Cross-linking effect on dentin bond strength and

MMPs activity

Annalisa Mazzoni®, Valeria Angeloni®, Allegra Comba®, Tatjana Maravic?,
Milena Cadenaro®, Arzu Tezvergil-Mutluay‘, David H. Pashley®,
Franklin R. Tay*®, Lorenzo Breschi®*

a Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna — Alma Mater Studiorum,

Bologna, Italy
b Private practice, Imperia, Italy

¢ Department of Medical Sciences, Unit of Dental Sciences and Biomaterials, University of Trieste, Trieste, Italy
d Department of Restorative Dentistry and Cariology, Institute of Dentistry, and TYKS University Hospital,

University of Turku, Turku, Finland

€ The Dental College of Georgia, Augusta University, Augusta, GA, USA

ARTICLE INTFO

Keywords:

Dentin bonding systems
EDC

Protein cross-linkers
MMPs

ABSTRACT

Objective. The objectives of the study were to evaluate the ability of a 1-ethyl-3 (3-
dimethylaminopropyl) carbodiimide (EDC)-containing primer to improve immediate bond
strength of either self-etch or etch-and-rinse adhesive systems and to stabilize the adhesive
interfaces over time. A further objective was to investigate the effect of EDC on the dentinal
MMPs activity using zymographic analysis.

Methods. Freshly extracted molars (n=80, 20 for each group) were selected to conduct
microtensile bond strength tests. The following groups were tested, immediately or after
1-year aging in artificial saliva: G1: Clearfil SE (CSE) primer applied on unetched dentin,
pretreated with 0.3M EDC water-solution for 1min and bonded with CSE Bond; G2: as G1
but without EDC pre-treatment; G3: acid-etched (35% phosphoric-acid for 15s) dentin pre-
treated with 0.3 M EDC, then bonded with XP Bond (XPB); Group 4 (G4): as G3 without EDC
pre-treatment. Further, gelatinase activity in dentin powder treated with CSE and XPB with
and without EDC pre-treatment, was analyzed using gelatin zymography.

Results. The use of 0.3M EDC-containing conditioner did not affect the immediate bond
strength of XPB or CSE adhesive systems (p > 0.05), while it improved the bond strength after
1year of aging (p <0.05). Pre-treatment with EDC followed by the application of CSE resulted
in an incomplete MMPs inactivation, while EDC pretreatment followed by the application of
XPB resulted in an almost complete inactivation of dentinal gelatinases.

Significance. The pTBS and zymography results support the efficacy of EDC over time and
reveal that changes within the dentin matrix promoted by EDC are not adhesive-system-
dependent.
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1. Introduction

Currently, adhesive dental restorations are an essential part
in everyday dental practice [1]. However, despite evolution of
adhesive protocols, the hybrid layer (HL) remains the weakest
point of resin-composite restorations. The structure of this
connecting layer is responsible for the retention of the resin
restorations. However, it is also the most vulnerable area of
the adhesive-resin bond [2]. Previous in vitro and in vivo stud-
ies revealed that degradation of resin dentin bonds over time
is caused by hydrolytic breakdown of the resin or of denti-
nal collagen fibrils [3,4], identifying the important contribution
of host derived proteinases in the deterioration of the hybrid
layer over time [5-8]. To date, several matrix metallopro-
teinases (MMPs) and cysteine cathepsins have been identified
in dentin; while their role is still unclear in sound dentin,
they could synergistically digest collagen fibrils exposed at the
adhesive interface [8].

Collagen fibrils not completely encased by resin poly-
mers during the bonding procedure are highly susceptible
to enzymatic hydrolysis over time [9]. Furthermore, poly-
mer degradation leads to the exposure of more collagen. The
unprotected collagen fibrils at the base of the hybrid layer are
slowly destroyed by proteases that are bound, directly or indi-
rectly to the fibrils, causing the loss of the anchoring function
of the HL with the consequent loss of bond strength [10]. A sig-
nificant fall in bond strength of 36-70% after 1year of storage
has been reported [4,11]. Thus, attempts to increase the resis-
tance of collagen against enzymatic deterioration, and the
inactivation of these proteases are fundamental approaches
to enhance the quality and the longevity of dental restora-
tions. The inhibition enzymes activity is crucial to prolong the
resin-dentin bond strength over time [8,12].

The use of synthetic MMP-inhibitors [13,14], quaternary
ammonium methacrylates, benzalconium chloride [15] or
other reagents has been proposed to increase the durability
of resin dentin bonds. Among these different approaches, the
use of cross-linkers has recently attracted the interest of inves-
tigators.

Endogenous cross-linkers are naturally present in collagen
structure in the form of intra- and inter-molecular covalent
or ionic bonds which provide the fibrillar resistance against
enzymatic degradation as well as greater tensile properties
[16,17].

The biomodification of dentinal collagen has been pro-
posed through the application of exogenous cross-linking
solutions prior to the adhesive procedures. Such procedures
have shown improvement of the mechanical properties of col-
lagen, thus increasing its resistance to degradation, resulting
in superior ultimate tensile strength and in an enhancement
of resin—dentin bond durability [7,18].

Among the available cross-linking reagents, 1-ethyl-3
(3-dimethylaminopropyl) carbodiimide (EDC), has shown
promising results due to its ability to cross-link peptides with-
out introducing additional linkage groups [19]. Recent in vitro
studies have demonstrated that the application of EDC to
etched dentin surfaces for 60s inactivates matrix MMPs [20].
However, although EDC have shown promising results at base-

line, information on the behavior of EDC and its capability of
inactivating MMPs over time are still missing.

Thus, the aim of this study was to evaluate the ability of
a EDC-containing primer applied during adhesive procedures
to cross-link the dentinal collagen, in order to improve the
immediate bond strength of either self-etch or etch-and-rinse
adhesive systems, and to stabilize the adhesive interfaces over
time. Furthermore, the effect of EDC on the dentinal MMPs
activity was investigated by means of zymographic analy-
ses. The null hypotheses tested were that: pre-conditioning
of dentin with EDC before adhesive system application (1)
does not affect immediate bond strength, (2) does not pre-
serve adhesive interface degradation over time, and (3) does
not inhibit endogenous dentin MMPs activity.

2. Materials and methods
2.1.  Microtensile bond strength test (wTBS)

Freshly extracted sound human third molars were obtained
from anonymous individuals following their signed consent
under a protocol approved by the University of Trieste (Italy).
Eighty tooth crowns (n=20 for each group) were selected to
conduct microtensile bond strength tests, flattened using a
low-speed diamond saw (Micromet, Remet, Bologna, Italy)
under water cooling, and a standardized smear layer was cre-
ated with 600-grit silicon-carbide (SiC) paper on each tooth
surface.

Specimens were then randomly assigned to four different
groups as according to the adhesive procedure performed:

e Group 1 (G1): Clearfil SE primer (Kuraray Dental, Osaka,
Japan; abbreviation: CSE) was applied on unetched, smear
layer-covered dentin according to the manufacturers’
instructions. Then the dentin surface was pretreated with
an aqueous solution of 0.3M EDC for 1min, air-dried and
bonded with Clearfil SE Bond (Kuraray) according to the
manufacturer’s instructions;

e Group 2 (G2): CSE was applied on unetched dentin without
EDC pre-treatment as per manufacturer’s instructions;

e Group 3 (G3): dentin was etched for 15s with 35%
phosphoric-acid gel (3M ESPE, St. Paul, MN, USA) and rinsed
with water. The acid-etched dentin was than pretreated
with the 0.3M EDC solution for 1 min, air-dried and then
bonded with XP Bond (Dentsply DeTrey GmbH, Konstanz,
Deustche; abbreviation:XPB) following the manufacturer’s
instructions;

e Group 4 (G4): XPB was applied on etched dentin without EDC
pre-treatment as per manufacturer’s instructions.

Each bonded specimen was then light-cured for 20s using
a LED curing light (Demi Light, Kerr). Four 1-mm-thick layers
of microhybrid resin composite (Filtek Z250; 3M ESPE) were
placed and polymerized individually for 20 s. Specimens were
serially sectioned to obtain approximately 1 mm-thick beams
in accordance with the microtensile non-trimming technique.
The dimension of each stick (ca. 0.9 mm x 0.9mm x 6 mm) was
recorded using a digital caliper (+0.01mm) and the bonded
area was calculated for subsequent conversion of microten-



sile strength values into units of stress (MPa). Beams were
stressed to failure after 24h (TO) or 1year (T12) of storage in
artificial saliva at 37°C [6] using a simplified universal test-
ing machine (Bisco, Inc., Schaumburg, IL, USA) at a crosshead
speed of 1mm/min. The number of prematurely debonded
sticks in each test group was recorded, but these values were
not included in the statistical analysis because all premature
failures occurred during the cutting procedure and they did
not exceed the 3% of the total number of tested specimens and
were similarly distributed within the groups. A single observer
evaluated the failure modes under a stereomicroscope (Stemi
2000-C; Carl Zeiss Jena GmbH) at magnifications up to 50x and
classified them as adhesive, cohesive in dentin, cohesive in
composite, or mixed failures.

As values were not normally distributed
(Kolmogorov-Smirnov test), the collected data were sta-
tistically analyzed with the non-parametric Kruskal-Wallis
test followed, when significant, by pair-wise comparisons
using the Mann-Whitney U test. The Chi-square test was
used to analyze differences in the failure modes. For all
tests, statistical significance was pre-set at « =0.05. Statistical
analysis was performed using SPSS 21.0 software for Mac
(SPSS Inc., Chicago, IL, USA).

2.2.  Zymographic analysis

The zymographic analysis was performed according to the
protocol of Mazzoni et al. [21]. In brief, mineralized dentin
powder was obtained from additional 16 human third molars.
Teeth were ground free of enamel, pulpal soft tissue, and
cementum; dentin powder was obtained by freezing the
dentin in liquid nitrogen and triturating it by means of a
Retsch mill (Reimiller, Reggio Emilia, Italy). The fine miner-
alized dentin powder was pooled, dried, and kept frozen until
use. Aliquots of mineralized dentin powder were divided into
6 groups as follows:

e Group 1 (Lane 1 — L1): dentin powder (DP) left untreated as
mineralized control;

e Group 2 (Lane 2 —L2): DP treated with 1 ml of 10%/wt phos-
phoric acid for 10 min to simulate the etching procedure as
the first step of the etch-and-rinse bonding technique and
used as demineralized control (DDP);

e Group 3 (Lane 3 — L3): DP treated with 100 pl of 0.3M EDC
for 30 min, then gently dried and treated with CSE primer
for 30 min in the dark;

e Group 4 (Lane 4 — L4): DP mixed with 100 pl of CSE primer
for 30 min in the dark;

e Group 5 (Lane 5 —L5): DDP treated with 0.3M EDC as for L4,
followed by XPB application for 30 min in the dark;

e Group 6 (Lane 6 — L6): DDP mixed with 100 pl of XPB for
30min in the dark.

From each group, the adhesive was extracted from the
dentin-treated powder with 1ml of acetone and centrifuged
(20,800 x g for 20min), then re-suspended in acetone and
re-centrifuged 2 more times for removal of additional unpoly-
merized comonomers [21]. For protein extraction, dentin
powder aliquots were re-suspended in extraction buffer
(50mM Tris-HCI pH 6, containing 5mM CacCl,, 100 mM Nacl,

0.1% Triton X-100, 0.1% non- ionic detergent P-40, 0.1 mM
ZnCly, 0.02% NaN3) for 24h at 4°C and sonicated every
20s for 10min (30 pulses), centrifuged for 20min at 4°C
(20.800 g), after which the supernatant was removed and re-
centrifuged. The protein content was further concentrated
in a Vivaspin centrifugal concentrator (10,000kDa cut-off;
Vivaspin Sartorius Stedim Biotech, Goettingen, Germany)
for 30min at 4°C (15,000 x g, 3 times). Total protein con-
centration of dentin extracts was determined by Bradford
assay (Bio-Rad, Hercules, CA, USA). Dentin protein aliquots
(60 ng) were diluted in Laemmli sample buffer at a 4:1 ratio
and subjected to electrophoresis under non-reducing con-
ditions in 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) containing 1mg/ml fluorescein-
labeled gelatin. Pre-stained low-molecular-weight SDS-PAGE
standards (Bio-Rad) were used as molecular-weight markers.
After electrophoresis, the gels were washed for 1hr in 2% Tri-
ton X-100, and then were incubated in zymography activation
buffer (50 mmol/l Tris-HCl, 5mmol/l CaCl2, pH 7.4) for 48h.
Proteolytic activity was evaluated and registered under long-
wave UV light scanner (ChemiDoc Universal Hood, Bio-Rad).
Gelatinase activity in the samples was analyzed in duplicate
by gelatin zymography.

Zymographic bands were identified and quantified with
Bio-Rad Quantity One Software (Bio-Rad).

3. Results
3.1.  Microtensile bond strength test (wTBS)

Means and standard deviations of microtensile bond strength
(in MPa) at times TO and T12 months are reported in Table 1.
The use of the 0.3M EDC-containing conditioner before adhe-
sive application did not affect the immediate bond strength
of either XPB or CSE adhesive systems (p>0.05; Table 1). That
is, both adhesives showed comparable bond strength values
when employed with or without EDC pretreatment.

However, after incubating the bonded sticks for 12 months,
the two control groups (2 and 4) showed significant (p <0.05)
reduction in wTBS compared to EDC-treated experimental
groups (1 and 3).

Group 2 specimens bonded with Clarefil SE Bond fell
35%, while Group 4 specimens bonded with XP Bond fell
51%.

Specimens pretreated with EDC and bonded with Clare-
fil SE Bond showed only an 11% decrease in bond strength
compared to the 35% reduction seen in Group 2. Similarly,
specimens pretreated with EDC before being bonded with XP
Bond (Group 3) showed only 21% decrease in wTBS compared to
the 51% decrease seen in non EDC-treated specimens (Group
4) (Fig. 1).

A predominance of mixed failures was detected in all
groups, except for XPB control that resulted in increased adhe-
sive fracture at the bonded interface either at TO and T12.

3.2.  Zymographic analysis

Zymographic analysis and densitometric evaluation of bands,
expressed as percentage of increase/decrease of MMPs activ-



Table 1 - Means and standard deviations of microtensile bond strength (expressed as MPa) obtained by applying primer
for 1min on the etched dentin surface. To and T, indicate specimens that were tested after storage for 24h or 12
months in artificial saliva, respectively. Distribution of failure mode among tested groups is also reported in square

rounds and classified as: A: adhesive; CD: cohesive failure in dentin; CC: cohesive failure in resin composite; M: mixed.
Bond reduction after storage report the percentage of mean bond reduction after 1 year of storage. Clearfil SE Bond (CSE)

and XP Bond (XPB) with or without 0.3 M EDC as additional therapeutic.

Treatment group

Storage time

Bond reduction after 1year of storage

To T1o

Group 1 30.1+6.334 26+£8.024 ~11.45%
0.3M EDCG + Clearfil SE (35A/11CC/12CD/42 M) (48A/5CC/7CD/36 M)

Group 2 32.8+4.434 21.4+5.7%8 —34.79%
Clearfil SE (35A/0CC/10CD/55 M) (42A/8CC/5CD/45 M)

Group 3 36.5+7.154 28.6+6.4%F ~21.63%
0.3M EDC + XP Bond (32A/8CC/CD12/48 M) (30A/4CC/7CD/59 M)

Group 4 37.6+5.954 18.1+4.958 —~51.0%
XP Bond (69A/8 CC/3CD/20 M) (59A/5CC/0CD/36 M)

Premature failures due to preparation procedures were not included in the statistical analysis. Groups with the same superscripts are not
statistically different (p >0.05). Different superscript lower-case letters (in rows) indicate statistical differences between storage time. Different
superscript upper-case letters (in columns) indicate statistical differences between different adhesive protocol. The distribution of failure mode
are shown within the parentheses and were classified as A: adhesive; CD: cohesive failure in dentin; CC: cohesive failure in resin composite; M:
mixed failure. Reduction in bond strength after storage are reported as percentages of mean bond reduction after 1year of storage.
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Fig. 1 - Graph summarizing the bond strength values (MPa) reported in Table 1.

ity among the different treatment groups compared with
mineralized dentin, considered as baseline, are shown in
Figs. 2 and 3. Proteins extracted from mineralized and dem-
ineralized dentin powder (Lane 1, Lane 2, Fig. 2) showed the
presence of MMP-2 pro- and active-forms (72- and 66-kDa,
respectively) and pro-MMP-9 (100kDa). Mineralized dentin
powder treated with CSE and XPB resulted in enzymatic acti-
vation (Lane 4, Lane 6 Fig. 2), especially for the XPB where the
activity of MMP-2 and -9 are clearly visible, while for CSE MMP-
2 activity was almost absent. Pre-treatment with EDC followed
by the application of CSE resulted in incomplete inhibition of
MMPs, and the presence of a band corresponding to the active
MMP-9 was still detectable (Lane 3, Fig. 2). Pre-treatment with
EDC followed by the application of XPB resulted in an almost
complete inactivation of dentinal gelatinases (Lane 5, Fig. 2).

4, Discussion

The results of the study showed that the application of 0.3M
EDC pretreatment prior to adhesive application did not affect
the immediate bond strength for either tested adhesives,
requiring acceptance of the first tested null hypothesis. Appli-
cation of 0.3M EDC to either adhesives resulted in bond
strength preservation after 1year of storage, in addition to a
reduction of MMP-2 and -9 activities, requiring rejection of the
second and the third tested null hypotheses.

Over the last few years, the experimental use of collagen
cross-linking agents to increase the longevity of resin-dentin
bonds has gained increased popularity [22-24].

The use of cross-linkers can be considered as a bio-
logical tissue engineering approach, where dentin tissue
repair/regeneration is the development of a biomimetic strat-
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Fig. 2 - Zymographic analysis of proteins extracted from dentin powder. Std: Standards (Std.) are reported in lane Std. Lane
1: mineralized dentin showing the presence of MMP-9 pro-form, MMP-2 pro- and active-form (~92, 72 and 66 kDa,
respectively) and an additional band around 45 kDa. Lane 2: proteins extracted from dentin powder demineralized with 10%
phosphoric acid, showing an increase of MMP-2 active-form and a slight decrease in the expression of gelatinases
pro-forms, and of the additional band at 45 kDa. Lane 3: demineralized dentin powder after incubation with 0.3 M EDC
followed by CSE showing a decrease in the activity of MMP-9 pro-form and complete inactivation of dentinal MMP-2 pro-
and active forms. Lane 4: demineralized dentin powder treated with CSE showing a slight decrease in the activity of MMP-9
pro-form and complete inactivation of dentinal MMP-2 pro- and active forms. Lane 5: proteins extracted from demineralized
dentin powder pre-treated with 0.3 M EDC followed by XP Bond application showing complete inactivation of dentinal
gelatinases. Lane 6: demineralized dentin powder treated with XP Bond showing enzymatic activation of both MMP-2 and
—9 and of the additional band at approx. 45 kDa.
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MMPs activity among the different treatment groups compared with mineralized dentin (considered as baseline).



egy to enhance the substrate properties by modifying the
chemistry of the tissue [16]. Previous studies investigated the
use of different cross-linkers, such as glutaraldehyde, genepin,
proanthocidin and EDC, as biomodifier agent, although the
application time required to be effective (10min to several
hours [25,26]) could not be considered clinically acceptable.
For this reason, more recent studies concerning the use of
EDC were conducted to evaluate the capabilities to increase
the mechanical properties of the etching-dentin matrix within
1min application time, revealing that this short application
time is sufficient to inactivate endogenous protease activity
of dentin without significantly stiffening the collagen matrix
[6]. These findings were further confirmed by a recent study
conducted by Mazzoni et al. [7] demonstrating that 1min is
an adequate timing to positively influence the durability of
resin—-dentin bond over time. According to these findings, in
the present study, EDC was applied for 1 min on the dentin sur-
faces. Theresults demonstrated thatincreased bond strengths
could be obtained, compared to controls, with the use of EDC in
association with a self-etching versus an etch-and-rinse adsh-
esive.

The pTBS results showed that EDC pretreatment can
improve the durability and the structural integrity of the
resin/dentin interfaces created either with etch-and-rinse
(XPB) or self-etch adhesive systems (CSE) (Table 1). The results
of the nTBS of the EDC experimental groups showed that
bond strength values, even when at baseline were compa-
rable to the control groups, remained stable over time, or
at least more stable than the control groups (Table 1). Fur-
thermore, in terms of percentage of bond strength reduction,
the self-etch adhesive (CSE) lost less bond strength follow-
ing EDC pretreatment, compared to etch-and-rinse adhesive
system (XPB). These data further confirm previous in vitro
findings that showed the improved stability of the 2-step self-
etch system versus the two-step etch-and-rinse system due
to the increased hydrophobicity [8] and curing ability [9,10].
The observed decline in bond strengths of the present study
can be related to the loss of integrity of resinous components
within the hybrid layer due to polymer swelling and resin
leaching that occur after water/oral fluid sorption, which is
recognized to be more pronounced for simplified (two-step)
etch-and-rinse adhesives than unsimplified systems (three-
step) [27,28]. The 2-step self-etch adhesive is considered the
most durable bond [28]. This can be due to the fact that the
self-etch adhesives do not completely expose the dentin colla-
gen matrix [28,29]. Self-etch adhesives maintain more residual
hydroxyapatite crystal in their hybrid layers which mini-
mizes activation of dentin MMPs [21,30,31]. Those calcium
ions that are released from the matrix during self-etching are
thought to form relatively insoluble calcium salts with the
functional monomers like 10-MDP (10-methacryloyloxydecyl
dihydrogen phosphate) in SE Bond. The slow solubilization
of the insoluble salts over 12 months may allow control SE
Bond to lose more bond strength than their EDC-pretreated
experimentals [21,30,31]. The present wTBS results revealed
that bonded dentin interfaces created with EDC pretreat-
ment improves the durability of the resin-dentin bonds. These
results are similar to a recently published study in which
a 3-step etch-and-rinse adhesive (Optibond FL) and a 2-step
self-etch adhesive (CSE) were tested using chlorhexidine as a

conditioning primer and MMP inhibitor [21,30,31]. The results
of that study showed that the use of chlorhexidine stabilized
bond strength values over time for both tested adhesives.
Unlike chlorhexidine which only binds to dentin electrostati-
cally [21,30,31], EDC reacts with collagen to forming covalent
bonds [21,30,31].

The results of the zymographic analysis performed in
the present work are in accordance with previous find-
ings [21,30,31]; thus, the use of the adhesive systems tested
resulted in an increase in MMP-2 and -9 activity, but EDC pre-
treatment resulted in reduction or almost complete inhibition
of the gelatinolytic activity as shown in Figs. 2 and 3.

Based on the outcomes of the present project, the effective-
ness of EDC in improving both the mechanical properties of
collagen over time, and in inhibiting the gelatinolytic activity
within the HL has been successfully demonstrated. Previous
studies suggested that this may be attributed to silencing
mechanism of MMPs and probably other exogenous colla-
gen degradation enzymes via conformational changes in the
enzyme 3-D structure [32]. The use of cross-linking agents
may create multiple cross-links between amino acids within
their catalytic sites that irreversibly alter the 3-D confor-
mation or flexibility of the cleft-like catalytic domain and
prevent its optimal recognition and complexing with the type
I collagen substrate [33]. Although there is no evidence that
the catalytic domain of collagenolytic MMPs can be cross-
linked to inactivate their functions, it has been hypothesized
that the use of cross-linking agents may also contribute to
MMPs silencing via allosteric control of non-catalytic domains
[34]. For example, the catalytic domains in collagenolytic
MMPs can cleave non-collagen substrates, but the hemopexin-
like domain of these enzymes is crucial to initially unwind
and subsequently cleave the three triple-helical fibrillar ele-
ments of the collagen molecule in succession [23]. For MMP-2,
there are three fibronectin-like repeats that form a domain
for binding to collagen or gelatin substrates. This collagen-
binding domain binds preferentially to the «l chain and
mediates local unwinding and gross alteration of the triple
helix prior to the cleavage of the B2 chain [24]. Regardless of
which of the two collagen-binding mechanisms is involved,
cross-linking of either the hemopexin-like or fibronectin-like
domains may contribute to inactivation of the associated
MMPs and reduction in their collagenolytic efficacy. Cross-
linking may also affect MMP activities known to be modified
by non-collagenous proteins [35]. In dentin, MMP activities
and resistance to degradation may be regulated by fetuin-
A [36] and the SIBLINGs Bone Sialoprotein (BSP) and Dentin
Matrix Protein-1 (DMP-1) [37], all of them being present in
dentin. Thus, cross-linking of these non-collagenous proteins
may indirectly block MMPs via inactivation of the functional
domains of these glycoproteins. Since MMPs do not turn over
in peripheral dentin, their inactivation by cross-linking agents
should last for along time and may be even more effective than
inhibitors such as chlorhexidine [13,31].

In conclusion, the wTBS and zymography results support
the efficacy of EDC over time and revealed that changes within
the dentin matrix promoted by EDC are not adhesive-system-
dependent. Further in vivo studies are necessary to clinically
validate and promote the use of EDC as additional step during
dentin-bonding procedures.
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