Y )].
Then - is an interval order on L 1

+ , which is represented by the pair ⟨u, v⟩ of
nonnegative, positively homogeneous and Lp-(pseudo)norm continuous real-
valued functionals (see Denneberg [24], Proposition 9.4).
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Chapter 6

Certainty equivalence

6.1 Introduction

It is well known that the problem of associating certainty equivalents to
preferences over stochastic situations,arises in a number of different fields,
like, for example, the theory of risk attitudes or the analysis of stochastic
cooperative games (see e.g.,Luce [36] and Suijs and Borm [44]). The pos-
sibility of endowing such preferences with certainty equivalence functionals
that satisfy relevant requirements (such as positive homogeneity, translation
invariance, monotonicity with respect to first-order stochastic dominance and
subadditivity) has been already investigated by Alcantud and Bosi [3].

We recall that a certainty equivalent is a particular utility functional
which associates to every random variable a value that is indifferent to the
random variable itself.

In this chapter we review the existing results in the literature concerning
continuous certainty equivalents for total preorders and we present some new
concepts and proposals in the case of interval orders.In particular, in Section
6.2 we discuss the existence of a continuous certainty equivalent for a total
preorder, which is in addition translation invariant and subadditive.
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In Section 6.3 we present a possible concept of certainty equivalence func-
tional for interval orders and we prove some sufficient conditions in this di-
rection.

6.2 Existence of a continuous certainty equiv-
alent

In this section we shall discuss the existence ofa continuous certainty
equivalence functional on L1+ endowed with relevant properties.Like before,
we shall denote by (Ω, F , P) a probability space.

Let L 1
+ (R) be the space of all the real-valued random variables with finite

expectation on a common probability space (Ω, F , P), interpreted as the
space of stochastic payoffs.

In what follows, it is assumed that L 1
+ (R) is endowed with the L 1

+ -
pseudonorm topology corresponding to the pseudonorm || · || 1 (i.e., || X || 1=
E [ | X | ] =

∫
Ω | X | dP).

Denote by C(R) (C(Q)) the set of all the constant real-valued (rational-
valued) random variables.

For any given real number d, the constant random variable equal to d will
also be denoted by Xd. Observe that, given a total preorder - on L1+ (R), and
d1, d2 ∈ R, X d1

≺ X d2 (d1, d2  ∈ C(R)) means that the deterministic payoff
equal to d 2 with certainty is strictly preferred to the deterministic payoff
equal to d1 with certainty.

In the sequel, the term continuous referred to either a total preorder or a
real-valued functional on L1+ (R) means continuous in the L1+ (R)-pseudonorm
topology.
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As usual a total preorder - on L 1
+ (R) is said to be continuous if

{Y ∈ L 1
+ (R) : Y - X}, {Y ∈ L 1

+ (R) : X - Y }

are closed sets for every X ∈ L1+ (R).

Definition 6.2.1.[certainty equivalence functional].Given a total
preorder - on L 1

+ (R), we say that a functional C : L1
+ (R) → R is a certainty

equivalence functional for - if C satisfies the following conditions:

(M 1) for every X, Y ∈ L 1
+ (R): X - Y if and only if C(X) ≤ C(Y )) (i.e.,

C is a utility functional for -);

(M 2) for every d ∈ R: C(X d) = d (i.e., the value that C associates to
each deterministic payoff Xd is precisely equal to d).

If in addition the following property is verified:

(M 3) for every X ∈ L 1
+ (R), and for every d ∈ R: C(d + X) = d + C(X)

(i.e., C is linearly separable in the deterministic amount of money d for every
d ∈ IR),

then C is said to be translation invariant.

For an interpretation of conditions (M 1), (M 2) and (M 3), see paragraph
3 in Suijs and Borm [44]. We just recall that, if C satisfies conditions (M 1)
and (M 2) then the following condition holds:

(M2 ′) for every X ∈ L 1
+ (R): X ∼ X C(X) (i.e., the deterministic payoff
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C(X) is indifferent to the stochastic payoff X for every X ∈ L 1
+ (R)). This

consideration motivates the name of Certainty equivalence.

In order to show that property (M2’) holds, consider that C(X) = C(XC(X) )
(a property that is directly implied by condition (M2)) is equivalent to
X ∼ X C(X) by property (M1).

Definition 6.2.2 [traslation invariant total preorder].We say that
a total preorder - on L 1

+ is translation invariant if the following condition is
verified:

(T ) for every d ∈ IR, and for every X, Y ∈ L 1
+ : X - Y if and only if

X + X d - Y + X d.

Remark 6.2.1. It is easily seen that translation invariance of a total
preorder - on L 1

+ is a necessary condition for the existence of a real-valued
functional C on L 1

+ satisfying conditions (M 1), (M 2) and (M 3). Indeed

X - Y ⇔ C(X)
M1
≤ C(Y ) ⇔ C(X) + d ≤ C(Y ) + d

M2⇔ C(X) + C(X d) ≤
C(Y ) + C(X d) M3⇔ C(X + X d) ≤ C(Y + X d) M1⇔ X + X d - Y + X d

We recall that a total preorder - on L 1
+ (R) is said to be order-separable

if the following condition holds:

(S) there exists a countable subset Z of L1
+ such that, for every X, Y ∈ L 1

+ ,
if X ≺ Y then there exists Z  Z∈  such that X ≺ Z ≺ Y .

In the previous definition, Z is said to be an order-dense subset of L1+ .
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In this section, we characterize the existence of a unique continuous cer-
tainty equivalence functional C for a total preorder - on L 1

+ (R) satisfying
relevant properties.

We first present necessary and sufficient conditions for the existence of a
unique continuous real-valued functionalC satisfying conditions (M 1) and
(M 2). The following proposition has been already proved by Alcantud and
Bosi (2003, Theorem 3.3) in a slightly different context.

Proposition 6.2.1.Let - be a total preorder on L 1
+ (R). Then the

following conditions are equivalent:

(i) There exists a unique continuous real-valued functionalC on L 1
+ (R)

satisfying conditions (M 1) and (M 2);

(ii) The following conditions are verified:

(a) - is order-separable;

(b) - is continuous;

(c) for every d1, d2 ∈ IR: d1 < d 2 ⇒ X d1
≺ X d2 .

In the following lemma, we clarify the strict connection between con-
tinuity of a real-valued functional C on L 1

+ (R) satisfying conditions (M 1)
and (M 2) and continuity of the total preorder - on L 1

+ (R). The immediate
proof is omitted since property (M 1) simply says that a certainty equivalence
function is in particular a utility functional.
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In the sequel, for the sake of convenience we shalluse indifferently the
notation X α and ᾱ for every non negative real number α.

Lemma 6.2.1. Let - be a total preorder on L 1
+ (R). A real-valued

functional C on L 1
+ (R) satisfying conditions (M 1) is continuous if and only

if - is continuous.

We are ready to present a characterization of the existence of a continuous
and traslation invariant certainty equivalence functional. Just before we
present a very simple example,that is well know in actuarial mathematics
since it is related to a very popular premium principle, of a functional that
is traslation invariant and continuous but not positively homogeneous.

Example 6.2.1.Define on L2
+ (R) the following functional C:

C(X) = E(X) + αV ar(X).

Then C is traslation invariant and continuous but not positively homo-
geneous.

Theorem 6.2.1. Let - be a total preorder on L 1
+ . There exists a

certainty equivalence functional C for - satisfying C(X 0) = 0 such that






A1. C is nonnegative,

A2. C is translation invariant,

A3. C is continuous,
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if and only if the following conditions are verified:





B1. X 0 - X for every X ∈ L 1
+ ,

B2. - is translation invariant,

B3. X ≺ X + λ̄ f or every X ∈ L 1
+ , λ ∈ R ++ ,

B4. - is continuous,

B5. T here is a utility f unctional U f or - .

Proof. It is clear that conditions A1 through A3 togheter with the
condition C(X 0) = 0 imply conditions B1 through B5 . So assume that
conditions B1 through B5 hold. By conditions B4 and B5, there exists a
continuous utility functional U for the total preorder - (see e.g. Bridges and
Mehta [6, Theorem 3.2.9]). Observe that condition B3 imply the following
condition:
(∗) X λ 1

≺ X λ 2 for every λ1, λ 2 ∈ R+ such that λ 1 < λ 2.
Then it can be shown that there exists a continuous certainty equivalence
functional C for - (by Proposition 6.2.1). Since it is necessarily C(̄0) = 0,
we have that C is nonnegative by condition B1 . Define a real functional C
on L1

+ by

C(X) = inf{C (Z) + λ : X ≺ Z + λ̄, λ ∈ R ++ , Z ∈ L 1
+ } (X ∈ L 1

+ ).

Since X < X + X λ for every λ ∈ R ++ by the definition of C and condition
B3 , we have that C(X) ≤ C (Z) + λ for every λ ∈ R ++ that implies
C(X) ≤ C(X) + λ for every X ∈ L 1

+ . We claim that C is a certainty
equivalence functional for - which satisfies conditions A1 through A3.
In order to prove that C is a certainty equivalence functional for -, we first
show that C is a utility functional for -. Consider X, Y ∈ L 1

+ such that
X - Y . Since Y ≺ Z + λ̄ entails X ≺ Z + λ̄, it is C(X) ≤ C(Y ) from
the definition of C. Now consider X, Y ∈ L 1

+ such that Y ≺ X. Then by
conditions B3 and B4 there exists λ ∈ R ++ such that Y ≺ Y + λ̄ ≺ X.

83



Indeed, if X - Y + λ̄ for every λ ∈ R ++ , then X - Y by continuity of -
and continuity of the vector operation +. Since C(Y ) < C(Y ) + λ from the
definition of C, in order to prove that C(Y ) < C(X) it suffices to show that it
must be C(Y )+λ ≤ C(X). By contradiction, assume that C(X) < C(Y )+λ.
Then, from the definition of C, there exist Z ∈ L 1

+ , and µ ∈ R++ such that
X ≺ Z + ¯ µ, C(X) < C(Z) + µ < C(Y ) + λ. Then, since - is translation
invariant, C is a certainty equivalence functional for -, and property ( ∗)
above holds, we have that X ≺ Z + ¯µ ∼ C(Z) + µ ≺ C(Y ) + λ, and therefore
it is X ≺ C(Y ) + λ, which implies X ≺ Y + λ̄ (a contradiction).
In order to prove that C( λ̄) = λ for every λ ∈ R ++ , first observe that
C( λ̄) ≤ λ = C( λ̄). If there exists λ ∈ R ++ such that C( λ̄) < λ, then
perfectly analogous considerations leads to the existence ofZ ∈ L 1

+ , and
µ ∈ R++ such that λ̄ ≺ Z + µ̄ ≺ λ̄, and this is contradictory.
Let us show that C is translation invariant (i.e., condition A2 holds). By
contradiction, assume that there exist X ∈ L 1

+ , and λ ∈ R ++ such that
C(X + λ̄) < C(X) + λ. Then, from the definition of C, there exist Z ∈ L 1

+ ,
and µ ∈ R++ such that C(X + λ̄) < C(Z)+µ < C(X)+λ, X + λ̄ ≺ Z + µ̄. If
µ ≥ λ, then X ≺ Z + µ − λ by translation invariance of - (condition B2 ),
and therefore it is C(X) < C(Z)+µ−λ (a contradiction). If µ < λ, then X +
λ − µ ≺ Z by translation invariance of -. Since C is a certainty equivalence
functional for -, we have that X + λ − µ ≺ C(Z). If C(Z) ≤ λ − µ, then
we have X + λ − µ − C(Z) ≺ 0̄ from translation invariance of -, and this
contradicts condition B1 . So it must be C(Z) > λ − µ. Then by translation
invariance of -, we have X ≺ C(Z) − λ + µ. Hence, using the fact that C is
a certainty equivalence functional for -, it is C(X) < C(Z) − λ + µ, which
is a contradiction. Analogously,it can be shown that for no X ∈ L 1

+ , and
λ ∈ R++ , it is C(X) + λ < C(X + λ̄).
It remains to show that C is continuous. In order to prove that C is upper
semicontinuous,consider X ∈ L 1

+ , and α ∈ R ++ such that C(X) < α.
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Then, from translation invariance of C, there exists λ ∈ R ++ such that
C(X) < C(X + λ̄) < α. Hence, from continuity of -, and using the fact that
C is a utility functional for -, we have that C(X + λ̄) = {Z ∈ L 1

+ : Z ≺

X + λ̄} is an open subset of L1
+ containing X, such that C(Z) < α for every

Z ∈ L 1
+ (X + λ̄). Finally, in order to show that C is lower semicontinuous,

consider X ∈ L 1
+ , and α ∈ R + , such that 0 ≤ α < C(X). Consider any

λ ∈ R ++ with α < λ < C(X). Since C is a certainty equivalence functional
for -, and - is continuous, we have that C(λ̄) = {Z ∈ L 1

+ : λ̄ ≺ Z} is an
open subset of L1

+ containing X, such that C(Z) > α for every Z ∈ C( λ̄).
This consideration completes the proof.

Now let us characterize the existence of a nonnegative, positively homo-
geneous, translation invariant, subadditive and continuous certainty equiva-
lence functional C for a total preorder - on L 1

+ .

Definition 6.2.3.[subadditive functional].A real functional C on
L1

+ is said to be subadditive if, for every X, Y ∈ L 1
+ ,

C(X + Y ) ≤ C(X) + C(Y ).

Theorem 6.2.2. Let - be a total preorder on L 1
+ . There exists a

certainty equivalence functional C for - such that






C1. C is nonnegative,

C2. C is positively homogeneous,

C3. C is translation invariant,

C4. C is continuous,
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if and only if the following conditions are verified:





D1. 0̄ - X for every X ∈ L 1
+ ,

D2. - satisf ies constant relative risk aversion,

D3. - is translation invariant,

D4. X ≺ X + λ̄ f or every X ∈ L 1
+ , λ ∈ R ++ ,

D5. - is continuous.

The functional C above is also subadditive if and only if in addition the
following condition holds:

D6. (X - λ̄) and (Y - ¯ µ) ⇒ X+Y - λ + µ f or every X, Y  L∈ 1
+ , and λ, µ ∈ R ++ .

Proof. It is clear that conditions C1 through C4 imply conditions D1
through D5 . So assume that conditions D1 through D5 hold. By condi-
tions D1 , D2 and D5, there exists a nonnegative,positively homogeneous
and continuous utility functional U for - (see the corollary in Bosi, Candeal
and Indur´ain [9]). Since by condition D4 it must be 0̄ ≺ 1̄, and therefore
U(1̄) > 0, it is immediate to check that the functional C on L 1

+ defined by
C(·) = (U ( 1̄))−1 U (·) is a nonnegative, positively homogeneous and continu-
ous certainty equivalence functional for -.From the proof of Theorem 6.2.1,
we have that the functional C defined there is a nonnegative, translation in-
variant and continuous certainty equivalence functional for -.We have just
to show that such a functional is positively homogeneous, as a consequence of
the fact that C ′ is a positively homogeneous certainty equivalence functional
for -. By contradiction , assume that there exists X ∈ L 1

+ , and λ ∈ R ++

such that C(λX) < λC(X). From the definition of C, there exists µ ∈ R++ ,
and Z ∈ L 1

+ , with C(λX) < C(Z) + µ < λC(X), λX ≺ Z + µ. By condition
D2 , it is X ≺ λ −1 Z +λ −1 µ, and therefore, using the fact that C is positively
homogeneous,we arrive at the contradiction C(X) < λ −1 C(Z) + λ −1 µ as a
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consequence of the definition of C.Analogously, it can be shown that for no
X ∈ L 1

+ , and λ ∈ R++ , it is λC(X) < C(λX).
Finally, if C is any subadditive certainty equivalence functional for -, then
it is clear that condition D6 is satisfied. Conversely,assume that condition
D6 holds in addition to conditions D1 through D5 . Let us prove that the
certainty equivalence functionalC defined in the proof of Theorem 6.2.1 is
subadditive. If there exist X, Y ∈ L 1

+ such that C(X) + C(Y ) < C(X + Y ),
then from the definition of C there exist Z 1, Z2 ∈ L 1

+ , and λ 1, λ2 ∈ R ++

with C(X) + C(Y ) < C(Z 1) + λ 1 + C(Z 2) + λ 2 < C(X + Y ), X ≺ Z 1 + λ 1,
Y ≺ Z 2 + λ 2. Define λ = C(Z 1) + λ 1, µ = C(Z 2) + λ 2. Using the fact
that C is also a certainty equivalence functional for -, and - is translation
invariant, we have that X ≺ λ̄ and Y ≺ ¯ µ, and therefore X + Y ≺ λ + µ

by condition D6 . Hence λ + µ < C(X + Y ) is contradictory, since C is a
certainty equivalence funtional for -. So the proof is complete.

A number of interesting examples of preferences which admit a certainty
equivalence functional are found in Suijs and Borm [44].Let us only present
a further example concerning the existence of a certainty equivalence func-
tional which is also continuous.

Example 6.2.2 Let g :[0, 1]R → [0, 1]R be a increasing and concave con-
tinuous function such that g(0) = 0, g(1) = 1. The Choquet integral of
X ∈ L 1

+ (R) with respect to the distorted probability µ = g ◦ P, denoted by
∫

Ω Xdµ, is
∫ ∞

0
µ{ω ∈ Ω : X(ω) ≥ u}du +

∫ 0

−∞
[µ{ω ∈ Ω : X(ω) ≥ u} − 1] du.

Consider the real-valued functional C on L1
+ (R) defined by C(X) =

∫
Ω

Xdµ

(X ∈ L 1
+ (R)), and let - be the total preorder on L 1

+ (R) defined by X - Y if
and only if C(X) ≤ C(Y ) (X, Y ∈ L 1(R)). From standard properties of the
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Choquet integral, we have that C is a certainty equivalence functional for -.
Further, C is continuous from Proposition 9.4 in Denneberg [24].

Remark 6.2.2. The fact that we have considered preferences on the
space L1

+ (R) of real-valued random variables with finite expectation. Such
an assumption is made only for the ease of exposition, and because such
a space is traditionally used in the literature concerning stochastic game
theory. All the previous results are still valid if preferences are defined on any
pseudometric space of real-valued random variables on a common probability
space (in particular, Lp(R) with p any positive real number).

6.3 Certainty equivalence with interval orders

How to define a certainty equivalence functional in the case of an interval
order? We can take advantage of the considerations contained in the previous
section together with the results concerning the traces of an intervalorder.
Let us begin from the following proposition.

Proposition 6.3.1 If an interval order - on L1+ is represented by a pair
(u, v) of real-valued functions with u(X C ) = C and v(X C ) = C, ∀C ∈ R+

then the following conditions are equivalent for every random variable X ∈
L1

+ , and C ∈ R+ :

(i) X C is such that X ∼ X C

(ii) u(X) ≤ C ≤ v(X).

Proof. Consider that X - X C ⇔ u(X) ≤ v(X C ) = C and X C - X ⇔
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u(X C ) = C ≤ v(X). Therefore, X ∼ X C is equivalent to both X - X C and
X C - X, and it is in turn equivalent to u(X) ≤ C ≤ v(X). The converse is
immediate. This consideration completes the proof.

Hence,it is clear that, in the particular case when, in the above propo-
sition, we have that u = v, then - turns out to be a total preorder with a
certainty equivalence functional u (the situation that we have just studied).

In general, it is clear that the certain random variable that is indifferent
to any random variable X is not uniquely determined when we consider the
more general case of an interval order.

Our considerations suggest the following definition of a certainty equiva-
lence functional for an interval order.

Definition 6.3.1 Let - be an interval order on L1+ that is represented by
a pair (u, v) of real-valued functions such that u(X C ) = C, and v(X C ) = C,

∀C ∈ R ++ . Then we say that a functional ϕ : L 1
+ → R + is a certainty

equivalence functional for - if the following condition holds for all X ∈ L 1
+ :

ϕ(X) ∈ [u(X), v(X)].

It should be noted that the definition of a certainty equivalent for an
interval order does not require the existence of a certainty equivalence func-
tional neither for - ∗∗ (the case when u is a utility function for - ∗∗) nor for
- ∗ (the case when v is a utility function for - ∗ in the above representation
(u, v)).
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The following proposition is an immediate consequence of the definition
above.

Proposition 6.3.2.Let - be an interval order on L1
+ that is represented

by a pair (u, v) of real-valued functions such that u(XC ) = C, and v(X C ) = C,

∀C ∈ R++ . Then both u and v are certainty equivalence functionals for -.

As an immediate corollary, we get the following result.

Corollary 6.3.1.Let - be an interval order on L1
+ that is represented

by a pair (u, v) of positively homogeneous real-valued functions such that
u(X 1) = 1, and v(X 1) = 1,. Then both u and v are certainty equivalence
functionals for -.

Proof. Consider that if u is a positively homogeneous real-valued func-
tion such that u(X 1) = 1, then u(X C ) = u(CX 1) = Cu(X 1) = C for all
C ∈ R+ . Then Proposition 6.3.2 applies.

Proposition 6.3.3.Let - be an interval order on L 1
+ , If there exists a

certainty equivalence functional ϕ for either -∗ or - ∗∗, then ϕ is a certainty
equivalence functional for -.

Proof. Consider that, for all X, Y ∈ L 1
+ ,

(X ∼ ∗ Y ) or (X ∼ ∗∗Y ) ⇒ X ∼ Y.

Hence, if for example there exists a certainty equivalence functional ϕ for
- ∗, we have that, for all X ∈ L 1

+ ,

X ∼ ∗∗X ϕ(X) ⇒ X ∼ X ϕ(X) .
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The proof is now complete.

Proposition 6.3.4 Let - be an upper semicontinuous order-separable
interval order on L 1

+ . Then there exists a continuous certainty equivalence
functional for - provided that:

(i) - ∗ is lower semicontinuous;

(ii) d 1 < d 2 ⇒ X d1
≺∗ X d2 (d1, d2 ∈ R+ ).

Proof. We first show that the trace -∗ satisfies conditions (a), (b) and (c)
of Proposition 6.2.1.First of all, it is clear that - ∗ is order separable.Indeed,
assume that there exists a countable set D such that if X ≺ Y then there
exist D  D∈  such that X ≺ D ≺ Y. Then X ≺ ∗ Y ⇐⇒ X ≺ Z - Y implies
that there exist D 1, D2  ∈ D with X ≺ D 1 ≺ D2 ≺ Z - Y ⇒ X ≺ ∗ D2 ≺∗ Y.

Therefore, - ∗ is order-separable.
We now prove that - is continuous. Clearly, due to our assumptions, it

sufficies to show that -∗ is upper semicontinuous.This is clear, since for all
X ∈ L 1

+ :

L≺∗(X) = {Z ∈ L 1
+ : Z ≺ ∗ X} =

∪

Z ′ -X

L≺(Z
′

)

and therefore L≺∗(X) is an open set since - is upper semicontinuous.
Therefore, since condition (ii) holds, there exists a certainty equivalence func-
tional C for - ∗ by Proposition 6.2.1. Finally, C is a certainty equivalence
function for - by Proposition 6.3.3.
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Chapter 7

Risk adverse decision making
under catastrophic risk

7.1 Introduction

Catastrophic events such as hurricane and earthquakes are the dominant
source of risk for many property casualty insurers.Primary insurers usually
limit the scale and geographic scope of their operations in order to focus on
core competencies such as marketing,underwriting and loss control. But
his often leaves them without sufficient geographic spread to diversify catas-
trophe risk. The traditional hedge for the primary insurer is reinsurance.
Specialist reinsurers achieve a specialspread of risk and can therefore bear
catastrophe risk that is undiversifiable to the primary. But the transaction
costs associated with reinsurance,and therefore premiums,are high. High
premiums, coupled with the fact that catastrophe losses exhibit little cor-
relation with capital market indices, has attracted considerable activity in

93



Wall Street in searching for new instruments that securitize catastrophe risk.
Indeed many players are now talking of catastrophe risk being a new “as-
set class” and new instruments such as catastrophe options and catastrophe
bonds are starting to appear. The rationale for these new instruments is
usually developed as follows.Recent catastrophe events such as Hurricane
Andrew and the Northridge earthquake have imposed costs on the insurance
industry of an order of magnitude not thought possible only a decade ago.
More sophisticated modeling now presents potentiallosses to the industry
of $50 billion or more. Examples would be Andrew hitting Miami, a major
quake on the New Madrid Fault and a repeat of the 1906 San Francisco earth-
quake. These events could wipe out 25% or more of the entire industry’s net
worth which currently is in the order of$200 billion. Two such events, or one
such event combined with continued mass tort claims (e.g.successful plain-
tiff claims in tobacco litigation) could cripple the whole industry. However,
losses of this size would hardly cause a ripple in capitalmarkets. The U.S.
capital market currently consists of securities representing some$13 trillion
of investor wealth and the loss scenarios cited above amount to less than
one standard deviation of daily trading volume. Presentations by merchant
bankers, reinsurance brokers and others have echoed this potentialfor di-
versifying catastrophe risk within the capital market. The high transactions
costs of reinsurance offers potential for hedging instruments to be offered
to primary insurers that are both competitive with current reinsurance and
which offer investors high rates of return.Moreover, since catastrophe risk is
uncorrelated with market indices, the benchmark for such investments is just
the risk free rate.Pricing new instruments requires that the expected loss be
estimated with some.Until recently, insurers and reinsurers had a compara-
tive advantage in information on catastrophic events.But in the past decade
a number of modeling firms have developed models that combine seismic and
meteorologicalinformation with data on the construction, siting, and value
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of individual buildings. These models can be used to simulate the economic
effects of many thousands of storms and earthquakes.Although such models
are used by the insurance firms and reinsurers, mainly for loss estimation and
re-balancing their exposure, the same models are now available to other com-
panies and investors.The arrival of the modelers and their models is eroding
the comparative information advantage of insurers and reinsurers and open-
ing the door to new players.Insurers will retain their comparative advantage
over, say, merchant banks in related insurance services such as marketing,
underwriting and loss settlement facilities.But the stage has been set for an
unbundling of insurance products with insurers retaining marketing under-
writing and settlement services and risk bearing by-passing the reinsurance
industry and being provided more directly from the capital market.But the
combination of high transaction costs for reinsurance and the vast capacity
of the capital market for diversification, is not sufficient to ensure the success
of these new instruments.The costs associated with reinsurance do not nec-
essarily reflect monopoly rent. Relationships between primary insurers and
reinsurers involve moral hazard; the relationship relaxes the incentive for the
insurer to underwrite carefully or to settle claims efficiently. Consequently,
the reinsurer will monitor the primary. Moreover, long term relationships are
often formed to counter such expropriation.The apparently high transaction
costs of reinsurance may simply reflect the resolution of moral hazard.If new
instruments such as catastrophe options and bonds are to compete success-
fully with reinsurance, they must be able resolve incentive conflicts between
the primary insurer and the ultimate risk bearer. Indeed, if moral hazard is
not resolved, using past insurance loss data to estimate the potential returns
for purchasers of catastrophe bonds, etc, is spurious.
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7.2 Risk adverse decision making and the safety
principle

In the existing theories of choice, uncertain outcomes are usually modeled
by finite-valued random variables, i.e.measurable functions from a probabil-
ity space (Ω, F , P) to the real line R (where F is a sigma algebra of sets in Ω,
and P is a probability measure on (Ω, F ), which will be referred to as a stan-

dard probabilistic setting). Agent’s preference relation is then represented by
weak relation - on arbitrary set A of r.v.’s. (i.e. random variables),where
Y - X means that either a random variable X is preferred over a random
variable Y (Y ≺ X) or X and Y are equally preferable X ∼ Y . Usually, the
attention is restricted to r.v.’s from L 1(Ω) ( = L 1(Ω, F , P)), i.e. such that
E|X| < ∞, where E| · | denotes the expected value.

Let F X (x) = P |X ≤ x| be a cumulative distribution function (CDF) of
X. If F X (x) ≡ F Y (y) for two r.v.’s X and Y , we say that X and Y have the
same distribution and write X

d
∼ Y .

Let F be the set of possible CDFs, i.e. the set of non-decreasing right-
continuous functions F with lim k→−∞ F (x) = 0 and lim k→+∞ F (x) = 1. The
probability space Ω is assumed to be atom-less, i.e. there exists a random
variable with a continuous CDF. For any r.v.’s X and Y and every λ∈ [0, 1],
an r.v. Z with the CDF F Z (z) = λF X (z) + (1-λ)F Y (z) is called λ- lottery
of X and Y and is denoted by Z = λX + (1-λ)Y . Also any constant C
corresponds to a constant r.v.X C such that P [XC = C] = 1.

A preference relation - is called rational if it satisfies a certain set of
principles (axioms) of rational behavior that traditionally includes the axioms
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of completeness, monotonicity, and continuity.

Often, - is also assumed to be risk adverse, i.e. a sure outcome C is
preferred to any lottery with the expected payoff of C.

We recall now the context and terminology that we are going to refer to
in this chapter.

(i) Completeness: - defines a total order on A, namely, - is antisymmet-

ric , transitive (Y -X and Z - Y imply that Z -X) and total (Y -X or
X- Y for every X and Y ).

(ii) Monotonicity : Y -X when P[X≥ Y ] = 1. If, in addition, Y ≺X

when P[X > Y ] > 0, then is called strictly monotone.

(iii) Continuity : the sets {Y ∈ A : X - Y } and {Y ∈ A : Y - X} are
closed (Equivalently, X≻Y implies Xn ≻Yn for large enough n when Xn → X

and Yn → Y as n→ ∞), where “closedness” is defined in a topology specified
for each aplication. If A = L 1(Ω), then the continuity with respect to L 1

norm is a natural choice. The continuity axiom guarantees that infinitely
small variations in an r.v. can’t drastically change preference relations.

Definition 7.2.1 [risk adverse preference relation].Let X and Y be
r.v.’s such that E[Z/X=x] = 0 for all x. If Y

d
∼X + Z, we say that Y can be

obtained from X by mean-preserving spread. Then - is risk adverse if Y - X
when Y is obtainable from X by mean-preserving spread.By the definition
above, X

d
∼ Y implies X ∼ Y , i.e. - depends only on the CDFs’ of X and

Y . In fact, such - is called law invariant. Also, it follows from definition
that Y - E[Y ] for all Y (risk aversion). A monotone and law-invariant
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- is also called consistent with the first-order stochastic dominance (FSD),
while monotone and risk averse - is called consistent with the second-order

stochastic dominance (SSD).

Definition 7.2.2 [safety first principle].Let X and Y be r.v.’s, and let
α(X) and α(Y ) be the probabilities of catastrophic events associated with X

and Y , respectively.A preorder % is consistent with the safety-first principle

if X≻ Y when α(X) ≤ α(Y ).

In particular, according to the definition proposed from Grechuk[33], that
appears a little bit inaccurate, we shall adopt the following definition.In the
paper by Grechuk it is, al least implicity, assumed that total preorders must
be taken into consideration. Actually this assumption is not needed and
therefore we can simply deal with not necessary total preoders.

Definition 7.2.3.A preference relation % is said to be consistent with

the safety-first principle if X≻ Y when the following property is verified:

∃c ∈ R : FX (c
′

) ≤ F Y (c
′

) ∀c
′

< c

(*) and

FX (c) < F Y (c)

It is well-known, however,that this definition of the safety-first principle is
inconsistent with some basic axioms on a preference relation,namely with
continuity and risk aversion. (see Proposition 1 in Grechuk[33]).

In our standard probabilistic setting we have two generic random variables
X, Y and a third Z that is a Mixture of the others two random variables
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obtained through the disintegration formula on the partition of certainly
event. We have that Z = λX + (1 − λ)Y (or we can write Z = XλY ) where
the probability of Z, P(Z) is equal to λ ∈ [0, 1]. We will obtain that the
Cumulative distribution function of Z is: FZ (z) = F X (z) λ + F Y (z)(1 − λ).

Proposition 7.2.1 [safety-first principle in the standard proba-
bilistic setting].If - is consistent with the safety-first principle in the
standard probabilistic setting, then:

(i) - is not continuous ( in any topology in which Xc+1/n → X c as n →∞).

(ii) - is not risk adverse.

Proof (i). To show that in our standard probabilistic setting the safety-
first principle implies that % is not continuous we take the set {Y ∈ A :
X ∗ - Y } with X ∗ = 1/2X c + 1/2X c+1 in order to show that such a set
is not closed. Indeed, we know that a sequence of constants

{
X c+1/n

} ∞

n=1

converges to Xc and further X c+1/n ≻ X* for any n ∈ N, by the safety-first
principle. On the other hand, by the safety first-principle again, it must
be X ∗ ≻ X c ⇐⇒ X c ̸̸  {∈ Y ∈ A : X ∗ - Y }. Recall that the postulates
of the axiom of continuity require that any two sets {Y ∈ A : X - Y } ,
{Y ∈ A : Y - X} are closed, that means that X ≻ Y implies X n ≻ Yn for
large enough n when Xn → X and Y n → Y with n → ∞ (i.e. that occurs
up to the limit).

From the definition of the Safety-first principle we see that when a(X) <
a(Y ) ⇒ X ≻ Y . So we have that α(X ∗) = P(X ∗ ≤ c) = F X ∗(c) = [F X c (c)
+F X c+1 (c)]. So we take α(X c+1/n ) = P(X c+1/n ≤ c) = F (X c+1/n ). Now we
make the comparison to negate the continuity in this case.We have to prove
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that α(X c+1/n ) < α(X ∗). In our particular case if we replace the values
obtained from the analysis of the cumulative distribution function, we see
that:

FX c+1/n
(c) < 1/2F X c (c) + 1/2F X c+1 (c) ⇒ 0 < 1/2,

FX c+1/n
(c) = P(X c+1/n ≤ c) = 0,

FX c (c) = P(X c ≤ c) = 1,
FX c+1 (c) = P(X c+1 ≤ c) = 0.

Considering then the analysis of the Cumulative Distribution Function
we can then say that under the safety-first principle the preorder is not
continuous.So the proof is complete.

Proof (ii). To show that - is not risk adverse we find a case that denies
the relation of risk adverse only in our standard probabilistic setting. We
take Y ∗ ≻ X E[Y ∗] for Y ∗ = 1

2
X c−1 + 1

2
X c+1 . We remember that our decision

maker is risk adverse if Y - X ⇐ Y
d
∼ X +Z (i.e. it means that he prefers X

to Y because X is less dispersed).Even in this case X
d
∼ Y implies that the

preference - depends only on the Cumulative Distribution Function of X and
Y . This property is referred to as law invariance; we can say that our decision
maker is Risk adverse if prefers a sure outcome E[Y ] to a random value Y .To
deny the axiom we have to verify that α(Y ∗) > α(X E[Y ∗]). Now we replace
the Cumulative Distribution Function: P(Y ∗ ≤ c) ≤ P(X E[Y ∗] ≤ c) and
replacing to E[Y ∗] the value of Y∗ we have that E[Y∗] = E[X c−1

1
2

X c+1 ] =
1
2(c−1)+ 1

2(c+1) = 1
2(c−1+c+1) = c. Now we have that P(XE[Y ∗] ≤ c) = 1,

while P(Y ∗ ≤ c) = 1
2 implies that P(Y ∗ ≤ c) ≤ P(X E[Y ∗] ≤ c) and so we

can say that the Safety-first Principle implies that % is not risk adverse
(otherwise we would have to find that Y - X. So the proof is complete.

Remark 7.2.1.It should be noted that the preorder - in the statement
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of the previous theorem is not required to be total. Therefore, as far as
we know, since the existence ofan upper semicontinuous order preserving
function u for - doesn’t imply that - is upper semicontinuous, we have that
a preorder - can at the same time satisfy the safety-first principle and admit
an upper semicontinuous order-preserving function.

Remark 7.2.2.Proposition 7.2.1 actually ensures that a total preorder
that is consistent with the safety-first principle is not upper semi-continuous
and therefore it cannot admits an upper semi-continuous utility function.

Remark 7.2.3.If a total preorder - is consistent with the safety-first
principle in the standard probabilistic setting, then it doesn’t admit a con-
tinuous utility function (because otherwise it is continuous).

7.3 Negative results in the presence ofthe
safety principle

We now enrich the previous considerations by introducing interval orders.
We first need the following definition.

Definition 7.3.1 [safety first principle for intervalorders]. An
interval order % is consistent with safety first principle if X ≻ Y when
condition (*) in definition 7.2.3 holds.

Corollary 7.3.1. If an interval order - is consistent with the safety-
first principle in the standard probabilistic setting and it admits an (upper
semi)continuous utility representation (u, v) than neither u is a utility func-
tion for - ∗∗nor v is a utility function for - ∗.
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Proof . We recall that if - is an interval order then, for all X, Y we have
that

X ≺ Y ⇒ (X ≺ ∗ Y ) and (X ≺ ∗∗Y )

Therefore it is clear that if an interval order - satisfies the safety first prin-
ciple then both the associated total preorders -∗ and - ∗∗ satisfy the safety
first principle. Indeed if for any two random variables X, Y condition (*) of
definition 7.2.3 is verified then we have that X ≻ Y that in turn implies that
X ≻ ∗ Y and also X ≻ ∗∗ Y . Then the traces cannot admit any continuous
utility function by Remark 7.2.3.

Definition 7.3.2 A preorder . is said to be an extension of a preorder
- if for all X, Y ∈ L 1

+ ,

X - Y ⇒ X . Y,

X ≺ Y ⇒ X < Y.

The following Corollary to Proposition 7.2.1 may be viewed as interesting.

Corollary 7.3.2 If a preorder - is consistent with the safety-first prin-
ciple in the standard probabilistic setting, then it cannot admit an upper
semicontinuous order preserving function u (or,more generally,there is no
upper semicontinuous weak utility u for its strict part ≺).

Proof. Consider a preorder - which is consistent with the safety-first
principle in the standard probabilistic setting, and assume by contraposition
that there exists an upper semicontinuous weak utility u for its strict part
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≺. Define, for all X, Y ∈ L 1
+ .

X . Y ⇔ u(X) ≤ u(Y ).

Then - is an upper semicontinuous total preorder on L1
+ , with an upper

semicontinuous utility u. Therefore, it is clear that - is upper semicontinuous
(i.e., i . (X) = {Z ∈ L 1

+ : X . Z} = u −1 ([u(Z), +∞[) is a closed subset
of L 1

+ for all X ∈ L 1
+ . This is contradictory by Proposition 7.2.1, since, for

all X, Y ∈ L 1
+ if there exists a constant c such that F X (c) < F Y (c) then

X ≻ Y which implies u(X) > u(Y ) and therefore X > Y . This means
that - is an upper semicontinuous preorder which is consistent with the
safety-first principle in the standard probabilistic setting (impossible). This
consideration completes the proof.

Corollary 7.3.3.If an interval order - is consistent with the safety-first
principle in the standard probabilistic setting, and it admits a representation
(u, v), then neither u is upper (or lower) semicontinuous nor v is upper (or
lower) semicontinuous.

Proof. Since - ∗∗ is also consistent with the safety-first principle due to the
fact that, for all X, Y ∈ L 1

+ , FX (c) < F Y (c) implies that X ≻ Y and in turn
X ≻ ∗∗ Y , and since u is a weak utility for ≻ ∗∗, we have that u cannot be
upper semicontinuous by Corollary 7.3.2.Analogous considerations concern
- ∗ in connection with v. This consideration completes the proof.

As a particular case, we get the following corollary.

Corollary 7.3.4 If a semiorder . admits a representation (u, δ) ( in the
sense that X . Y ⇔ u(X) ≤ u(Y ) + δ for all X, Y ∈ L 1

+ ), then u is neither
upper nor lower semicontinuous.
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Proof. The corollary is just a particular case of Corollary 7.3.1 with
u = u and v = u + δ. 

The following definition is essentially due to Evren and Ok [29]

Definition 7.3.3 [multi-utility representation].A preorder - on L 1
+

is said to have a multi-utility representation if there exists a family F of
increasing (isotone) real-valued functions on L1+ such that, for every pair of
elements (X, Y ) ∈ L1

+ × L 1
+ ,

X - Y ⇔ f(X) ≤ f(Y ) ∀f  F∈ .

In decision theory multi-utility representations have been mainly studied in
connection with possible generalizations of expected utility representations of
incomplete preferences (see e.g.Evren[28]). A (continuous) multi-utility rep-
resentation is important since it characterizes numerically a not necessarily
total preorder.

Definition 7.3.4 [upper semicontinuous multi-utility representa-
tion]. A preorder - on L 1

+ is said to have an upper semicontinuous multi-

utility representation if F is a multi-utility representation of - and every
function f  F∈  is upper semicontinuous.

Before stating an interesting impossibility result that is associated to the
concept of safety-first principle in connection with the notion of un upper
semicontinuous multi- utility representation we need the following lemma.

Lemma 7.3.1.If a preorder - on L 1
+ admits an upper semicontinuous

multi-utility representation, then it is upper semicontinuous.
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Proof. Let - a preorder on L 1
+ and assume that - admits un upper

semicontinuous multi-utility representation functions.In order to show that
i- (X) is closed for all X ∈ L 1

+ , consider Z /∈i- (X)⇔not (X - Z). Then
there exists f  F∈  such that f (Z) < f (X). Then since F only consists of
upper semicontinuous functions,we have that f −1 (] − ∞, f (X)[ is an open
subset of L1

+ that contains Z and is disjoint from i - (X). Therefore i- (X) is
closed (since its complement is open).So the proof is complete.

Proposition 7.3.1 If a preorder - on L1
+ satisfies the safety-first prin-

ciple then it cannot admit an upper semicontinuous multi-utility representa-
tion.

Proof. By Lemma 7.3.1, if a preorder - on L 1
+ admits an upper semi-

continuous multi-utility representation, then it is upper semicontinuous.But
this is in contrast with the safety first-principle by proposition 7.2.1. So the
proof is complete.
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