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Abstract 

 

 

This paper presents a literature overview of the acoustic studies dedicated to lightweight wooden 

constructions. The reviewed articles contain prediction models, laboratory and field measurements, 

finite element or computational investigations as well as subjective survey describing the vibro-

acoustic behaviour of a large range of wooden structures. The review analyses different type of 

timber constructions and investigates the acoustic research methodologies highlighting the 

following aspects: airborne sound insulation, impact noise reduction, flanking transmissions, 

human perceptions and pros and cons of the presented methods. Furthermore, an in-depth analysis 

of impact noise of bare floors focuses on how impact sound reduction could not be as efficient as in 

heavyweight constructions; the comparison between the different approaches on prediction of 

airborne sound insulation of multilayer timber partitions compared to traditional heavy building 

materials is shown. Finally a subjective method survey is provided, underlining the weakest point 

of timber buildings: low frequency sound insulation. 

 

Keywords: Sustainable buildings; acoustic; timber building; precast energy saving panels 

 

1 Introduction 
 

Lightweight buildings are present worldwide and their market trend is growing, pushed by the 

Kyoto protocol [1]. They allow CO2 storage since wood is widely used as it is renewable and 

environmental friendly raw material. Generally, these constructions are built within industry plants 

where very few waste and little energy consumption are possible and allowed. Furthermore, 

prefabrication often means high quality: educated workmanship is used and CE certifications are 

required and provided. 

The production methods generally include CAD-CAM technologies, permitting new and complex 

architectural shape, concept and tendencies. The speed of assembly is an interesting point since it is 

possible to obtain multi-storey buildings containing prefabricated volumes. As a matter of fact, 
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within two weeks, high constructions could be erected thanks to the previous in-depth design and 

high industrial production precision. In Figure 1 an example of wall assembly is shown: from a) to 

c) the precast panel fits perfectly into the spaces of the flanking walls. Figure 1 d) highlights the 

great precision on the production. The walls (or floors) route start from the truck and finishes with 

long screw fixation upon the final position falling in its pre-designed location. This indicates the 

speed and the high precision of assembly typical of timber precast buildings; as a results, these 

properties attract many stakeholders like designers, builders and lay people. 

 

 a)  b) 

 c)  d) 

Figure 1 – Example of wall assembling in a multi-storey light weight timber building. From a) to c) the 

panel is let down using crane. In d) the high requested precision and accuracy is highlighted. 

 

Nevertheless, the technological diversity distinguishing wooden constructions (frame, CLT, etc.) 

makes homogenization of forecasting calculation methods more difficult concerning sound 

insulation parameters compared to traditional massive buildings (concrete, masonry, etc).  

In few years multi-storey timber constructions were erected e.g. in Europe [3], Japan [4], New 

Zeeland [5] and consequently many issues are grown. Over the last period many researchers have 

tried to handle with sound insulation and reduction topics but what they found is very difficult to 

understand at a first sight: timber structures are various. Every manufacturer, industrial plant or 

designer present different solutions using the same raw constructing materials and features: wood, 

wool, boards. Besides, multiple joints, screws, fastening and locking are possible and every precast 

wall, floor or roof present different types of junctions. In Figure 2 it is possible to notice different 

kind of screw or fastening elements used in the same joints but in different buildings. This fact 
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highlights the difficulty to standardize or predict the acoustic behaviour of joists since it is 

impossible to forecast how they will be fastened. The different fixing element properties like 

length, number of possible screws, shape etc. implies a diverse constrains and wall-floors junctions. 

These facts determine many possible vibrations propagation paths and flanking transmissions. For 

every wall or floor many different elements could be placed so the in situ behaviour could vary 

individually from one connection to another. 

 

  

  

Figure 2 – different types of screws, joints and junctions used with precast timber panels. Pictures 

from different building constructions 

 

Furthermore, applying the same prediction methods or analysis used for heavy weight 

constructions it could be rather approximated. Bettarello et al. [6] show how different bare floors 

(heavy weight, beams and pots and lightweight ones) present dissimilar impact sound pressure 

level and the consequent floating floor sound reduction [7] could not assure the same results.  

It is possible to find the same conclusion for vertical partitions too [8]-[10]. About these topics the 

authors demonstrate how sound insulation is affected by low frequencies and underline the 

difficulty to predict composite walls insulation [11]. In the same paper, many prediction methods 

applicable for sound insulation in timber structure are described. The study divides them in two 

different categories: i) energy combined with empirical knowledge and data approach and ii) 

deterministic, numerical and analytical approach. The overview concludes that there are good 

models handling advantages, radiation and periodicity and the authors intend to use the latter as 

suitable for timber structures.  
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From subjective point of view, many investigations are possible since it is not clear if people living 

inside lightweight buildings feel better wellbeing compared to heavy weight structures [12]. 

The features of wooden constructions can vary a lot from one manufacturer to another and 

researchers typically assess one particular structure only, which they chose randomly. This leads to 

highly contrasting outcomes and confusion as to whether or not wooden structures perform better 

than traditional structures. 

Prediction methods developed for traditional structures are moreover frequently applied to wooden 

ones, which is obviously questionable. How many types of wooden structure have been studied? 

How many of them accurately and satisfactorily? 

All papers on this topic are therefore collected and reviewed here in order to better understand 

wooden structures, conduct a general assessment of what is known and draw a number of 

conclusions.  

We conducted an extensive literature review using databases such as ISI Web of Knowledge, 

Science Direct, Scopus, Google Scholar and the published proceedings of world congress of the 

last 4 years. 

According to figure 3 and Table 1, the paper is divided in two different sub-sections which analyse 

separately diverse technologies. In the first section, papers dedicated to impact sound pressure level 

both of bare and treated floors are presented. Afterwards, airborne sound pressure level, new 

prediction methods and subjective response are investigated. The overview ends with final 

evaluations and conclusions. 

 

 

Figure 3 – flowchart of the paper structure 

 

It is worthy to point out that, due to the rapid development of lightweight timber building acoustic 

research, there is a lack of consistency in sampling and approaching techniques used to quantify the 

measured or predicted parameters. As a result of the large variety in techniques applied, 
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comparison of reported outcomes between studies is often impossible or requires additional 

calculations based on assumptions. 

The majority of these method inconsistencies can be related to (i) differences in the approach of 

measurements techniques, (ii) extremely various types of involved timber structures and (iii) 

differences in aims and scopes of diverse researches. 

As an example, the lack of an unequivocal structure-based definition of bare timber floor or wall 

has resulted in the reporting of several different frame or continuous constructions in literature, all 

using the same terms: timber (or wooden, or lightweight) buildings. In practice, this means that the 

results of a substantial body of timber buildings literature cannot be compared directly.  

The main scopes of this literature overview are to understand (1) the state-of-art of the results 

related to acoustic research of lightweight timber buildings and (2) to understand different 

construction performance.  

This was achieved by analysing available literature to: (i) provide an in-depth evaluation of the 

impact sound pressure levels of bare floors and study the reduction provided by different reducing 

technologies such as floating floors and ceilings as well as analysing the influence of low 

frequencies (section 2), (ii) discuss the occurrence, distribution and influences of layers on airborne 

sound insulation and the related predicting methods (section 3) and (iii) make a comprehensive 

evaluation on subjective response of people living inside these buildings (section 4). 

A graphical summary of how many possible structures is summarized in Table 1 wherein different 

structures are listed both with picture and text. There are four categories grouping different 

structures as follows (see Table 1): 

- type A: wood structure not included in plaster or fibre board; 

- type B: glulam beams with boards screwed on top 

- type C: homogenous wooden structure 

- type D: open-truss structures 

 

Since all papers deal with only one type at a time (or even one particular feature of a single kind), 

this classification is necessary in order to sort and group papers and studies based on structure 

selection. 

 

Table 1 – Types of lightweight bare partitions included in literature 

Code Description Graphic representation (from papers) 

A 

Timber-concrete floor. It 

consists of timber structure 

of glulam beams with 

wood/plaster board(s) 

screwed on it. An 

additional layer of concrete 

is added on top [6],[14].  
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B 

Particle or gypsum board 

on top of wooden glulam 

beams with screw 

attaching the boards to the 

beams. The use of wool 

between beams and/or 

ceiling/suspended ceiling 

(made of plaster or 

chipboards or cross 

laminated timber) is often 

present. See for example 

[15]-[22]. These structures 

could be both walls and 

floors. 

 

 

 

 

 

 

C 

Cross laminated timber 

[23]-[24]. These structures 

could be both walls and 

floors.  

D  
Wood Frame open-truss 

[25]. 

 

2 Impact sound  
 

Many studies are present in literature concerning the determination of bare partition performance as 

well as floating floor-suspended ceilings effects and subjective response to vibrational excitation. 

The determination of frequency trend of bare floor is of paramount importance [6]-[26]. The 

method presented in EN 12354-2 standard [13] provides the possible impact sound reduction 

according to equation (1): 
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(1) Ln,W=Ln,W,eq - LW (dB) 

 

where Ln,w is the resulting impact noise (dB), Ln,w,eq is the impact noise of the bare floor (dB), ΔLw 

is the impact sound pressure level reduction (dB). 

It is evident that the bare floor acts as starting point and so the type of partitions is the primary 

source. In timber structures there are many different technologies.  

The common issues are focused on low frequency range: impact sound pressure level is higher in 

lightweight wooden buildings than in heavyweight ones. One of the most troubleshooting in 

residential apartments is attributed to the noise produced by walking [26]. 

 

Type A 

The A technology is widely studied and used in Mediterranean country. Bettarello et Al. [6] 

performed in situ ISO tapping machine measurements in order to investigate the impact sound 

pressure level of three kinds of bare floor, including the type A. The results provide an empirical 

equation suitable to be used as input data for EN 12354-2 model. This equation takes in to account 

the frequency trend as follows: 

 

(1)                               (dB)   for f < 1600 Hz 

                                              (dB)               for f > 1600 Hz 

 

On the other hand Martins et al. [14] investigated the same structure using laboratory ISO tapping 

machine tests adding a floating floor on the top of the bare structure in order to study the influence 

of suspended ceiling. These results, compared with European requirements [28], demonstrate that 

the bare structure does not fulfil any limits while the addition of ceiling does. 

Hiramatsu [29] tested a three-story full scale school within type A floor, using three different 

sources: car tyre, rubber ball and tapping machine. The results show a similar ISO tapping machine 

frequency trend compared to previous studies, but the other two sources, as expected [30]-[33], 

provide very different behaviours; the author concludes that the best source for A type is the car 

tyre conversely to Bettarello’s outcomes [6].  

 

Type B 

The B technology is the most studied and presents a great number of variants. Types of lightweight 

bare partitions shown in Table 1 are only some representative case-studies and typologies. In order 

to point out which of the numerous parameters of type B floor are noteworthy, Brunskog and 

Hammer [15],[16] investigated the structure using analytical models, considering the excitation 

force and the interaction of ISO tapping machine on lightweight floors [30]. Their conclusions 

report the following considerations: 
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- mineral wool (with different flow resistivity) in cavity reduces the impact noise for 

frequency above 250 Hz  

- different mass plates gives better performance than a single heavy plate 

- the periodic distance of the beams influences low frequency range 

- the construction depth decreases the impact noise; in addition when the wool is present the 

reduction could rise up to 15 dB. 

 

The most interesting aspect is that the low frequency effect is caused by the structure itself and it 

does not significantly vary if big changes (high density added layer, very thick suspended ceilings, 

etc.) are not applied on it. Coguenanff et al. [17] state that strong dominant modal behaviour is 

present below 200 Hz. According to COST action FP90702 report [35], the wooden structures 

present a better insulation in middle and high frequency range than the heavy weight ones. As a 

consequence, the low frequency influence has to be further investigated. Johansson [22] carry out 

many tests on a series of timber floors arrangements in order to understand the influence of 

different layers and beams and conclude that in most cases when an improvement is seen at low 

frequency range, the structures show worse behaviour at high frequencies.  

Sjöström et al. [36] focused on top layer consisting of one or two attached chipboards. Using 

vibration measurements method in low frequency range (10-600 Hz) they conclude that the low 

frequency energy propagation is lowered by the second not overlapping layer. Nevertheless as 

previously found [22] at higher range this benefit disappears. 

Chung et al. [37] measured several examples of lightweight timber based floor/ceiling systems, 

having higher sound insulation performances than those based on concrete slab. By means of 

laboratory vibration measurements they obtain the resonance frequencies and the modal shapes. 

Then three upper layers were put on the top of the basic structures. The conclusions (using ISO 

tapping machine) show how the inclusion of sand-sawdust mixture layer provides effective 

vibration damping of the whole composite structure over a wide frequency range. 

Späh et al. [38], [39] realized measurements with different sources, both in laboratory and in situ. 

ISO tapping machine, rubber ball and "real" sources (walking people) were used. Then a subjective 

survey was realized to compare which source is most appropriate to represent real walking noise. 

The results show how both rubber ball and ISO tapping machine are able to represent the real 

walking noise. 

On the other hand Hiramatsu et al. [40] investigated floor impact sound insulation on a full scale 

timber construction, using rubber ball, car tyre and tapping machine. The results present some 

difficulties in the case of rubber ball source: many changes were found due to different source 

positions. Therefore, from the measurement method point of view, the excitation position needs to 

be taken into account. 

Lentzen et al. [41] studied the flanking transmission issue. The authors state that the ISO 12354 

[13] methods could fit only with heavy monolithic buildings. Therefore, the adaptations and points 
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of interest for lightweight buildings are analysed. FEA-SEA simulation models are used and results 

are compared. The paper concludes that good indications could be provided using these 

methodologies. 

Ingelaere [42] and Wuyts [43] pointed out that the investigation of the perceived (dis)comfort has 

to be performed below 50 Hz even if frequency below 20 Hz implies a new single rating indicator. 

On the same point of view, Blazer [44] notes that the footfall noise reaches its peak below 100 Hz. 

Nevertheless this topic is very difficult to realize since new in situ measurements standards ISO 

16283 [45] includes the low frequency procedures but they are not compulsory yet. Furthermore, 

the methods provide a 50 Hz – 5000 Hz range but any investigation outside this scale is not even 

possible. As a matter of fact, the new standards include rubber ball impact source outlining that the 

method is suitable to assess the bare feet walking and children jump. Standards connect these 

results to human disturbance and offer an international method to realize what Ingelaere and Wuyts 

suggested. 

Their work [43] proposes a very interesting survey on basic design and stereotype errors. The 

authors clearly state why the sound reduction of a floating floor positioned on a light weight floor 

provides minor performance: the mass-spring-mass effect is much lighter than in heavy weight 

constructions.  

This fact has to be investigated and clarified: a brief deepening is described below. 

The sound reduction on a floating floor ΔLw (see equation (2)) depends on Cremer theory: 

 

(2)        
 

  
      (dB) 

 

where ∆L is the impact sound pressure level reduction (dB), f is the frequency [Hz] and f0 is the 

resonance frequency [Hz] of the spring-mass system expressed by: 

 

(3)        
 

  
 

  

  
       [Hz] 

 

where s’ is the apparent dynamic stiffness per unit area [MN/m
3
] of the spring (resilient layer) and 

m’ is the mass per unit area [kg/m
2
]. 

Floating floor technology is based on the mass-spring-mass effect as shown in Figure 4: m1, called 

“infinite mass”, is the structural and static mass; the spring effect is ensured by the resilient layer 

(where k is the elastic constant) acting with m2 as a “resonant system”. The whole system decreases 

the impact sound pressure transmission emitted by footsteps, object fall, etc. 
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Figure 4: (a) Floating floor representative scheme [46], (b) analytical used model [47]. 

 

In light weight constructions various issues are involved: 

I. the m1 contribution is quite smaller than the solid floors due to lighter masses involved 

II. the m2 influence is very resized compared to traditional heavy weight construction  

III. the dynamic stiffness of resilient layers is not always effective. 

 

In the first case the masses difference is easily calculated. In ISO 12354 [13] and ISO 10140 [48] 

standards the solid reference heavy weight floor has a mass per unit area at about 300-350 kg/m
2
. 

On the other hand the reference lightweight floors masses are 120-200 kg/m
2
; so the difference is 

about 50 %.  

In the second case, the usual m2 value is 100 kg/m
2
 according to ISO 10140 [48] and EN 29052-1 

[49] and in situ realizations normally comply with this rule. In addition, traditions, stereotypes, 

habits, practices etc. imply the use of different technologies from heavy weight buildings even 

though the m2 mass is limited and often not efficient. 

Because of the same reasons, resilient layers are frequently characterized by higher values of 

dynamic stiffness with a resulting less efficient sound reduction. It is worthy to highlight that 

higher values of dynamic stiffness [50]-[55] do not derive from the choice of a recycled or natural 

resilient layer. 

Moreover, in [43] the authors stressed that the ISO tapping machine excites the heavy and light 

weight floor in two different ways: the former generates higher frequencies whether in the latter 

more sound power is radiated in low frequency range. Finally, the ceiling fixed on wooden battens 

contributes to radiate low frequency noise so in this case a suspended solution is suggested. 

The aim of Sjöström et al. [56] is to model the human walking using real and simulated floor. A 

previous work by Bard et al. [57] investigated the direction and deflection of human walking on 

timber floors. The aim of these two papers is not an easy task because the decision of the correct 

force profile requires further future investigation. The literature contains multiple force profiles for 

different walking speed, shoe type and gait and so the authors concluded that a final solid result has 

not been already achieved. 

De Geertere and Ingelaere [58] compared the heavyweight performance – chosen as reference –to 

the lightweight ones. A Ln'T,w+ CI,50-2500 of 48 dB is requested as desired parameter for both floor 

technologies. The authors report that in order to achieve this purpose it is possible to use suspended 

(a) (b) 
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ceilings [35] or adding a concrete or sand slab [59] or a sand-sawdust layer [37]. In the authors’ 

opinion, timber industry will not apply these systems because of cost and/or market issues.  

They try to handle this topic realizing a mock-up in order to study the influence of reduced sand 

layer and line-wise resilient connections between the joists; the solution is then investigated and 

optimized. 

On the same topic, Chung and Emms [60] studied the influence of 8.5 cm sand-sawdust upper layer 

determining that it acts as a damping vibration insulator. 

 

Type C 

The cross-laminated timber (CLT) panels are constituted of thin beams or planks laid on the top of 

each other and high pressure glued in order to form a solid uniform board. Therefore, the horizontal 

(as well as vertical) partitions seem to behave like homogenous slab. Very few studies are present 

in literature for this kind of structure. Nevertheless this technology is commonly used in Europe, 

North America, Australia, New Zeeland, etc. 

In his work [23] Byrick presents laboratory tests showing the frequency trend of a 175 mm bare 

floor (Figure 5) and then he compares different improvements for noise reduction. 

 

 

Figure 5 – Laboratory measurements of CLT floor [23]. 

 

If the homogeneous mass hypothesis is applicable to C typology, then the Ln,w,eq value is obtainable 

using ISO 12354-2 [13] method: 

 

(5)    Ln,W,eq=164-35log(m') (dB) 
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The results are reported in Table 2. It is evident that no homogeneous mass hypothesis could ever 

be proved on CLT impact noise of bare floors. The main difference lies at high frequencies where 

the ISO tapping machine excites the timber floor differently to concrete ones [43]. 

 

Table 2 – Ln,w,eq values obtained using ISO 12354-2 method and laboratory measurement 

description 
ISO 12354 Ln,w,eq 

(dB) 

Measured Ln,w,eq 

(dB) 

CLT floor. 175 mm thickness [23] 94 85 

CLT floor. 135 mm thickness [61] 98.5 88 

Concrete floor. 140 mm thickness [62] 79 81 

 

In their work, Völt et al. [24] aim to understand the vibrational response and the sound transmission 

using vibrational tests and FEM models; the influence of the floating floor and suspended ceiling 

are investigated too. The results show how any clear correlation between suspended ceiling Eigen 

modes and the radiated sound power cannot be proven. 

 

Type D 

For type D technology only one conference paper appears so far, describing its noise impact and 

the influence of different added layer or ceilings. For this reason, the interest of technical or 

scientific literature on this technology is not significant at the moment. 

 

3 Airborne sound insulation 
 

Type A 

The only work concerning Type A technology belongs to Martins et al. [14] which reports an 

airborne sound insulation investigation. Here, laboratory tests are performed on the bare structure 

(TF) and added ceilings (TC1 and TC2). The trends are reported in Figure 6 where the influence of 

the suspended layers is highlighted. 
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Figure 6 – Laboratory measurements of airborne sound insulation [14]. 

 

Type B 

The airborne sound insulation is generally less investigated than the impact sound pressure level 

reduction. Many prediction models are presented and proposed in literature; Mak and Wang [61] 

analysed over 20 recent papers on this topic and their conclusions are that major contribution for 

general airborne sound comes from analytical studies. This is true only from the point of view of 

the number of published works. As a matter of fact, real or simulated test – based paper contains 

many cases; on the other hand theoretical study provide only well-defined limited topic. But, for 

lightweight timber partitions the analytical proposed methods often treat, within the same paper, 

only one or two simplified cases.  

As an example Davy [65] proposes a very interesting analytical model to predict air borne sound 

insulation of single leaf walls, extending the Cremer’s theory [66] up to the critical frequency. In 

the following works, Davy prolonged his previous theory to double leaf cavity walls caused by 

structure born sound transmission through air gap via line [67] or point connections [68]. The effect 

of the bending stiffness on laminated panels is studied [69] stating that theory and experiment do 

not agree because many of the prediction frequencies lie in the critical dip. This is due to Young’s 

modulus and the effective damping loss factor changing in frequency. In the paper, three cases are 

analysed and the results show that two of them do not comply with the prediction method over-

estimating the air borne sound insulation at low frequencies. 

Many other theoretical examples are included in literature coping with this issue [70] - [73]. On the 

other hand, measurement-based or computer-aid researches include many cases and stratigraphy. 

More recent works try to solve the problem using SEA [8], [41], [74], [75], FEM analysis [76], or 

FEA analysis [8], [77] models trying to cover other possibilities.  

Kouyoumji and Guigou [75] reported the activities of AcouBois project where a big database of 

different typologies (Figure 7) and a new methodology based on partially measured and partially 

calculated walls, using direct SEA technique was described. The method decomposes the precast 
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panels into components, setting modal density and damping loss factor. The obtained results show 

a good agreement between calculated and measured values. 

 

 

Figure 7 – Different typologies tested on AcuBois project [75]. 

 

Using numerical FEA analysis, Henning et al. [77] analyse the variations in sound insulation at low 

frequency range of nominally identical prefabricated lightweight timber panels. The objects of the 

investigation are the rigid connection between partitions and the influence of the workmanship on 

the junctions. The final outcomes highlight that the stiffness of the connections influence the sound 

propagation. The more rigid the connection, the higher velocity levels are found. 

Other works study the influence of the flanking transmissions. The available ISO 12354 models are 

intended to operate within homogeneous and heavy partition range. 

These methods are currently under review since they are not applicable to many partitions 

coupling. New parameters are introduced such as the normalized direction-average velocity level 

difference, the vibration reduction of the junction, the element attenuation and sound reduction 

index for resonant transmission. It is evident that new input data are necessary in order to calculate 

flanking transmission of lightweight junctions. 

Crispin and Ingelaere [78] tested, using laboratory measurements, these innovative parameters. The 

authors suggest how to obtain various factors and compare diverse methods to assess them.  

De Geetere [79] measured the newly introduced normalized direction-averaged vibration level 

difference D,v,ij,n,R in timber frame mock-up in order to provide input data for EN 12354-1 draft. 

Results demonstrate the difficulties of test flanking transmission down to 50 Hz caused by 

shielding issues, negative intensities, bidirectional measurements of vibration level very difficult to 

realize, etc. Nevertheless the expression contained in the revision of the standard strongly agrees 

with measurement, therefore no correction is necessary. 

A very complete work was conducted by Quirt et al. [80] where an in-depth laboratory 

measurement campaign is performed. The authors report many measurements and quality rating 

(see Figure 8) of the possible layer improvements. Starting from the bare partition, they upgrade it 

step by step and report the single index results for sound insulation (see Figure 9). Furthermore 

they comment the flanking transmissions, providing many suggestions for in situ realization (see 

Figure 10). 
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Figure 8: Typical brief summary of a different layers effect [80]. 

 

Figure 9: Typical brief summary of a single tested structure [80]. 

 

 

Figure 10: Typical brief summary of flanking transmission effects [80]. 
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The only weak point of this approach consists in no frequency analysis available throughout the 

publication: considering the big amount of single parameter and layer measurements, the frequency 

trend alteration would provide many interesting informations. 

Zeitler et al. [81] assessed whether a shear added layer could improve the acoustical performance 

of walls. After laboratory measurements, they demonstrate that it is beneficial for direct sound 

insulation and for vertical flanking sound insulation. On the other hand, horizontal flanking 

insulation shows a worsening in 1/3 octave bands above 125 Hz. 

Öqvist et al. [19] investigate the same topic, but focusing on the weight-difference influence. In 

their field study, 30 nominally identical apartments are tested. Results demonstrate how the 

elastomer used in floor junction is affected by thickness reduction due to bearing load. The upper 

floor show better sound insulation than the lower one; this indicates a difference in resilient 

performance with a resulting sound reduction.  

Lentzen et al. [41] use SEA-models suitable for impact noise and for airborne one; their method 

consists of symmetrically as well as unsymmetrically varying the dimensions of the panels and the 

coupling length of junction. The authors conclude that it is a good method to provide sound 

insulation prediction. 

De Geertere and Ingelaere [58] also study the airborne sound insulation of vertical panels. They 

report that moving different layers from centre party wall to external surface avoids leaf resonance, 

thus enhancing human noise protection. 

 

Type C 

The bare CLT airborne sound insulation performances are not investigated in any of the paper 

correlated to this topic. The reasons could be explained referring to Table 3, where a comparison 

between ISO 12354-1 model and laboratory measured values is reported. The model agrees with 

the provided measurement; for this reason no further investigation are needed. 

 

Table 3 – R,w values obtained using ISO 12354-1 method and laboratory measurement 

Description 
ISO 12354-1 

(dB) 

Measured Rw 

(dB) 

CLT floor. 175 mm thickness [23] 40.1 39 

CLT floor. 135 mm thickness [61] 38.2 39 

 

4 Subjective evaluation 
 

The literature review on this topic does not divide effects connected to different structures. The 

main topics, as previously reported, are the low frequency range effects. 
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Medved et al. [82] used a mock-up model to investigate how mass effect interacts with low 

frequency impact noise, showing how the use of pre-mixed concrete gravel acts better than extra 

boards as impact sound reduction.  

Ljunggren and Ågren [83] studied the influence of elasticity in the construction. In order to rise low 

frequency insulation performance, the use of elastic connections should be introduced. So, multi-

storey lightweight constructions tests are performed in order to understand if sound reduction and 

impact sound pressure levels may be improved in this frequency range. The final tests show how 

vibration junction could be reduced up to 13 dB in frequency range 50 Hz – 5000 Hz. 

In a similar topic, Bolmsvik and Brandt [84] investigated damping elastomers and their structural 

behaviour in the joints. The use of a mock-up in two different configurations (with and without 

damping elastomer material in the joints) allows measurements and comparison with FEM 

calculation. It is observed that damping varies with frequency. The elastomeric configuration has 

shown to change significantly the dynamic behaviour of the system, especially at low frequency 

range. 

Ryu et al. [85] highlighted that the ISO 717-2 curve [86] is flat at low frequencies of 100-315 Hz. 

Several general papers, i.e. not strictly related to lightweight building, have been treated this matter 

over the last years. For example in 80’s Bodlund [87] proposed a subjective survey in order to 

establish the rating curve values for assessing lightweight and heavyweight impact sound insulation 

in Japan, [89] and Korea [90],[91]. In their work, the authors used laboratory measures to 

investigate the connection between annoyance and single-number quantities. The results showed 

how the arithmetic average LiFavg,Fmax measured with fast constant and Zwicker’s percentile 

loudness (N5) [92] indicated a good annoyance rate. 

Brunskog et al. [93] expressed the hypothesis that the subjective judgment of impact noise is more 

annoying if the source position can be localized; lightweight structures have a more contained 

radiation than heavy structures ones; this could be the reason why a lightweight structure is often 

subjectively judged more annoying than a heavy homogeneous structure. As a matter of fact, for 

the heavy structures, the reverberant vibration field is dominant and then it has a distributed 

radiation not allowing source localization. Using laboratory test, listening playback are used both 

permanent and moving sources, presenting different stimuli. The test results are opposite to the aim 

of their paper. They conclude that localized factor do not play a major role in the annoyance 

assessment, even if it is well recognized by all tested subjects. 

Likewise, Sato et al. [94] prosecuted their previous work [95] playing the floor impact sound from 

a ceiling loud speaker in anechoic chamber. The tests are evaluated using Maximum Zwicker 

loudness. This study intends to investigate the relationship between subjective evaluation on floor 

impact sounds and measures. The conclusions demonstrate that both Maximum Zwicker Loudness 

and LA,F,max can predict annoyance response to floor impact sound of wood-frame construction. The 

annoyance can vary by situations and repeating times. 
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Ljunggren et al. [96] used on site measurements of airborne and impact sound insulation. Besides 

they use questionnaire to investigate inhabitants’ perceptions, developed within European Network 

COST TU 0901 project [98] and reported in Figure 11.  

 

 

Figure 11: Subjective questionnaire proposed in [98]. 

 

The results have demonstrated once again that the source producing the greatest individual 

annoyance is the impact sound. In Ljunggren et al. opinion, since the single rating numbers 
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calculated using ISO 717-2 and ISO 717-1 [99] standards could not connect annoyance and 

measurements results, they suggest a new spectrum adaptation term which takes into account the 

relation between the objective and subjective methods. 

Liebl et al. [100] used both subjective survey and noise listening in timber constructions in 

Germany and Switzerland. They report that the annoyance overall is not high but general noise is 

considered higher than individual noise sources. Thus noise annoyance seems to be a combination 

of annoyance caused by individual sources. Furthermore the listening tests provide a very 

interesting outcome: the short-term subjective impression obtained during laboratory assessments 

corresponds to long-term acoustic impression deduced from inhabitants’ questionnaires. 

On the contrary, in a succeeding paper Liebl et al. [101] conclude that the short-term evaluation 

laboratory tests could not substitute long-term results. In this paper two cases out of three 

demonstrate what previously stated [100] but the third one didn’t. 

Negreira et al. [102] described an investigation on human walking: acceleration measurements are 

carried out while a person either is walking on a particular floor or is seated on a chair placed there 

while someone is walking on the upper floor. The participants fill out a questionnaire regarding 

their perception and experiencing of the vibrations. A total of 60 people were involved in the 

subjective tests. Five different floors technologies were tested. The answers provided by 

participants could be useful to calculate new parameters to determine the best design indicators of 

vibration acceptability and annoyance. 

At the end, it is possible to understand how low frequency noise range is the most disturbing one 

within sustainable buildings and how its assessment is very difficult to perform [103], [104]. 

5 Discussion and conclusions 
 

It is evident that the acoustic studies on wooden lightweight buildings start from real needing and 

applications. Most investigated issues are the impact noise and the low frequency insulation and 

their effects on human perception. The latter topic requires further deepening since a full agreement 

about usable methods and interpretations of results has not been found between scientists. 

As a matter of fact airborne sound insulation is less studied than impact noise reduction since it is 

of easier solutions and the related problems less probable. Furthermore SEA/FEM simulations are 

possible and reliable whether impact noise is not modelled yet. 

In Table 4 a summary of the results is presented in term of presence of studies on related topics for 

impact sound reduction and in Table 5 for airborne sound insulation. 

 

Table 4 – Results summary for impact noise reduction 

 Parameter  frequencies FEM/
SEA 

In field 
measurement 

Laboratory 
measurement 

Prediction 
models 

Added 
ceiling 

Subjective  

Type A --   --           
Type B   --       --     
Type C --     --   -- -- -- 
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Type D -- -- --   -- -- -- -- 

 

 

Table 5 – Results summary for airborne sound insulation 

 Parameter frequencies FEM/SEA 
In field 

measurement 
Laboratory 

measurement 
Prediction 

models 
Added 
ceiling 

Subjective 

Type 
A 

--   -- --   --   -- 

Type 
B 

                

Type 
C 

-- -- -- -- --   -- -- 

Type 
D 

-- -- -- -- -- -- -- -- 

 

It is evident how the most studied structure is the glulam with boards screwed on top. Type A is the 

only one with a prediction model for impact noise reduction whether for type C ISO standard could 

be used, even if some preliminary studies available at the moment [105]-[106]. Once more type D 

provides no sufficient studies in order to understand its behaviour. 

These results highlight the needing of further investigations on these lightweight structures. 

An interesting point is shown in Figure 12 and Figure 13. In the former, the number of papers is 

reported and related to author(s)’ origin continent. It is manifest that Europe is the major supplier, 

followed by Asia and Oceania and then North America.  

From the single country point of view, Sweden is the leader followed by Belgium and New 

Zeeland. It can be concluded that in these nations the acoustic of lightweight buildings research has 

more financial support and as a consequence more lightweight wooden buildings are presents.  

Finally, no researches focused both on duct-borne sound (both from air and from water waste) due 

to service equipment and to façade sound insulation related to the influence of windows (glazing 

and materials frame) are currently available. A new paper on this latter topic have been recently 

published [107], providing a new prediction method for airborne sound insulation and analysing the 

relationship between transmittance (Uw) and airborne sound insulation (Rw) values. 

Besides, even if the impact noise and vibration reduction is the most studied topic, very few works 

analyse the bare floor structures. 

Future works will though have to focus on the determination of impact sound reduction prediction 

methods for type B, C and D and method to reduce low frequency noise propagation through 

timber buildings.  

Since floating floor technology won’t work, forthcoming studies have to center the attention on 

experimenting different solutions able to reduce vibrations transmissions. 

Future subjective evaluation would be focused on comparison between traditional and timber 

buildings since people expects similar comfort conditions and does not take into account any 

possible modification between different constructions. 
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Figure 12: Papers geographical distribution – continent influence. 

 

 

Figure 13: Papers geographical distribution – single country influence. 
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