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RIASSUNTO 

Nel presente lavoro di tesi viene indagata la possibile correlazione tra l'infertilità sine 

causa (o idiopatica) e l'alterazione sia del microbiota vaginale che della risposta 

immunitaria locale. Lo studio del microbiota è stato effettuato mediante la piattaforma di 

sequenziamento di nuova generazione Ion Torrent PGM mentre il dosaggio di fattori 

immunitari solubili è stato effettuato mediante piattaforma Luminex. 

A seguito dell'analisi, le donne affette da infertilità idiopatica hanno mostrato un 

microbiota vaginale simile a quello osservato nelle donne affette da vaginosi batterica 

(Capitolo 1), in particolar modo a quelle appartenenti al gruppo con un Nugent Score 

intermedio (Capitolo 2). 

Tra i Lactobacilli, L. iners, L. crispatus e L. gasseri mostrano un profilo peculiare nelle 

donne affette da infertilità idiopatica. Inoltre, attori secondari come P. bivia, U. parvum e 

E. fergusonii contribuiscono al disequilibrio microbico. Simultaneamente, le donne affette 

da infertilità sine causa mostrano una risposta immunitaria locale alterata. 
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SUMMARY 

In the present work, the possible relationship between the idiopathic infertility, the 

alteration of the vaginal microbiota and that of the local immune response is investigated. 

The next-generation Ion Torrent PGM sequencing platform allowed the survey of the 

vaginal microbial composition, while the Luminex assay permitted the dosage of the 

soluble local immune mediators. 

After the analysis, the women affected with idiopathic infertility showed a vaginal 

microbiota similar to that of women affected with bacterial vaginosis (Chapter 1) and, 

especially, to those women who belong to the intermediate Nugent score group (Chapter 

2). 

Among Lactobacilli, L. iners, crispatus and gasseri have a peculiar pattern in women 

affected with idiopathic infertility. Furthermore, secondary players such as A. vaginae, P. 

bivia, U. parvum, and E. fergusonii contribute to the affected microbiome. Simultaneously, 

an altered immune response is detected in the vaginal niche. 
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INTRODUCTION 

 

The term “microbiota” refers to the total collection of organisms (bacteria, archaea, fungi, 

and viruses) of a geographic region or a time period. In the context of human health, the 

term human microbiota, within which bacteria are the most represented organisms, was 

first introduced to describe the gingival crevice
1
 and, later, for the description of the 

biggest accumulation of bacteria within the human body: the gastrointestinal microbiota
2
. 

The term “microbiome” instead is used to refer to the collection of the genomes of the 

microbes in a particular ecosystem and termed by Nobel laureate Joshua Lederberg
3
. 

Human microbiome meaningfully affects the physiologic function of every organ where 

bacteria are present
4
. The human body harbors an order of magnitude more bacteria than 

human cells
5
. 

The female reproductive tract exhibits a complex microbiome
6
. Considering the influence 

which the microbiome has in every organ, alteration of the microbial structure within 

genital tract may provide insight into the reproductive issues. 

The female reproductive organs are the ovaries, fallopian tubes, uterus, cervix, vagina, and 

vulva. Since the combined primary function of these organs is the reproduction, disorders 

affecting them, including microbiome alteration, can result in infertility. 

Infertility is defined as more than one-year-long timespan of unwanted non-conception 

with unprotected intercourse in the fertile phase of the menstrual cycle
7
, according to the 

guidelines from the National Institute for Health and Clinical Excellence, 2004. 
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Primary and secondary infertility affects a range from 2% to 11% of women of 

reproductive age (20–44 years old)
8
. Infertility may depend on a combination of congenital 

and hormonal disorders, lifestyle, and environmental risks. 

Many therapies successfully solve infertility issues, nonetheless the 15-30% of couples do 

not benefit from them. Couples that do not benefit from the infertility treatments, after the 

assessment of tubal patency, normal ovulatory and sperm parameters, have a diagnosis of 

idiopathic or unexplained infertility
9
 (Figure 1). Couples affected with idiopathic infertility 

likely undergo in vitro fertilization (IVF) procedures. 

 

Figure 1. The involvement of the vaginal microbiome in the idiopathic infertility and in the 

assisted reproductive technology outcome. 

 

Considerable progresses have been afforded in the assisted reproduction field but the 

implantation rate of embryos remains still low. The per cycle success rate is around 25% 
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and the chance for a successful outcome decreases with subsequent attempts
10

. For 

instance, after seven IVF cycles, the cumulative live birth rate is around 60%. Variables 

such as the patient’s age, endometrial receptivity, embryo quality
11

, and embryo transfer 

technique itself
12

 affect the outcome. 

IVF embryo transfer allows the transfer of embryos by a catheter through the cervix into 

the uterus. The bacterial displacement from the cervix to the uterus during the embryo 

transfer is possible and the vaginal microbiome on the day of embryo transfer affects 

pregnancy outcome
13

. 

For instance, the presence of Chlamydia trachomatis DNA in the endocervix of 

asymptomatic women during IVF procedures correlates with the decrease of implantation 

and ongoing pregnancy rates
14

. Also, the presence of Enterobacteriaceae and 

Staphylococcus correlates with a decreased pregnancy rate
15

. On the contrary, colonizing 

the transfer-catheter tip with Lactobacillus crispatus at the time of embryo transfer seems 

to increase the implantation and live birth rates and to decrease the rate of infection
16

. 

The exact features that contribute to the overall success rate of the embryo transfer are not 

yet clarified. The decreased pregnancy rates could be heavily influenced by the inoculum 

of harmful microorganisms into the uterine cavity. Bacteria are able to alter both 

biochemical and structural properties of the endometrium
17

. Furthermore, the high load of 

harmful microorganisms can determine a subclinical chronic endometritis, which, in turn, 

determines a lower uterine receptivity
18

. Likely, a bacterial contamination of the embryos 

during transcervical embryo transfer could affect their ability to implant. 

Lactobacillus species dictate a healthy vaginal environment (Figure 2). In almost all the 

women, Lactobacilli comprise 90–95% of the total bacterial count in the vagina
19

. 
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Figure 2. Eubiosis: the normal vaginal microflora. Dysbiosis: the affected vaginal microflora. For 

instance, the bacterial vaginosis. 

 

Lactobacilli appear after menarche, due to the hormonal changes, while during the pre-

menarcheal period the microbiota is composed by low numbers of strict and facultative 

anaerobes, with most species belonging to bacteria that are likely of enteric origin
20,21

. 

Lactobacilli prevent the growth of potentially virulent bacteria in the vagina by producing 

lactic acid and hydrogen peroxide (H2O2). Lactic acid assures a vaginal pH of 4.5
20

, which 

is inhibitory to the growth of most microbes. H2O2 inhibits microbes with low levels of 

H2O2-scavenging enzymes, such as catalase
22

. Also, H2O2 combined with halide ions and 

peroxidase (present in the vagina)
23

 constitutes a potent system of killing of bacteria and 

viruses. H2O2-producing Lactobacilli in the vagina appear to positively influence the live-

birth rate among women undergoing IVF
24

. 

The surveillance for vaginal microbial composition of both commensal and pathogenic 

microbes is generally performed by a number of immune-related cells and receptors in 

order to help sense the microbial environment
25

. The microbial sensing is based on the 
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microbial motif pattern recognition by pattern recognition receptors (PRRs), such as toll-

like receptors (TLRs)
26

. Microbial stimulation of PRRs initiates the cascades of the 

cytokine/chemokine signaling, for example secretion of interleukin IL-1β, IL-6, IL-8 and 

tumor necrosis factor-α (TNF-α), in order to recruit or activate specialized cells, such as 

NK cells, macrophages, CD4+ helper T-cells, and CD8+ cytotoxic T-cell lymphocytes and 

B lymphocytes
27,28

. Thus, vaginal bacterial community drives the immune response within 

the reproductive tract (Figure 3). 

Figure 3. The surveillance for the microbial composition within the vaginal niche. 

 

Perturbation of the microbial vaginal environment often naturally occurs, leading to a 

dysbiosis. Bacterial vaginosis (BV) is the most spread cause of vaginal dysbiosis. BV 

consists of a reduction of Lactobacilli and an overgrowth of anaerobes, and it remains 

asymptomatic in half of the cases
29

 (Figure 2). Most of the anaerobes involved in the BV 

onset, e.g. Veillonella, Prevotella, Escherichia, produce large quantities of short chain fatty  
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acids (SCFAs)
30,31

. SCFAs (e.g., acetic, butyric, and propionic acids) exert a considerable 

role in a wide array of immune responses. SCFAs influence the immune responses by 

interfering with the cascade of pro-inflammatory cytokines, by inhibiting the immune cell 

migration and phagocytosis, and by inducing apoptosis in various cell types including 

neutrophils
32,33

. 

BV is strongly associated to reproductive failure
34

. Several studies showed that BV is 

particularly prevalent in patients with infertility
35,36

, though it is not clear what risks 

infertile patients affected with BV incur for pregnancy outcome. 

The main spread diagnostic tool for BV is the Nugent score. Nugent et al. developed a 

numerical score based on semi-quantization of Gram-positive rods, Gram-variable 

coccobacilli forms and curved Gram-variable rods. Namely, the morphotypes included in 

the Nugent score are Lactobacillus spp., G. vaginalis and Mobiluncus spp., respectively. 

The score ranges from 0 to 10: score 0-3 is a normal vaginal microflora where Lactobacilli 

are dominant; 4-6 is an intermediate microflora; 7-10 is consistent with BV where 

Lactobacilli are strongly decreased or absent and the two other morphotypes are 

dominant
37

. 

To restore a healthy vaginal microenvironment, physicians exploit antimicrobials drugs. 

The antimicrobials employed during the IVF procedures probably provide little inhibition 

to the great number of bacteria that have the potential to adversely affect the outcome
38,39

. 

Alongside, probiotics are widely used to resolve gynaecological dysbiosis, including BV 

and candidiasis. To improve the vaginal health, probiotic bacteria need to successfully 

colonize the female genital tract, hence to adhere to the vaginal epithelial cells, to produce 

hydrogen peroxide, bacteriocins and biosurfactant, to restore vaginal pH, and to inhibit 

potential pathogens associated with BV
40

. 
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Probiotics are often administered alongside prebiotics that selectively support the growth 

of probiotic microbiota in order to increase their persistence
41

. Commonly used prebiotics 

are short-chain carbohydrates, oligosaccharides and pyrodextrins
42,43

. 

Studies have demonstrated that less than 10% of the microorganisms encompassing the 

human microbiome are cultivable
4
. Molecular techniques have the potential to reveal 

heretofore hidden features of the human microbiome that contribute to health and disease. 

The possibility of amplifying the bacterial 16S rRNA gene directly from samples, both 

human and environmental, allows to identify all bacteria species present in a sample, by-

passing the cultivation step
44

. The amplification and sequencing of variable regions of the 

16S rRNA gene, by exploiting primer sequences that target the conserved regions of this 

gene, assure the identification of a broad phylogenetic spectrum of bacteria (Figure 4). 

Figure 4. The 16S rRNA gene structure (1541 nucleotides, nt). Grey: conserved regions, Green: 

variable regions (V1-V9). 

 

The advent of the next-generation sequencing (NGS) techniques, because of their high-

throughput, cost and time saving features, enabled several surveys of the human microbial 

communities, including the uncultivable microbes. 

Thanks to the NGS techniques, five main clusters of vaginal microbiome were identified 

basing on the ethnicity. Four clusters are dominated by Lactobacilli, namely L. crispatus, 

L. iners, L. jensenii and L. gasseri. The fifth cluster is not dominated by Lactobacilli rather 
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by species usually linked to BV, such as G. vaginalis and Prevotella spp.
45

. Many of the 

newly identified bacteria associated with BV are not considered in the Nugent score, 

highlighting its non-specificity. 

Thus, microbial profiling is useful to provide an overall view of the microbial community, 

microbial diversity, and insight into the metabolic processes occurring in a given 

ecosystem. Furthermore, microbial profiling also has the potential applicability in 

monitoring efforts, such as the results of the attempts to restore a healthy vaginal 

microenvironment. 

Although NGS requires dedicated personnel and facility, it benefits from the ability to 

identify all the bacterial sequences within a specimen, including the low number and 

uncultivable organisms. If compared to the routine cultivation methods, NGS reduces the 

cost of analysis per sample when the aim is that of performing the microbiome survey. 

NGS tools can help researchers to shed the light on unexplained/idiopathic infertility 

thanks to their high efficiency in profiling the microbiome. Highlighting the vaginal 

microbiome structure can extend the knowledge of other possible causes of failed 

conception. 
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AIM 

 

The aim of the research is to highlight the possible relationship between the vaginal 

microbiota structure, the local immune mediators and the unexplained (or idiopathic) 

infertility status. 

The survey of the microbiota and the soluble immune factors can spot bacteria and 

molecules suitable as markers of vaginal milieu healthiness and of prognostic/diagnostic 

utility during the in vitro fertilization procedures. 

In order to pursue the aim, the vaginal microbiota and the local immune response of 

women affected with idiopathic infertility is compared to that women affected with a 

diagnosed cause of infertility, fertile healthy women, and fertile women affected with 

bacterial vaginosis. 
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MATERIALS AND METHODS 

 

Figure 5. Overview of the experimental workflow. 

 

Subjects enrollment, specimen collection and ethical approval 

Ninety-two cervical-vaginal samples were obtained from women that full-filled the 

inclusion eligibility criteria of the study. 

All the women were of Caucasian origin
46

, non-pregnant, of reproductive age (range, 32-

40 years), had no current use of tobacco, alcohol, and contraceptive methods, had no 

hospitalization or use of systemic medication for chronic diseases or antibiotics/probiotics 

(oral or topic) within the 6 months previous to samples collection. 

Among the enrolled subjects, 4 cohorts were identified. 

1. The cohort of women diagnosed with idiopathic infertility (Idiopathic) includes 14 

subjects. The diagnosis is supported by the assessment of the tubal patency by 

hysterosalpingogram or laparoscopy and normal ovulatory function, including mid-luteal 

progesterone, basal body temperature and cervical mucus changes. 
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2. The cohort of infertile women (hereafter referred to as Infertile) refers to 13 subjects 

who showed an impairment of the reproductive tract; the clinical exams identified the 

endometriosis as the most frequent cause, followed by tubaric and ovulatory disorders. 

3. The cohort of healthy women (Control) identifies 30 subjects who performed the 

periodic check-up. 

4. The cohort of women affected with bacterial vaginosis (hereafter referred to as 

Vaginosis) includes 35 women who obtained a Nugent score consistent with altered 

microflora (Nugent score 4-10). 

All the samples were collected in Mother and Child Health Hospital - IRCCS Burlo 

Garofolo, Trieste. Idiopathic and Infertile subjects attended the Assisted Reproductive 

Technology (ART) clinic, while Control and Vaginosis attended the Gynecology clinic. 

The sampling was performed 5-7 days before the menstrual period and before programmed 

in vitro fertilization procedure. Cervical-vaginal samples were collected using the cervex 

brush device (Rovers Medical Devices B.V., The Netherlands) and dissolved in three mL 

of sterile water. After a centrifugation step (5000 x g, 20 min), aliquots of 500 µL were 

immediately prepared and stored at -80°C. 

The study protocol was approved by the Ethics Committee of the IRCCS Burlo Garofolo 

Institute, Trieste (RC 26/13). All women provided written consent and gave permission to 

access medical records in order to obtain their reproductive history and IVF outcome. 

Sample processing and library construction 

The previously prepared aliquots of cervical-vaginal samples were used for DNA 

extraction, using the NucliSENS® easyMAG® system (BioMèrieux, Gorman, North 

Carolina, USA), setting the final elution volume at 50 µl. All DNA samples were stored at 
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-20°C prior to further processing steps. A real time EvaGreen® dye (Fisher Molecular 

Biology, Waltham, USA) PCR was carried out with the degenerated primer 27FYM (5’-

AGR GTT YGA TYM TGG CTC AG - 3’) to construct richer libraries and with the 

U534R primer (primers target the V1-V3 region of 16S rRNA gene, spanning 500 bp). 

A subsequent nested PCR was performed with the primers B338F_P1-adaptor (B338F 5′-

ACTCCTACGGGAGGCAGC-3′) and U534R_A-adaptor_barcode (U534R 5′-

ATTACCGCGGCTGCTGG-3′) to prepare a 200 bp long libraries for final V3 region 

sequencing, in association with the IonXpress Barcode Adapter
47

. 

The PCR reactions were performed using the Kapa 2G HiFi Hotstart ready mix 2X (Kapa 

Biosystems, Massachusetts, USA), 0.5 µM of each primer, and 400 ng/µL of Bovine 

Serum Albumin (BSA). The thermal cycling profile was: 5 min at 95°C, 30 sec at 95°C, 30 

sec at 59°/57°C, 45 sec at 72°C and a final elongation step at 72°C for 10 min. 

To assure the validity of the results, negative controls including no template and no 

bacterial DNA were processed with clinical samples, starting from the pre-analytic phase 

of samples manipulation. A total absence of amplification signal at the end of PCR runs (I 

and II step of PCR) was successfully obtained. 

The size of the amplicon (560 bp for the I PCR and 260 bp for the II PCR) was checked on 

a 2% agarose gel. The amount of dsDNA within the libraries was quantified with a Qubit® 

2.0 Fluorometer (Invitrogen, Carlsbad, California, USA) using the Qubit® dsDNA BR 

Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). 

Ion Torrent Sequencing 

An equal amount (60 ng) of all the libraries was pooled into a single batch. Then, the 

pooled-library was diluted to a concentration of 26 pM. Template preparation was 
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performed using the Ion PGM Template OT2 200 kit on Ion OneTouch™ 2 System 

(Thermo Fisher Scientific, Waltham, MA, USA) and the subsequent quality control was 

carried out on Qubit® 2.0 Fluorometer. The templates were sequenced on the Ion PGM™ 

System machine, using the Ion PGM sequencing 200 KIT V2 (Thermo Fisher Scientific, 

Waltham, MA, USA). A negative control was sequenced to remove the sequencing 

contaminants from the analyses of the samples. 

NGS data processing 

QIIME 1.8.01
48

 was used to analyze the sequencing data. High quality (Q>20) sequences 

were demultiplexed and filtered by quality using split_libraries_fastq.py with default 

parameters, retaining sequences with a minimum length of 150 bp. 

Operational taxonomic units (OTUs) were picked at 97% similarity and clustered against 

the Vaginal 16S rDNA Reference Database constructed by Fettweis et al.
49

 with the open-

reference OTU picking
50

 script, using a uclust clustering tool
51

. 

Then, singleton OTUs and samples with low sequencing depth were removed (less than 

10,000 reads). Rarefaction analysis was done both on separate and pooled samples 

(according to cohorts) by the Chao1 index
52

. Equitability and Simpson reciprocal index 

were used to assess alpha diversity (within-sample diversity). Beta diversity (between 

sample diversity comparison) was surveyed by weighted and unweighted UniFrac distance 

matrices
53,54

 and presented with the principal coordinate analysis (PCoA). Robustness of 

the identified clusters was investigated using jackknifing (randomly resampling sequences 

without replacement). 
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Statistical analyses 

Differences in the microbial community composition between cohorts were investigated 

using analysis of similarity (ANOSIM), Kruskal-Wallis test and similarity percentage 

(SIMPER) analysis. QIIME was used for ANOSIM basing on the UniFrac distance 

matrices and for Kruskal-Wallis using the biom tables as inputs. The vegan package
55

 for 

R software
56

 was used for the SIMPER analysis using taxonomy biom tables as inputs. 

The dataset was deposited in NIH Short Read Archive (SRA: SRP073429). 

Diagnosis of Bacterial vaginosis 

Gram staining of vaginal secretions, Nugent’s criteria and microorganisms isolation were 

performed to assess the diagnosis of bacterial vaginosis. 

The Nugent score takes into account the presence of large gram-positive rods (Lactobacilli 

morphotypes; decrease in Lactobacilli scored as 0 to 4), small gram-variable rods (G. 

vaginalis morphotypes; scored as 0 to 4), and curved gram-variable rods (Mobiluncus spp. 

morphotypes; scored as 0 to 2). It can range from 0 to 10. A score ranging 4-10 is 

consistent with an altered vaginal flora. 

Culture and identification of clinical isolates were carried out on agar plates, including 

Horse blood agar plates as non-selective growth medium, MacConkey agar plates for 

Gram negative bacteria and Mannitol Salt agar plates to discern coagulase positive or 

negative aerobically or anaerobically incubated Staphylococcus. 

Dosage of the soluble immune factors 

The quantification of cytokines and growth factors was performed on a platform based on 

magnetic bead multiplex immunoassays (Bio-Plex, BIO-RAD Laboratories, Milano, Italy). 
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Luminex multiplex panel technology simultaneously measures a panel of 48 analytes 

including cytokines, chemokines and growth factors (Table 1). 

Fifty μL of cervical-vaginal fluid and standards were added in duplicate to a 96 multiwells 

plate containing analyte beads. After incubation for 30 minutes at room temperature and 

washing, the antibody-biotin reporter was added and incubated for 10 minutes with 

streptavidin-phycoerythrin. The concentrations of the cytokines were determined using the 

Bio-Plex array reader (Luminex, Austin, TX). The Bio-Plex Manager software optimized 

the standard curves automatically and returned the data as Median Fluorescence Intensity 

(MFI) and concentration (pg/mL). This assay has a reported limit of detection of 1–20 

pg/ml, depending on the cytokine target (Table 2). 

 

Table 1. Cytokines, chemokines and trophic factors detected by Luminex multiplex technology. 
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Table 2. Luminex sensitivity for the analyzed cytokines, chemokines, and growth factors. 

 

GraphPad Prism (v. 5) was used for statistical data analysis. Comparisons between the 

groups were performed by the Kruskal-Wallis one-way analysis of variance. When a 

significant p-value was found (p<0.05), a multiple comparison test was used to determine 

which groups were different. 
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CHAPTER 1 

RESULTS 

Demographics of the study cohort 

Table 3 shows the features of the patients enrolled in the study. The series comprises 92 

women, within which the 4 identified cohorts are Idiopathic, Infertile, Control, and 

Vaginosis. 

 

Table 3. Demographics. 
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Data processing 

After the quality (Q ≥20) and length (reads ≥150 bp) filtering, the sequencing produced a 

total output of 6,665,606 reads, generated from the V3 variable region of the 16S rDNA. 

All the sequences were classified against the Vaginal 16S rDNA Reference Database to 

species level at the 97% of identity. To assure a sufficient coverage of the bacterial species 

identified in the samples during the OTU picking step, only the samples reaching at least 

10,000 reads were retained; the residual number of reads was 6,649,314, eliminating four 

samples: 3 from Vaginosis and 1 from Control. 

α-diversity analysis 

Table 4 shows the list of the biodiversity estimators. Chao1 showed the highest richness in 

Idiopathic and the lowest in Control. 

 

Table 4. Equitability, species richness (Chao1), and α-diversity measures. 

Data are shown as mean value ± standard deviation 

 

In Control, the low Equitability index value suggested that the species are not uniformly 

distributed, as expected by the characteristic dominance of Lactobacilli in the healthy 

condition. In the other three cohorts, the equitability index increased, likely because the 

dominance of Lactobacilli drops. 
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Simpson’s reciprocal index showed that Vaginosis had the highest value compared with 

the other three groups, suggesting that it has the most heterogeneous microbial 

composition among the studied groups. 

Chao1 confirmed the significant (p<0.01) difference between Control and Idiopathic. 

Equitability and Simpson’s reciprocal indexes both revealed that Control is different from 

Idiopathic (p<0.05), Infertile (p<0.05 and p<0.01, respectively), and Vaginosis (p<0.01). 

β-diversity analysis 

The following analyses, used to compare the composition of the microbial communities (β-

diversity) between groups, fall into the category of the exploratory techniques. 

Mainly, the presence/absence of selected bacterial species (unweighted UniFrac) accounts 

for the differences between groups rather than a different relative abundance (weighted 

UniFrac) of the shared species. 

Figure 6. PCoA showing results based on unweighted (A) and weighted (B) UniFrac distances. 

Idiopathic (Red), Infertile (Light blue), Control (Green), and Vaginosis (Yellow). 
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Figure 6 shows PCoA drawn basing on both weighted (A) and unweighted (B) UniFrac 

distance matrices. The PCoA from unweighted UniFrac (Figure 6A) shows that Vaginosis 

has a divergent microbial composition than Control, these cohorts have different spatial 

coordinates within the 3D graph; Infertile and Idiopathic have not a specific clustering. 

Conversely, the comparison of the bacterial communities, basing on weighted UniFrac 

distance (Figure 6B), suggests no graphical evident separation between groups. 

Exploring significant differences in cohorts’ structure 

Table 5 shows the output of the ANalysis Of SIMilarity (ANOSIM) statistic R, based on 

unweighted and weighted UniFrac distance matrices. ANOSIM statistically evaluates 

whether there is a significant difference among groups and operates directly on a distance 

matrix
57

. 

ANOSIM confirmed that groups statistically differ when accounting for presence/absence 

of bacterial species (p<0.001), although the effect of grouping is mild (R = 0.16). The 

comparison of the bacterial communities, based on weighted UniFrac distance, suggests a 

non-significant separation between the 4 groups. 

 

Table 5. ANOSIM test on Unweighted and Weighted UniFrac distance matrices. 
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Microbial profiling within cohorts 

The taxonomic assignment of OTUs against the Vaginal 16S rDNA Reference Database 

identified the bacterial species present in the studied samples. 

At the highest taxonomic level (phylum) (Figure 7), cohorts exhibit a different microbial 

milieu. Gammaproteobacteria (False Discovery Rate (FDR) p<0.05), Bacilli (FDR 

p<0.001), Bacteroidia (FDR p<0.05), and Actinobacteria (FDR p<0.01) accounted for the 

main observed differences. 

 

Figure 7. Taxonomic distribution at the phylum-taxonomic level. The circles highlight similarities 

between groups when more colors are combined or a distinctive feature when one color is used. 

Data are normalized to sum to 100 and log10 transformed. 

 

Figure 7 illustrates the microbial distribution of the phyla within the groups. Lactobacilli 

was the dominant phylum in all the cohorts. Specifically, Vaginosis and Infertile showed a 

reduced relative abundance of Lactobacilli than Idiopathic and Control. 

Idiopathic shared a similar bacterial pattern with Vaginosis, but lacked Fusobacteria. 

Fusobacteria, together with Tenericutes, Bacteroidia, and Negativicutes, were also absent 
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in Control and Infertile. Gammaproteobacteria and Actinobacteria were common to both 

infertility groups (Idiopathic and Infertile) and Vaginosis. 

The microbial taxonomic composition was also gained at the species level. Figure 8 shows 

the list of the 25 most abundant bacterial species identified in the samples. Among the 

Firmicutes, Lactobacilli iners, crispatus, and gasseri were the most abundant species 

identified within the 4 groups. Lactobacilli vaginalis, johnsonii, delbrueckii, and 

acidophilus showed a different pattern of presence/absence among cohorts. Idiopathic and 

Vaginosis showed the presence of Veillonella montpellierensis, while the remaining 

species belonging to Firmicutes were present only in Vaginosis, except for Staphylococcus 

cohnii and Streptococcus anginosus which were present also in Infertile. 

 

Figure 8. Taxonomic distribution at the species-taxonomic level. The circles highlight similarities 

between groups when more colors are combined or a distinctive feature when one color is used. 

Data are normalized to sum to 100 and log10 transformed. 
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Different other species were common mainly to Idiopathic and Vaginosis. They shared, 

among Actinobacteria, Gardnerella vaginalis and Atopobium vaginae; among Tenericutes 

and Bacteroidia, Ureaplasma parvum and Prevotella bivia, respectively. Among 

Gammaproteobacteria, Idiopathic and Vaginosis shared Escherichia fergusonii, which was 

also present in Infertile. 

Species contributing to the differences in microbial community structure 

The following analysis was carried out with the aim to identify the taxonomy of the 

microbial species that contribute to the observed differences between groups. The 

SIMilarity PERcentages (SIMPER) procedure
57

 accounts for the average percent 

contribution of each species to the dissimilarity between groups in a Bray-Curtis 

dissimilarity matrix. 

Table 6 shows the output of SIMPER analysis. The taxa that contribute to the greatest 

dissimilarity between groups are the Lactobacilli iners, crispatus, and gasseri. The 

cumulative sum of the dissimilarity explained by upper-mentioned Lactobacilli is the 80% 

between Idiopathic and Control, the 54% between Idiopathic and Vaginosis, and the 63% 

between Idiopathic and Infertile. All the remaining taxa account for the residual 

dissimilarities, each with a modest average contribution. 
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Table 6. SIMPER analysis.
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Ave-Abn = average abundance of the species in Idiopathic vs Control, Idiopathic vs Infertile and 

Idiopathic vs Vaginosis. 

Ave-Cntr = average contribution of feature to the overall dissimilarity between groups. 

Sd = standard deviation. 

Ratio = ratio of average contribution to standard deviation of contribution. 

Cumsum = cumulative contributions. 

The list of features is not complete so percent values do not sum to 100%. 

Immune mediators in infertility 

Idiopathic group showed a peculiar immunological pattern. Among the 48 measured 

immune mediators, the observed differences were not all statistically significant, likely 

because of the limited number of samples analyzed. 



CHAPTER 1 - Results 

26 

 

The molecules that exhibited a different trend across Control, Idiopathic, and Infertile can 

be divided into two groups: the first group involves the interaction among IL-1β, IL-1α, 

and IL-1ra; the second group includes G-CSF and LIF. 

Figure 9. Immune mediators influenced by the clinical status. 

 

Comparing to Control, both Idiopathic and Infertile showed (Figure 9A) a higher amount 

of IL-1ra. In idiopathic the ratio between IL-1β and IL-1ra decreased, with the decrease of 

IL-1 β and the increase of IL-1ra. The difference in the ratio between IL-1β and IL-1ra is 
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also observed in Infertile but it is less pronounced. In Infertile, also the ratio between IL-1β 

and IL-1α differed from Control and Idiopathic, with IL-1α downregulated (p<0.01). 

Regarding the second group of cytokines, namely G-CSF and LIF, Idiopathic showed a 

decrease of G-CSF and an increase of LIF (Figure 9B) comparing to Control. Infertile 

showed an inverted G-CSF/LIF ratio, with the increase of G-CSF and the decrease of LIF, 

comparing both to Control and Idiopathic. 

 



CHAPTER 1 - Discussion 

28 

 

DISCUSSION 

 

Previous studies on infertility afforded useful findings about the mechanisms of the 

fertilization but still one-third of infertility cases remains unexplained
9
. The comparison 

between the vaginal microbiota of women suffering with idiopathic infertility and that of 

women affected with bacterial vaginosis, non-idiopathic infertility, and healthy women 

extended the knowledge of unappreciated microbe-host interactions. 

1.1 Microbiome within cohorts 

Species biodiversity can indicate the status of health of a biological niche. Lactobacilli 

normally dominate the vaginal environment in terms of relative abundance
6
. An even 

microbial distribution, with the loss of a dominant bacterial genus, suggests a disturbance 

in the vaginal ecosystem. 

BV always shows a drop of Lactobacilli and a polymicrobial structure
29

. Both infertility 

cohorts seem to exhibit the same feature, especially Idiopathic that accounts for a number 

of observed species (Chao1) similar to that of Vaginosis. 

Chao1 estimates the species richness of the cohorts; equitability index assumes a value 

between 0 and 1, with 1 being complete evenness in the distribution of species within the 

microbial community; Simpson’s reciprocal index (α-diversity) starts with 1 as the lowest 

possible value: the higher the value, the greater the diversity. All those indexes showed 

(Table 4) a more even distribution of the species present in the vaginal microbiome of 

Idiopathic, Infertile, and Vaginosis, when compared to Control. 
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Hence, infertility issues seem to arise from the same microbial alteration which is observed 

in BV. Mainly, the loss of the protective Lactobacilli and the overgrowth of other bacteria 

could have a key role in the onset of the microbial imbalance. 

1.2 Microbiome across cohorts 

The clinical condition influences the vaginal microbial environment. Quantitative and 

qualitative β-diversity measures (Figure 6) provided different perspectives on the factors 

that affect microbial community structure. Both results of α- and β-diversity suggested that 

a transient alteration in relative abundances of some resident bacteria lays the foundation 

for the entry of opportunistic pathogens and/or the overgrowth of resident species, usually 

detected at low levels, which alter the normal community structure. 

Qualitative measure (Figure 6A) suggested a significant effect (p < 0.001, ANOSIM) of 

distinct microbial population whose presence strengthen the differences between groups. 

Quantitative measures (Figure 6B) showed that the relative abundances of microbial 

species had lesser impact on the observed differences.  

1.3 Profiling the microbiome 

The results of the taxonomic assignment at the phylum level (Figure 7) supported the 

previous discussed results. Idiopathic shows a large number of low-abundance taxa, then 

being more similar to Vaginosis than to Control and to Infertile. Compositional changes in 

the vaginal microbiota was mostly evident at high taxonomic level (phylum). 

Three phyla - Tenericutes, Bacteroidia, and Negativicutes - were shared only between 

Idiopathic and Vaginosis. Firmicutes was the dominant phylum in all the cohorts and 

Fusobacteria was present only in Vaginosis. Actinobacteria and Gammaproteobacteria 
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were more relevant in Vaginosis and in both infertility groups. This general picture of the 

vaginal microbiome is yet potentially an excellent marker and could be used as target for 

clinical evaluation of infertility cases. In both infertility cohorts, together with a slight 

decrease of Lactobacilli, other phyla increase and their relative abundances can link to the 

observed clinical condition. 

Basing on the observation of the microbiome composition, it is not possible to state if the 

vaginal microbiome alteration is a driving process or a consequence in all the idiopathic 

infertility cases. Nonetheless, spotting specific mechanisms across the microbial interplay 

can help to shed the light on the idiopathic infertility status. 

According to the previous hypothesis, a survey of the vaginal microbiota at the species 

level was performed. The vaginal ecosystem showed differences between the cohorts 

(Figure 8), although no single bacterium could be identified as a specific marker for 

Idiopathic. The lack of a “unique specific marker bacterium” of Idiopathic suggests that the 

picture of the microbial composition has to be considered as a whole, taking into account 

the interaction among the residing bacteria in a specific given moment. 

1.4 The link between Lactobacilli and idiopathic infertility 

Considering the vaginal microbiome of the cohorts, data suggested a particular mechanism 

of dysbiosis in Idiopathic, which could cause an asymptomatic and subclinical alteration. 

Subclinical issues are difficult to identify and to treat. 

Figure 10 shows the summary of the possible interplay between different microbial species 

within vaginal niche. 

A decrease of L. crispatus and L. iners and an increase of L. gasseri seem to justify the 

altered Firmicutes structure in Idiopathic. Although, the total amount of Firmicutes is very 
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similar between Idiopathic and Control, the dysmicrobism depends on the relative 

equilibrium among Lactobacilli species. Since Idiopathic has a regular total amount of 

Lactobacilli, the Nugent score (Table 3), which only accounts for the total amount of 

Lactobacilli
58

, was not able to identify the alteration. 

 

 

Figure 10. The main players of the affected vaginal microbial profile in idiopathic infertility. 

 

Lactobacilli gasseri, iners, and crispatus showed a great impact on the cumulative sum of 

the dissimilarity between Idiopathic and the other cohorts (Table 6). Overall, Idiopathic 

and Vaginosis have a similar microbial profile. In fact, the different proportion of 

Lactobacilli accounted more for the differences between Idiopathic and both Infertile 

(63%) and Control (80%) rather than Vaginosis (54%). 
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Results suggest a link between the increase of L. gasseri and the rate of negative outcome 

of IVF procedures. Idiopathic had a higher presence of L. gasseri in the cervical-vaginal 

niche. Studies reported that L. gasseri, iners, and crispatus have an involvement on 

infertility, although to a different extent and with different mechanisms. L. gasseri plays a 

pivotal role in early embryo demise and in low rate of pregnancy, since high-load of this 

bacterium triggers oocyte DNA fragmentation
59

. 

L. iners is suitable as a marker of healthiness of the vaginal niche and as a supportive 

clinical tool in order to predict the ART procedures outcome. L. iners and L. crispatus 

support the vaginal microbiome stability during childbearing period
60

. L. iners showed the 

highest relative abundance in Control (51%) comparing to Idiopathic (29%), Infertile 

(18%), and Vaginosis (15%). 

The relative abundance of L. crispatus is lower in Infertile and Vaginosis (25% and 6%, 

respectively) than Idiopathic (31%) and Control (36%). L. crispatus, when dominant in the 

vaginal niche, has an inhibitory activity against E. coli
61

. E. coli and E. faecalis can 

incorporate into a pre-formed G. vaginalis biofilm
62

; once incorporated in biofilms, they 

provide a protective niche for a further potential urinary tract infection
63

. In Idiopathic, L. 

crispatus could exert a partial protective role against E. coli and create a subclinical 

alteration. Where the level of L. crispatus is lower, the level of E. fergusonii, which is on 

the basis of 16S rRNA sequences closely-related to E. coli (99.8% of identity)
64

, is not 

directly affected, instead G. vaginalis seems to be upregulated (Figure 8). 

Therefore, according to the previous explained findings, Lactobacilli favor a healthy 

environment for the onset of pregnancy and are suitable markers in monitoring the 

transitional phase of vaginal flora during the estrogen treatment of in vitro fertilization
65

. 
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Especially, the depletion of Lactobacilli is linked to the inability to inhibit the colonization 

by specific harmful microorganisms that increase early miscarriage rates
66-68

. 

1.5 Secondary players  

Results spotted some species as secondary players in the observed differences. Idiopathic 

and Vaginosis shared the presence of A. vaginae and U. parvum. Within an imbalanced 

vaginal ecosystem, regardless their low abundance, they could contribute to the adverse 

outcome of the ART procedures. 

G. vaginalis cooperates with A. vaginae in biofilm formation
69

 and together they are 

responsible for the complete or partial failure of antibiotic therapy
70

. Furthermore, A. 

vaginae elicits a robust inflammatory response that alters the physicochemical barrier 

properties of the vaginal mucosa
71

. 

A symbiotic relationship exists also between G. vaginalis and P. bivia. G. vaginalis needs 

ammonia to growth, which is provided by P. bivia. In turn, G. vaginalis produces amino 

acids that further stimulates the growth of P. bivia. This interaction leads to an increase of 

both bacteria
72

. 

U. parvum is strictly correlated to ART procedures; standard ART washing protocols do 

not assure the removal of this infectious agent from semen
73

. The presence of U. parvum in 

semen influences pregnancy rate per embryo transfer
74

, pregnancies onset
75

, and the 

abortion rate
76

. 
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1.6 Impact of the vaginal immune status on idiopathic infertility 

The immunological profile within the vaginal niche can affect the IVF outcome. The 

measurement of 48 immune mediators revealed a different pattern between Idiopathic, 

Infertile, and Control. The main factors involved in fertility issue are listed in Table 7. 

The higher amount of IL-1ra observed in Infertile and Idiopathic correlates to an adverse 

effect on embryo implantation. Studies demonstrated that repeated injections of the IL-1ra 

into mice, two days before the onset of implantation, result in an apparent failure of 

blastocyst to implant
77

. Furthermore, an appropriate ratio of both IL-1β to IL-1ra in human 

endometrial stromal cells is relevant to embryo implantation. The ratio remains constant 

even in the presence of increasing concentrations of IL-1β, suggesting that IL-1 plays a 

crucial role in embryo-maternal interaction
78

. 

 

Table 7. The main immune players in fertility issues. 

 

 

A high amount of serum IL-1β positively correlates to pregnancy outcome after 

intracytoplasmatic sperm injection (ICSI)
79

. Idiopathic showed the lowest amount of IL-1β 

in the vaginal niche comparing to Control and Infertile. The amount of IL-1β, both in 

serum and vagina, can be an important predictive factor for the implantation of fertilized 

oocyte and for the positive pregnancy outcome after ICSI. 
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IL-1α decreased from Control to Infertile. IL-1α regulates the production of uterine 

prostaglandins in endometrial stromal cells
80

. Prostaglandins, derivatives of arachidonic 

acid, absolve to a primary role in embryo implantation, increasing vascular permeability, 

stromal decidualization, blastocyst growth and development, leukocyte recruitment, 

embryo transport, trophoblast invasion, and extracellular matrix remodeling during 

implantation
81

. Thus, both altered prostaglandins synthesis and actions result in 

implantation failure. In fact, IL-1α is one of the earliest embryonic signals, exerts a direct 

impact on the receptive endometrium, and induces molecular changes that are fundamental 

for embryo implantation
82

. Furthermore, in vitro cultured human embryos secrete high 

concentrations of IL-1α and IL-1β, and the presence of these cytokines correlates with 

successful implantation after the transfer to the uterine cavity
83

. Thus, monitoring the level 

of IL-1α can be a useful tool to monitor the outcome of IVF procedures. 

The relative amount of G-CSF and LIF showed a different pattern only in Infertile 

comparing to Control and Idiopathic. Studies demonstrated that transvaginal endometrial 

perfusion with G-CSF enhances endometrial development, ongoing pregnancy, and 

implantation rates. The positive role on pregnancy outcome might result from the ability of 

G-CSF in increasing the amount of LIF
84

. A deregulation of LIF production in the 

endometrium during both the proliferative and the secretory phases of the cycle correlates 

to multiple failures of implantation and idiopathic infertility
85

. 

The deregulation of endometrial LIF secretion throughout the menstrual cycle can be a 

possible cause of unexplained infertility and repetitive failures of implantation. A dose-

dependent effect of G-CSF and LIF can explain the apparently normal amount observed in 

Idiopathic. In fact, in Idiopathic, the amount of LIF is higher than G-CSF, thus suggesting 
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a stimulation of G-CSF on LIF production, but the concentration of both G-CSF and LIF 

are lower in Idiopathic than Control. 

1.7 The immune-microbiome network 

Alteration of the vaginal microbial milieu and changes in the genital tract mucosal immune 

environment could exert a primary role in both pregnancy establishment and outcome 

(Figure 11). 

For instance, genital tract secretions from healthy non-pregnant women absolve to a 

variable bactericidal activity against E. coli
86

. 

 

Figure 11. The immune-microbial network in the vaginal niche of Idiopathic group. 

 



CHAPTER 1 - Discussion 

37 

 

Idiopathic showed a higher level of E. fergusonii (99.8 % of DNA sequence similarity to E. 

coli) than Control and Vaginosis, together with a slightly decreased level of IL-1β 

comparing to Control. Lactobacilli, which normally dominate the vaginal microbiota in 

healthy women, can inhibit E. coli growth and vaginal colonization
87

. In particular, L. 

crispatus, when dominant in the vaginal niche, has an inhibitory activity against E. coli
61

. 

The inhibitory activity of Lactobacilli against E. coli reflects cumulative interactions 

between multiple mediators secreted by genital tract epithelial cells, immune cells, and 

vaginal microbiota. The loss of protective role absolved by Lactobacilli is accompanied 

with the decrease of IL- 1β
88

. The presence of IL-1β positively affects the implantation 

rate
89

. Thus, the decrease of IL-1β and the colonization of E. coli observed in Idiopathic 

can be considered as a peculiar feature of a compromised mucosal immune environment. 

In Idiopathic, the presence of U. parvum stimulates the shift of Th1/Th2 ratio to a Th1 

dominant immunity, elucidating why Ureaplasma spp. has the potential of being harmful 

in pregnancy establishment
90

. 

In Idiopathic, the shift toward the Th1 immunity is also proved by the decrease of G-CSF. 

In fact, the maintenance of fetal tolerance and pregnancy depend on T cells mucosal-

associated immune responses, including that of the genital tract
91

. The adequate balance for 

Th1/Th2 immunity, slightly shifted to Th2-type immunity, is suitable for the maintenance 

of pregnancy
92

. Among the immune mediators, G-CSF alters T-cell function and induces 

Th2 immune responses
93

. 

IL-1α showed different amount across the cohorts, especially between Control and Infertile 

(p<0.01). IL-1α mediates many of the biological effects of LPS, which induces 

histopathological alterations in the various reproductive organs of pregnant animals
94

. In 

Infertile an inadequate stimulation of the immune response by the LPS is presumable, 
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considering the high presence of Gram-negative (LPS-releasing) bacteria such as E. 

faecalis and E. fergusonii. In Idiopathic, E. fergusonii, V. montepellierensis, and P. bivia 

are the main Gram-negative bacteria. Despite of the presence of gram-negative bacteria, 

the level of IL-1α is downregulated in Idiopathic comparing to Control. Thus, comparing 

to Control, an overexpression of IL-1α would be deleterious for embryo implantation, 

considering that the upper-regulation of IL-1α negatively affects the pregnancy rate
95

, and 

a downregulation can account for an inadequate immune response to harmful bacteria in 

the vaginal environment. 

In addition, anaerobic bacteria, e.g. Veillonella, Prevotella, Escherichia, produce large 

quantities of short chain fatty acids (SCFAs) in mucosal sites such as the female genital 

tract
30,31

. SCFAs include acetic, butyric, and propionic acids and play an important role in 

a wide array of immune responses. SCFAs modulate the immune responses by inhibiting 

the production of pro-inflammatory cytokines, by affecting immune cell migration and 

phagocytosis, and by inducing apoptosis in various cell types including neutrophils
32,33

. 
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CONCLUSIONS 

 

The vaginal microbiome screened by NGS suggested the presence of an affected 

microbiome in women with idiopathic infertility. Results from this study suggested that, in 

the Idiopathic group, the decrease of L. crispatus and L. iners, and the increase of L. 

gasseri synergize with the action of different anaerobic bacteria, including Atopobium, 

Prevotella, Veillonella, Ureaplasma, and Escherichia
96

, in creating an adverse 

environment for pregnancy establishment. After the drop of Lactobacilli, the production of 

acid lactic decreases and the metabolic byproducts of the anaerobic bacteria can cause an 

increase of normal vaginal pH (normal pH is 3.8 to 4.5), favoring a more hospitable niche 

for opportunistic pathogens. The alteration across Lactobacilli species and the consistent 

action of secondary players is a possible guide for intervention in idiopathic infertility. 

Bacteria could influence the outcome of ART procedure by different mechanisms. For 

instance, bacteria influence the local immune system
71

. 

A dysregulation of the local immune mediators is observed in the vaginal niche of 

Idiopathic. The dysregulation depends on the altered amount of some cytokines that 

associate to an adverse pregnancy outcome and/or establishment. 

Numerous cytokines and growth factors are involved in maternal-embryo cross-talk
97

. In 

Idiopathic, the alteration of cytokines that are fundamental for the embryo implantation, 

such as IL-1β, IL-1α and IL-1ra, and for the maintenance of an adequate Th1/Th2 ratio, 

such as G-CSF and LIF, can affect fertility. 
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The combined effect of the microbial structure alteration and the immune profile 

dysregulation dictates an adverse vaginal environment that seems to strongly affect 

fertility. 

Identifying candidate species and immune mediators as prognostic markers can be a 

primary goal to monitor the outcome of the attempts in improving the likelihood of 

pregnancy. 
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CHAPTER 2 

 

Working with idiopathic diseases is challenging. When no evident cause or mechanism are 

identified, treatments are empirically administered basing on symptoms. 

The comparisons between women affected with idiopathic infertility with those who 

showed an identified cause of infertility, bacterial vaginosis and healthy condition 

highlighted similarities between Idiopathic and Vaginosis. Thus, a deeper study of 

Vaginosis could account for additional information on idiopathic infertility. 

Vaginosis cohort was analyzed by diving the total number of women into two cohorts 

according to the Nugent score: women who had a Nugent score ranging from 4 to 6 

(Intermediate) and women who had a Nugent score ranging from 7 to 10 (Vaginosis). 

 

RESULTS 

α-diversity analysis 

Within Vaginosis, only the samples reaching 10,000 reads were retained (n=32) for the 

analyses. Basing on the Nugent score, Vaginosis comprised two groups: Intermediate 

(n=15) and Vaginosis (n=17). 

Both Intermediate and Vaginosis cohorts exhibited a polymicrobial structure. 

The absolute number of species, assessed by Chao1, within Intermediate and Vaginosis is 

not explicative for the difference with respect to Control (Table 8). Instead, Intermediate 

and Vaginosis cohorts show an uneven microbial distribution (Equitability index), which is 
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significantly different from Control (p<0.01). Accordingly, the α-diversity (Simpson 

index) is higher in Intermediate and Vaginosis (p<0.01) than Control. 

 

Table 8. Equitability, species richness (Chao1), and α-diversity measures. 

Data are shown as mean value ± standard deviation 

β-diversity analysis 

The comparison between the cohorts suggests a markedly separation between Control, 

Intermediate, and Vaginosis. 

PCoA (Figure 12) shows the comparison between Control, Intermediate, and Vaginosis. 

Figure 12. PCoA showing results based on unweighted (A) and weighted (B) UniFrac distances. 

Control (Green), Intermediate (Orange), and Vaginosis (Grey). 
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The unweighted UniFrac PCoA (Figure 12A) highlights three clusters, corresponding to 

the clinical groups. The distribution of the groups suggests a transition from Control to 

Vaginosis, where Intermediate seems the transitional phase. The weighted UniFrac PCoA 

(Figure 12B) partially retains the same clustering, although it is graphically less evident. 

Vaginosis still locates in a separated area of the 3D graph comparing to Control and 

Intermediate, whose localization is shared. 

Exploring significant differences in cohorts’ structure 

ANOSIM test statistically compared the Intermediate and Vaginosis cohorts (Table 9). The 

statistic supported the previous results. Intermediate and Vaginosis statistically differ 

according to the unweighted UniFrac (p<0.05), even though the effect of grouping is small 

(0.12). Groups also differ according to weighted UniFrac (p<0.001), with an R value of 

0.16. 

Table 9. ANOSIM test on unweighted and weighted UniFrac distance matrices. 

 

Microbial profiling within Intermediate and Vaginosis cohorts 

The microbial composition at the phylum level (Figure 13) exhibits a characteristic pattern 

within Intermediate and Vaginosis cohorts, although not significantly different. 

Tenericutes and Gammaproteobacteria are predominant in Intermediate, while BVAB1 
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and Negativicutes in Vaginosis. Actinobacteria, Bacteroidia, and Bacilli are shared 

between groups but their relative abundance is different. 

 

Figure 13. Taxonomic distribution at the phylum-taxonomic level. The circles highlight 

similarities between groups when more colors are combined or a distinctive feature when one color 

is used. Data are normalized to sum to 100 and log10 transformed. 

 

The species within each phylum also exhibit a different pattern between cohorts (Figure 

14). Among Actinobacteria, Gardnerella vaginalis and Atopobium vaginae were shared 

between the Intermediate and Vaginosis groups, Bifidobacterium breve was only present in 

Intermediate. Alloscardovia omnicolens (Fusobacteria), Citrobacter braakii 

(Gammaproteobacteria), and Klebsiella granulomatis (Gammaproteobacteria) were 

identified only in Vaginosis. Although with different relative abundance, Ureaplasma 

parvum (Tenericutes), Prevotella bivia and amnii (Bacteroidia), and Escherichia 

fergusonii (Gammaproteobacteria) were present both in Intermediate and Vaginosis. 

Among Firmicutes, Lactobacilli spp. were underrepresented in Vaginosis which exhibited 
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the presence of opportunistic pathogens, such as BVAB1, Streptococcus pasteuri, 

Streptococcus anginosus. 

 

 

Figure 14. Taxonomic distribution at the species-taxonomic level. The circles highlight similarities 

between groups when more colors are combined or a distinctive feature when one color is used. 

Data are normalized to sum to 100 and log10 transformed. 

 

Species contributing to the differences in microbial community structure 

SIMPER test accounted for the species which contribute to the dissimilarities between 

cohorts. Table 10 compares Intermediate to Vaginosis. The main species which determine 

the observed differences are the Lactobacilli gasseri, iners, crispatus together with B. 

breve, G. vaginalis, A. vaginae, and P. bivia. Their contribution accounts for about the 

60% of the cumulative sum of the differences. 
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Table 10. SIMPER analysis 

 

Ave-Abn = average abundance of the species in Intermediate vs Vaginosis. 

Ave-Cntr = average contribution of feature to the overall dissimilarity between groups. 

Sd = standard deviation 

Ratio = ratio of average contribution to standard deviation of contribution. 

Cumsum = cumulative contributions. 

The list of features is not complete so percent values do not sum to 100%. 
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Microbial profiling within Idiopathic, Intermediate and Vaginosis 

cohorts 

The microbial profile of Idiopathic was compared to Intermediate and Vaginosis cohorts 

(Figure 15). 

 

Figure 15. Taxonomic distribution at the species-taxonomic level. The circles highlight similarities 

between groups when more colors are combined or a distinctive feature when one color is used. 

Data are normalized to sum to 100 and log10 transformed. 

 

SIMPER test between Idiopathic both vs Intermediate and Vaginosis cohorts was also 

performed to ascertain whether Idiopathic shows a microbial structure which is more 

similar to one of the upper-mentioned cohorts. 

Table 11 shows the comparison between Idiopathic and Intermediate. Here, the 

Lactobacilli iners, crispatus, and gasseri explain the 60% of the cumulative sum of the 
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differences. B. breve and G. vaginalis contribute for an additional 20% to the cumulative 

sum. 

 

Table 11. SIMPER analysis. 

 

Ave-Abn = average abundance of the species in Idiopathic vs Intermediate. 

Ave-Cntr = average contribution of feature to the overall dissimilarity between groups. 

Sd = standard deviation 

Ratio = ratio of average contribution to standard deviation of contribution. 

Cumsum = cumulative contributions. 

The list of features is not complete so percent values do not sum to 100%. 

 

Table 12 compares Idiopathic and Vaginosis. Again, Lactobacilli iners, crispatus, and 

gasseri mainly contribute to the observed differences (63%), with G. vaginalis and A. 

vaginae bringing the cumulative sum to the 80%. 
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Table 12. SIMPER analysis. 

 

Ave-Abn = average abundance of the species in Idiopathic vs Vaginosis. 

Ave-Cntr = average contribution of feature to the overall dissimilarity between groups. 

Sd = standard deviation 

Ratio = ratio of average contribution to standard deviation of contribution. 

Cumsum = cumulative contributions. 

The list of features is not complete so percent values do not sum to 100%. 
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DISCUSSION 

 

Although bacterial vaginosis is worldwide the most common origin of vaginal discharge, 

the cause remains enigmatic despite numerous studies based on microbial cultures. 

Results highlighted that the Vaginosis cohort, divided into two groups (Intermediate and 

Vaginosis) according to the Nugent score, are distinct entities. 

2.1 Microbiome within cohorts 

The microbiome of Vaginosis and Intermediate is highly heterogeneous, as confirmed by 

the α-diversity values (Table 8). BV is characterized by a polymicrobial disequilibrium
96

. 

Mainly, a loss of a dominant cluster of species is evident in the altered vaginal flora. The 

species within the microbial structure of affected cohorts are more evenly distributed than 

that of Control (Equitability index), which has Lactobacilli as the dominant phylum. In 

BV, the observed drop of Lactobacilli
96

 accounts for the greater fragmentation across the 

microbial ecosystem. Nonetheless, the absolute number of species is not indicative of the 

healthiness condition. For instance, Chao1 was very similar between the Intermediate, 

Vaginosis and Control (Table 8). 

2.2 Microbiome across cohorts 

The graphical representation of the β-diversity (difference between cohorts) suggests a 

specific clustering for the affected cohorts. Intermediate and Vaginosis differ for the 

presence/absence of many bacteria (Figure 12A). Furthermore, the shared species between 

Intermediate and Vaginosis show different relative abundances (Figure 12B). 
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The unweighted UniFrac PCoA suggests that each cohort is characterized by the presence 

of specific bacteria (ANOSIM, p<0.05). The 12% of the differences is explained by the 

clinical grouping (Table 9). 

The weighted UniFrac PCoA suggests that the shared species differ in their relative 

abundance (ANOSIM, p<0.001) between cohorts (Table 9), explaining a higher percentage 

of the observed diversity (16%) than unweighted UniFrac (12%). 

2.3 Profiling the microbiome 

The β-diversity analysis showed a different pattern between cohorts: PCoA suggested a 

markedly separation between Control and both Intermediate and Vaginosis groups. 

At the highest taxonomic level (phylum), the identified phyla did not account for the 

graphically observed differences (Figure 13). Although Actinobacteria and 

Gammaproteobacteria are predominant in Intermediate, while BVAB1 and Negativicutes 

in Vaginosis, their distributions are not significantly different between cohorts. 

The Intermediate and Vaginosis cohorts are distinguishable when accounting for the 

species level composition (Figure 14). SIMPER test showed the species which contribute 

to the observed differences between Intermediate and Vaginosis cohorts (Table 10). 

The interplay between Lactobacillus gasseri and Atopobium vaginae explains some of the 

observed differences between the Intermediate and Vaginosis. Intermediate exhibits a 

higher level of L. gasseri, which shows a negative correlation with A. vaginae
98

. Thus, the 

high amount of A. vaginae characterizes the Vaginosis status, together with the low 

amount of L. gasseri. 

Bifidobacterium breve is another marker suitable to characterize the Intermediate cohort. 

B. breve is higher in Intermediate than Vaginosis. The presence of B. breve can account for 
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the production of acid lactic
99

, despite the general decrease of Lactobacilli. Furthermore, 

the Nugent score takes into account only the decrease of Lactobacilli. In the case of 

presence of Bifidobacteria, which can support the normal production of acid lactic in the 

vaginal environment, the Nugent score overstates the dysbiosis. 

Ureaplasma parvum is specifically identified in the Intermediate group, although at low 

relative abundance. U. parvum does not seem to cause symptoms in females, but its role in 

the female urogenital tract remains unknown
100

. Since the vast majority of asymptomatic 

presence of bacteria possibly associates to adverse pregnancy outcomes, and taking into 

account the ascending capability of U. parvum to the upper reproductive tract, a deeper 

study of the role of U. parvum is needed
100

. 

Discerning among the relative abundances of the Lactobacillus spp. in the vaginal 

ecosystem is more useful than assessing the vaginal healthiness basing solely on the total 

amount of Lactobacilli. For instance, although high levels of Lactobacillus crispatus are 

linked to the inhibition of the growth of Gardnerella vaginalis
101

, Intermediate has higher 

level of both bacteria. On the other hand, L. iners enhances the adhesion of G. vaginalis 

strain 101 to cervical epithelial cells and, on the contrary, does not affect the adhesion of 

strain 5-1
102

. Taxonomic assignment against the Vaginal 16S rDNA Reference Database 

spotted G. vaginalis ATCC 14019/317 strain. It is likely that L. iners, which is higher in 

Intermediate, can interfere with the inhibition activity of L. crispatus, and enhance the 

attachment also of the strain 317. In Control, despite the higher amount of both L. crispatus 

and L. iners, L. acidophilus exerts a protective role against the overgrowth of G. vaginalis 

by the secretion of a specific bacteriocin
103

. 
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2.4 Comparison between Intermediate flora and Vaginosis 

Basing on the composition at the specie level within Intermediate and Vaginosis, the two 

cohorts cannot be considered as two strictly sequential phases. Intermediate will not 

always evolve into a Vaginosis status. 

Intermediate seems to arise from a dysbiosis of resident bacteria, while Vaginosis is 

sustained by opportunistic pathogens. Among the opportunistic pathogens, Vaginosis 

exhibits BVAB1, Streptococcus anginosus, Prevotella bivia, Klebsiella granulomatis, 

Alloscardovia omnicolens, and Staphylococcus pasteuri. 

2.5 The link between idiopathic infertility and the affected microbiome 

SIMPER test revealed the species that contribute to the differences between Idiopathic and 

both Intermediate and Vaginosis (Table 10). 

Among Lactobacilli, Idiopathic shows more similarities with Intermediate. While in the 

comparison between Idiopathic and Intermediate, Lactobacilli exert each a 16% average 

contribution to the observed differences, in Vaginosis the contribution to the differences is 

slightly dominated by the decrease of L. iners and the absence of L. crispatus. Considering 

Vaginosis as the point of reference of an altered microbial vaginal environment, L. iners 

confirms its role as biomarker of healthiness, as previously discussed. 

Furthermore, both Idiopathic and Intermediate exhibit a higher presence of L. gasseri, 

which is able to inhibit Atopobium and L. iners
98

 but it is also involved in early embryo 

demise
59

. 

The secondary leading difference between Intermediate and Idiopathic is the presence of B. 

breve. B. breve is able to produce acid lactic and can increase the pregnancy rate in 

Intermediate, despite the high load of L. gasseri. In fact, as widely accepted, Bifidobacteria 
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exert health-promoting effects in the genito-urinary tract
99

, where they can also help the 

positive IVF procedures outcome. 

Intermediate and Idiopathic share the presence of Ureaplasma parvum. Since urogenital 

mycoplasmas can affect fertility
104

, screening for asymptomatic individuals and treatment 

of infected ones looks necessary. 
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CONCLUSIONS 

 

Bacterial vaginosis (BV) is particularly prevalent in patients with infertility
36,105

. 

A first step toward the comprehension of microbiome alteration in infertility consists in a 

deeper study of a better known clinical condition, such as BV. 

Dividing the BV into two cohorts, according to the Nugent score, highlighted microbial 

differences between Intermediate and Vaginosis. Intermediate seems to be linked mainly to 

an imbalance across vaginal resident bacteria; Vaginosis is sustained by the alteration of 

the vaginal microbiota structure together with the action of opportunistic pathogens. 

The comparison between vaginal microbiota of Idiopathic and both Intermediate and 

Vaginosis shed the light on a possible contribution of specific bacteria to infertility. 

Mainly, the interplay among Lactobacilli iners, crispatus, and gasseri creates a favorable 

environment for pregnancy. An imbalanced equilibrium among Lactobacilli is linked to the 

loss of protection against opportunistic pathogens. 

In Intermediate affected vaginal microbiome, Bifidobacterium breve can exert a supportive 

role to counteract the imbalance of Lactobacilli. Idiopathic lacks of species acting as health 

promoter of the vaginal niche when Lactobacilli drop. 
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CONCLUDING REMARKS 

 

The importance of the physiologic role of microbiome in the human body is widely 

recognized. The female reproductive tract shows a complex microbiome, whose alteration 

may provide insight into previously unexplained infertility treatment failure. 

 

Women affected with idiopathic infertility exhibit an altered vaginal microbial structure. 

 Idiopathic shows a decrease of normally dominant Lactobacilli and the presence of 

bacteria which can act as secondary players in the context of an altered vaginal 

microbiome. 

 Taking into account the impact that the microbiome can exert on IVF procedures, 

further studies on large cohorts are needed to highlight strong correlations between 

idiopathic infertility and the affected microbiome. 

 The microbial species present in the vaginal environment impact the modulation of 

local immune responses, for instance, by the production of short-chain fatty acids 

(SCFAs). The amount of anaerobic bacteria, identified in vaginal milieu of 

Idiopathic, suggests their involvement in the alteration of a proper immune 

response, directly linked to the loss of fetal tolerance and to the inability of 

pregnancy establishment. 

 The ultimate aim is to introduce the microbial and immune profiling of infertile 

couples as a diagnostic tool in order to select a tailored IVF protocol. 
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Idiopathic means “without an evident explanation”. The inability to figure out the causes 

that lead to idiopathic infertility does not mean that a cause is not present. Extensive 

research should be conducted to better define biological mechanisms affecting conception. 
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