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Abstract: We consider the Cauchy problem for the defocusing nonlinear Schrödinger
(NLS) equation for finite density type initial data. Using the ∂ generalization of the non-
linear steepest descent method of Deift and Zhou, we derive the leading order approx-
imation to the solution of NLS for large times in the solitonic region of space–time,
|x | < 2t , and we provide bounds for the error which decay as t → ∞ for a general
class of initial data whose difference from the non vanishing background possesses a
fixed number of finite moments and derivatives. Using properties of the scattering map
of NLS we derive, as a corollary, an asymptotic stability result for initial data that are
sufficiently close to the N -dark soliton solutions of NLS.

1. Introduction and Statement of Main Results

We consider the Cauchy problem for the defocusing nonlinear Schrödinger (NLS) equa-
tion on the real line with finite density initial data:

iqt + qxx − 2(|q|2 − 1)q = 0 (1.1)

q(x, 0) = q0(x), lim
x→±∞ q0(x) = ±1. (1.2)

Remark. The usual form of the NLS equation is iut +uxx +2σu|u|2 = 0,where σ = 1 is
called the focusing and σ = −1 the defocusing NLS equation. The change of variables
q(x, t) = u(x, t)e2it reduces the defocusing NLS equation to (1.1). This form has the
advantage that solutions of (1.1) which satisfy (1.2) are asymptotically time independent
as x → ∞.

Remark. Some authors have referred to (1.1) as the Gross–Pitaevskii (GP) equation [2–
5,25,27,28]. The general one dimension GP equation, which appears in the modeling
of Bose-Einstein condensates on a nonzero background, is iψt +ψxx − 2(|ψ |2 − 1)ψ +
V (x)ψ = 0 where ψ is the wave function of a single particle and V is an external
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potential. Equation (1.1) is the integrable case of the 1D GP equation in which the
particle is free, i.e., V ≡ 0.

It is an elementary fact that solutions of the linear Schrödinger equation iqt +qxx = 0
disperse, i.e., q(x, t) = O (

t−1/2
)
as t → ∞. Once nonlinear effects are included,

soliton solutions appear. These special solutions do not disperse. Instead, the nonlinear
effects balance the dispersive to create solutionswhich persist for all time. For initial data
q0(x) which vanish sufficiently quickly as |x | → ∞, only the focusing NLS equation
supports soliton solutions. For the finite density type of data considered in (1.1)–(1.2) the
defocusing equation also possesses soliton solutions. Let ∂D(0, 1) = {z ∈ C : |z| = 1}.
For z0 ∈ ∂D(0, 1) ∩ C

+ define

sol(x, t; z0) :=−iz0 (iz0R+z0I tanh (z0I (x−2z0Rt))) where z0R =Re z0 and z0I = Im z0.

(1.3)

Then q(x, t) = sol(x − x0, t; z0) is a traveling wave solution of (1.1) satisfying
limx→∞ q(x, t) = 1 and limx→−∞ q(x, t) = z20. We call these solutions 1-solitons,
or simply solitons. More generally, given a collection of distinct points {zk}N−1

k=0 ∈
∂D(0, 1) ∩ C

+ one can construct more elaborate exact soliton solutions q(sol),N (x, t),
called N -solitons which, instead of dispersing, resemble the sum of N individual 1-
solitons at sufficiently large times. Such solutions are constructed in Appendix A.

The soliton resolution conjecture is the vaguely stated, but widely believed, statement
that the evolution of generic initial data formany globallywell posed nonlinear dispersive
equations will in the long time limit resolve into a finite train of solitons plus a dispersing
radiative component. For most dispersive evolution equations this is a wide open and
active area of research [11,34,35,40]. The situation is somewhat better understood in the
integrable setting where the inverse scattering transform (IST) gives one much stronger
control on the behavior of solutions thanpurely analytic techniques [12,14,16,20,29,41].
Even among the integrable evolutions, most results concern initial data with sufficient
decay at spatial infinity, but there havebeen some recent studies concerningnonvanishing
initial data [7,23,30,42,43].

As we review below, problem (1.1)–(1.2) is integrable— as discovered by Zakharov–
Shabat— and its solution can be characterized in terms of an IST [45]. Briefly, the Lax-
pair representation of (1.1) (c.f. (3.1)) encodes the solution of NLS as a time evolving
potential in a certain spectral problem, (3.5), on the line. In analogy to the standard
Sturm–Liouville theory for Schrödinger operators on the line, see for example [20], the
scattering map associates to q0 a discrete spectrum, formed by a finite number of poles
{z j }N−1

j=0 ⊂ ∂D(0, 1)∩C
+ and for each pole an associated coupling constant c j ∈ iz jR+.

In addition to the discrete data, the scattering map associates to q0 the so called reflection
coefficient, r , defined along the continuous spectrum of the scattering operator, i.e.,
r : R → C, which is a sort of Fourier transform of q0 satisfying |r(z)| < 1 for any

z �= ±1 with r(0) = 0. The collection
{
r(z), {z j , c j }N−1

j=0

}
is called the scattering

data associated with q0. In terms of scattering data, soliton solutions correspond to
reflectionless potentials q0 for which the scattering map gives r(z) ≡ 0; the scattering
data of a 1−soliton is {0, {z0, c0}} and for an N−soliton {0, {zk, ck}N−1

k=0 }.
The essential fact is that the evolution of the scattering data is trivial, and an inverse

scattering map can be constructed in terms of a Riemann-Hilbert problem where the
spatio-temporal dependence appears only parametrically. This characterization of the
inverse map is ideally suited to rigorous asymptotic analysis via the Deift–Zhou steepest
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descent method and has been key to deriving detailed asymptotic expansions of NLS
and other integrable evolutions in various asymptotic regimes [8,10,17,18,31,41].

The long time asymptotic behavior of the defocusingNLS equationwith finite density
data has been studied previously. In a series of papers [42–44] Vartanian computed
both the leading and first correction terms in the asymptotic expansion of the solution
q(x, t) and ‘partial masses’

∫ x
±∞(1 − |q(x, t)|2)dx of (1.1)–(1.2) as x, t → ±∞ with

|ξ | = |x/2t | > 1 (outside the soliton ‘light cone’) and |ξ | < 1 (inside the soliton ‘light
cone’). In particular, in [43], it is shown that when the initial data generates discrete data
{zk, ck}N−1

k=0 (in our notation), then in a frame of reference moving at one of the soliton
speeds, i.e., x + 2Re(z j )t = O (1) for any j = 0, 1, . . . , N − 1, the solution q(x, t) of
(1.1)–(1.2) is asymptotically described to leading order by a 1-soliton. Our first result
below, Theorem 1.1, describes the leading order asymptotic behavior of the solution
q(x, t) uniformly in any closed sector within the ‘light cone’, that is with |ξ | ≤ ξ0 < 1.
Our formulation (1.6) is consistent with Vartanian’s description, but is formulated such
that we give a more holistic description of the solution as an N -soliton with a fixed
set of poles whose coupling constants slowly modulate due to the interaction of the
soliton components with the reflection coefficient. Expressing this N -soliton solution in
separated form for t 
 1, (1.8) reduces to Vartanian’s leading order asymptotics in the
frames of reference x + 2Re(z j )t = O (1) defined by the individual solitons. From a
technical perspective our ∂ methods greatly simplify the analytical arguments needed to
prove results. Moreover, our results hold for a much larger class of initial data than was
considered in [42–44] (c.f. Remark 1.5). Finally, we believe that our methods should be
more easily adapted to considering the so called collisionless shock region |x/2t | ≈ 1
where |r(z)| → 1, which we plan to consider in the near future.

1.1. Results. Our first result is a verification of the soliton resolution conjecture for (1.1)
for initial data of finite density type (1.2) that possess a certain number of derivatives
and moments. To state the theorem precisely we introduce the Japanese bracket 〈x〉 :=√
1 + |x |2 and the normed spaces:

L p,s(R) defined with ‖q‖L p,s (R) := ‖〈x〉sq‖L p(R);

Wk,p(R) defined with ‖q‖Wk,p(R) :=
k∑

j=0

‖∂ jq‖L p(R), where ∂ ju is the j th weak derivative of u;

Hk(R) defined with ‖q‖Hk (R) := ‖〈x〉k q̂‖L2(R), where û is the Fourier transform of u;

Σk := L2,k(R) ∩ Hk(R).

We also set C± = {z ∈ C : ± Im z > 0} and R+ = (0,∞).

Theorem 1.1. Consider initial data q0 ∈ tanh (x) +Σ4 with associated scattering data
{r(z), {z j , c j }N−1

j=0 }. Order the z j such that

Re z0 > Re z1 > · · · > Re zN−1, (1.4)

let ξ = x/2t , and define

α(ξ) = 1

2π

∫ ∞

0

log(1 − |r(s)|2)
s

ds + 2
∑

k:Re zk>ξ

arg zk . (1.5)
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Fix ξ0 ∈ (0, 1), then there exist t0 = t0(q0, ξ0) and C = C(q0, ξ0) such that the solution
q(x, t) of (1.1)–(1.2) satisfies

∣∣
∣q(x, t) − eiα(ξ)q(sol),N (x, t)

∣∣
∣ ≤ Ct−1 for all t > t0 and |ξ | ≤ ξ0. (1.6)

Here q(sol),N (x, t) is the N-soliton with associated scattering data {̃r ≡ 0, {z j , c̃ j }N−1
j=0 }

where

c̃ j = c j exp

(
− 1

iπ

∫ ∞

0
log(1 − |r(s)|2)

(
1

s − z j
− 1

2s

)
ds

)
. (1.7)

Moreover, for t > t0 and |ξ | < ξ0, the N-soliton solution separates in the sense that

q(x, t) = eiα(1)

⎡

⎣1 +
N−1∑

k=0

⎛

⎝
∏

j<k

z2j

⎞

⎠ [sol(x − xk, t; zk) − 1]

⎤

⎦ +O
(
t−1

)
, (1.8)

where sol(x, t; z) is the one soliton defined by (1.3) and

xk = 1

2 Im(zk)

⎛

⎜
⎜
⎜
⎝
log

⎛

⎜
⎜
⎜
⎝

|ck |
2 Im(zk)

∏

	:Re(z	)>ξ
	�=k

∣∣
∣
∣
zk−z	
zk z	 − 1

∣∣
∣
∣
2

⎞

⎟
⎟
⎟
⎠

− Im(zk)

π

∫ ∞
0

log(1 − |r(s)|2)
|s − zk |2

ds

⎞

⎟
⎟
⎟
⎠

.

(1.9)

Remark 1.2. The smoothness and decay properties of the reflection coefficient needed
in the proof of Theorem 1.1, which follow from our hypotheses on q0, are proved in
Sect. 4. Specifically, for q0 ∈ tanh(x) + Σm with m = 2 we will prove r ∈ L2(R)

and ‖ log(1 − |r |2)‖L p(R) for p ≥ 1. m = 3 implies q0 ∈ tanh(x) + L1,2(R) which in
turn allows us to show that r(z) ∈ H1(R); additionally for m = 3 we show (Lemma
4.8) that the scattering map has a finite discrete spectrum. This improves [13] where
finiteness of the spectrum was proved for q0 ∈ tanh(x) + L1,4(R). The condition that
q0 ∈ tanh(x)+Σm withm = 4 is needed only to bound the ∂ derivatives of our extensions
of the reflection coefficient in Lemma 6.5; specifically it allows us to use (4.19) with
n = 2.

Remark 1.3. The restriction |x | < 2t in Theorem 1.1 is used only to limit the length of
this paper. This is the critical regime for studying the soliton resolution of the solution
as the soliton speeds v j in the scaling of (1.1)–(1.2) are bounded by |v j | < 2. The
steepest descent method of Deift and Zhou used in this paper can also be used to study
the behavior of q(x, t) as t → ∞ in the rest of space–time.

Remark 1.4. The two terms in (1.9) for the asymptotic phase shifts x j have clear inter-
pretations. The first term gives the phase shift due to interactions between the solitons.
The second term is a retarding factor due to the interaction of the soliton component
with the radiative component of the solution.

Remark 1.5. Long time asymptotic results for (1.1)–(1.2) were previously obtained by
Vartanian in [42–44] under the assumption that q0(x) − tanh(x) is Schwartz class, and
that the reflection coefficient r(z) satisfies |r(±1)| < 1. This is a non-generic situation
in that for most data |r(±1)| = 1, as we review below. The hypothesis ‖r‖L∞(R) < 1 is
used crucially in [42–44] in the context of some standard factorizations in the steepest
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descent method; see for example formula (0.23) in [17], which we write in (6.1)–(6.3)
and which display factors (1 − |r(z)|2)−1 that would be singular at ±1 if |r(±1)| = 1.
Our methods remove the non-generic condition ‖r‖L∞(R) < 1 and can handle a wider
class of initial data while also requiring less technical estimates along the way.

Observe that if we take z0 = i in (1.3) then we have the stationary solution of
(1.1)–(1.2)

sol(x, t; i) = tanh(x),

which is called the black soliton in analogy with the nonlinear optics application where
|q|2 represents the intensity of the light wave. When z0 �= i the solution is a non-
stationary dark soliton, becoming increasingly ‘whiter’ as z0 → ±1. There is a substan-
tial body of work treating the orbital stability of the black soliton, see [3,5,22,27,28]
and therein. The asymptotic stability of a dark soliton, the case z0 �= i, is discussed in
[2], while the case of the black soliton z0 = i is discussed in [28]. Orbital stability of
multi–solitons is considered in [3].

A corollary of Theorem 1.1 is the following asymptotic stability type result for the
multi–solitons.

Theorem 1.6. Consider an M–soliton q(sol),M (x, t) satisfying both boundary condi-
tions in (1.2) and let {0, {z j , c j }M−1

j=0 } denote its reflectionless scattering data. There
exist ε0 > 0 and C > 0 such that for any initial datum q0 of problem (1.1)–(1.2) with

ε := ‖q0 − q(sol),M (x, 0)‖Σ4 < ε0 (1.10)

the initial data q0 generates scattering data {r ′, {z′j , c′
j }N−1

j=0 } for some finite N ≥ M
(for both sets of discrete data we use the convention that j < k implies Re z j > Re zk
andRe z′j > Re z′k). Of the discrete data of q0, exactly M poles are close to discrete data

of q(sol),M. Any additional poles (as N ≥ M) are close to either −1 or 1. Specifically,
there exists an L ∈ {0, . . . , N − 1} satisfying L + M ≤ N − 1 for which we have

max
0≤ j≤M−1

(|z j − z′j+L | + |c j − c′
j+L |) + max

j>M+L
|1 + z′j | + max

j<L
|1 − z′j | < Cε. (1.11)

Furthermore, q0 has reflection coefficient r ′ ∈ H1(R) ∩ W 2,∞(R\(−δ0, δ0)) for any
δ0 > 0.
Set ξ := x/2t and fix ξ0 ∈ (0, 1) such that {Re z j }M−1

j=0 ⊂ (−ξ0, ξ0). Then there exist

t0(q0, ξ0) > 0, C = C(q0, ξ0) > 0 and {xk+L}M−1
k=0 ⊂ R such that for t > t0(q0, ξ0),

|ξ | ≤ ξ0 and α(ξ) as defined by (1.5), the following inequality holds:
∣∣∣∣∣∣
q(x, t) − eiα(1)

⎛

⎝
∏

j≤L

z′2j

⎞

⎠

⎡

⎣1 +
M−1∑

k=0

⎛

⎝
k−1∏

j=0

z′2j+L

⎞

⎠ (sol(x − xk+L , t; z′k+L ) − 1)

⎤

⎦

∣∣∣∣∣∣
≤ Ct−1.

(1.12)

Remark 1.7. Notice that in the region |ξ | ≤ ξ0 the extra solitons for j < L and for
j ≥ L + M approach constant values exponentially fast in time and their contribution
inside the l.h.s. of (1.12) would be exponentially small in t . Equation (1.12) is written
considering only discrete data close to those of q(sol),M in order to emphasize that
the latter is asymptotically stable, up to some “phase shifts” and small changes of the
velocities of the solitons, in the region |ξ | ≤ ξ0.
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Remark 1.8. Theorem 1.6 yields when M = 1 and q(sol),1(x, t) = tanh(x) an asymp-
totic stability result for the black soliton. Minor modifications in our arguments yield
asymptotic stability results also for dark solitons and for N–solitons with boundary
conditions different from (1.2).

Our proofs of Theorems 1.1 and 1.6 take advantage of the integrability of (1.1)–
(1.2). Integrability allows one access to the inverse scattering transform (IST)machinery.
This was the approach of Gérard–Zhang [27] in their discussion of orbital stability of
solutions near the black soliton. We recall that the IST provides a representation of a
solution q(x, t) of an integrable equation in terms of its scattering data reminiscent of the
Fourier representation formula q(x, t) = ∫

R
eitk

2+ixk q̂0(k)dk for the linear Schrödinger
equation. One can then envisage that solutions q(x, t) of an integrable equation might be
estimated by nonlinear analogues of the stationary phase method or other classical tools
used in asymptotic analysis. The steepest descent method of Deift–Zhou does exactly
this.

Wewould like to highlight some of the technical aspects of the manuscript. Our proof
uses the ∂ method for contour deformation introduced in McLaughlin–Miller [37,38]
and Dieng–McLaughlin [21], which allows us to consider initial data with only a small
amount of regularity while simultaneously simplifying many of the necessary estimates
of more standard steepest descent. The new ingredient in our problem compared to
those in the above mentioned ∂ papers is the presence of solitons. Our procedure for
accounting for the soliton contribution to the IST was in part inspired by [14] and
[29]. The main technical problem we face, mentioned in Remark 1.5, is the fact that
|r(±1)| = 1 generically. Indeed, we show in Appendix C that this happens generically
even when q0 − tanh (x) is compactly supported and small. We solve this problem by
an appropriate adaptation of the ∂ method, at the cost of some loss of regularity with
respect to the standard ∂ method of [21]. This is described in detail in Lemma 6.5.

Unfortunately, currently the IST is not well suited to explore cases when the metric
used in (1.10) is as weak as in [28], where, assuming that there is a way to associate to q0
scattering data, we should expect infinitely many poles concentrating near the points±1
(for somewhat related material see [33]). This is a situation we do not consider. Instead,
in the case when ε in (1.10) is finite, we know by [13] that there is only a finite number
of poles. So we are very far from the very general set up considered in [2,3,28] and
in some obvious respect our asymptotic stability result in the special case of solitons is
much weaker than [28].

Nonetheless, in the case treated here of solutions of (1.1) with sufficient regularity
and finite higher momenta, the steepest descent method provides more information on
the asymptotic behavior of q(x, t) as t → ∞ than in [2,28]. Furthermore, we treat the
case of N–solitons for any N . It is also interesting to explore the same problem using
completely different theoretical frameworks (we recall that [2,28] follow the arguments
introduced by Martel and Merle, see [34,35] and therein). Obviously the approach in
[2,28], not basedon adirect use of the integrability of (1.1)–(1.2), appearsmore amenable
to extension to non integrable NLS’s and so stronger than ours also in this respect.
On the other hand, apart from questions on the correct formulation of the problem
and some technical complications in Sect. 6.4, the arguments in the present paper are
technically rather elementary. Considering that, from the viewpoint of scattering data,
distinct integrable systems might not be very different from each other, perhaps similar
arguments apply to other systems. As for the integrability of (1.1)–(1.2) and the non
robustness of this condition in real life, we remark that we expect that it might be possible
to extend the analysis to non integrable systems, like in [19], although admittedly this
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part of the theory seems at its infancy. For a recent paper on this topic we refer to [9]. Our
paper was written independently of [28], which we learned about only after finishing
the mathematical part of our paper.

2. Plan of the Proof

We prove Theorems 1.1 and 1.6 by applying the inverse scattering transform (IST) to
the NLS equation (1.1)–(1.2).

In Sect. 3 we review the integrable structure of (1.1). The Lax-pair (3.1) gives one
an eigenvalue problem (3.5) in which the solution q(x, t) of NLS appears as a potential.
We construct Jost solutions of (3.5), certain normalized solutions of (3.5): ψ−

1 (z; x, t)
and ψ+

2 (z; x, t), k = 1, 2, holomorphic for Im z > 0 with derivatives in Re z and Im z
extending continuously to �C+ andψ+

1 (z; x, t) andψ−
2 (z; x, t), k = 1, 2, holomorphic for

Im z < 0 with derivatives in Re z and Im z extending continuously to �C−. We enumerate
several properties of these solutions under various assumptions on the smoothness and
decay rate of q(x, t) − tanh(x). Implicit to this construction is that we have global
solutions of (1.1), q ∈ tanh(x) + Σ4. This is shown in Appendix B.

In Sect. 4wedescribe howone constructs the scattering data from these Jost functions.
The Wronskian det[ψ−

1 (z; x, t), ψ+
2 (z; x, t)] is shown to be independent of both x and

t , and its zeros are precisely the discrete spectrum of (3.5) for z ∈ C
+. These numbers

each encode a single soliton component of the solution of (1.1). The total number of
solutions of det[ψ−

1 (z; x, t), ψ+
2 (z; x, t)] = 0 is finite provided q0 ∈ tanh(x)+ L1,2(R),

(c.f. Lemma 4.8 below). The totality of the scattering data generated by q0(x) consist
of the zeros {z j }N−1

j=0 of the Wronskian, where N ≥ 1 is finite, of their corresponding

coupling constants {c j }N−1
j=0 , and of the reflection coefficient r(z), which we will show

belongs in H1(R) and satisfies additional estimates proved in Sect. 4. In particular we
show that generically we have (c.f. (4.16)) limz→±1 r(z) = ∓1. The situation in which
(4.16) does not hold is simpler. Another issue that appears in Sect. 4 is that the map from
initial data q0 to scattering data is not continuous at the soliton solutions. In appendix C
we show that even compactly supported perturbations of the single black soliton can be
multisolitonic in that the perturbedWronskian det[ψ−

1 (z; x, t), ψ+
2 (z; x, t)] can have up

to two new zeros inC+. The new zeros however are very close to z = ±1 corresponding
to nearly white solitons. In particular we have a perturbative result in Lemma 4.7.

In Sect. 5we define aRiemann–Hilbert problem (RHP) for a sectionallymeromorphic
function m(z; x, t) and describe how the solution of (1.1)–(1.2) can be recovered from
the solution m(z; x, t) of the RHP. We initiate the long time analysis of (1.1) in Sect.
6 by using the ∂ generalization of the Deift–Zhou steepest descent procedure following
the ideas in [21]. This proceeds as a series of three explicit transformations m(z) �→
m(1)(z) �→ m(2)(z) �→ m(3)(z) such that the final unknown m(3)(z) is a continuous
function in the complex plane with an asymptotically small ∂ derivative uniformly in the
complex plane. This allows one to prove the existence of m(3) using functional analytic
methods and the theory of the solid Cauchy transform.

In Sect. 6.1 we introduce the first transformation, a set of conjugations and interpo-
lations such that the new unknown m(1) has no poles following the ideas in [1,14,29].
The second transformation is the heart of the steepest descent method, where appropri-
ate factorizations of the jump matrices of the RHP on the real line are introduced and
certain non-analytic extensions of these factorizations are used to deform the jumps onto
contours in the plane on which they are asymptotically small. The main issue here is that
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|r(1)| = 1 introduces singular factors in the factors (6.3) which are part of the matrix
factorizations in (6.1)–(6.3), which play a central role in the theory. Nevertheless, in
Sect. 6.2 we construct extensions whose ∂ derivatives satisfy particular bounds, analo-
gous to those proved in the case of vanishing initial data [21, Proposition 2.1]. These
bounds are later used to control certain solid Cauchy integral operators that appear later
in the inverse analysis.

Section 6.3 contains the third transformationwhich gives the leading order asymptotic
behavior of the solution. In Lemma 6.6 we show that if one ignores the ∂-component
of m(2) what remains is a trivial conjugation of the RHP corresponding to an N -soliton
whose reflectionless scattering data {0, {zk, c̃k}N−1

k=0 } is known exactly. The poles zk are
the sameas those generated by the original initial dataq0 given in (1.2), but the connection
coefficients c̃k are modifications of the original ck by an amount that depends upon the
reflection coefficient (c.f. (1.7)).We solve this N -soliton problem exactly, so thatwe have
a single expression for the asymptotic behavior of the solution uniformly for |x | < 2t
for large t . We then given a long time asymptotic expansion for the N -soliton solution
depending on the ratio ξ = x/2t which gives the soliton component of the soliton
resolution conjecture.

Finally, in Sect. 6.4 we prove the existence of the function m(3) and estimate its size
in a way similar to Sect. 2.4–2.5 in [21] using the bounds on the ∂ derivatives of the
extensions constructed previously in Sect. 6.2. Summing up the estimates yields the
proof of Theorem 1.1 in Sect. 6.5.

3. Jost Functions

In this section we state without proof the details of the forward scattering transform for
defocusing NLS for step-like initial data. The results are well known and the interested
reader can find pedagogical and detailed treatments in the literature, see [6,20,24].

The integrability of (1.1) follows from its Lax pair representation

vx = Lv, (3.1a)

ivt = Bv. (3.1b)

The 2 × 2 matrices L and B are given by

L = L(z; x, t) = iσ3(Q − λ(z)) (3.2a)

B = B(z; x, t) = −2iλ(z)L − (Q2 − I )σ3 + iQx (3.2b)

where,

Q = Q(x, t) =
(

0 q(x, t)
q(x, t) 0

)
, λ(z) = 1

2
(z + z−1),

and σ3 is the third Pauli matrix:

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.3)

The commutativity of the mixed partials of v, which is the compatibility condition
for a simultaneous solution of (3.1), is equivalent to

i(iLt − Bx + [L,B]) = −iσ3Qt + Qxx − 2(Q2 − I )Q = 0, (3.4)

which is just a matrix reformulation of (1.1).
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Fix q(x) such that limx→±∞ q(x) = ±1 (appropriate reformulations of what follows
hold for different boundary values in ∂D(0, 1)).Writing (3.1a) as an eigenvalue equation
gives

iσ3vx + Qv − λ(z)v = 0. (3.5)

Let

B± = B±(z) = I ± σ1z
−1 (3.6)

and

X±(x, z) = B±(z)e−iζ(z)xσ3 (3.7)

where

ζ(z) = 1

2
(z − z−1). (3.8)

Then X± are the solutions of (3.1a) obtained by replacing Q(x) by ±Q+ in (3.5) with
Q+ = limx→+∞ Q(x) = σ1. We define Jost functions, ψ±

j (z; x), j = 1, 2, to be the

column vector solutions of (3.5) whose values approach those of the j th column of (3.7)
as x → ±∞. The existence of such solutions, and their analytic properties as functions
of z, is the subject of the following Lemma.

Lemma 3.1. Let q(x) be such that q − tanh(x) ∈ L1(R). Then for z ∈ R\{0, 1,−1} the
system (3.5) admits solutions

ψ±
1 (z; x) = m±

1 (z; x)e−iζ(z)x and ψ±
2 (z; x) = m±

2 (z; x)eiζ(z)x (3.9)

such that

lim
x→±∞m±

1 (z; x) =
(

1
±z−1

)
and lim

x→±∞m±
2 (z; x) =

(±z−1

1

)
. (3.10)

Both ψ+
1 (z; x) and ψ−

2 (z; x) extend analytically into solutions of (3.5) for z ∈ C
− and

ψ+
2 (z; x) and ψ−

1 (z; x) extend into solutions of (3.5) for z ∈ C
+.

Here m±
1 (z; x) and m±

2 (z; x) are the unique solution of the integral equations

m±
1 (z; x) =

(
1

±z−1

)
+
∫ x

±∞
X±(x, z)X±(y, z)−1iσ3(Q(y) ∓ σ1)m

±
1 (z; y)ei(x−y)ζ(z)dy,

(3.11)

m±
2 (z; x) =

(±z−1

1

)
+
∫ x

±∞
X±(x, z)X±(y, z)−1iσ3(Q(y) ∓ σ1)m

±
2 (z; y)e−i(x−y)ζ(z)dy.

(3.12)

Furthermore for any x0 ∈ R we have that z → m±
1 (z; x) is a continuous

map from C∓\{−1, 0, 1} (with analytic restriction in C
∓) into C1([x0,∞),C2) ∩

W 1,∞([x0,∞),C2) in the + case and C1((−∞, x0],C2)∩W 1,∞((−∞, x0],C2) in the
– case. Similarly, we have that z → m±

2 (z; x) is a continuous map from C±\{−1, 0, 1}
(whose restriction in C± is analytic) into C1([x0,∞),C2) ∩W 1,∞([x0,∞),C2) in the
+ case and C1((−∞, x0],C2) ∩ W 1,∞((−∞, x0],C2) in the – case.

9
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Lemma 3.2. Given n ∈ N0 and q − tanh(x) ∈ L1,n(R), the map q → ∂n

∂zn m
+
1(z; · ),

with m+
1 as defined in Lemma 3.1, is locally Lipschitz continuous from

tanh(x)+L1,n(R)→ L∞
loc(C

−\{−1, 0, 1},C1([x0,∞),C2)∩W 1,∞([x0,∞),C2)).

(3.13)

Additionally, the maps z → ∂n

∂zn m
±
1 (z; x) are continuous from C∓\{−1, 0, 1} (with

analytic restriction in C∓) to C1([x0,∞),C2) ∩ W 1,∞([x0,∞),C2)

Similar statements to (3.13) hold for q → m+
2(z; · ) and for q → m−

j (z; · ) for
j = 1, 2.
Specifically, there exists an increasing function Fn(t), independent of q, such that

∣
∣∂nz [m+

1(z; x)]
∣
∣ ≤ Fn((1 + |x |)n‖q − 1‖L1,n(x,∞)), z ∈ C−\{−1, 0, 1}. (3.14)

Furthermore, given potentials q and q̃ sufficiently close together we have for each
z ∈ C−\{−1, 0, 1},

∣
∣∂nz [m+

1(z; x) − m̃+
1(z; x)]

∣
∣ ≤ ‖q − q̃‖L1,n(x,∞)Fn((1 + |x |)n‖q − 1‖L1,n(x,∞)).

(3.15)

Similar estimates hold for the other Jost functions.

The above lemmas suggests that the Jost functions exhibit singular behavior for z
near −1, 0, or 1. The singular behavior of these solutions at z = 0 plays a non-trivial
and unavoidable role in our analysis. However, as the following lemma makes clear, if
the initial data q has an additional finite first moment, then the singularities of the Jost
functions at z = ±1 are removable.

Lemma 3.3. Given n ∈ N0, let q − tanh(x) ∈ L1,n+1(R) and let K be a compact
neighborhood of {−1, 1} in C−\{0}. Set x± = max{±x, 0}. Then there exists a C such
that for z ∈ K we have

∣
∣∣∣m

+
1(z; x) −

(
1
z−1

)∣
∣∣∣ ≤ C〈x−〉eC

∫ ∞
x 〈y−x〉|q(y)−1|dy‖q − 1‖L1,1(x,∞), (3.16)

i.e., the map z → m+
1(z; x) extends as a continuous map to the points ±1 with values

in C1([x0,∞),C) ∩ W 1,∞([x0,∞),C) for any preassigned x0 ∈ R. Furthermore, the
map q → m+

1(z; ·) is locally Lipschitz continuous from
tanh(x) + L1,1(R) → L∞(C−\{0},C1([x0,∞),C) ∩ W 1,∞([x0,∞),C)). (3.17)

Analogous statements hold for m+
2(z; x) and for m−

j (z; x) for j = 1, 2.
The maps z → ∂nz m

+
1(z; x) and q → ∂nz m

+
1(z; x), also satisfy analogous statements

and we have, as in (3.24),
∣∣∂nz m

+
1(z; x)

∣∣ ≤ Fn
(
(1 + |x |)n+1‖q − 1‖L1,n+1(x,∞)

)
, z ∈ K . (3.18)

The final lemma in this section concerns the behavior of the Jost functions as |z| →
∞. Set

D+(x) = ‖q − 1‖W 2,1(x,∞)(1 + ‖q − 1‖W 2,1(x,∞))
2e‖q−1‖L1(x,∞) ,

D−(x) = ‖q + 1‖W 2,1(−∞,x)(1 + ‖q + 1‖W 2,1(−∞,x))
2e‖q+1‖L1(−∞,x) .

(3.19)

10
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Lemma 3.4. Suppose that q−tanh(x) ∈ L1(R) and that q ′ ∈ W 1,1(R). Then as z → ∞
with Im z ≤ 0 we have

m+
1(z; x) = e1 +

1

z

(
i
∫ ∞
x

(
1 − |q(y)|2) dy
q(x)

)
+O

(
D+(x)z

−2
)

, (3.20)

m−
2 (z; x) = e2 +

1

z

( �q(x)
i
∫ x
−∞

(
1 − |q(y)|2) dy

)
+O

(
D−(x)z−2

)
, (3.21)

and for Im z ≥ 0 as z → ∞ we have

m−
1 (z; x) = e1 +

1

z

(−i
∫ x
−∞

(
1 − |q(y)|2) dy
q(x)

)
+O

(
D−(x)z−2

)
, (3.22)

m+
2(z; x) = e2 +

1

z

( �q(x)
−i

∫ ∞
x

(
1 − |q(y)|2) dy

)
+O

(
D+(x)z

−2
)

, (3.23)

where the constant in each O (
D±(x)z−2

)
is independent of z.

If q − tanh(x) ∈ L1,n(R) as well, then there exists an increasing function Fn(t)
independent of q such that as z → ∞

∣∣∣∂ j
z [m+

1(z; x)]
∣∣∣ ≤ |z|−1Fn((1 + |x |)n‖q − 1‖L1,n(x,∞)). (3.24)

Finally, given two potential q and q̃ sufficiently close together we have

∣∣∂nz [m+
1(z; x) − m̃+

1(z; x)]
∣∣

≤ |z|−1‖q − q̃‖L1,n(x,∞)Fn((1 + |x |)n‖q − 1‖L1,n(x,∞)) for 0 ≤ j ≤ n. (3.25)

Similar estimates hold for the other Jost functions.

The previous lemma and the symmetry (4.4) imply the following corollary which
describes the singularities of the Jost solutions at the origin.

Corollary 3.5. Let q be as in Lemma 3.4. Then for z ∈ C
−, as z → 0 we have

m+
1(z; x) = 1

z
e2 +O (1) and m−

2 (z; x) = −1

z
e1 +O (1) (3.26)

where |O (1) | ≤ F(‖q − 1‖W 2,1(x,∞)), and for z ∈ C
+, as z → 0 we have

m−
1 (z; x) = −1

z
e2 +O (1) and m−

2 (z; x) = 1

z
e1 +O (1) (3.27)

where |O (1) | ≤ F(‖q + 1‖W 2,1(−∞,x)) for some growing functions F(t).
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4. The Scattering Data

We start with the following elementary lemma.

Lemma 4.1. Let q − tanh(x) ∈ L1(R). Then

1. For z ∈ R\{−1, 0, 1} both of the matrix-valued functions

Ψ ±(z; x) = (
ψ±
1 (z; x), ψ±

2 (z; x)) = (
m±

1 (z; x), m±
2 (z; x)) e−iζ(z)xσ3 (4.1)

are nonsingular solutions of (3.5) and

detΨ± = detΨ±(z) = 1 − z−2. (4.2)

2. For z ∈ C+\{−1, 0, 1} the Jost functions ψ±
j satisfy the symmetries

{
ψ−
1 (z; x) = σ1ψ

−
2 (z; x)

ψ+
2 (z; x) = σ1ψ

+
1 (z; x)

(4.3)

and
{

ψ−
1 (z; x) = −z−1ψ−

2 (z−1; x)
ψ+
2 (z; x) = z−1ψ+

1 (z−1; x). (4.4)

Proof. The matrices Ψ ± are solutions of (3.5), which follows from Lemma 3.1. To
establish (4.2) and thus that Ψ ± is nonsingular, observe that Tr(L) = 0, where L
is the matrix (3.2a) appearing in (3.1a), so that detΨ ±(z; x) = detΨ ±(z). Finally,
limx→±∞ detΨ ± = det B± = 1 − z−2.

To prove the symmetries (4.3)–(4.4) start with z ∈ R\{−1, 0, 1}. The symmetries of
the Lax matrix: L(z) = σ1L(�z)σ1 = L(z−1) and of the “free” solution: X±(x, z) =
σ1X±(x,�z)σ1 = ±z−1X±(x, z−1)σ1 imply that for z ∈ R\{−1, 0, 1} the Jost matrices
satisfy

Ψ ±(z; x) = σ1Ψ ±(�z; x)σ1 = ±z−1Ψ (z−1; x)σ1.
Analytically extending each column vector solution ψ±

j (z; x) off the real axis into the
half plane indicated by Lemma 3.1 gives (4.3)–(4.4).

Corollary 4.2. Let q − tanh(x) ∈ L1(R). Then each of the Jost functions ψ±
k (z; x)

satisfy

ψ±
k (z−1; x) = ±zσ1ψ

±
k (z; x) (4.5)

upon reflecting z through the unit circle in the half-plane in which each Jost function is
defined.

The columns of Ψ +(z; x) and Ψ −(z; x) each form a solution basis of (3.5) for z ∈
R\{−1, 0, 1}. It follows that the matrices must satisfy the linear relation

Ψ −(z; x) = Ψ +(z; x)S(z), S(z) =
(
a(z) b(z)
b(z) a(z)

)
, z ∈ R\{−1, 0, 1} (4.6)

12
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where the form of the scattering matrix S(z) follows from (4.3). The scattering coeffi-
cients a(z) and b(z) define the reflection coefficient

r(z) := b(z)

a(z)
. (4.7)

The following lemma records several important properties of a(z) and b(z).

Lemma 4.3. Let z ∈ R\{−1, 0, 1} and a(z), b(z), and r(z) be the data in (4.6)–(4.7)
generated by some q ∈ tanh(x) + L1(R). Then

1. The scattering coefficients can be expressed in terms of the Jost functions as

a(z) = det[ψ−
1 (z; x), ψ+

2 (z; x)]
1 − z−2 , b(z) = det[ψ+

1 (z; x), ψ−
1 (z; x)]

1 − z−2 . (4.8)

It follows that a(z) extends analytically to z ∈ C
+ while b(z) and r(z) are defined

only for z ∈ R\{−1, 0, 1}.
2. For each z ∈ R\{−1, 0, 1}

|a(z)|2 − |b(z)|2 = 1. (4.9)

In particular, for z ∈ R\{−1, 0, 1} we have
|r(z)|2 = 1 − |a(z)|−2 < 1. (4.10)

3. The scattering data satisfy the symmetries

− a(�z−1) = a(z), −b(�z−1) = b(z), r(�z−1) = r(z) (4.11)

wherever they are defined.
4. If additionally q ′ ∈ W 1,1(R), then for z ∈ C+,

lim
z→∞ (a(z) − 1) z = i

∫

R

(
|q(x)|2 − 1

)
dx, (4.12)

lim
z→0

(a(z) + 1)z−1 = i
∫

R

(
|q(x)|2 − 1

)
dx, (4.13)

and for z ∈ R

|b(z)| = O
(
|z|−2

)
as |z| → ∞,

|b(z)| = O
(
|z|2

)
as |z| → 0.

(4.14)

Proof. The first property follows from applying Cramer’s rule to (4.6) and using (4.2);
one then observes that Lemma 3.1 implies that the formula for a(z) is analytic for
z ∈ C

+. The second property is just the fact that det S = 1 which follows from taking
the determinant on each side of (4.6) using (4.2). The symmetry conditions follow
immediately from (4.8) after using (4.3)–(4.4); for instance

a(�z−1) =
det

[
ψ−
1 (�z−1; x), ψ+

2 (�z−1; x)
]

1 − z2
= 1

1 − z2
det

[
σ1.(−zψ−

1 (z; x), zψ+
2 (z; x))]

13
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= − 1

1 − z−2 det
[
ψ−
1 (z; x), ψ+

2 (z; x)] = −a(z).

To prove (4.12) first observe that

|q(y) ± 1|2 − (2 ± q(y) ± �q(y)) = |q(y)2| − 1.

Inserting (3.22)–(3.23) from Lemma 3.4 into (4.8) gives

(1 − z−2)a(z) = det

[
1 + iz−1

∫ x
−∞

(|q(y)|2 − 1
)
dy z−1�q(x)

z−1q(x) 1 + iz−1
∫ ∞
x

(|q(y)|2 − 1
)
dy

]
+O

(
z−2

)

= 1 + iz−1
∫

R

(
|q(y)|2 − 1

)
dy +O

(
z−2

)
.

To prove (4.13) write z = �ς−1 and use (4.11) and (4.12); the formulae for b(z) in (4.14)
are proved similarly.

Though Lemma 3.3 gives conditions on q which guarantee that the Jost functions
ψ±

j (z; x) are continuous for z → ±1, the scattering coefficients a(z) and b(z) will
generally have simple poles at these points due to the vanishing of the denominators
in (4.8). Moreover, their residues are proportional: the symmetry (4.4) implies that
ψ+
1 (±1; x) = ±ψ+

2 (±1; x), which in turn gives

a(z) = a±
z ∓ 1

+O (1),

b(z) = ∓ a±
z ∓ 1

+O (1),
a± = det[ψ−

1 (±1; x), ψ+
2 (±1; x)]. (4.15)

In this generic situation the reflection coefficient remains bounded at z = ±1 and we
have

lim
z→±1

r(z) = ∓1. (4.16)

The next lemma show that, given data q0 with sufficient smoothness and decay
properties, the reflection coefficient will also be smooth and decaying.

Lemma 4.4. For any given q ∈ tanh(x) + L1,2(R), q ′ ∈ W 1,1(R) we have r ∈ H1(R).

Proof. Because‖r‖L∞(R) ≤ 1 and, byLemma4.3,wehave r(z) = O (
z−2

)
as z → ±∞

it’s clear that

q ∈ tanh(x) + Σ2 ⇒ r ∈ L2(R). (4.17)

It remains to show that the derivative r ′ is also L2(R).
For any δ0 > 0 sufficiently small, the maps

q → det[ψ−
1 (z; x), ψ+

2 (z; x)] and q → det[ψ+
1 (z; x), ψ−

1 (z; x)] (4.18)

are locally Lipschitz maps from

{q : q ′ ∈ W 1,1(R) and q ∈ tanh(x) + L1,n+1(R)} → Wn,∞(R\(−δ0, δ0)) for n ≥ 0.

(4.19)
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Indeed, q → ψ+
1 (z, 0) is, by Lemmas 3.2 and 3.3 (c.f. in particular (3.13) and (3.18)), a

locally Lipschitz map with values in Wn,∞(C
−\D(0, δ0),C2). For q → ψ+

2 (z, 0) and
q → ψ−

1 (z, 0) the same is true but with C− replaced by C+. This and (4.12)–(4.14)
implies that q → r(z) is a locally Lipschitz map from the domain in (4.19) into

Wn,∞(Iδ0)∩Hn(Iδ0) with Iδ0 :=R\((−δ0, δ0) ∪ (1 − δ0, 1 + δ0) ∪ (−1 − δ0,−1 + δ0).

Now fix δ0 > 0 so small that the 3 intervals dist(z, {±1}) ≤ δ0 and |z| ≤ δ0 have empty
intersection. In the complement of their union

|∂ j
z r(z)| ≤ Cδ0〈z〉−1 for j = 0, 1 (4.20)

by (3.25), its analogues for the other Jost functions, and the discussion above.
Let |z − 1| < δ0. Then, using the a+ in (4.15) we have

r(z) = b(z)

a(z)
= det[ψ+

1 (z; x), ψ−
1 (z; x)]

det[ψ−
1 (z; x), ψ+

2 (z; x)] = −a+ +
∫ z
1 F(s)ds

a+ +
∫ z
1 G(s)ds

(4.21)

for F(z) = ∂z det[ψ+
1 (z; x), ψ−

1 (z; x)] and G(z) = ∂z det[ψ−
1 (z; x), ψ+

2 (z; x)]. If a+ �=
0 then it is clear from the above formula that r ′(z) is defined and bounded around 1.
If a+ = 0 we have

r(z) =
∫ z
1 F(s)ds

∫ z
1 G(s)ds

. (4.22)

Now, a+ = 0 is the same as [ψ−
1 (z; x), ψ+

2 (z; x)]|z=1 = 0. Differentiating (4.23) at
z = 1 we get

2a(1) = ∂z det[ψ−
1 (z; x), ψ+

2 (x; z)]|z=1 = G(1).

This implies that G(1) �= 0, since otherwise |a(1)|2 − |b(1)|2 = 1, which holds by
continuity at z = 1, would not be true. It follows that the derivative r ′(z) is bounded
near 1.

The same discussion holds at −1. At z = 0 we can use the symmetry r(z−1) = r(z)
to conclude that r vanishes at the origin. It follows that r ′ ∈ L2(R).

We also have the following result, which is used later in the proof.

Lemma 4.5. For any initial data q0 such that q0−tanh(x) ∈ Σ2 the reflection coefficient
satisfies

‖ log(1 − |r |2)‖L p(R) < ∞ for any p ≥ 1.

Proof. Fix δ ∈ (0, 1). Let K = {z ∈ R : 1 − |r(z)|2 ∈ [δ, 1]} and let χ denote the
indicator function of K . As r ∈ L2(R) clearly (1 − χ) has finite support containing
intervals surrounding z = ±1. Using the concavity of the logarithm, for z ∈ K we have
| log(1−|r(z)|2)| ≤ Mδ|r(z)|2, Mδ = log(1/δ)

1−δ
. The previous inequality and the identity

1 − |r(z)|2 = |a(z)|−2 give
∥∥∥log(1 − |r |2)

∥∥
∥
L p(R)

=
∥∥
∥χ log(1 − |r |2)

∥∥
∥
L p(R)

+
∥∥
∥(1 − χ) log(1 − |r |2)

∥∥
∥
L p(R)
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≤ Mδ‖χ r2‖L p(R) +
∥∥∥(1 − χ) log(|a|2)

∥∥∥
L p(R)

≤ Mδ‖r‖2/pL2(R)
+
∥∥∥(1 − χ) log(|a|2)

∥∥∥
L p(R)

,

where the last step follows from observing that ‖r‖L∞(R) ≤ 1.
To estimate the second term we observe that by the identity

(z2 − 1)a(z) = z2 det[ψ−
1 (z; x), ψ+

2 (x; z)] (4.23)

we have (z2 − 1)a(z) ∈ L∞
loc(R) for initial data q0 ∈ tanh(x) + L1,1(R). It follows that

∥
∥
∥(1 − χ) log(|a|2)

∥
∥
∥
L p(R)

≤
∥
∥
∥
∥(1 − χ) log

(
1

|♦2 − 1|
)∥
∥
∥
∥
L p(R)

+
∥
∥
∥(1 − χ) log

(∣∣
∣(♦2 − 1)a

∣
∣
∣
)∥∥
∥
L p(R)

≤
∥
∥
∥
∥(1 − χ) log

(
1

|♦2 − 1|
)∥
∥
∥
∥
L p(R)

+
∥
∥
∥log

(∣∣
∣(♦2 − 1)a

∣
∣
∣
)∥∥
∥
L∞
loc(R)

‖1 − χ‖1/p
L1(R)

.

Remark 4.6. In terms of the regularity needed, among other things, in the latter proofs
in this paper we use often the fact, proved in Lemma 4.4, that r ∈ H1(R). Another
fact, used only to prove inequality (6.19), is that the Wronskians in (4.18) have bounded
derivatives up to order 2 in a small neighborhood of z = 1 in R. For both facts it is
sufficient to require that q0 ∈ tanh(x) + Σ4.

We conclude this subsection with a result on small perturbations of an N -soliton
solution.

Lemma 4.7. Given an M-soliton q(sol),M (x, t) and initial data q0(x) satisfying the
hypotheses of Theorem 1.6 the number of solutions z ∈ C+ of det

[
ψ−
1 (z; x, 0),

ψ+
2 (z; x, 0)] = 0, where the Jost functions correspond to q0(x), is at least M and is

finite when q0 satisfies the hypotheses of Theorem 1.6 for ε0 small enough. Furthermore
(1.11) holds.

Proof. In Lemma 4.8 it is proved that when q0 − tanh(x) ∈ L1,2(R) then the number of
zeros is finite. The other statements are elementary consequences of the theory which we
review in Sects. 3–4, and specifically of the Lipschitz dependence of the Jost functions
in terms of q0 and of the specific form of the determinants in the case of a multisoliton,
which follows immediately from (4.8) and the formula for a(z), see (4.27) below.

4.1. The discrete spectrum. At any zero z = zk ∈ C+ of a(z) it follows from (4.8) that
the pair ψ−

1 (zk; x) and ψ+
2 (zk; x) are linearly related; the symmetry (4.3) implies that

ψ−
2 (zk; x) andψ+

1 (zk; x) are also linearly related. That is, there exists a constant γk ∈ C

such that

ψ−
1 (zk, x) = γkψ

+
2 (zk; x), ψ−

2 (zk; x) = �γkψ+
1 (zk; x). (4.24)

These γk are called the connection coefficients associated to the discrete spectral values
zk .
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If zk ∈ C
+ then it follows thatψ−

1 (zk; x) andψ−
2 (zk; x) are L2(R) eigenfunctions of

(3.5)with eigenvalueλ(zk) and�λ(zk) respectively. If zk ∈ R thenψ(zk; x) is boundedbut
not L2(R) and we say that zk is an embedded eigenvalue. However, it follows from (4.9)
and (4.13) that |a(z)| ≥ 1 for z ∈ R\{−1, 1}, so the only possible embedded eigenvalues
are ±1. Then as (3.5) is self-adjoint, the non-real zeros of a(z) in C

+ are restricted to
the unit circle, i.e., |zk | = 1, so that λ(zk) is real. The following lemma demonstrates
that, unlike the case of vanishing data for focusing NLS, the discrete spectral data takes
a very restricted form.

Lemma 4.8. Let q − tanh(x) ∈ L1,2(R). Then

1. The zeros of a(z) in C+ are simple and finite.
2. At each zk , a zero of a(z):

i. ∂a
∂λ

(zk) and γk are pure imaginary;
ii. their arguments satisfy

sgn(−iγk) = − sgn

(
−i

∂a

∂λ
(zk)

)
. (4.25)

Proof. Suppose zk is a zero of a(z), and γk the connection coefficient in (4.24). Then as

zk lies on the unit circle we have z−1
k = zk . Applying (4.5) to (4.24) gives

ψ−
1 (z−1

k ; x) = �γkψ+
2 (z−1

k ; x)
−zkσ1ψ

−
1 (zk; x) = �γk zkσ1ψ+

2 (zk; x)
ψ−
1 (zk; x) = −�γkψ+

2 (zk; x).
Comparing this to (4.24) shows that �γk = −γk , or γk ∈ iR.

To prove the remaining facts, note that q − tanh(x) ∈ L1,1(R) implies ∂a
∂λ

exists and
we have from (4.8)

∂a

∂λ

∣∣∣∣
z=zk

= det
[
∂λψ

−
1 (z; x), ψ+

2 (z; x)] + det
[
ψ−
1 (z; x), ∂λψ

+
2 (z; x)]

1 − z−2

∣∣∣∣
z=zk

.

Using (3.2a) one finds that

∂

∂x
det

[
∂λψ

−
1 , ψ+

2

] = det
[Lλψ

−
1 , ψ+

2

]
+ det

[L∂λψ
−
1 , ψ+

2

]
+ det

[
∂λψ

−
1 , Lψ+

2

]

= −i det
[
σ3ψ

−
1 , ψ+

2

]

and
∂

∂x
det

[
ψ−
1 , ∂λψ

+
2

] = det
[
ψ−
1 , Lλψ

+
2

]
+ det

[Lψ−
1 , ∂λψ

+
2

]
+ det

[
ψ−
1 , L∂λψ

+
2

]

= −i det
[
ψ−
1 , σ3ψ

+
2

]

where the cancellation in each equality follows fromobserving that adjL = −L.‡ Recall-
ing that at each zk the columns are linearly related by (4.24) and decay exponentially as
|x | → ∞,

‡ adjM denotes the adjugate of the matrix M , it satisfies M adjM = (det M)I .
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938 S. Cuccagna, R. Jenkins

det
[
∂λψ

−
1 , ψ+

2

] = −iγk

∫ x

−∞
det[σ3ψ+

2 (zk; s), ψ+
2 (zk; s)]ds,

det
[
ψ−
1 , ∂λψ

+
2

] = −iγk

∫ ∞

x
det[σ3ψ+

2 (zk; s), ψ+
2 (zk; s)]ds.

Then using (4.5) to write ψ+
2 (zk; x) = z−1

k σ1ψ
+
2 (zk; x) in the first column of the deter-

minants, we have, after putting the terms together,

∂a

∂λ

∣∣
∣
∣
z=zk

= −iγk
2ζ(zk)

∫

R

|ψ+
2 (zk; x)|2dx . (4.26)

Recalling that both γk and ζ(zk) are imaginary, (4.26) is both nonzero and imaginary.
The simplicity of the zeros of a and the signature restriction on γk follow immediately.

To prove that the number of zeros is finite, observe that if the number were infinite
they would necessarily accumulate at one (or both) of z = ±1. From (4.18)–(4.19) in
Lemma 4.4 for q − tanh(x) ∈ L1,2(R) the functions

fk(θ) =
∣
∣
∣∂kθ det[ψ−

1 (eiθ ; x), ψ+
2 (eiθ ; x)]

∣
∣
∣ , k = 0, 1

are continuous for θ ∈ [0, π ]. Now if z = 1 is an accumulation points there exist
sequences θ

(k)
j , k = 0, 1, with lim j→∞ θ

(k)
j = 0 and fk(θ

(k)
j ) = 0 for each j . It

then follows from (4.8) and the continuity in (4.19) that a(z) = o (1) as z → 1. This
contradicts the fact that |a(z)|2 ≥ 1 for z ∈ R\{−1, 0, 1} by (4.9). The proof when
z = −1 is an accumulation point is identical.

Remark 4.9. The argument given above to prove that the number of zeros of a(z) is finite
is essentially the same as that given in [13]. Our contribution is a weaker condition on
the potential in order to obtain smooth derivatives, which allows us to prove the result
for q0 − tanh(x) ∈ L1,2(R) instead of the L1,4(R) condition appearing in [13].

The zeros of a(z) are simple, finite and restricted to the circle. As a(z) is analytic
in C

+, and approaches unity for large z, it admits an inner-outer factorization, see [24]
p.50, which using (4.9) takes the form

a(z) =
N−1∏

k=0

(
z − zk
z −�zk

)
exp

(
− 1

2π i

∫

R

log(1 − |r(s)|2)
s − z

ds

)
, (4.27)

where {zk}N−1
k=0 are the zeros of a(z) in C

+. This trace formula implies a dependence
between the discrete spectrum zk and the reflection coefficient. Using (4.13), a(0) :=
limz→0 a(z) = −1, which gives

N−1∏

k=0

z2k = a(0) exp

(
1

2π i

∫

R

log(1 − |r(s)|2)
s

ds

)

= − exp

(
1

2π i

∫

R

log(1 − |r(s)|2)
s

ds

)
. (4.28)

The more general case a(0) = eiθ is the “θ -condition” in [24], formula (7.19) in Ch. 2.
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4.2. Time evolution of the scattering data. Thus far we have considered only fixed
potentials q = q(x). The advantage of the inverse scattering transform is that if q(x, t)
evolves according to (1.1) then the evolution of the scattering data is linear and trivial
as we see now.

By Theorem B.1 we have q(x, t) − tanh (x) ∈ C1([0,∞),Σ2). It can be shown
that this implies that the Jost functions m±

j (z; x, t) in Sect. 3 are differentiable in t with
∂tm

±
j (z; x, t) x→±∞→ 0. This can be seen applying ∂t to (3.11)–(3.12) and obtaining a

Volterra equation for ∂tm
±
j (z; x, t). By standard arguments, see for example [18,24,27],

which we sketch now, the evolution of the scattering coefficients and discrete data are
as follows:

a(z, t) = a(z, 0),

b(z, t) = b(z, 0)e−4iζ(z)λ(z)t ,

r(z, t) = r(z, 0)e−4iζ(z)λ(z)t .

zk(t) = zk(0),

γk(t) = γk(0)e
−4iζ(z)λ(z)t ,

(4.29)

In particular here we sketch the first two equalities on the left. Due to (3.4) we can write
equalities (i∂t +B)Ψ ±(z; x, t) = Ψ ±(z; x, t)C±(z, t), with theΨ ± in (4.1). This yields

∂tm
±(z; x, t) + iB(z; x, t)m±(z; x, t) = m±(z; x, t)e−iζ xσ3C±(z, t)eiζ xσ3 .

Using

lim
x→±∞m±(z; x, t) = 1 ± σ1

z
, lim

x→±∞ ∂tm
±(z; x, t) = 0 and

lim
x→±∞B(z; x, t) = 2λσ3(∓σ1 − λ)

we obtain that C±(z, t) is diagonal with

C±(z, t)=−2iλ

(
1 ± σ1

z

)−1

σ3(λ ∓ σ1)

(
1 ± σ1

z

)
= −2iλz

2ζ

(
1 ∓ σ1

z

)2

(λ ± σ1)σ3

= − iλz

ζ

(
1 + z−2 ∓ 2

σ1

z

)
(λ ± σ1)σ3 = −2iλ

ζ
(λ ∓ σ1) (λ ± σ1)σ3

= −2iλ

ζ
(λ2 − 1)σ3 = −2iλζσ3.

Applying now i∂t + B to the first equality in (4.6), that is to Ψ −(z; x, t) =
Ψ +(z; x, t)S(z, t), after elementary computations we get ∂t S = 2iλζ [σ3, S]. This yields
the left column in (4.29).

5. Inverse Scattering: Set Up of the Riemann Hilbert Problem

For z ∈ C\R, for q(x, t) the solution to (1.1), and for m±
j (z; x, t), j = 1, 2, the

(normalized) Jost functions we set

m(z) = m(z; x, t) :=

⎧
⎪⎨

⎪⎩

(
m−
1 (z;x,t)
a(z) , m+

2(z; x, t)
)

z ∈ C+

(
m+

1(z; x, t), m−
2 (z;x,t)
�a(�z)

)
z ∈ C−.

(5.1)
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Lemma 5.1. We have

m(�z) = σ1m(z)σ1, (5.2a)

m(z−1) = zm(z)σ1. (5.2b)

Proof. Both are immediate consequences of the symmetries contained in Lemma 4.1
and Lemma 4.3.

Assume q ∈ tanh(x) + L1(R) and q ′(x) ∈ W 1,1(R).

Lemma 5.2. For ± Im z > 0

lim
z→∞ z (m(z; x) − I ) =

(−i
∫ ∞
x |q(y)|2 − 1 dy q(x)

q(x) i
∫ ∞
x |q(y)|2 − 1 dy

)
, (5.3)

lim
z→0

(
m(z; x) − σ1

z

)
=

(
q(x) −i

∫ ∞
x |q(y)|2 − 1 dy

i
∫ ∞
x |q(y)|2 − 1 dy q(x)

)
. (5.4)

Proof. The behavior at infinity follows immediately from Lemma 3.4 and (4.12). The
behavior at the origin is then a consequence of Lemma 5.1.

It is an easy consequence of Lemmas 3.1, 3.4, 4.3, (4.24), and (4.29) that m(z; x, t)
satisfies the following Riemann Hilbert problem.

Riemann–Hilbert Problem 5.1. Find a 2 × 2 matrix valued function m(z; x, t) such
that

1. m is meromorphic for z ∈ C\R.
2. m(z; x, t) = I +O (

z−1
)
as z → ∞.

zm(z; x, t) = σ1 +O (z) as z → 0
3. The non-tangential limits m±(z; x, t) = lim

C±�ς→z
m(ς; x, t) exist for any z ∈ R\{0}

and satisfy the jump relation m+(z; x, t) = m−(z; x, t)V (z) where

V (z) := Vtx (z) =
(
1 − |r(z)|2 −r(z)e−Φ(z;x,t)
r(z)eΦ(z;x,t) 1

)
, (5.5)

and

Φ(z) = Φ(z; x, t) = 2ixζ(z) − 4iζ(z)λ(z)t = ix(z − z−1) − it (z2 − z−2).

4. m(z; x, t) has simple poles at the points Z = Z+ ∪Z+, Z+ = {zk}N−1
k=0 ⊂ {z = eiθ :

0 < θ < π}, with residues satisfying

Res
z=zk

m(z; x, t) = lim
z→zk

m(z; x, t)
(

0 0
ck(x, t) 0

)
,

Res
z=�zk

m(z; x, t) = lim
z→�zk

m(z; x, t)
(
0 ck(x, t)
0 0

)
,

(5.6)

where

ck(x, t) = γk(0)

a′(zk)
eΦ(zk ;x,t) = cke

Φ(zk ;x,t),

ck = γk(0)

a′(zk)
= 4izk∫

R
|ψ+

2 (zk; x, 0)|2dx = izk |ck |. (5.7)
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The potential q(x, t) is found by the reconstruction formula, see Lemma 5.2,

q(x, t) = lim
z→∞ z m21(z; x, t). (5.8)

N–solitons are potentials corresponding to the case when r(z) ≡ 0.

Lemma 5.3. If a solutionm(z; x, t) of RHP 5.1 exists, it is unique if and only if it satisfies
the symmetries of Lemma 5.1, additionally for such a solution detm(z; x, t) = 1− z−2.

Proof. Suppose a solution m(z) exists. It is trivial to verify using the symmetry r(z) =
r(z−1) and the condition �zkck ∈ iR on the norming constants that both σ1m(�z)σ1 and
zm(z−1)σ1 are solutions as well. So uniqueness immediately implies symmetry.

Suppose the solution m possesses the symmetries. Taking the determinant of both
sides of the jump relation gives detm+ = detm− for z ∈ R since det V ≡ 1. It
follows from this, the normalization condition and the residue conditions that detm is
rational in z with poles at some subset of Z ∪ {0}. However, the form of the residue
relation (5.6) implies that at each p ∈ Z a single column has a pole whose residue is
proportional to the value of the other column. It follows then that detm is regular at
each point p ∈ Z . As z → 0 the normalization condition gives z2 detm(z) → −1. So
detm = 1 + αz−1 − z−2 for some constant α. However, the symmetry (5.2b) implies
that detm(z) = −z2 detm(z−1) so α ≡ 0.

Uniqueness then follows from applying Liouville’s theorem to the ratio m(m̃)−1 of
any two solutions m, m̃ of RHP 5.1, noting that at the origin we have

lim
z→0

m(z)(m̃(z))−1 = lim
z→0

(z2 − 1)−1zm(z)σ2zm̃(z)T σ2 = −(σ1σ2)
2 = I,

where by elementary computation M−1 = (det M)−1σ2MT σ2 for any invertible 2 × 2
matrix.

6. The Long Time Analysis

6.1. Step 1: interpolation and conjugation. In order to perform the long time analy-
sis using the Deift–Zhou steepest descent method we need to perform two essential
operations:

(i) interpolate the poles by trading them for jumps along small closed loops enclosing
each pole;

(ii) use factorizations of the jump matrix along the real axis to deform the contours
onto those on which the oscillatory jump on the real axis is traded for exponential
decay.

The second step is aided by two well known factorizations of the jump matrix V in
(5.5):

V (z) =
(
1 − |r(z)|2 −r(z)e−Φ

r(z)eΦ 1

)
= b(z)−†b(z) = B(z)T0(z)B(z)−† (6.1)

b(z)−† =
(
1 −r(z)e−Φ

0 1

)
b(z) =

(
1 0

r(z)eΦ 1

)
(6.2)
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B(z) =
(

1 0
r(z)

1−|r(z)|2 e
Φ 1

)

, T0(z) = (1 − |r(z)|2)σ3 ,

B(z)−† =
(
1 − r(z)

1−|r(z)|2 e
−Φ

0 1

)

(6.3)

where A† denotes the Hermitian conjugate of A. Briefly, the leftmost term in the factor-
ization can be deformed into C

−, the rightmost factor into C
+, while any central terms

remain on the real axis. These deformations are useful when they deform the factors into
regions in which the corresponding off-diagonal exponentials e±Φ are decaying. We
will use a gently modified version of these factorizations to deform the jump contours,
but first we introduce the pole interpolate which help account for these small changes.

Our method for dealing with the poles in the Riemann–Hilbert problem follows the
ideas in [1,14,29]. To motivate the method we observe that on the unit circle the phase
appearing in the residue conditions (5.6)–(5.7) satisfies

Re(Φ(eiθ ; x, t)) = Φ(eiθ ; x, t) = −4t sin θ(ξ − cos θ), ξ := x

2t
. (6.4)

It follows that the poles zk ∈ Z are naturally split into three sets: those for which
Re(zk) < ξ , corresponding to a connection coefficient ck(x, t) = ckeΦ(zk ,x,t) which is
exponentially decaying as t → ∞; those for which Re(zk) > ξ , which have growing
connection coefficients; and the singleton case Re(zk) = ξ in which the connection
coefficient is bounded in time. Given a finite set of discrete data Z = Z+ ∪ Z+, Z+ =
{zk ∈ C

+ : k = 0, 1, . . . , N − 1} and Z+ formed by the complex conjugates of Z+, fix
ρ > 0 small enough that

the sets |Re(z − zk)| ≤ ρ are pairwise disjoint and min
zk∈Z+

Im(zk) > ρ.. (6.5)

We partition the set {0, . . . , N − 1} into the pair of sets
Δ = { j : Re z j > ξ} and ∇ = { j : Re z j ≤ ξ}. (6.6)

These sets index all of the discrete spectra in the upper (and lower) half-plane. Those
j ∈ Δ correspond to poles z j for which |eΦ(z j )| > 1 and j ′ ∈ ∇ to poles z j ′ for which

|eΦ(z j ′ )| ≤ 1. Additionally, we define

j0 = j0(ξ) =
{
j if |Re(z j ) − ξ | < ρ for some j ∈ {0, . . . , N − 1}
−1 otherwise

(6.7)

which is nonnegative only when some z j0 is near the line Re z = ξ , so that eΦ(z j0 ) =
O (1).

The connection coefficients c j (x, t) for j ∈ Δ are exponentially large for t 
 1 and
for the purpose of steepest descent analysis we want our pole interpolate to “exchange”
the eΦ in these residues for e−Φ in the new jump matrix.

Define the function

T (Z) = T (z, ξ)

=
∏

k∈Δ

(
z − zk
zzk − 1

)
exp

(
− 1

2π i

∫ ∞

0
log(1 − |r(s)|2)

(
1

s − z
− 1

2s

)
ds

)
.

(6.8)
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Lemma 6.1. The function T (z, ξ) is meromorphic in C\[0,∞) with simple poles at the
�zk and simple zeros at the zk such that Re(zk) > ξ , and satisfies the jump condition

T+(z, ξ) = T−(x, ξ)(1 − |r(z)|2), z ∈ (0,∞). (6.9)

Additionally, the following propositions hold:

i. T (�z, ξ) = T (z, ξ)−1 = T (z−1, ξ);

ii. T (∞, ξ) := lim
z→∞ T (z, ξ) =

(
∏

k∈Δ

�zk
)

exp

(
1

4π i

∫ ∞

0

log(1 − |r(s)|2)
s

ds

)
and

|T (∞, ξ)|2 = 1;
iii. |T (z, ξ)| = 1 for z ≤ 0;
iv. As z → ∞ we have the asymptotic expansion

T (z, ξ) = T (∞, ξ)

(

I − z−1

(
∑

k∈Δ

2i Im(zk) − 1

2π i

∫ ∞

0
log(1 − |r(s)|2)ds

)

+ o(z−1)

)

;

(6.10)

v. The ratio a(z)
T (z,ξ)

is holomorphic in C+ and there is a constant C(q0) s.t.

∣
∣
∣∣

a(z)

T (z, ξ)

∣
∣
∣∣ ≤ C(q0) for z ∈ C+ s.t. Re z > 0 . (6.11)

Additionally, the ratio extends as a continuous function on R+ with | a(z)
T (z,ξ)

| = 1 for
z ∈ (0,∞).

Proof. From (6.8) it’s obvious that T has simple zeros at each zk and poles at each�zk ,
k ∈ Δ. The jump relation (6.9) follows from the Plemelj formula. The first symmetry
property follows immediately from the symmetry (4.11) of r(z). The second and third
properties are simple computations, as is the fourth property, using Lemma 4.5 with
p = 1. Finally, consider the ratio a(z)

T (z,ξ)
. Using the representation (4.27) for a(z) we can

write

a(z)

T (z, ξ)
=

( ∏

j∈Δ

z j
)
e− 1

2π i

∫ ∞
0

log(1−|r(s)|2)
2s ds

∏

k∈∇

(
z − zk
z −�zk

)
exp

(
− 1

2π i

∫ 0

−∞
log(1 − |r(s)|2)

s − z
ds

)
.

(6.12)

In the r.h.s. all factors before the last one have absolute value ≤ 1 for z ∈ C+ while the
real part of the exponential can be bounded as follows,

− Im(z)

2π

(∫ − 1
2

−∞
+
∫ 0

− 1
2

)
log(1 − |r(s)|2)

(s − Re(z))2 + Im(z)2
ds

≤ 4 Im(z)

1 + 4 Im(z)2
‖ log(1 − |r |2)‖L1(R−) + 2−1‖ log(1 − |r |2)‖L∞(−2−1,0)

where we bound the 1st term of the r.h.s. using Lemma 4.5 and the 2nd using
‖r‖L∞(−2−1,0) < 1. Obviously the function in (6.12) extends in a continuous way to
R+ where it has absolute value 1.
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zj0

zj0

Re z = ξ Re z = ξ

Fig. 1. The contours defining the interpolating transformation m �→ m(1) (c.f. (6.13)). Around each of the
poles zk ∈ Z+ and its conjugate z̄k ∈ Z− we insert a small disk, oriented counterclockwise in C

+ and
clockwise in C

−, of fixed radius ρ sufficiently small such that the disks intersect neither each other nor the
real axis. The set Δ (resp. ∇) consist of those poles to the right (resp. left) of the line Re z = ξ . If a pair
z j0 , z j0 lies within ρ of the line Re z = ξ we leave that pair uninterpolated (left figure), otherwise all poles
are interpolated (right figure). In either case, the singularity at the origin remains

We are now ready to implement the interpolations and conjugations discussed at the
beginning of this section.

Let T (z) = T (z, ξ). We remove the poles by the following transformation which
trades the poles for jumps on small contours encircling each pole

m(1)(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (∞)−σ3m(z)

⎛

⎝
1 0

− c j e
Φ(z j )

z−z j
1

⎞

⎠ T (z)σ3 , |z − z j | < ρ, j ∈ ∇ and |Re(z j ) − ξ | > ρ,

T (∞)−σ3m(z)

⎛

⎝
1 − z−z j

c j e
Φ(z j )

0 1

⎞

⎠ T (z)σ3 , |z − z j | < ρ, j ∈ Δ and |Re(z j ) − ξ | > ρ,

T (∞)−σ3m(z)

⎛

⎝1 −�c j e−Φ j (�z j )
z−�z j

0 1

⎞

⎠ T (z)σ3 , |z −�z j | < ρ, j ∈ ∇ and |Re(z j ) − ξ | > ρ,

T (∞)−σ3m(z)

⎛

⎝
1 0

− z−�z j
�c j e−Φ(�z j ) 1

⎞

⎠ T (z)σ3 , |z−�z j |<ρ, j ∈ Δ and |Re(z j )−ξ | > ρ,

T (∞)−σ3m(z)T (z)σ3 elsewhere.

(6.13)

Consider the following contour, depicted in Fig. 1:

Σ(1) = R ∪

⎛

⎜⎜
⎝

⋃

j∈∇∪Δ
j �= j0(ξ)

{z ∈ C : |z − z j | = ρ or |z −�z j | = ρ}

⎞

⎟⎟
⎠ . (6.14)

Here, R is oriented left-to-right and the disk boundaries are oriented counterclockwise
in C+ and clockwise in C

−.

Lemma 6.2. The Riemann–Hilbert problem for m(1)(z) resulting from (6.13) is RHP 6.1
formulated below. Furthermore, m(1)(z) satisfies the symmetries of Lemma 5.1.

Riemann–Hilbert Problem 6.1. Find a 2×2matrix-valued function m(1)(z; x, t) such
that

1. m(1)(z; x, t) is meromorphic in C\Σ(1).
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2. m(1)(z; x, t) = I +O (
z−1

)
as z → ∞,

zm(1)(z; x, t) = σ1 +O (z) as z → 0.
3. The non-tangential boundary values m(1)

± (z; x, t) exist for z ∈ Σ(1), and satisfy the
jump relation m+(z; x, t) = m−(z; x, t)V (1)(z) where

V (1)(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −r(z)T (z)−2e−Φ

0 1

)(
1 0

r(z)T (z)2eΦ 1

)

z ∈ (−∞, 0)

(
1 0

r(z)
1−|r(z)|2 T−(z)2eΦ 1

)⎛

⎝1 −r(z)
1−|r(z)|2 T+(z)−2e−Φ

0 1

⎞

⎠ z ∈ (0,∞)

(
1 0

− c j
z−z j

T (z)2eΦ(z j ) 1

)

|z − z j | = ρ, j ∈ ∇
(
1 − z−z j

c j
T (z)−2e−Φ(z j )

0 1

)

|z − z j | = ρ, j ∈ Δ

(
1

c j
z−z j

T (z)−2e−Φ(�z j )

0 1

)

|z −�z j | = ρ, j ∈ ∇
(

1 0
z−z j
c j

T (z)2eΦ(�z j ) 1

)

|z −�z j | = ρ, j ∈ Δ.

4. If (x, t) are such that there exist (at most one) j0 ∈ {0, . . . , N −1} such that |Re z j0 −
ξ | ≤ ρ, ξ = x

2t , thenm
(1)(z; x, t) has simple poles at the points z j0 ,�z j0 ∈ Z satisfying

one of the following alternatives:
(a) If j0 ∈ ∇,

Res
z j0

m(1)(z; x, t) = lim
z→z j0

m(1)(z; x, t)
(

0 0
c j0T (z j0)

2eΦ(z j0 ) 0

)
,

Res�z j0
m(1)(z; x, t) = lim

z→�z j0
m(1)(z; x, t)

(
0 c j0T (z j0)

2eΦ(z j0 )

0 0

)
,

(6.15a)

(b) If j0 ∈ Δ,

Res
z j0

m(1)(z; x, t) = lim
z→z j0

m(1)(z; x, t)
(
0 c−1

j0
T ′(z j0)−2e−Φ(z j0 )

0 0

)
,

Res�z j0
m(1)(z; x, t) = lim

z→�z j0
m(1)(z; x, t)

(
0 0

c−1
j0
T ′(z j0)−2e−Φ(z j0 ) 0

)
.

(6.15b)

Otherwise, m(1)(z;x,t) is analytic in C\Σ(1).

Remark 6.3. The function T (z, ξ) and the transformation m �→ m(1) defined by (6.13)
can be thought of in two parts. In the first step the Blaschke product in T swaps the
columns in which the poles z j , j ∈ Δ, appear and gives new connection coefficient
proportional to c j (x, t)−1 as desired. The triangular factors in (6.13) then interpolate the
poles trading them for jumps on the disk boundaries |z− z j | = ρ. In the second step, the
Cauchy integral term in T is responsible for removing the diagonal factor (6.3) from the
jump matrix factorization V = BT0B−† (cf. (6.1)) on the half-line (0,∞). Finally, we
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946 S. Cuccagna, R. Jenkins

point out that factors (zzk − 1) in the Blaschke product—instead of simply (z −�zk)—
and the 1

2s term in the Cauchy integral are introduced so that T satisfies property i. in
Lemma 6.1 which is needed to preserve the symmetries in Lemma 5.1.

Proof of Lemma 6.2. The proof consists of a lengthy but elementary series of computa-
tions which we sketch only partially. First of all we start with the symmetries of Lemma
5.1. For instance, the region outside the disks in (6.13) is invariant by the transformations
z → z and z → z−1. We have

m(1)(z) = T (∞)−σ3m(z)T (z)σ3 = T (∞)σ3σ1m(z)σ1T (z)−σ3 = σ1m
(1)(z)σ1

and
m(1)(z−1) = T (∞)−σ3m(z−1)T (z−1)σ3 = zT (∞)−σ3m(z)σ1T (z)−σ3 = zm(1)(z)σ1,

where we have used the symmetries of m(z) and of T (z). Using also the symmetries of
Φ(z) these equalities can be similarly extended on the whole domain of m(1)(z).

While Claim 1 and the 1st equality in Claim 2 in RHP 6.1 are obvious consequences
of the corresponding ones in RHP 5.1, the 2nd equality in Claim 2 follows from

zm(1)(z) = T (∞)−σ3 zm(z)T (z)σ3 = T (∞)−σ3(σ1 +O (z))T (z−1)−σ3

= T (∞)−σ3(σ1 +O (z))(T (∞) +O (z))−σ3 = σ1 +O (z) ,

where we used the symmetry and the expansion T (z) = T (∞) +O (
z−1

)
as z → ∞ in

Claims i and iv of Lemma 6.1 respectively.
We skip the proof of Claim 3 which is an immediate consequence of (6.13) and of

Claim 3 in RHP 5.1. The proof of the 1st limit in (6.15a) follows immediately from

Res
z j0

m(1)(z) = Res
z j0

T (∞)−σ3m(z)T (z)σ3

= lim
z→z j0

T (∞)−σ3m(z)T (z)σ3T (z)−σ3

(
0 0

c j0e
Φ(z j0 ) 0

)
T (z)σ3

= lim
z→z j0

m(1)(z)

(
0 0

c j0T (z j0)
2eΦ(z j0 ) 0

)
.

We now turn to the 1st limit in (6.15b). We have

Res
z j0

m(1)(z) = lim
z→z j0

(z − z j0 )T (∞)−σ3

(
m−
1 (z)T (z)

a(z)
,
m+
2(z)

T (z)

)

= T (∞)−σ3

(

0,
m+
2(z j0 )

T ′(z j0 )

)

= lim
z→z j0

T (∞)−σ3

(
m−
1 (z)T (z)

a(z)
,
m+
2(z)

T (z)

)(
0 c−1

j0
T ′(z j0 )−2e−Φ(z j0 )

0 0

)

which yields the 1st limit in (6.15b). In the last equality we’ve used the fact that

m+
2(z j0)T

′(z j0)−1 = γ −1
j0

(0)T ′(z j0)−1e−Φ(z j0 )m−
1 (z j0)

= a′(z j0)
−1c−1

j0
T ′(z j0)−1e−Φ(z j0 )m−

1 (z)

which follows from (4.24), (4.29) and (5.7). The limits in the 2nd lines of (6.15a)–(6.15b)
follow from the symmetry (5.2a), which is satisfied by m(1)(z). ��
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zj0

zj0

Ω1

Ω4

Ω2

Ω3

Fig. 2. The unknown m(2)(z) defined by (6.26) has nonzero ∂ derivatives in the regions Ω j , and jump

discontinuities on the disk boundaries |z − z j | = ρ. The dashed boundaries of Ω j indicate that m(2) is
continuous at these boundaries

6.2. Step 2: opening ∂ lenses. We now want to remove the jump from the real axis in
such a way that the new problem takes advantage of the decay/growth of exp (Φ(z)) for
z �∈ R. Additionally wewant to “open the lens” in such a way that the lenses are bounded
away from the disks introduced previously to remove the poles from the problem.

To that end, fix an angle θ0 > 0 sufficiently small such that the set {z ∈ C :
∣
∣
∣Re zz

∣
∣
∣ >

cos θ0} does not intersect any of the disks |z − zk | ≤ ρ. For any ξ ∈ (−1, 1), let

φ(ξ) = min

{
θ0, arccos

(
2|ξ |

1 + |ξ |
)}

,

and define Ω = ⋃4
k=1 Ωk , where

Ω1 = {z : arg z ∈ (0, φ(ξ))}, Ω2 = {z : arg z ∈ (π − φ(ξ), π)},
Ω3 = {z : arg z ∈ (−π,−π + φ(ξ))}, Ω4 = {z : arg z ∈ (−φ(ξ), 0)}.

Finally, denote by

Σ1 = eiφ(ξ)
R+, Σ2 = ei(π−φ(ξ))

R+

Σ3 = e−i(π−φ(ξ))
R+, Σ4 = e−iφ(ξ)

R+,

the left-to-right oriented boundaries of Ω , see Fig. 2.

Lemma 6.4. Set ξ := x
2t and let |ξ | < 1. Then for z = |z|eiθ and F(s) = s + s−1, the

phase Φ defined in (5.5) satisfies

Re[Φ(z; x, t)] ≥ t

4
(1 − |ξ |)F(|z|)2 |sin 2θ | for z ∈ Ω1 ∪ Ω3,

Re[Φ(z; x, t)] ≤ − t

4
(1 − |ξ |)F(|z|)2 |sin 2θ | for z ∈ Ω2 ∪ Ω4.

(6.16)

Proof. We will consider only the case z ∈ Ω1. By elementary computation we have

Re[Φ(z; x, t)] = t ψ(z) sin 2θ with ψ(z) = F(|z|)2 − ξF(|z|) sec θ − 2. (6.17)

Then, observing that F(|z|) ≥ 2, we have for z ∈ Ω1,

ψ(z) ≥ F(|z|)2 − 1 + |ξ |
2

F(|z|) − 2 ≥ 1 − |ξ |
4

F(|z|)2

so that
ReΦ(z; x, t) ≥ t

4
(1 − |ξ |)F(|z|)2 sin 2θ.

��
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The estimates suggest that we should open lenses using (modified versions of) fac-
torization (6.2) for z < 0 and (6.3) for z > 0. To do so, we need to define extensions
of the off-diagonal entries of b(z) and B(z) off the real axis, which is the content of the
following lemma.

Lemma 6.5. Let q0 ∈ tanh(x)+ L1,3(R) and q ′
0 ∈ W 1,1(R). Then it is possible to define

functions R j : Ω j → C, j = 1, 2, 3, 4, continuous onΩ j , with continuous first partials
on Ω j , and boundary values

{
R1(z) = r(z)T+(z)−2

1−|r(z)|2 z ∈ (0,∞)

R1(z) = 0 z ∈ Σ1
{
R2(z) = r(z)T (z)2 z ∈ (−∞, 0)
R2(z) = 0 z ∈ Σ2

{
R3(z) = r(z)T (z)−2 z ∈ (−∞, 0)
R3(z) = 0 z ∈ Σ3

{
R4(z) = r(z)T−(z)2

1−|r(z)|2 z ∈ (0,∞)

R4(z) = 0 z ∈ Σ4

such that for j = 1 and 4; a fixed constant c1 = c1(q0); and a fixed cutoff function
ϕ ∈ C∞

0 (R, [0, 1]) with small support near 1; we have
∣∣∂R j (z)

∣∣ ≤ c1|z|−1/2 + c1|r ′(|z|)| + c1ϕ(|z|) for all z ∈ Ω j and (6.18)
∣∣∂R j (z)

∣∣ ≤ c1|z − 1| for all z ∈ Ω j in a small fixed neighborhood of 1 (6.19)

while for j = 2, 3 we have (6.18) with |z| replaced by −|z| in the argument of r ′ and
without the term c1ϕ(|z|).

Setting R : Ω → C by R(z)
∣∣∣
z∈Ω j

= R j (z), the extension can preserve the symmetry

R(z) = R(z−1).

Proof. We will give the details of the proof for R1. The estimates for the ∂-derivative
for j = 4 are nearly identical to the case j = 1; the definitions of R2 and R3 and their
∂ estimates are similar and are a simpler version of [21, Proposition 2.1].
As observed in (4.15)–(4.16), a(z) and b(z) are singular at z = ±1, and r(z) → ∓1 as
z → ±1. This suggests that R1(z) is singular at z = 1. However, the singular behavior
is exactly balanced by the factor T (z)−2. From (4.7)–(4.9) we have

r(z)

1 − |r(z)|2 T+(z)
−2 = b(z)

a(z)

(
a(z)

T+(z)

)2

= Jb(z)

Ja(z)

(
a(z)

T+(z)

)2

, (6.20)

where we have temporarily introduced the notation

Jb(z) = det
[
ψ+
1 (z; x, t), ψ−

1 (z; x, t)] , Ja(z) = det
[
ψ−
1 (z; x, t), ψ+

2 (z; x, t)] .

(6.21)

Recall that though the columns of the right/left normalized Jost functions, ψ±
j (z; x, t),

j = 1, 2, depend on x , the determinants are independent of x as TrL = 0. Using
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Lemmas 3.1 and 6.1, the denominator of each factor in the r.h.s. of (6.20) is non-zero
and analytic in Ω1, with a well defined nonzero limit on ∂Ω1. Notice also that in Ω1
away from the point z = 1 the factors in the l.h.s. of (6.20) are well behaved.

We introduce cutoff functions χ0, χ1 ∈ C∞
0 (R, [0, 1]) with small support near 0

and 1 respectively, such that for any sufficiently small real s, χ0(s) = 1 = χ1(1 + s).
Additionally, we impose the condition that χ1(s) = χ1(s−1) to preserve symmetry. We
then rewrite the function R1(z) in R+ as R1(z) = R11(z) + R12(z) with

R11(z) := (1 − χ1(z))
�r(z)

1 − |r(z)|2 T+(z)
−2, R12(z) := χ1(z)

�Jb(z)
Ja(z)

(
a(z)

T+(z)

)2

.

(6.22)

The purpose of (6.22) is to neutralize the effect of the singularity at 1 due to |r(1)| = 1.
Fix a small δ0 > 0. Then extend the functions R11 and R12 in Ω1 by

R11(z) = (1 − χ1(|z|))
�r(|z|)

1 − |r(|z|)|2 T (z)−2 cos (k arg z), (6.23)

R12(z) = f (|z|)g(z) cos(k arg z) + i|z|
k

χ0

(
arg z

δ0

)
f ′(|z|)g(z) sin(k arg(z)) (6.24)

where f ′(s) is the derivative of f (s) and

k := π

2θ0
, g(z) :=

(
a(z)

T (z)

)2

, f (s) := χ1(s)
Jb(s)

Ja(s)
.

Both extensions are similar to Prop. 2.1 [21], but (6.24) is somewhat more elaborate.

Observe that the definition of R1 above preserves the symmetry R1(s) = R1(s−1). Aided
by the symmetry conditions (4.11), (4.5), Claim i of Lemma 6.1, and χ1(s) = χ1(s−1)

one shows that R11, f , and g satisfy the desired symmetry; the rest is a trivial exercise.
We now bound the ∂ derivatives of (6.23)–(6.24). We have

∂R11(z) = −∂χ1(|z|)
T (z)2

r(|z|) cos (k arg z)

1 − |r(|z|)|2 +
1 − χ1(|z|)

T (z)2
∂

(
r(|z|) cos (k arg z)

1 − |r(|z|)|2
)

.

(6.25)

Observe that 1 − |r(|z|)|2 > c > 0 in supp(1 − χ1(|z|)) and |T (z)−2| ≤ Ce− log c in
Ω1 ∩ supp(1 − χ1(|z|)) for some fixed constants c and C . Then for some new fixed
constant C we have

∣∣∣∣
∣
∂
r(|z|) cos (k arg z)

1 − |r(|z|)|2
∣∣∣∣
∣
≤ C |r ′(|z|)| + C |sin (k arg z)| |r(|z|)|

|z| .

As r(0) = 0 it follows that |r(|z|)| ≤ √|z|‖r ′‖L2(R). Notice also that the first term in
the r.h.s. of (6.25) can be bounded by c1ϕ(|z|) for an appropriate ϕ ∈ C∞

0 (R, [0, 1])
with a small support near 1 and with ϕ = 1 on suppχ1. It follows that the r.h.s. of (6.25)
satisfies (6.18).
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We turn now to ∂R12. For z = u + iv = ρeiφ we have ∂ = 1
2 (∂u + i∂v) =

eiφ
2

(
∂ρ + i

ρ
∂φ

)
. Then

∂R12(z) = eiφg(z)

2

[
f ′(ρ) cos(kφ)

(
1 − χ0

(
φ

δ0

))
− ik f (ρ)

ρ
sin(kφ)

+
i

k
(ρ f ′(ρ))′ sin(kφ)χ0

(
φ

δ0

)
+

i

kδ0
f ′(ρ) sin(kφ)χ ′

0

(
φ

δ0

)]

where the 1st term in the bracket is obtained by applying ∂ρ to f (ρ) in the 1st term in
(6.24) and iρ−1∂φ to sin(kφ) in the 2nd term of (6.24).

Then we claim |∂R12(z)| ≤ c1ϕ(|z|) for a ϕ ∈ C∞
0 (R, [0, 1]) supported near 1,

thus yielding (6.18). The prefactor including g(z) is bounded by (6.11). The first, third,
and fourth terms in the brackets are bounded by observing that, for q satisfying the
hypotheses of the Lemma, we have �Jb(s)/Ja(s) ∈ W∞,2(R)—this follows from a small
modification of Lemma 4.4 where the extra moment is needed for second derivatives in
the term (ρ f ′(ρ))′ appearing in the expression for ∂R12 above (c.f. (4.19)). The second
term is bounded because suppχ1 is bounded away fromzero. Finally, for z ∼ 1, |∂R12| ≤
C [ | sin(kφ)| + (1 − χ0(φ/δ0) ] = O (φ), from which (6.19) follows immediately.

We use the extensions of Lemma 6.5 to define modified versions of the factorizations
(6.1) which extend into the lenses Ω j . We have on the real axis

V (1)(z) = b̂−†(z)̂b(z) = B̂(z)B̂−†(z)

where

b̂(z) =
(

1 0
R2(z)eΦ 1

)
, b̂†(z) =

(
1 R3(z)e−Φ

0 1

)
,

B̂(z) =
(

1 0
R4(z)eΦ 1

)
, B̂†(z) =

(
1 R1(z)e−Φ

0 1

)
.

We use these to define a new unknown

m(2)(z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m(1)(z)B̂†(z) z ∈ Ω1

m(1)(z)̂b(z)−1 z ∈ Ω2

m(1)(z)̂b(z)−†(z) z ∈ Ω3

m(1)(z)B̂(z) z ∈ Ω4

m(1)(z) z ∈ C\Ω.

(6.26)

Let
Σ(2) =

⋃

j∈∇∪Δ
j �= j0(ξ)

{z ∈ C : |z − z j | = ρ or |z −�z j | = ρ} (6.27)

be the union of the circular boundaries of each interpolation disk oriented as in Σ(1). It
is an immediate consequence of (6.26) and Lemmas 6.2 and 6.5 that m(2) satisfies the
following ∂–Riemann–Hilbert problem.

Riemann–Hilbert Problem 6.2 (∂–). Find a 2× 2 matrix-valued function m(2)(z; x, t)
such that
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1. m(2) is continuous in C\Σ(2) and takes continuous boundary values m(2)
+ (z; x, t)

(respectively m(2)
− (z; x, t)) on Σ(2) from the left (respectively right).

2. m(2)(z; x, t) = I +O (
z−1

)
as z → ∞,

zm(2)(z; x, t) = σ1 +O (z) as z → 0.
3. The boundary values are connected by the jump relation m(2)

+ (z; x, t) = m(2)
− (z; x, t)

V (2)(z) where

V (2)(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

− c j
z−z j

T (z)2eΦ(z j ) 1

)

|z − z j | = ρ, j ∈ ∇
(
1 − z−z j

c j
T (z)−2e−Φ(z j )

0 1

)

|z − z j | = ρ, j ∈ Δ

(
1

�c j
z−�z j T (z)−2eΦ(z j )

0 1

)

|z −�z j | = ρ, j ∈ ∇
(

1 0
z−�z j
�c j T (z)2e−Φ(z j ) 1

)

|z −�z j | = ρ, j ∈ Δ.

(6.28)

4. For z ∈ C we have

∂m(2)(z; x, t) = m(2)(z; x, t)W (z) (6.29)

where

W (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 ∂R1(z)e−Φ

0 0

)

z ∈ Ω1

(
0 0

−∂R2(z)eΦ 0

)

z ∈ Ω2

(
0 −∂R3(z)e−Φ

0 0

)

z ∈ Ω3

(
0 0

∂R4(z)eΦ 0

)

z ∈ Ω4

0 z elsewhere.

5. m(2)(z; x, t) is analytic in the region C\( �Ω ∪Σ(2)) if j0 = −1. If (x, t) are such that
there exists j0 ∈ {0, . . . , N −1} such that |Re z j0 −ξ | ≤ ρ, ξ = x

2t , then m
(2)(z; x, t)

is meromorphic inC\( �Ω∪Σ(2))with exactly two poles, which are simple, at the points
z j0 ,�z j0 ∈ Z satisfying one of the following cases.
(a) If j0 ∈ ∇, letting C j0 = c j0T (z j0)

2, we have

Res
z j0

m(2)(z; x, t) = lim
z→z j0

m(2)(z; x, t)
(

0 0
C j0e

Φ(z j0 ) 0

)
,

Res�z j0
m(2)(z; x, t) = lim

z→z j0
m(2)(z; x, t)

(
0 C j0e

Φ(z j0 )

0 0

)
.

(6.30)
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(b) If j0 ∈ Δ, letting C j0 := c−1
j0
T ′(z j0)−2, we have

Res
z j0

m(2)(z; x, t) = lim
z→z j0

m(2)(z; x, t)
(
0 C j0e

−Φ(z j0 )

0 0

)

Res�z j0
m(2)(z; x, t) = lim

z→�z j0
m(2)(z; x, t)

(
0 0

C j0e
−Φ(z j0 ) 0

)
.

(6.31)

6.3. Step 3: removing the poles; the asymptotic N-soliton solution. Our next step is to
remove the Riemann–Hilbert component of the solution, so that all that remains is a new
unknown with nonzero ∂-derivatives in Ω , and is otherwise bounded and approaching
identity for |z| → ∞. Once this is complete, the remaining problem is analyzed using
the “small-norm” theory for the solid Cauchy operator. This is done in the following
section, Sect. 6.4.

Lemma 6.6. Let m(sol) denote the solution of the Riemann–Hilbert problem which
results from simply ignoring the ∂ component of RHP 6.2, that is, let

m(sol)(z) solves ∂–RHP 6.2 with W ≡ 0.

For any admissible scattering data {r(z), {z j , c j }N−1
j=0 } in RHP 6.2, the solution m(sol)

of this modified problem exists, and is equivalent, by an explicit transformation, to
a reflectionless solution of the original Riemann Hilbert problem, RHP 5.1, with the
modified scattering data {0, {z j , c̃ j }N−1

j=0 } where, the modified connection coefficients c̃ j
are given by

c̃ j (x, t) = c j (x, t) exp

(
− 1

iπ

∫ ∞

0
log(1 − |r(s)|2)

(
1

s − z j
− 1

2s

)
ds

)
. (6.32)

where r(s) is the reflection coefficient, generated by the initial datum q0(x), given in
RHP 6.2.

Proof. With W ≡ 0, the ∂-RHP for m(sol) reduces to a Riemann Hilbert problem for
a sectionally meromorphic function with jump discontinuities on the union of circles
Σ(2), see (6.27). The following transformation contracts each of the circular jumps so
that the result m̃(z) has simple poles at each zk or zk in Z , and reverses the triangularity
effected by (6.8) and (6.13):

m̃(z) =
[
∏

k∈Δ

(
1

zk

)]σ3

m(sol)(z)F(z)

[
∏

k∈Δ

(
z − zk
zzk − 1

)]−σ3

, (6.33)

where

F(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

c j
z−z j

T (z)2eΦ(z j ) 1

)

|z − z j | = ρ, j ∈ ∇
(
1

z−z j
c j

T (z)−2e−Φ(z j )

0 1

)

|z − z j | = ρ, j ∈ Δ

(
1

�c j
z−�z j T (z)−2eΦ(z j )

0 1

)

|z −�z j | = ρ, j ∈ ∇
(

1 0
z−�z j
�c j T (z)2e−Φ(z j ) 1

)

|z −�z j | = ρ, j ∈ Δ.
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Clearly, the transformation to m̃ preserves the normalization conditions at the origin
and infinity. Comparing (6.33) to (6.28) it is clear that the new unknown m̃ has no
jumps. From (6.8), RHP 6.2, and (6.33) it follows that m̃(z) has simple poles at each
of the points in Z , the discrete spectrum of the original Riemann Hilbert problem,
RHP 5.1. A straightforward calculation shows that the residues satisfy (5.6), but with
(5.7) replaced by (6.32). Thus, m̃(z) is precisely the solution of RHP 5.1 with scattering
data {{zk, c̃k}N−1

k=0 , r ≡ 0}. The symmetry r(s−1) = r(s), s ∈ R, implies that the
argument of the exponential in (6.32) is purely real so that the perturbed connection
coefficients maintain the reality condition c̃ j = iz j |̃c j |. Thus, m(sol) is the solution of
RHP 5.1 corresponding to an N -soliton, reflectionless, potential q̃(x, t)which generates
the same discrete spectrumZ as our initial data, but whose connection coefficients (6.32)
are perturbations of those for the original initial data by an amount related to the reflection
coefficient of the initial data. The solution of this discrete RHP is a rational function
of z, whose (unique) exact solution always exists and can be obtained as described in
Appendix A.

As claimed above and proven in Appendix A, the RHP for m(sol) can be solved
exactly in closed form, but we will instead give the solution using the small norm theory
of Riemann–Hilbert problems, see Appendix B [32], as this more naturally leads to the
asymptotic form of the solution for t 
 1.

The Riemann Hilbert problem for m(sol) is ideally set up for asymptotic analysis.
The jump matrix V (2)(z) satisfies

‖V (2) − I‖L p(Σ(2)) ≤ Kp sup
j∈∇∪Δ

e−Ct Im zk |ξ−Re z j | ≤ Kpe
−Cρ2t , 1 ≤ p ≤ ∞,

(6.34)

for some constant Kp ≥ 0 independent of (x, t). This implies that the jump matrices
do not meaningfully, contribute to the asymptotic behavior of the solution. Instead, the
dominant contribution to the solution comes from the simple poles of m(sol); those at
z = 0 and, if the critical line Re z = ξ is passing through the neighborhood of one of the
discrete spectra z j ∈ Z of the original problem RHP 5.1, those at z j0 and�z j0 . Indeed,
the following lemma describes this further simplification of m(sol) explicitly.

Lemma 6.7. Let ξ = x
2t and let j0 = j0(ξ) ∈ {−1, 0, 1, . . . , N − 1}, be defined by

(6.7). Suppose

m(sol)
j0

(z) solves RHP 6.2 with W (z) ≡ 0 and V (2) ≡ I . (6.35)

Then, for any (x, t) such that |x/t | < 2 and t 
 1, uniformly for z ∈ C we have

m(sol)(z) = m(sol)
j0

(z)
[
I +O

(
e−2ρ2t

)]
,

and, in particular, for large z we have

m(sol)(z) = m(sol)
j0

(z)
[
I + z−1O

(
e−2ρ2t

)
+O

(
z−2

)]
. (6.36)

Moreover, the unique solution m(sol)
j0

(z) to the above Riemann Hilbert problem, (6.35),
is as follows:
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i. if j0(ξ) = −1, then all the z j are away from the critical line and

m(sol)
0 (z) = I + z−1σ1; (6.37a)

ii. if j0(ξ) ∈ ∇, then

m(sol)
j0

(z) = I +
σ1

z
+

⎛

⎜⎜
⎝

α∇
j0

(x,t)

z−z j0

β∇
j0

(x,t)

z−�z j0
β∇
j0

(x,t)

z−z j0

α∇
j0

(x,t)

z−�z j0

⎞

⎟⎟
⎠

α∇
j0(x, t) = −z j0β

∇
j0
(x, t), β∇

j0(x, t) = 2i Im(z j0)z j0e
−2ϕ j0

1 + e−2ϕ j0
; (6.37b)

iii. if j0(ξ) ∈ Δ, then

m(sol)
j0

(z) = I +
σ1

z
+

⎛

⎜
⎜
⎝

αΔ
j0

(x,t)

z−�z j0
βΔ
j0

(x,t)

z−z j0

βΔ
j0

(x,t)

z−�z j0
αΔ
j0

(x,t)

z−z j0

⎞

⎟
⎟
⎠

αΔ
j0(x, t) = −z j0β

Δ
j0
(x, t), βΔ

j0(x, t) = −2i Im(z j0)z j0e
2ϕ j0

1 + e2ϕ j0
. (6.37c)

In cases ii. and iii. the real phase ϕ j0 is given by

ϕ j0 = Im(z j0 )(x − 2Re(z j0 )t − x j0 )

x j0 = 1

2 Im(z j0 )

⎛

⎜⎜
⎝log

⎛

⎜⎜
⎝

|c j0 |
2 Im(z j0 )

∏

k∈Δ
k �= j0

∣∣∣∣
z j0 − zk
z j0 zk − 1

∣∣∣∣

2

⎞

⎟⎟
⎠− Im(z j0 )

π

∫ ∞

0

log(1 − |r(s)|2)
|s − z j0 |2

ds

⎞

⎟⎟
⎠ .

(6.37d)

Proof. We begin by proving that (6.37) solves (6.35). The assumption that V ≡ I
and W ≡ 0 implies that m(sol)

j0
(z) is meromorphic with simple poles at z = 0 and, if

j0 �= −1, at both z j0 and�z j0 . If j0 = −1, then (6.37a) is an immediate consequence
of the condition 2 in RHP 6.2 and Liouville’s theorem. For j �= −1, observe that
C0 := c j0T (z j0)

2 satisfies C0 = iz j0 |C0| since c j0 = iz j0 |c j0 | and T (z) ∈ R for
|z| = 1,which follows from claim i. in Lemma 6.1. For j0 ∈ ∇, this means that the RHP
form(sol)

j0
(z), is equivalent to the reflectionless, i.e., r = 0, version of RHP 5.1 with poles

at the origin and at the points z j0 and z j0 with associated connection coefficientC0. Then

the symmetries (5.2a)–(5.2b) inherited by m(sol)
j0

and (6.30) imply that α∇
j0

= −z j0β
∇
j0

and

m(sol)
j0

(z) = I +
σ1

z
+
(
β∇
j0

β∇
j0

)(−z j0(z − z j0)
−1 (z − z j0)

−1

(z − z j0)
−1 −z j0(z − z j0)

−1

)
.

The residue conditions (6.30) then yield four linearly dependant equations for the single
unknown β∇

j0
, each equivalent to β∇

j0
= C0(1−z j0β

∇
j0
(z j0 −z j0)

−1), which gives (6.37b)

upon setting |C0|
2 Im(z j )

= e−2ϕ j0 .
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For j ∈ Δ, the computation is similar, but the new pole conditions (6.31) exchanges

the columns in which the two poles occur; we have αΔ
j0

= −z j0 βΔ
j0
and

m(sol)
j0

(z) = I +
σ1

z
+
(
βΔ
j0

βΔ
j0

)(−z j0(z − z j0)
−1 (z − z j0)

−1

(z − z j0)
−1 −z j0(z − z j0)

−1

)
.

Then residue relation (6.31) leads to one linearly independent equation which can be
solved trivially yielding the second line of (6.37c).

Now we show that m(sol)
j0

gives the leading order behavior to m(sol) for t 

1. The ratio m(err)(z) = m(sol)(z)

(
m(sol)

j0
(z)

)−1
has no poles (the computation

proving this is identical to (6.41)–(6.42) below) and its jump matrix V (err)(z) =(
m(sol)

j0
(z)

)
V (2)(z)

(
m(sol)

j0
(z)

)−1
satisfies the same estimate as in (6.34) since

∣
∣
∣m(sol)

j0
(z) − I − σ1

z

∣
∣
∣ = O

(
e−2ρ2t

)
for z ∈ Σ(2).

It then follows from the small norm theory forRiemannHilbert problems, [32,Appen-
dix B] [15, Appendix A], that

m(sol)(z) = m(sol)
j0

(z)

[

I +
1

2π i

∫

Σ(2)

(I + μ(s))(V (err)(s) − I )

s − z
ds

]

whereμ ∈ L2(Σ(2)) is the unique solution of (1−CV (err) )μ = CV (err) I , where CV (err) :
L2(Σ(2)) → L2(Σ(2)) is the Cauchy projection operator

CV (err) [ f ](z) = C−[ f (V (err) − I )] = lim
z′→z

∫

Σ(2)

f (s)(V (err)(s) − I )

s − z′
ds

where the limit is understood (possibly in the L2 sense) to be taken non-tangentially
from the minus (right) side of the oriented contour Σ(2). Existence and uniqueness of μ

follows from the boundedness of the Cauchy projection operatorC−, which immediately
implies

‖CV (err)‖L2(Σ(2))→L2(Σ(2)) = O
(
e−2ρ2t

)
.

Remark 6.8. The different formulae for m(sol)
j (z) for j ∈ ∇ or j ∈ Δ in Lemma 6.7 is

an artifact of the conjugation by T (z) in (6.13) which transforms exponentially growing
pole residues into decaying residues. As is shown below, near the line x = 2t Re(z j )
the dominant contribution to m(z) the solution of the original Riemann Hilbert problem
is of the form

q(sol)
j (x, t) ≡ T (∞, ξ)−2 lim

z→∞ z(m(sol)
j )21(z; x, t)

=
{

eiϑ+(1 + β∇
j (x, t)) x < 2t Re(z j )

z2j e
iϑ+(1 + βΔ

j (x, t)) x > 2t Re(z j ),

(6.38)

where ϑ+ is a real constant, and β∇
j and βΔ

j are given by (6.37b) and (6.37c) respectively

and the extra factor of z2j for x > 2t Re(z j ) accounts for the additional factor in T (∞, ξ)
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for j ∈ Δ. However, since z j = z−1
j , it’s a simple algebraic exercise to show that the

two formulae are identical, so that either formula gives

q(sol)
j (x, t) = eiϑ+

1 + z2j e
−2ϕ j

1 + e−2ϕ j
= eiϑ+ sol(x − x j , t; z j )

where sol(x, t; z) defined by (1.3) is the formula for the dark 1-soliton.

We now complete the original goal of this section by using m(sol) to reduce m(2) to
a pure ∂-problem which will be analyzed in the following section.

Lemma 6.9. Define the function

m(3)(z) = m(2)(z)
(
m(sol)(z)

)−1
. (6.39)

Then, m(3) satisfies the following ∂-problem.

∂ Problem 6.1. Find a 2 × 2 matrix-valued function m(3)(z) such that

1. m(3)(z) is continuous in C, and analytic in C\Ω .
2. m(3)(z) = I +O (

z−1
)
as z → ∞.

3. For z ∈ C we have

∂m(3)(z) = m(3)(z)W (3)(z) (6.40)

where W (3) := m(sol)(z)W (z)
(
m(sol)(z)

)−1
—with W (z) defined after (6.29)—is

supported in Ω .

Proof. It follows directly from (6.39) that m(3) has no jumps on the disk boundaries
|z − z j | = ρ nor |z − z j | = ρ since m(sol) has exactly the same jumps as m(2) on these
contours. The normalization condition and ∂ derivative ofm(3) follow immediately from
the properties of m(2) and m(sol). It remains to show that the ratio also has no isolated

singularities. At the origin we have
(
m(sol)(z)

)−1 = (1 − z−2)−1σ2
(
m(sol)(z)

)T
σ2,

formula already used in Lemma 5.3, so that

lim
z→0

m(3)(z) = lim
z→0

(
zm(2)(z)

)
σ2

(
zm(sol)(z)T

)
σ2

z2 − 1
= −(σ1σ2)

2 = I (6.41)

so m(3)(z) is regular at the origin. If m(2) has poles at z j0 and�z j0 on the unit circle then
from the form of the residue relation we have local expansions in a neighborhood of z j0
of the form

m(2)(z) =
⎡

⎢
⎣
m(2)
12 (z j0 )

m(2)
22 (z j0 )

⎤

⎥
⎦

[ c j0
z−z j0

1
]
+

(∗11 0
∗21 0

)
+O (

z − z j0
)

m(sol)(z)−1 =
z2j0

z2j0 − 1

⎛

⎝

⎡

⎣
1

−c j0
z−z j0

⎤

⎦
[
m(sol)
22 (z j0 ) −m(sol)

12 (z j0 )
]
+

(
0 0
$21 $22

)
+O (

z − z j0
)
⎞

⎠

(6.42)
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where ∗ jk and $ jk are constants. Taking the product gives

m(3)(z) =
z2j0

z2j0 − 1

⎛

⎜
⎝

[∗11
∗21

] [
m(sol)
22 (z j0 ) −m(sol)

12 (z j0 )
]
+

⎡

⎢
⎣
m(2)
12 (z j0 )

m(2)
22 (z j0 )

⎤

⎥
⎦

[
$21 $22

]
+O (1)

⎞

⎟
⎠

which shows that m(3)(z) is bounded locally and the pole is removable. A similar argu-
ment shows that the pole at�z j0 is removable. Finally, because detm(sol)(z) = (1− z−2)

we must check that the ratio is bounded at z = ±1. This follows from observing that
the symmetries m(z) = σ1m(�z)σ1 = z−1m(z−1)σ1, given in Lemma 5.1, applied to the
local expansion of m(2) and m(sol) imply that

m(2)(z) =
(

c ±c
±c c

)
+O (z ∓ 1) m(sol)(z)−1 = ±1

2(z ∓ 1)

(
γ ∓γ

∓γ γ

)
+O (1)

for some constants c and γ . Taking the product it’s immediately clear the singular part
of m(3)(z) vanishes at z = ±1.

In Sect. 6.4 we will prove the following lemma.

Lemma 6.10. There exist constants t1 and c such that the z–independent coefficient
m(3)

1 (x, t) in the asymptotic expansion

m(3)(z) = I +
m(3)

1 (x, t)

z
+ o(z−1)

satisfies

|m(3)
1 (x, t)| ≤ ct−1 for |x/t | < 2 and t ≥ t1.

6.4. Step 4: solution of the ∂ problem 6.1 and asymptotics as t → ∞.

Lemma 6.11. Consider the following operator J :

J H(z) := 1

π

∫

C

H(ς)W (3)(ς)

ς − z
d A(ς). (6.43)

Then we have J : L∞(C) → L∞(C) ∩C0(C) and for any fixed ξ0 ∈ (0, 1) there exists
a C = C(q0, ξ0) s.t.

‖J‖L∞(C)→L∞(C) ≤ Ct−
1
2 for all t 
 1 and for

∣∣∣
x

2t

∣∣∣ ≤ ξ0. (6.44)

Proof. To prove (6.44) we follow the argument in Prop. 2.2 [21]. It is not restrictive to

consider only the proof of ‖J H‖L∞(C) ≤ Ct− 1
2 ‖H‖L∞(C) for H ∈ L∞(Ω1). Recall

the definition of W (3)(z) := m(sol)(z)W (z)
(
m(sol)(z)

)−1
. From Lemma 5.3 we have

detm(sol)(z) = 1 − z−2, and Lemma 6.7 implies that for z ∈ Ω1 there exists a fixed
constant C1 s.t. the matrix norm |m(sol)(z)| ≤ C1|z|−1

√
1 + |z|2 = C |z|−1〈z〉. Then

|W (3)(z)| ≤ |m(sol)(z)|2|1 − z−2|−1|W (z)| ≤ C1〈z〉2|z2 − 1|−1|W (z)|. (6.45)
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Since 〈ς〉|ς + 1|−1 = O (1) in Ω1, for a fixed constant c1 we have

|J H(z)| ≤ c1‖H‖L∞(C)

∫

Ω1

〈ς〉 ∣∣∂R(ς)e−ReΦ(ς)
∣∣

|ς − z| |ς − 1| d A(ς). (6.46)

By Lemma 6.4 the hypothesis that there is a constant ξ0 ∈ (0, 1) s.t. |ξ | ≤ ξ0 is crucial
in order to have |ReΦ(ς)| ≥ ct |uv| for a fixed c = c(ξ0) > 0. Notice also that (6.46)
contains an extra singularity with respect to Proposition 2.2 in [21]. It is to offset this that
our extensions of R(z) in Lemma 6.5, in particular formula (6.24), are somewhat more
elaborate than in [21]. To simplify notation we will normalize the problem and suppose
θ0 = π/4 so that Ω1 is the sector defined by arg(z) ∈ [0, π/4]. Into the integral in the
r.h.s. of (6.46), we insert the partition of unity: χ[0,1)(|ς |)+χ[1,2)(|ς |)+χ[2,∞)(|ς |). We
prove first the following, where the 1st inequality is obvious since 〈ς〉|ς − 1|−1 ≤ κ for
|ς | ≥ 2, for a fixed κ:

∫

Ω1

∣
∣∂R(ς)e−ReΦ(ς)

∣
∣χ[2,∞)(|ς |)

|ς − z| |ς − 1| 〈ς〉d A(ς)

≤ κ

∫

Ω1

∣
∣∂R(ς)e−ReΦ(ς)

∣
∣χ[1,∞)(|ς |)

|ς − z| d A(ς) ≤ Ct−
1
2 . (6.47)

Set ς = u + iv, z = zR + izI , 1/q + 1/p = 1 with p > 2. To prove the 2nd inequality
in (6.47) we replace |∂R| by the 3 terms in the r.h.s. of (6.18). For ς ∈ Ω1 with |ς | ≥ 1
we use Lemma 6.4 to write ReΦ(ς) > ctuv > c′tv.

When replacing |∂R(ς)|, the terms in (6.18) involving f (|ς |) = r ′(|ς |) or f (|ς |) =
ϕ(|ς |) give

∫ ∞

0
dve−c′tv

∫ ∞

v

χ[1,∞)(|ς |)| f (|ς |)|
|ς − z| du ≤ c′′‖ f ‖L2(R)

∫ ∞

0
dve−c′tv|v − zI |− 1

2

≤ Ct−
1
2 ‖ f ‖L2(R). (6.48)

Here we have used
∫ ∞

v

| f (
√
u2 + v2)|2du =

∫ ∞
√
2v

| f (τ )|2
√
u2 + v2

u
dτ ≤ √

2
∫ ∞

√
2v

| f (τ )|2dτ. (6.49)

The term |ς |− 1
2 in (6.18) gives

∫ ∞
0

dv e−c′tv
∫ ∞
v

χ[1,∞)(|ς |)
|ς | 12 |ς − z|

du ≤
∫ ∞
0

dv e−c′tv‖ |ς |− 1
2 ‖L p(v,∞)‖ |ς − z|−1‖Lq (v,∞)

≤ c′′
∫ ∞
0

dv e−c′tvv1/p−1/2 |v − zI |−
1
p ≤ 4c′′t−1/2

∫ ∞
0

ds e−c′ss− 1
2 ≤ Ct− 1

2 . (6.50)

In the penultimate step above we’ve made the elementary observation that for any
a, b, c > 0,

∫ ∞

0
e−cvv−a |v − v0|−bdv ≤

∫

v>|v−v0|
e−c|v−v0||v − v0|−(a+b)dv +

∫

0<v<|v−v0|
e−cvv−(a+b)dv

≤ 2
∫ ∞

−∞
e−c|s||s|−(a+b)ds = 4

∫ ∞

0
e−css−(a+b)ds.
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Thus we have proved (6.47). The next inequality is

∫

Ω1

〈ς〉 |∂R(ς)e−ReΦ(ς)|χ[1,2)(|ς |)
|ς − z| |ς − 1| d A(ς)

≤ √
5c1

∫

Ω1

e−ReΦ(ς)χ[1,2)(|ς |)
|ς − z| d A(ς) ≤ Ct−

1
2 . (6.51)

The first inequality is obtained from (6.19), that is
∣∣∂R j (ς)

∣∣ ≤ c1|ς −1|, and noting that
〈ς〉 ≤ √

5 for |ς | ≤ 2. The second inequality is (6.48) applied to f (|z|) = χ[1,2)(|z|).
From (6.47) and (6.51) we conclude that for some C(q0, ξ0)

∫

Ω1

∣
∣∂R(ς)e−ReΦ(ς)

∣
∣χ[1,∞)(|ς |)

|ς − z| |ς − 1| d A(ς) ≤ C(q0, ξ0)t
− 1

2 . (6.52)

Finally, consider the last inequality, namely

∫

Ω1

∣
∣∂R(ς)e−ReΦ(ς)

∣
∣χ[0,1)(|ς |)

|ς − z| |ς − 1| d A(ς) ≤ Ct−
1
2 . (6.53)

Introducing the change of variables w = �1/z and τ = �1/ς , noting that d A(ς) =
|τ |−4d A(τ ), Φ( �τ−1; x, t) = �Φ(τ ; x, t) (c.f. (5.5)), and using the symmetry R( �τ−1) =�R(τ ) (c.f. Lemma 6.5), equation (6.53) becomes

∫

Ω1

∣
∣∂τ

�R(τ )e−ReΦ(τ)
∣
∣χ[1,∞)(|τ |)

|τ−1 − w−1| |τ−1 − 1||τ |4
∣∣∣∣
∂τ

∂�ς
∣∣∣∣ d A(τ )

= |w|
∫

Ω1

∣∣∂R(τ )e−ReΦ(τ)
∣∣χ[1,∞)(|τ |)

|τ − w| |τ − 1| d A(τ ). (6.54)

Now consider separately large and small values of |w|: if |w| ≤ 3 we are back to (6.52);
if |w| ≥ 3 we can bound the r.h.s. of (6.54) by

3
∫

|τ |≥ |w|
2

|∂R(τ )e−ReΦ(τ)|
|τ − w| χΩ1(τ )d A(τ ) + 2

∫

1≤|τ |≤ |w|
2

|∂R(τ )e−ReΦ(τ)|
|τ − 1| χΩ1(τ )d A(τ ).

Both terms are bounded by Ct− 1
2 for a fixed C = C(q0, ξ0) since they can be treated

like the middle term in (6.47). So we have proved (6.44).

Lemma 6.11 implies m(3) = I + Jm(3). Indeed, since 1
π

1
z ∗ ∂φ = φ for any test

function φ ∈ C∞
0 (C,C), see [39, Proposition 4.8 p. 210 ], we can write

∫

C

m(3)(w)W (3)(w)φ(w)d A(w) =
∫

C

m(3)(w)W (3)(w)

[
1

π

∫

C

∂φ(z)

z − w
d A(z)

]

d A(w)

= −
∫

C

Jm(3)(z)∂φ(z)d A(z)
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where we exploit the fact, proved in the course of Lemma 6.11, that m
(3)(w)W (3)(w)∂φ(z)

w−z ∈
L1(C2), so that we can exchange order of integration. Since Lemma 6.11 implies that
Jm(3)(z) is a continuous function in z uniformly bounded inC, we conclude that ∂(m(3)−
Jm(3)) = 0 in the distributional sense. By elliptic regularitym(3) − Jm(3) is smooth, see
[39, Theorem 11.1 p.379], and so it is holomorphic inC. Finally, by point 2. in RHP 6.1
we get m(3) = I + Jm(3).
Proof of Lemma 6.10 The above discussion allows us to write

m(3)
1 = − 1

π

∫

C

m(3)(z)W (3)(z)d A(z). (6.55)

Since m(3) = I + Jm(3), Lemma 6.11 implies that for t large we have ‖m(3)‖L∞(C) ≤ c
for a fixed constant c and for all |ξ | ≤ ξ0. The proof proceeds along the same lines as
the proof of Lemma 6.11. Again, we restrict to z ∈ Ω1 for simplicity, the proof in the
rest of plane being similar. Using (6.45), like in (6.46), we have
∣
∣
∣
∣
1

π

∫

Ω1

m(3)(z)W (3)(z)d A(z)

∣
∣
∣
∣≤C

∫

Ω1

〈z〉 ∣∣∂R(z)
∣
∣ e−ReΦ(z)|z − 1|−1χ[1,∞)(|z|)d A(z).

Inserting the partition of unity χ[0,1)(|z|)+χ[1,2)(|z|)+χ[2,∞)(|z|) into the above integral
we consider each term separately. For the termwith χ[2,∞)(|z|) the factor 〈z〉|z−1|−1 =
O (1), and fixing a p > 2 (so that q ∈ (1, 2) ) we get the upper bound

∫

Ω1

e−ReΦ(z)
∣∣∂R(z)

∣∣χ[2,∞)(|z|)d A(z)

≤ C
∫

Ω1

e−ReΦ(z)

⎛

⎝|z|− 1
2 +

∑

f ∈{r ′,ϕ}
| f (|z|)|

⎞

⎠χ[1,∞)(|z|)d A(z)

≤ C1

[∫ ∞

0
dv ‖e−ctuv‖L2(max{v,1/

√
2},∞) +

∫ ∞

0
dv ‖e−ctuv‖L p(max{v,1/

√
2},∞)‖|z|−

1
2 ‖Lq (v,∞)

]

≤ C2

∫ ∞

0
dv e−c′tv(t−

1
2 v− 1

2 + t−
1
p v

− 1
p +

1
q − 1

2 ) ≤ C3(t
−1 + t−

1
2 − 1

q ) ≤ C3t
−1. (6.56)

For z ∈ [0, 2], 〈z〉 ≤ √
5, so it will be omitted from the remaining estimates. For the

term with χ[1,2](|z|), using (6.19) for the first inequality and applying the inequalities in
(6.56) to f = χ[1,2], we obtain

∫

Ω1

e−ReΦ |∂R(z)| |z − 1|−1χ[1,2](|z|)d A(z)

≤ c1

∫

Ω1

e−ReΦχ[1,2](|z|)d A(z) ≤ Ct−1. (6.57)

For the term χ[0,1], the change of variables w = �z−1 gives, as in (6.54)
∫

Ω1

e−ReΦ(z)|∂R(z)||z − 1|−1χ[0,1])(|z|)d A(z)

=
∫

Ω1

e−ReΦ(w)|∂R(w)||w − 1|−1χ[1,∞)(|w|)|w|−1d A(ζ ),

which is bounded by the previous estimates (6.56)–(6.57). Summing the last three
inequalities yields the desired estimate.
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6.5. Proofs of Theorems 1.1 and 1.6.

Proof of Theorem 1.1. For z large and inC\Ω we havem(1)(z) = m(2)(z). So by (6.10)
and (6.39)

m(z) = T (∞, ξ)σ3m(2)(z)T (z, ξ)−σ3 = T (∞, ξ)σ3m(3)(z)m(sol)(z)T (∞, ξ)−σ3

×
(

I − z−1

(
∑

k∈Δ

2i Im(zk) − 1

2π i

∫ ∞

0
log(1 − |r(s)|2)ds

)−σ3

+ o
(
z−1

))

.

Since the first two terms of the factor in the last line are diagonal, by m(3)(z) = I +
z−1O (

t−1
)
+o

(
z−1

)
, by (6.36) and by (6.37a)–(6.37c) we obtain for |x −2Re(z j0)t | ≤

ρt and j0 ∈ ∇
q(x, t) = lim

z→∞ zm21(z) = −T (∞, ξ)−2iz j0
(
i Re(z j0) + Im(z j0) tanh ϕ j0

)
+O

(
t−1

)
.

(6.58)
For |x − 2Re(z j0)t | ≤ ρt and j0 ∈ Δ we have instead

q(x, t) = lim
z→∞ zm21(z) = −T (∞, ξ)−2iz j0

(
i Re(z j0) + Im(z j0) tanh ϕ j0

)
+O

(
t−1

)
.

(6.59)
In (6.58), the main term can be written as

δ−1
+

∏

k< j0

z2k sol(x − x j0 , t; z j0) where δ+ := exp

(
1

2π i

∫ ∞

0

log(1 − |r(s)|2)
s

ds

)

(6.60)

using the formula for T (∞, ξ), the obvious fact that Δ = Δ\{ j0} for j0 ∈ ∇ and by
(1.4), which implies Δ\{ j0} = {k : k < j0}. Equation (6.60) also represents the main
term in (6.59). By lim

x→∞ sol(x j , t; z j ) = 1 and lim
x→−∞ sol(x j , t; z j ) = z2j it is elementary

to see that (6.60) differs from the r.h.s. of (1.8) by O (
t−1

)
. We obtain similarly (1.8)

also when j0 = −1, that is when |x − 2Re(z j0)t | > ρt , where we have

q(x, t) = lim
z→∞ zm21(z) = −T (∞, ξ)−2 +O

(
t−1

)
= δ−1

+

∏

k≤supΔ

z2k +O
(
t−1

)
.

(6.61)

Clearly, (6.61) differs from the r.h.s. of (1.8) by O (
t−1

)
. Finally notice that for

q(sol),N (x, t), the N–soliton potential related to the solutionm(sol)(z) in Lemma 6.6, our
analysis proves (1.6) since formulas (6.58), (6.59) and (6.61) hold also for q(sol),N (x, t).

��
Proof of Theorem 1.6. Given q0 close to the M–soliton q(sol),M (x, 0) we obtain the
information on the poles and coupling constants in (1.11) by the Lipschitz continuity of
maps such (3.13) in Lemma 3.2 and (3.17) in Lemma 3.3. Furthermore, we can apply
Lemma 4.4 to q0. Hence we can apply Theorem 1.1 to q0 obtaining (1.8). By elementary
computations (1.8) yields (1.12). ��
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A. N-Solitons

Consider N points z j = eiθ j , labeled such that 0 < θ0 < · · · < θN−1 < π and set

a(z) =
N−1∏

k=0

z − zk
z −�zk . (A.1)

Notice that
N−1∏

k=0

z2k = a(0). (A.2)

Consider also corresponding coupling constants c j with c j = iz j |c j | and let c j (x, t) =
c j eΦ(zk ;x,t) like in (5.7). Then consider the unique (by the proof of Lemma 5.3) solution
of the corresponding RHP 5.1 (with r(z) ≡ 0) satisfying the symmetries of Lemma 5.1.
It is a meromorphic function approaching identity as z → ∞ with 2N + 1 simple poles
m(z; x, t) with a partial fraction expansion of the form

m(z; x, t) = I +
σ1

z
+

N−1∑

k=0

1

z − zk

(
αk(x, t) 0
βk(x, t) 0

)
+

N−1∑

k=0

1

z − zk

(
0 β̂k(x, t)
0 α̂k(x, t)

)
. (A.3)

Assuming for a moment that m(z; x, t) exists we will consider the N -soliton

q(sol),N (x, t) := lim
z→∞ z m21(z; x, t) = 1 +

N−1∑

k=0

βk(x, t). (A.4)

Before discussing the boundary values of q(sol),N (x, t) and proving Lemma B.2 we
study the existence of m(z; x, t). By (5.2a) we have

α̂k(x, t) = �αk(x, t), β̂k(x, t) = �βk(x, t) (A.5)

and by (5.2b) the additional symmetry

αk(x, t) = −zkβk(x, t). (A.6)

Inserting (A.3) into (5.6) and using (A.5)–(A.6) we arrive at the reduced linear system:

(I − Ct xZ) · β t x = Ct x · 1 (A.7)

where β t x , 1 ∈ C
N and Ct x ,Z ∈ M(C, N ) are given by

β t x = {β0(x, t), . . . , βN−1(x, t)}ᵀ, 1 = {1, . . . , 1}ᵀ

Ct x = diag(c0(x, t) . . . , cN−1(x, t)) {Z jk}N−1
j,k=0 = �z j

�z j − zk
.

(A.8)
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For general Ct x the matrix I − Ct xZ need not be invertible. However, under the reality
condition c j (x, t) = iz j |c j (x, t)|, the system can be expressed in the more symmetric
form

(I + Yt x ) · β̂ t x = bt x (A.9)

where

β̂ t x := {|c0(x, t)|−1/2β1, . . . , |cN−1(x, t)|−1/2βN−1}ᵀ
bt x := {i|c0(x, t)|1/2z1, i|c2(x, t)|1/2z2, . . . , i|cN−1(x, t)|1/2zN−1}ᵀ.

Letting y j = −iz j ( Im z j > 0 ⇒ Re y j > 0) we have

(Yt x ) jk = |c j (x, t)|1/2|ck(x, t)|1/2
�y j + yk

= |c j (x, t)|1/2|ck(x, t)|1/2
∫ ∞

0
e−(�y j+yk )sds.

Invertibility of the system then follows from the observation thatYt x is positive definite:

w†Yt xw =
∫ ∞

0

⎛

⎝
N−1∑

j,k=0

|c j (x, t)ck(x, t)|1/2e−(y j+yk )sw jwk

⎞

⎠ ds

=
∫ ∞

0

∣∣∣
∣∣

N−1∑

k=0

|ck(x, t)|1/2e−ykswk

∣∣∣
∣∣

2

ds ≥ 0.

Using (A.4) and Cramer’s rule, the solution of the NLS corresponding to the given
discrete scattering data is given by

q(sol),N (x, t) = 1 − det(I − (Ct xZ)1)

det(I − Ct xZ)
(A.10)

where (Ct xZ)1 is the (N + 1) × (N + 1) matrix

(Ct xZ)1 :=

⎛

⎜⎜
⎝

c0(x, t)

Ct xZ
...

cN−1(x, t)
1 · · · 1 1

⎞

⎟⎟
⎠ . (A.11)

B. Global Existence of Solution of the NLS Equation

Here we establish the global existence of solutions for (1.1) with initial data q0 ∈
tanh(x)+Σ4 and show that the N -soliton solutionsq(sol),N (x, t) constructed inAppendix
A lie in this class of data.

Theorem B.1. Consider the initial value problem (1.1) with q0 − tanh (x) ∈ Σ4.
Then (1.1) admits a unique global solution q such that q(x, t) − tanh (x) ∈
C0([0,∞), H4(R)) ∩ C1([0,∞), H2(R)). Furthermore we have q(x, t) − tanh (x) ∈
C0([0,∞),Σ4) ∩ C1([0,∞),Σ2).

43



964 S. Cuccagna, R. Jenkins

Proof. By Gallo [25] there is a unique global solution q(x, t) of (1.1) s.t. the function
v(x, t) := q(x, t) − tanh (x) is in C0([0,∞), H1(R)). Furthermore since v(x, 0) ∈
X4(R) ⊂ X1(R), by [25,26] we also have v(x, t) ∈ C0([0,∞), X1(R)), where
Xk(R) := L∞(R)∩ (∩k

l=1 Ḣ
l(R)). In [4] it is proven that v(x, t) ∈ C0([0,∞), X4(R)).

All these facts together imply v(x, t) ∈ C0([0,∞), H4(R)) ∩ C1([0,∞), H2(R)).
The fact that v(x, t) ∈ C0([0,∞),Σ4) can now be proved by standard arguments;
multiplying the equation for v by x4e−εx2 and, taking the limit ε → 0+, one shows that
x4v(x, t) ∈ L∞([0, T ], L2(R)) for any T . Indeed, v(x, t) solves (for vR = Re v)

iv̇ + vxx − 2(|v|2 + 2vR tanh (x))(v + tanh (x)) − sech2(x)v = 0. (B.1)

Multiplying the equation by x2 j e−2εx2v for 1 ≤ j ≤ 4, taking the imaginary part and
integrating in x on R we obtain, for [∂2x , x j e−εx2 ]v = (x j e−εx2)′′v + 2(x j e−εx2)′vx ,

d

dt
‖x j e−εx2v‖L2 ≤ C(‖[∂2x , x j e−εx2 ]v‖L2 + ‖〈x〉 j e−εx2v‖L2). (B.2)

We have ‖(x j e−εx2)′′v‖L2 ≤ ‖v‖Σ j−1 , where we assume the r.h.s. is bounded by induc-
tion.
So, for fixed constants we have

‖(x j e−εx2)′vx‖L2 ≤ c′‖x j−1e−εx2vx‖L2 ≤ c(‖x j e−εx2v‖L2 + ‖∂2x v‖L2). (B.3)

The 2nd inequality follows by the identity for f real, see [36] p.1069,

∫
x2 j−2e−2εx2( fx )

2dx = 2−1
∫

f (x2 j−2e−2εx2)′′ f 2dx +
∫

x2 j−2e−2εx2 f fxxdx .

Then, by Gronwall’s inequality, (B.2)–(B.3) imply that ‖x j e−εx2v(·, t)‖L2(R) ≤ CT
for t ∈ [0, T ] and all j = 1, . . . , 4. By Fatou’s lemma we conclude v(x, t) ∈
L∞([0, T ],Σ4) for all T ≥ 0. But then by dominated convergence x j e−εx2v → x jv

in L∞([0, T ], L2(R)) and since x j e−εx2v ∈ C0([0, T ], L2(R)), we have also x jv ∈
C0([0, T ], L2(R)) for all j ≤ 4. So we conclude that v(x, t) ∈ C0([0, T ],Σ4). From
(B.1) we have also v(x, t) ∈ C1([0, T ],Σ2).

The global existence for (1.1)–(1.2) for the initial data in Theorem 1.6 is guaranteed by
Theorem B.1 and the following lemma.

Lemma B.2. q(sol),N (x, t) − tanh(x) ∈ Σk for all k ∈ N for any N–soliton satisfying
the boundary conditions (1.2).

Proof. Formulas (A.10)–(A.11) imply immediately that q(sol),N ∈ C
∞(R2,C). Since

for |x | → ∞ we have Φ(z j ; x, t) = −2x Im[z j ](1 + o(1)) it is elementary that
q(sol),N (x, t)− 1 with all its derivatives approaches 0 exponentially fast as x → ∞. We
assume now

lim
x→−∞ q(sol),N (x, t) = a(0) for any fixed t ≥ 0 (B.4)
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(where in the set up of Lemma B.2 we have a(0) = −1). Then for any fixed t it is
elementary to conclude from (A.10)–(A.11) that for a fixed c > 0 and for x � −1

det(I − Ct xZ) = (−1)N
N−1∏

j=0

c j (x, t) det(Z)(1 +O (
ecx

)
),

det(I − (CZ)1) = (−1)N+1
N−1∏

j=0

c j (x, t) det

⎛

⎜⎜
⎝

1

Z
...

1
1 · · · 1 0

⎞

⎟⎟
⎠ (1 +O (

ecx
)
).

This implies thatq(sol),N (x, t)−a(0) and all of its derivatives approaches 0 exponentially
fast as x → −∞. To see (B.4) we associate to our m(z; x, t) the function m(1)(z; x, t)
in (6.13). Notice that m(1)(z) solves a Riemann–Hilbert problem in Σ(2) since the jump
matrix in R is the identity. In other words, here m(1)(z) = m(sol)(z). Now, since as
x → −∞ we have ξ → −∞, in this case Δ = {0, . . . , N − 1} and j0(ξ) = −1, see
(6.6)–(6.7). It is also easy to see, following the proof of Lemma 6.7, that for fixed t for
a fixed c > 0 and all x � −1 we have

m(sol)(z) = I + z−1σ1 + z−1O
(
e−c|x |) + o(z−1).

Finally, proceeding as in Sect. 6.5 as in (6.58) and using (A.2) we have

q(sol),N (x, t) = lim
z→∞ zm21(z) = T (∞, ξ)−2 lim

z→∞ zm(sol)
21 (z)

= a(0)(1 +O
(
e−c|x |)) → a(0) as x → −∞.

C. Singularity of a(z) in z = ± 1 for Generic q0

Wecheckhere that for initial dataq0ε = tanh (x)+ε f with f = fR+i f I , f A ∈ C∞
c (R,R)

for A = R, I generic, then the function a(z) blows up at z = ±1. Let ψ±
jε(z; x) denote

the Jost functions corresponding to initial data q0ε (c.f. (3.9)). In particular, byψ±
j0(z; x)

we denote the Jost functions associated to the black soliton q00(x) = tanh (x) .

These functions extend to (z, x) ∈ (C\{0,−i})×R and they are smooth. Recalling (4.8)
we denote

a(ε, z) = W (ε, z)

1 − z−2 where W (ε, z) := det[ψ−
1ε(z; x), ψ+

2ε(z; x)]. (C.1)

Recall a(0, z) = z−i
z+i . This yields W (0, z) = (z−i)(z2−1)

(z+i)z . We have the following fact.

Lemma C.1. We have

W (ε, z) = ∓2i(z ∓ 1) − 2εC(±, f ) + F±(z, ε)

C(±, f ) :=
∫

R

(e−4y − 1) fR(y) ∓ 2e−2y f I (y)

(1 + e−2y)2
dy

(C.2)

where, for |z ∓ 1| < c f and |ε| < c f for a sufficiently small constant c f > 0, the
function F±(z, ε) is analytic in z and for a fixed constant C f

|F±(z, ε)| ≤ C f (|z ∓ 1|2 + ε2). (C.3)
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For generic f ∈ C∞
c (R,C) we have C(±, f ) �= 0. Then replacing F±(z, ε) with 0 we

obtain a function with a zero in

z̃±(ε) = ±(1 + iεC(±, f ))

and by Rouché Theorem we have that W (ε, z) has for ε small a zero

z±(ε) = ±(1 + iεC(±, f )) +O
(
ε2

)
.

If ±εC(±, f ) > 0 this yields a new zero in C+ of a(ε, z) near ±1 and a corresponding
almost white soliton. If ±εC(±, f ) < 0 this is a new zero of the analytic continuation
of a(ε, z) below R, does not yield a new soliton but nonetheless makes a(ε, z) singular
at ±1. All four cases can occur.

Proof of Lemma C.1. Recall the definitions of ψ±
jε and ψ±

j0 for j = 1, 2, from the

first paragraph of this appendix. For (ψ±
10(z; x)) j the j-th component of ψ±

10(z; x) for
j = 1, 2, we set

ΔQ(x) :=
(

0 f (x)
f (x) 0

)
, U (x, y, z) = [ψ−

10(z; x), ψ+
20(z; x)][ψ−

10(z; y), ψ+
20(z; y)]−1,

with [ψ−
10, ψ

+
20] the matrix with first column ψ−

10 and second column ψ+
20 and with the

last the inverse of one such matrix.U (x, y, z) is well defined for any z �= 0,±i inC. We
have (∂x −L(z; x))U (x, y, z) = 0 andU (y, y, z) = 1, i.e.U (x, y, z) is the fundamental
solution of equation (3.2a) with Q defined using tanh(x). Let f ∈ C∞

c ((−M, M),C).
Notice then that for ψ−

1ε and ψ+
2ε Jost functions associated to q0ε , we have ψ+

2ε(z; x) =
ψ+
20(z; x) for x > M andψ−

1ε(z; x) = ψ−
10(z; x) for x < −M . Then for x > M we have

for any preassigned x0 < −M

ψ+
2ε(z; x) = ψ+

20(z; x)
ψ−
1ε(z; x) = U (x, x0, z)ψ

−
1ε(z; x0) + iε

∫ x

x0
U (x, y, z)σ3ΔQ(y)ψ−

1ε(z; y)dy

= ψ−
10(z; x) + iε

∫

R

U (x, y, z)σ3ΔQ(y)ψ−
1ε(z; y)dy.

(C.4)

Picking x > M and substituting (C.4) we can write

W (ε, z) = det[ψ−
1ε(z; x), ψ+

2ε(z; x)] = det[ψ−
1ε(z; x), ψ+

20(z; x)]
= W (0, z) + iε

∫

R

I ′(y, z)dy where I ′(y, z)

:= det[U (x, y, z)σ3ΔQ(y)ψ−
1ε(z; y), ψ+

20(z; y)].

Notice that we have

I ′(y, z) = det
[ [ψ−

10(z; x), ψ+
20(z; x)]F(y, z), ψ+

20(z; x)
]

= det[F1(y, z)ψ−
10(z; x) + F2(y, z)ψ

+
20(z; x), ψ+

20(z; x)] = F1(y, z)W (0, z),
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for F(y, z) the 2 components column vector
(
F1(y, z)
F2(y, z)

)
= [ψ−

10(z; y), ψ+
20(z; y)]−1σ3ΔQ(y)ψ−

1ε(z; y)

= 1

W (0, z)

(
(ψ+

20(z; y))2 −(ψ+
20(z; y))1−(ψ−

10(z; y))2 (ψ−
10(z; y))1

)(
f (y)(ψ−

1ε(z; y))2− f (y)(ψ−
1ε(z; y))1

)
,

(ψ+
20(z; y)) j the j–th component of ψ+

20(z; y) and similar notation for the other Jost
functions. So

I ′(y, z) = f (y)(ψ+
20(z; y))2(ψ−

1ε(z; y))2 + f (y)(ψ+
20(z; y))1(ψ−

1ε(z; y))1.
Furthermore by the Lipschitz continuity in q in Lemmas 3.2 and 3.3, in particular the
analogues for z → m−

1 (z; x) of the maps (3.13) and (3.17), for a fixed C and when z is
in a preassigned compact subset of C\{0,−i} we have

‖ψ−
1ε(z; ·) − ψ−

10(z; ·)‖L∞(−∞,M) = ‖ψ−
1ε(z; ·) − ψ−

10(z; ·)‖L∞(−M,M) < Cε.

This yields

W (ε, z) = W (0, z) + iε
∫

R

I (y,±1)dy + F̃±(z, ε)

I (y, z) = f (y)(ψ+
20(z; y))2(ψ−

10(z; y))2 + f (y)(ψ+
20(z; y))1(ψ−

10(z; y))1
F̃±(z, ε) = iε

∫

R

[I (y, z) − I (y,±1)]dy +O
(
ε2

)

where F̃±(z, ε) has the properties claimed in the statement for F±(z, ε).
We have

ψ+
20(±1; y) = iψ−

10(±1; y),
ψ−
10(−1; y) = 1

1 + e−2y

(
i + e−2y

−i + e−2y

)
and ψ−

10(1; y) = 1

1 + e−2y

(−i + e−2y

−i − e−2y

)
.

(C.5)

(C.5) can be derived in an elementary fashion by first substituting z j0 = i and ϕ j0 = x in
formula (6.37b) for x > 0 and formula (6.37c) for x < 0. This yields the formula for the
matrix m(z; x) in (5.1). To obtain the Jost functions one then multiplies by a(z) = z−i

z+i
the 1st (resp. 2nd) column ofm(z; x) if Im(z) > 0 (resp. Im(z) < 0), uses formulas (3.9)
and exploits ζ(±1) = 0 for the function in (3.8) getting (C.5) with simple computations.
After other elementary computations we get the formulas for C(±, f ) in (C.2). ��
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