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Chapter 1

Introduction

This Ph.D. thesis is focused on the study of statistical analysis of the large-
scale distribution of galaxies. The accurate determination of the cosmological
parameters has become one of the key activities in modern cosmology: the
understanding of the nature of the dark components of the Universe, dark
matter and dark energy, as well as the study of the behavior of gravity at
very large scales, is fundamental to improve our knowledge on the history
and evolution of the Universe. The structures we observe today result from
the growth of initial perturbations due to gravitational instability. The spec-
trum of these perturbations, and therefore the statistical properties of the
galaxy distribution, is de�ned by the cosmological model. Choosing between
di�erent models requires accurate theoretical predictions of the observables
and precise modeling of their uncertainties.

Observations of the Cosmic Microwave Background (CMB), (Komatsu
et al., 2011; Planck Collaboration et al., 2015), the electromagnetic radia-
tion relic of the early stage of the Universe (∼380'000 years after the Big
Bang), in combination with measurements of the expansion of the Universe,
e.g. (Freedman et al., 2001) and Large Scale Structures (LSS) probes, e.g.
(Allen et al., 2011; Percival et al., 2011; Anderson et al., 2014; Kiessling et al.,
2015), have allowed cosmology to enter the era of high precision. Presently,
CMB observations alone are able to determine the values of cosmological pa-
rameters with per-cent accuracy. The ΛCDM model has passed this tough
observational test, and is now considered as the standard model for cosmol-
ogy, although it is based on the two unknown ingredients of dark matter and
dark energy. The latter manifests itself as a cosmological constant. Devia-
tions of its equation of state (p=wρ) from the simplest w = −1, where w
is the dark energy parameter, would represents deviation from the ΛCDM
model.

In the last decades a great e�ort has been devoted to the analysis of the
distribution of matter on cosmic scales. To explain the large scale structures
in the low redshift (z < 3) Universe, we have to account for some degree
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8 Introduction

of clumpiness in the early stage of the Universe evolution, otherwise mat-
ter would fail to cluster and the Universe, because of the expansion, would
become a homogeneous rare�ed gas of elementary particles. CMB observa-
tions assure that the primordial �uctuations are small, because we observe a
little degree of inhomogeneities with respect the homogeneous background.
As an example, in �gure (1.1) we show four slices of the Millenium Sim-
ulation (Springel et al., 2005) reproducing the distribution of dark matter
di�erent epochs: the upper left �gure shows the Universe at z=18.3 when
it was highly homogeneous; here, we cannot identify structures like clus-
ters of galaxies or �laments, that connect clusters and groups of galaxies.
Moving to low redshift, upper right (z=5.7) and bottom left (z=1.4) �gures,
we note that, because of gravitational instability, the distribution of cosmic
structures becomes less homogeneous and cluster start becoming prominent
structures forming at intersection of �lament. At redshift z=0, bottom right
�gure, we show the Universe we observe today. All the structures are dif-
ferentiated, and we can easily identify the halo of galaxy clusters and long
�laments.

Figure 1.1: Four slices of thickness 15 h−1 Mpc, cut from the Millennium
Run, showing the dark matter distribution at di�erent redshift, from z=18.3
to z=0. Intensity colors encodes surface density and color encodes local
velocity dispersion (Croton et al., 2006).

The analyses that we will discuss in this thesis are relevant for the high
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precision observations to be obtain with forthcoming and future galaxy sur-
veys like DESI (Levi et al., 2013)), Extended Baryon Oscillation Spectro-
scopic Survey (eBOSS), Euclid (Laureijs et al., 2011), Wide-Field Infrared
Survey Telescope (WFIRST, Green et al., 2012) and the Square Kilometer
Array (SKA), that will measure galaxy clustering with sub-percent accuracy.

A wealth of information on cosmological parameters is enclosed in the
two-point correlation function and in its counterpart in Fourier space, the
Power Spectrum. The modeling of these two quantities is fundamental in
order to describe the clustering strength of di�erent structures on di�erent
scales. The ability to extract useful constraints from these statistical mea-
sures depends on the accuracy of the modeling of the two-point statistics. As
we have already highlighted, the gravitational instability, that is a non-linear
process, is responsible for the distribution of the galaxies that we observe;
for this reason the evolution of structures cannot be Gaussian, even if the
initial conditions are Gaussian. If the evolution of clustering is non-linear, we
have to take into account that higher order statistics, three-point correlation
function or the bispectrum in Fourier space, need to be accurately modeled.

In recent years, a great e�ort has been devoted to provide accurate esti-
mates of the matter power spectrum, using di�erent approaches: perturba-
tion theory (Bernardeau et al., 2002), halo model (Cooray and Sheth, 2002)
and simulations (Heitmann et al., 2009, 2010).

The analysis of the clustering statistics, two- and three-point functions,
is fundamental as we have already pointed out, but in order to perform
any statistical analysis of the large-scale galaxy distribution, it is of primary
importance to quantify the errors on these quantities. This information is
carried out by the covariance matrix. The diagonal of this matrix, the
variance, represents the squared deviation of the measures from the mean
value, while the other elements of the matrix provide information on, if and
how, the behavior of a certain quantity we observe on same scale a�ects the
behavior of the same quantity on other scales. If the o�-diagonal elements are
di�erent from zero, it means that the errors at di�erent scales are correlated.
At this point it is important to stress the di�erence between precision and
accuracy: the �rst one refers to the quanti�cation of the random errors, the
second refers to the systematic errors.

Present day large-scale galaxy surveys can observe very large volumes
with high precision that has to be paralleled with just as much precision
in the determination of the errors. As we will stress in the rest of this
thesis, to evaluate the errors, or in general the covariance matrices, we need
many realizations of our Universe. The only realization we have access to is
the one where we live, so what we can do is to simulate other realizations.
In this sense we are assuming that the cosmic density �eld, that describes
the distribution of matter in the Universe, is a random �eld generated as a
random realization out of an ensemble of possible realizations.

Numerical simulations are generally used to generate large sets of realiza-
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tions of the Universe (Scoccimarro and Sheth, 2002; Takahashi et al., 2009;
Sato et al., 2011; Harnois-Déraps and Pen, 2012; Dodelson and Schneider,
2013; Li et al., 2014a; Blot et al., 2015, 2016). As we will describe in chapter
6, the accurate evaluation of the covariance matrix requires a large number
of simulations, but the precision requirements in terms of volume and reso-
lutions make unfeasible to proceed with computationally expansive N-body
simulations. Various methods to reduce the number of simulations are now
used, such as shrinkage (Schäfer and Strimmer, 2005; Pope and Szapudi,
2008) and tapering (Kaufman et al., 2008; Paz and Sánchez, 2015). An al-
ternative to N-body simulations is given by approximate methods that
allows us to produce a large number of synthetic galaxy catalogs at relatively
low cost (a factor of ∼1000 in terms of computing time). These techniques
can be divided in two main classes: the methods that use perturbation the-
ory to follow the particle orbits, such as PINOCCHIO (Monaco et al., 2002),
PTHalos (Scoccimarro and Sheth, 2002), COLA (Tassev et al., 2013), Aug-
mentedLPT (Kitaura and Heÿ, 2013), and the methods that start from a
non-linear density �eld and then populate this density �eld with dark mat-
ter halos, the structure hosting galaxies, such as PATCHY (Kitaura et al.,
2014), EZmocks (Chuang et al., 2015), HALOGEN (Avila et al., 2015).

All these approaches can take great advantage of analytic modeling of
the covariance matrix (Scoccimarro et al., 1999; Sefusatti et al., 2006; de
Putter et al., 2012; Takada and Hu, 2013; Grieb et al., 2016; Pearson and
Samushia, 2016; Mohammed et al., 2017).

The majority of the above cited papers are devoted to the study of the
matter density �eld. From observations we get information on the galaxy
density �eld and we infer that galaxies tend to form in overdense matter
regions; for this reason we can say that galaxies are biased tracers of the
matter density �eld. Less attention has been paid, so far, to analytic predic-
tions of the galaxy power spectrum covariance matrix, since galaxy bias and
discreetness e�ects make its modeling more complex. Finally, in the analysis
of real surveys, we should account for the selection function that de�nes the
galaxy sample and its geometry that can introduce spurious correlations be-
tween di�erent scales. It is fundamental to include all these features in the
modeling of the covariance matrix, in preparation of future galaxy surveys.
We do not expect that the analytic predictions can fully replace numerical
evaluations of the covariance matrix, but they can help to reduce the number
of realizations needed for its evaluation.

In this thesis we study the problem of covariance matrix estimation for
clustering. We �rst study the power spectrum and the bispectrum, quanti-
ties that encode a great part of the clustering information. Then, as we have
highlighted at the beginning of this introduction, we focus on the computa-
tion of the uncertainties on these quantities. To proper quantify the errors
we have to include di�erent e�ects that introduce di�erent complications in
the modeling.
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In order to check the accuracy of the analytic predictions, we have also
looked at the covariance from a numerical point of view; for the covariance
analysis a large number of galaxy catalogs are needed to lower the statisti-
cal noise that a�ects in particular the o�-diagonal terms of the covariance
matrix. For this reason the theory is supported by simulations, that are
carried out by resorting to �approximate methods�, that allow us a fast pro-
duction of galaxy catalogs at the expense of a less correct characterization
of the non-linear scales. At the same time we take advantage of the massive
production of simulations based on fast approximate methods in the regime
where the analytic modeling cannot be applied. A comparison of di�erent
techniques against exact N-body simulations is required to test the accuracy
of the approximations in reproducing the covariance matrix.

In this PhD thesis speci�c attention is given to the survey that will be
carried out by the Euclid1 satellite, an ESA space telescope equipped with
a 1.2 m diameter mirror combined with a high large �eld-of-view visible im-
ager, a near infrared 3-�lter photometer and a slitless spectrograph, aimed
at studying the accelerated expansion of the Universe; the imprints of dark
energy and gravity will be tracked by using two complementary cosmolog-
ical probes to capture signatures of the expansion history of the Universe
and the growth of cosmic structures: weak gravitational lensing and galaxy
clustering. Euclid will cover 15'000 deg2 of extra-galactic sky, with 40 deg2

deep �elds. The main photometric redshift range will be between 1 and 3:
Euclid will provide a good photometric2 redshifts for ∼ 2 × 108 galaxies;
in the range 0.9-1.8 it will measure spectroscopic3 redshifts for ∼ 50 × 106

galaxies. Euclid will also observe higher redshift, in particular the brightest
galaxies at redshift z > 7 and the brightest quasars at redshift z > 8. The
Hα emission, that occurs when a hydrogen electron falls from its third to
second lowest energy level, will be the main spectral features for the deter-
mination of spectroscopic; the limiting �ux limit at a wavelength of 1200 nm
will be of ∼ 2 × 10−16 erg s−1 cm−2. In this thesis we will focus on the
spectroscopic survey.

This thesis is divided in eight chapters. Chapter 2 presents a review of the
standard cosmological model, with particular attention to galaxy clustering
properties and the large scale structure of the Universe. In the �rst part
of the chapter we highlight the main observational probes of the standard
cosmological model including a description of the dark components of our
Universe. We describe then, the theory of structure formation reviewing the
main statistical properties of the cosmic density �eld introducing observable

1https://www.euclid-ec.org/
2The photometric redshift is obtained from the comparison of the magnitudes of galax-

ies in di�erent bands with the expected magnitude from templates.
3The spectroscopic redshift is obtained from the measurements of the shifts in the

spectrum lines
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quantities, such as the two-point correlation function, the power spectrum
and the higher-order statistics and focusing on the evolution of cosmological
density perturbations. In the last part of the chapter we focus on the relation
between the matter and galaxy density �elds.

In chapter 3 we focus on the two-point function clustering estimator, both
in con�guration and Fourier space introducing quantities that have been used
in the rest of the thesis. We then introduce the general estimator for the
power spectrum covariance matrix that is of fundamental importance for
all the following chapters. We then focus on two of the main probes for the
constraints on cosmological parameters, such as Baryonic acoustic oscillation
and redshift-space Distortion and on the more recent results obtained from
large-scale galaxy surveys.

In chapter 4 we brie�y overview the basic principles of N-body simula-
tions; then we focus on the approximate methods that are of primary im-
portance for this thesis. N-body simulations are capable to describe the evo-
lution of the density inhomogeneities from large scales, in the linear regime,
to the deep non-linear regime, so that they are the main tools to describe
highly non-linear scales. The approximate methods are less accurate in the
description of the non-linear scales, but they excel in computation speed
allowing to produce a large number of realizations in relative short time.

In chapter 5 we present a study of some of the systematic a�ecting the
clustering of biased tracers, that will have an impact on the analysis of fu-
ture surveys. We model the systematic using a �mask�, that acts like a
selection function, changing the observed galaxy number density and intro-
ducing spurious correlations between di�erent scales, simulating e�ects due
to, for instance, the zodiacal light and the Milky Way extinction. We provide
a theoretical description of our idealized mask model and its e�ects on the
measurements of the power spectrum. We analyze all the corrections to the
power spectrum and its covariance due to the presence of this foreground, in-
cluding its coupling with the cosmological signal. The analysis, and the test
of the mask model itself, are carried out using a large set of cosmological
galaxy catalogs made with the approximate method PINOCCHIO (Monaco
et al., 2002). This work has been published in Colavincenzo et al. (2017).

Within the Euclid collaboration I have been involved in the comparison
of the covariance matrix obtained using di�erent approximate methods. In
chapter 6 we show the analysis aimed at testing these techniques against
N-body simulations; in particular we want to prove that covariance matrices
of clustering measures, obtained using the fast methods, are unbiased; we
also want to quantify their impact on the errors on cosmological parameters.
The test involves the comparison of the most relevant statistical measures
of galaxy clustering, namely the halo power spectrum, the two-point cor-
relation function and the bispectrum. After a description of the di�erent
simulations used for the comparison, this chapter is mainly focused on the
results obtained for the halo power spectrum and for the bispectrum. These
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two analyses will be published in two separate papers (Blot et al. in prepa-
ration for the power spectrum, Colavincenzo et al. in preparation for the
bispectrum)

In chapter 7 we focus our attention on the theoretical modeling of the
galaxy power spectrum covariance matrix. The aim is to investigate the
quasi-linear regime which contains a large fraction of the information needed
to constraint cosmological parameters. To reach this goal, we test the theo-
retical prediction for the covariance matrix of the power spectrum of biased
objects, in the particular case of halos, in the simple case of a cubic box with
periodic boundary conditions in real space. One of the main purposes of this
work is to properly account for shot-noise and galaxy bias. This work will
be presented in a paper (Colavincenzo et al. in preparation).

Chapter 8 is dedicated to the bispectrum analysis. To this purpose we
use a model for the galaxy bispectrum to constrain the halo bias parameters.
Before describing our analysis, we stress the complexity of the bispectrum
measurement, pointing out the analytic procedures that can help when the
numerical approach becomes unfeasible. Then we describe the statistical
analysis we have carried out assuming a speci�c model for the galaxy bias.
In the last part we show the results further stressing the importance of the
approximate methods in the covariance analysis. This bispectrum analysis
will be presented in a paper (Colavincenzo et al. in preparation).

Finally, in the conclusions, we summarize the results, emphasizing the
role of the covariance matrix for the study of the large-scale distribution of
galaxies. The analyses we have carried out are all devoted to recover more
precise and robust constraints on cosmological parameters, in preparation
for the great e�ort that will be required in the interpretation of the data
from Euclid, and other future galaxy surveys. In the �nal part of the last
chapter we will also discuss future developments of the analyses presented
in this thesis.
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Chapter 2

Large-scale structure

The study of the spatial distribution of galaxies is of great interest in cos-
mology. A great deal of information is enclosed in galaxy clustering and
it can be extracted by large galaxy surveys. Learning about the dynamics
of gravitation instability and statistical properties of galaxy distribution is
at the base of a deeper understanding of the observations. As an example
(�gure 2.1) we show a portion of the sky observed by the Sloan Digital Sky
Survey (SDSS, York et al., 2000). In this �gure the Earth is located at the
center; the redshift represents the distance between the observer and the
galaxies. As we shall see in the next chapters, redshift can be used as dis-
tance indicator when the peculiar velocity is de�ned. The observed galaxies
are not distributed uniformly and homogeneously, but they tend to stay in
long �laments. Between these �laments we �nd large regions with a very
small number of galaxies: we call these regions voids.

In the �rst section of this chapter we describe the standard cosmological
model, focusing on the pillars of the expanding Universe theory. Then we
illustrate the so called Dark Sector, by reviewing brie�y the dark matter
and the dark energy role. Then we will focus on the theory of structure
formation that is of main interest for the goals of these thesis and on the
relation between the galaxy and matter density �elds.

These chapters are based on the textbooks Coles and Lucchin (1995);
Dodelson (2003); Liddle (2003); Mo et al. (2010)

2.1 Standard cosmological model

The standard cosmological model is based on two main First Principles:

• the Universe, on average and on su�ciently large scales, is homoge-
neous and isotropic;

• the Copernican principle states that we are not privileged observers of

15



16 Large-scale structure

Figure 2.1: Slices through the SDSS 3-dimensional map of the distribution of
galaxies. Earth is at the center, and each point represents a galaxy, typically
containing about 100 billion stars. The outer circle is at a distance of two
billion light years. Both slices contain all galaxies within -1.25 and 1.25
degrees declination. Credit: M. Blanton and the Sloan Digital Sky Survey.

the Universe.

These two principles can be translated in mathematical language using Ein-
stein's theory of General Relativity (GR), according to which the space-time
structure of the Universe is determined by the matter distribution in it. In
this sense, GR is a geometrical theory because the distribution of matter
in the Universe determines the geometry of the Universe itself. The most
generic metric that describes a homogeneous and isotropic Universe is given
by the Robertson-Walker metric:

ds2 = (cdt)2 − a2(t)
[ dr2

1−Kr2
+ r2(dθ2 + sin θ2dφ2)

]
, (2.1)

where ds2 is the line element, c is the speed of light, a(t) is the scale factor, K
is the curvature parameter and (r,θ,φ) are the comoving spatial coordinates.

It is worth to analyze all the information contained in the relation 2.1:
�rst of all, it incorporates the Copernican principle, because the curvature
parameter K is constant and this corresponds to have no preferred location
in the Universe; the geometry is �xed by the value of K: values of 1,0,-1 cor-
respond, respectively, to a 3D-sphere (closed Universe), to Euclidean space
(�at Universe) and to an hyperbolic space (open Universe). The last piece
of information is contained in the scale factor: if a(t) is not constant and
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it evolves with time, then the Universe is expanding or contracting so that
the physical distance between two points changes. The evolution history of
the Universe is determined by the study of the evolution of the scale factor
with time. To this purpose we can de�ne the Hubble parameter as the rate
of change of the scale factor:

H(t) ≡ da/dt

a
. (2.2)

The expansion of the Universe was observed for the �rst time by Edwin
Hubble. In his paper (Hubble, 1929) he showed that galaxies are moving
away from us and their recession velocity increases proportionally to their
distance. When a photon is emitted by a galaxy, it is received by an observer
with a frequency di�erent from the emitted one because of the expansion of
the Universe. We can quantify this shift by introducing the redshift :

z =
νe
νo
− 1 =

1

a
− 1 (2.3)

where νe is the frequency of the emitted photon while νo is the observed ones.
z is connected to the recession velocity of the galaxy. These observations
translate into the Hubble law:

cz = H0r with z � 1 , (2.4)

with H0 the Hubble constant today given by:

H0 = 100 h−1Mpc−1 km s−1 . (2.5)

As we have already mentioned, the structures that we observe have grown
from an initial perturbation in the mean density �eld; the growth of the
structures induces velocities that deviate from the pure Hubble expansion.
We call peculiar velocity, vpec, the velocity of a galaxy with respect to the
frame comoving with the CMB. We can characterized the galaxy velocity
considering a contribution from the Hubble expansion and another one com-
ing from the motion with respect to the expansion:

vr = H0r + vpec . (2.6)

In section (3.2.2) we will describe the e�ects on clustering due to the presence
of the peculiar velocity.

The general equation that relates the space-time geometry with the
matter-energy content in the Universe is the Einstein's equation:

Gµν − gµνΛ =
8πG

c4
Tµν , (2.7)

where Gµν is the Einstein tensor, G is the the Newton's constant, Tµν is the
stress-energy tensor, Λ the cosmological constant, gµν is the metric tensor
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Figure 2.2: Original Hubble diagram (Hubble, 1929). Radial velocity of
distant galaxies against distances. The black dots are galaxies corrected for
the sun's motion, white circle are not. The solid and the dashed line are,
respectively, the best �t of the two groups.

and c the speed of light. According to the standard model, the Universe
is �lled with a matter component, including the usual Baryonic matter and
the non-Baryonic collisionless Dark Matter (see section 2.1.2), a radiation
component including photons and neutrinos and a cosmological constant
component (see section 2.1.2) with negative pressure. The properties of
these constituents are described by a symmetric stress-energy tensor. In
the rest frame of the �uids, assuming they are perfect isotropic �uids, the
stress-energy tensor takes the following form:

Tµν =


ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 (2.8)

with P the pressure of the �uid and ρ its density. Studying the evolution of
Tµν it is possible to derive the evolution of all the components as function of
time. The conservation equation for an expanding Universe is:

dρ

dt
− 3H(t)

(
ρ+
P
c2

)
= 0 , (2.9)

where H(t) is de�ned in eq. 2.2; each of the components we have described
above evolve independently following the conservation equation 2.9. Assum-
ing that dark energy is given by the cosmological constant, the equation of
state is p = wρc2, for each component and the solution is ρ(a) ∝ a−3(1+w).

For the matter component w = 0 so ρm ∝ a−3, for the radiation com-
ponent w = 1/3 and ρr ∝ a−4 and for the cosmological constant component
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Figure 2.3: Energy densities as function of the scale factor for �at Universe.
The solid line shows the non-relativistic matter while the dashed one the
radiation. The horizontal solid black line is the dark energy component that
remains constant during the evolution. The relative energy per component
is normalized with respect to the critical density. Dodelson (2003)

w = −1 so that the dark energy density is constant in time, ρΛ = const. In
�gure 2.3 we plot the energy density for each component, matter, radiation
and cosmological constant as a function of the scale factor a(t). As we can see
the Universe undergoes di�erent epochs, each of them characterized by one
dominant component: in the early stage the radiation is the most relevant
one (small values of the scale factor); then, at a time called matter-radiation

equivalence (aeq) the radiation and the matter components are equally im-
portant; after the equivalence, matter becomes dominant. During this time
the dark energy component is orders of magnitude smaller than radiation
and matter and therefore it is negligible. This is true until a(t) < 1; today,
at a(t) = 1, the Universe has entered in a new phase dominated by the dark
energy component.

Taking the 00 component and the trace of the Einstein equations 2.7, we
can derive the two Friedmann equations:

ȧ2

a2
=
Kc2

a2
+

8πGρ

3
+

Λc2

3
(2.10)

ä

a
= −4πG

3
(ρ+

3p
c2

) +
Λc2

3
, (2.11)
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where the dot stays for the time derivative, ρ is the density, p the pressure,
Λ the cosmological constant and K the space curvature.

The �rst Friedmann equation can be arranged to make explicit the de-
pendence on the dimensionless density cosmological parameters:

Ωm ≡
ρm
ρcr

; ΩΛ ≡
ρΛ

ρcr
; Ωr ≡

ρr
ρcr

, (2.12)

the curvature parameter is de�ned as Ωk ≡ 1− Ωm − ΩΛ − Ωr . Eq. 2.10
becomes:

H2(t) = H2
0 [ Ωm (1 + z)3 + Ωr (1 + z)4 + Ωk (1 + z)2 + ΩΛ ] . (2.13)

In eq. 2.12 we have introduced the critical density ρcr that is the total energy
density for a �at Universe with Λ = 0:

ρcr ≡
3H2

0

8πG
= 2.775× 1011 h−1 M�/(h

−1 Mpc)3 . (2.14)

In the next section we will describe one of the main observations at the
base of the standard cosmological model: the Cosmic Microwave Background

(CMB).

2.1.1 The cosmic microwave background

In 1965 Penzias and Wilson discovered what we call the cosmic microwave
background.

The CMB is one of the most powerful tools we have to study the early
Universe. From the Big Bang to shortly after ∼ 380'000 years the Universe
was too hot and dense to let the photons travel freely: at that time the Uni-
verse was �lled with an uniform interacting plasma of photons, electrons and
baryons. The photons were absorbed and re-emitted many times and black-
body spectrum set up. Around z∼1100 the Universe expanded and cooled
down and photons started to travel freely. What we observe are the last-
scattered photons that bring information on that blackbody spectrum. The
three main all-sky satellites through to study the CMB are: the NASA exper-
iment Cosmic Background Explorer (COBE, Mather et al., 1994), launched
in 1989, the Wilkinson Microwave Anisotropy Probe (WMAP, Bennett et al.,
2003) launched in 2001 and the ESA experiment Planck (The Planck Col-
laboration, 2006) launched in 2009.

COBE showed the perfect blackbody spectrum of the CMB with a tem-
perature T = 2.728± 0.002 K (�g. 2.4) and for the �rst time it has detected
temperature anisotropy. WMAP had as main target the detection of the
CMB acoustic oscillations on scales smaller then 7◦, the angular resolution
of COBE.

Planck's main target was to obtain the highest precision, highest resolu-
tion and the cleanest CMB maps setting the accuracy to the fundamental
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Figure 2.4: Comparison between the theory prediction for a blackbody spec-
trum and COBE (FIRAS) observations (Mather et al., 1994). The obser-
vation points are hidden by the theoretical curve and they have an error
smaller then the thickness of the solid line.

astrophysical limit: a resolution 3 times better than that one of WMAP and
sensitivity 5 times better.

This anisotropies are due to the initial perturbation in the density �eld.
Observing the CMB we measure the microwave temperature of the sky. The
temperature �uctuations are de�ned as:

∆T

T
(n̂) ≡ T (n̂)− T̄

T̄
, (2.15)

where n̂ = (θ, ϕ) is the position on the sky and T̄ the average temperature.
It is useful to expand the left- handside of eq. 2.15 in spherical harmonics:

∆T

T
(n̂) =

∑
l,m

almYlm(θ, ϕ) , (2.16)

where alm are the harmonic coe�cients and Ylm are the Laplace spherical
harmonics. As we will see later in section 2.2.1 for the density �eld, the CMB
temperature �eld can be considered as one realization of a random �eld. In
this way we can quantify the anisotropies introducing the power spectrum
of the temperature �uctuations:

Cl ≡ 〈|alm|2〉1/2 , (2.17)

where 〈...〉 is an ensemble average.
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Table 2.1: Parameters of the base ΛCDM cosmology computed from the
2015 baseline Planck likelihoods (Planck Collaboration et al., 2016b). Ωb is
the baryonic density parameter; Ωc dark matter density parameter; ns the
spectral index; H0 the Hubble constant; Ωm matter density parameter; σ8

�uctuation amplitude at 8h−1 Mpc.

Parameter Planck [all spectra]

Ωb h
2 0.02225±0.00016

Ωch
2 0.1198±0.0015

ns 0.9645±0.0049
H0 67.27±0.66
Ωm 0.3156±0.0091
σ8 0.831±0.013

In the left panel of �gure 2.5 we show the temperature power spectrum
�uctuation as a function of the multipole l. The amplitude of each peak is
strictly connected to the cosmological parameters showed in table 2.1. Study-
ing the CMB spectrum it is possible to put tight constraints on the cosmo-
logical model and on the initial conditions for structure formation. Looking

Figure 2.5: On the left the power spectrum of temperature �uctuation
(Planck Collaboration et al., 2016c); on the right the CMB map (Planck
Collaboration et al., 2016a).

at the power spectrum of temperature �uctuations obtained by Planck, �g-
ure 2.5, we can see that the ΛCDM model �ts perfectly the observational
points. The main results of these CMB dedicated surveys are the following:

• the Universe is remarkably isotropic on large scales;

• the small (∼ 10−5) temperature anisotropies in the CMB spectrum
give us information about the initial �uctuation that act as seed for
the formation of structures we observe today;
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• the CMB is a powerful tool to put constraints on the cosmological
parameters: the heights and the positions of the detected peaks de-
pend not only on the density of baryonic matter, but also on the total
mean density of the Universe, Hubble constant and other cosmological
parameters (table 2.1) .

The fact that the Universe is highly homogeneous and isotropic at large
scales acts as a con�rmation of the assumption at the base of the standard
cosmological model and, at same time, the detection of the small temperature
anisotropies are a consequence of the primordial density anisotropies that are
responsible for the formation of structures we observe today.

2.1.2 The dark sector

The standard ΛCDM model is a successful way to describe the Universe,
as we have showed in the previous sections. Even if this model can predict
various observations, is based on a Universe composed with 95% of dark
components. These two components, dark matter and dark energy are under
deep investigation and their nature is still unclear.

Most of the matter in the Universe appears to be in some form which
does not emit light and interacts only gravitationally. This disagreement
between the mass inferred from observations and the predicted total matter
has lead to the search for an additional dark matter component.

Di�erent possibilities were proposed to explain the nature of this elusive
component during the years. A historical review of the dark matter nature is
not the purpose of these sections, but we will highlight the main observations
which prove its existence.

The second dark component, dark energy, was introduced because obser-
vations indicate that the Universe is not only expanding, but its expansion
is accelerated. The implementation of the acceleration can be achieved in
two ways: one consists of modifying the Einstein theory of gravity, the other
one is to assume the existence of some cosmological constant of some exotic
�uid with negative pressure that is dominant over the other components in
the Universe.

2.1.3 Dark Matter

The �rst dark matter evidence can be traced back to Zwicky that in 1933
computed the total mass needed by the Coma Cluster to be stable. He found
that the mass was 400 times larger than the luminous mass in stars. This
was the �rst hint that something was missing in the total matter count.

The idea of an additional unknown and undetectable component was
shown to be as a real possibility in the 1970s. The papers of Ostriker et al.
(1974) and Einasto et al. (1974) showed the necessity to have massive halos of
invisible material that permeates and surrounds the Milky Way and nearby
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galaxies to justify the motion of their satellite galaxies. Using 21 cm and
optical measurements of the rotation curves of spiral galaxies (Roberts and
Rots, 1973; Rubin et al., 1978; Corbelli and Salucci, 2000) it became clear
that without the additional dark matter component, the galaxies rotational
velocity should fall-o� at large radii. In �gure 2.6 we show the rotational
velocity of M33 galaxy in function of the distance from the center; the points
are the measures by Corbelli and Salucci (2000) while the solid line is the
best-�tting model. The other lines stay for all the contributions to the
rotational velocity: the dark matter (dot-dashed line), the stellar disc (short-
dashed line) and the gas contribution (long-dashed line); as we can see if
we neglect the halo term, the luminous matter only cannot reproduce the
observations.

Figure 2.6: M33 rotation curve (points) compared with the best-�tting model
(continuous line). Also shown is the dark matter contribution (dot-dashed
line), the stellar disc (short-dashed line) and the gas contribution (long-
dashed line) (Corbelli and Salucci, 2000).

Between 1980s and 2000s the problem of dark matter shifted from its
existence to its nature. From the study on Big Bang Nucleosynthesis (BBN)
we know that the observed quantity of baryons cannot explain alone all the
matter in the Universe. From Planck we know that Ωm = 0.315 and only
a small fraction is due to baryons, Ωb = 0.045. Through the observations
of galaxy clustering, we know that structures tend to form hierarchically :
smaller structures form prior to larger ones. Assuming the existence of a
a Cold Dark Matter (CDM) component makes possible the structures we
observe, to form: baryons can fall in the potential wells given by the presence
of dark matter.

Moreover, as we have already mentioned, the position and the high of
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the peaks in the CMB spectrum depends on the total matter density in
the Universe. The presence of a CDM component guarantees that the CMB
�uctuations are suppressed, as the model predicts, but assures the formation
of structures, as explained later. A �uid that allows for these properties is
supposed to be non-relativistic at the epoch of decoupling or, alternatively,
it should never be coupled with the other components. When baryons de-
couple from radiation they can fall into the dark matter potential wells. The
presence of these potential wells allows the large-scale structures formation
we observe today. In �gure 2.7 we show a slice of the Universe at di�erent
epochs obtained with an N-body simulation using two di�erent cosmological
models. It is possible to reproduce the distribution of the galaxy clusters
(yellow circles) only assuming the presence of the dark matter component
(upper three panels). A universe dominated by baryonic matter only (lower
three panels), is characterized by a low level of clustering that is not in
agreement with observations. It is worth to summarize the main problems

Figure 2.7: Comparison between two N-body simulations (see section 4)
for two di�erent cosmological model: the upper panels describe a �at low-
density model with Ωm = 0.3 and ΩΛ = 0.7 and the lower panels show an
Einstein-de-Sitter model (EdS) with Ωm = 1. The yellow circles are the
position of galaxy clusters as they would be seen in X-rays observation with
a temperature T > 3 keV (Borgani and Guzzo, 2001).

solved by the introduction of a non-baryonic weakly interactive dark matter
component:

• it explains the value of the matter density parameter and makes it
compatible with the value of the baryonic density parameter;

• it explains the small �uctuations observed in the CMB;
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• it solves the rotational curve problem of spiral galaxies;

• the observed large-scale structure is possible only thanks to the dark
matter potential wells in which the baryon can fall after they decouple
from the radiation;

• it explains the acoustic oscillation observed in the galaxy clustering
spectrum (see section 3.2.1).

2.1.4 Dark Energy

In 1998 the studies of Type Ia supernovae of two independent papers (Riess
et al., 1998; Perlmutter et al., 1999) showed that the expansion of the Uni-
verse is accelerated. Within the Einstein general relativity theory, this means
the existence of an additional component with negative pressure. The nature
of this new �uid is not yet clear and we call it Dark Energy. If we consider
valid the Einstein theory, we can explain the dark energy with a cosmological

constant. An other possibility is that dark energy is a scalar �eld with its
potential energy larger than its kinetic energy; a model like this is called
quintessence. Furthermore, modi�cation of the theory of gravity can explain
the observational e�ects we confer to dark energy.

Even if the true nature of dark energy is still under investigation, we
have many probes that are in agreement with a Universe dominated by a
cosmological constant. After the �rst discover using Type Ia supernovae,
the measurements of the acoustic peaks it the CMB spectrum have allowed
to put tight constraints on dark energy: it gave support to the theoretical
model of a spatially �at Universe, e.g. Ωm + ΩDE = 1. In �gure 2.8 we
show how the observations of the Type Ia supernovae have improved in terms
of observed redshift; in particular the �gure shows sixty type Ia supernova
from low redshift to high redshift, comparing their distribution with di�erent
cosmological model with and without cosmological constant.

Another important probe that we will discuss in section (3.2.1), comes
from the observations of the BAO in the galaxy two-point correlation func-
tion that encloses information on the expansion history, therefore on the
energy content of the Universe.

2.2 Theory of structure formation

The Universe today appears populated by large scale structures. The stan-
dard cosmological model predicts these structures to be grown, due to grav-
ity, from small initial �uctuations. The same �uctuations can be also ob-
served in the CMB as we have described in section (2.1.1). In this section
we will describe the properties of the cosmic density �eld and the equations
that regulate its evolution. In the second part of this section we will focus



2.2 Theory of structure formation 27

Figure 2.8: 42 high-redshift type Ia supernovae from the Supernova Cos-
mology Project and 18 low-redshift type Ia supernovae from the Supernova
Survey, plotted on a linear redshift scale to display details at high redshift.
The solid curves are the theoretical for a range of cosmological models with
zero cosmological constant: on top, (1, 0) in middle, and (2, 0) on bottom.
The dashed curves are for a range of cosmological models: (Ωm, ΩΛ)=(0,
1) top, (0.5, 0.5) second from top, (1, 0) third from top, and (1.5, -0.5) on
bottom.

on perturbation theory introducing quantity we will use in the rest of the
thesis. In all the section we consider the post-recombination Universe and
the Newtonian limit : the structures are smaller than the horizon size so that
the relativistic e�ects are negligible.

2.2.1 Cosmic density �eld as stochastic �eld

For the standard cosmological model the Universe is �lled with ideal �uids
characterized by density ρ, pressure p and velocity v. We know that the
dark matter component is dominant over matter and radiation, so we will
describe its evolution under the action of the gravitational �eld with potential
Φ, considering the contribution of the other components to be negligible.

The density of this �uid can be expressed as a mean density times a small
variation given by the density contrast δ(x, t):

ρ(x, t) = ρ̄(t)(1 + δ(x, t)) , (2.18)

where x are comoving coordinates (r = a(t)x with r the proper coordinates)
and v is the velocity of the �uid element with respect to the comoving
observer at x. The general de�nition for the density contrast comes directly
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from eq. 2.18:

δ(x, t) =
ρ(x, t)− ρ̄

ρ̄
. (2.19)

We assume that the δ(x, t) is a stochastic �eld with a probability distribution
function given by:

P (δ1, δ2, ..., δn) dδ1dδ2...dδn ; (2.20)

the moments of this distribution are:

n = 1 : 〈δ〉 = 0 (2.21)

n = 2 : 〈δ1δ2〉 = ξ(r) (2.22)

n > 2 : 〈δ1δ2...δn〉 =

∫
δl11 δ

l2
2 ...δ

ln
n P (δ1, δ2, ..., δn) dδ1dδ2...dδn .(2.23)

We de�ne 〈...〉 as ensemble average, that is the mean over all realizations of
a certain event. The problem, in cosmology, is that we study the Universe
that has one unique realization, the Universe that we observe. The Ergodic
assumption helps to overcome this issue: the ensemble average is equivalent
to spatial average over one realization of a random �eld if the volume is large
enough:

〈f(x)〉 ≡ 1

V

∫
V
d3x f(x) , (2.24)

where f(x) is a generic function and V is a generic volume.
From eq. 2.23, the �rst moment comes directly from the de�nition of δ;

the second moment is the two-point correlation function de�ned as:

ξ(x) ≡ ξ(|x1 − x2|) = 〈δ1(x1)δ2(x2)〉 , (2.25)

with x = |x1 − x2|. The spatial isotropy and homogeneity assumed by the
standard cosmological model on large scale assure that the two-point corre-
lation function does not depend on the particular direction. We can think
at the two-point function as the excess probability to �nd a pair of galaxies
separated by a distance |x1 − x2| with respect to a random distribution.

If x1 = x2, the two-point correlation function reduces to the variance of
the density �eld:

ξ(0) = 〈δ2(x)〉 = σ2. (2.26)

All the relations we have described above are valid in con�guration space.
In same cases it is useful look to a density �eld as the superposition of

many modes. This can be achieved using a Fourier analysis. Assuming that
the density �eld is periodic within some box of side L, then we can write δ
as the sum of all the modes inside the box:

δ(x) =
∑
k

δkeik·x ; (2.27)
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if we let the box become arbitrarily large, then the sum will go over to an
integral:

δ(x) = (2π)3

∫
d3k δk eik·x . (2.28)

The Fourier representation of δ(x) is obtained inverting eq. 2.28:

δk =

∫
d3k

(2π)3
δ(x)e−ik·x . (2.29)

If δ(x) is a random �eld, δk is a random �eld as well. In general δk is a
complex quantity, but we work with real objects, so the fallowing relation is
valid:

δk = δ∗−k , (2.30)

where δ∗ is the complex conjugate of δ. As we have done in con�guration
space, we can de�ne the moments of this distribution; the �rst moment is
zero as in con�guration space: 〈δk〉 = 0. The second moment, the two-point
function in Fourier space is given by:

〈δk1δk2〉 = δ
(3)
D (k1 + k2)P (k) , (2.31)

where δ(3)
D (k) is the 3-dimensional delta of Dirac, de�ned as

δ
(3)
D (k) =

∫
d3r

(2π)3
e−ik·r . (2.32)

The P (k) function we introduce is called Power Spectrum and it can be
demonstrated to be the Fourier transform of the two-point correlation func-
tion:

P (k) =

∫
dr3

(2π)3
ξ(r)e−ik·r . (2.33)

It is important to stress that the two-point correlation function is char-
acterized by the so called integral constraint :∫ ∞

0
dr r2ξ(r) = 0 . (2.34)

If ξ(0) = 〈δ2(x)〉 = σ2 > 0 for the integral constraint this means that
the two-point correlation function must pass through zero at same (large)
separation r.

2.2.2 Collisionless �uid

As we have already speci�ed, according to the ΛCDM model the usual bary-
onic matter is only part of the total matter component of the Universe. The
other part is given by the dark matter, a collisionless non-baryonic matter,
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as we have seen in section 2.1.2. In order to study this kind of non-baryonic
�uid we need to use the collisionless Boltzmann's equation:

df

dt
=
∂f

∂t
+ ẋ

∂f

∂x
+ v̇

∂f

∂v
= 0 , (2.35)

where f ≡ f(x,v) is the distribution function in the 6D phase-space (x,v)
and ẋ = −∇Φ. Eq. 2.35 states the conservation of the distribution of
particles in the phase space.

The collisionless Boltzmann equation can also be written in the form of
Vlasov equation:

∂f

∂t
+

1

ma2
p · ∇f −m∇Φ

∂f

∂p
= 0 , (2.36)

where p = mav with m the mass of the particle. In principle we can have
an in�nite number of equations corresponding to the velocity moments of f .
Starting from eq. 2.36 and considering the zeroth order we obtain the mass
conservation equation (continuity equation):

∂δ

∂t
+

1

a

∑
j

∂

∂xj
[(1 + δ)〈vj〉] = 0 , (2.37)

where the velocity v is replaced by the mean streaming velocity 〈v〉; from
the �rst moment we can derive the Euler equation:

∂〈vi〉
∂t

+
ȧ

a
〈vi〉+

1

a

∑
j

〈vj〉
∂〈vi〉
∂xj

= −1

a

∂Φ

∂xi
− 1

a(1 + δ)

∑
j

∂

∂xj
[(1 + δ)σ2

ij ] ,

(2.38)
where σ2

ij ≡ 〈vivj〉 − 〈vi〉〈vj〉 is the stress tensor. We can continue with
the higher moments and obtain the dynamical equations for 〈vivj〉, 〈vivjvl〉
and so forth. In this sense the dynamics is given by an in�nite numbers of
equations of the velocity moments. We can do some justi�ed assumption
to truncate this in�nite series of equations: assuming the stress tensor to
be small (〈v〉 � 1) we can obtain the equation describing the evolution of
perturbations for a pressurless �uid we describe in the next section. For
realistic �uid the hypothesis of small stress tensor is not valid and one has
to proceed solving the set of Vlasov equations using perturbation theory.

2.2.3 Linear solution for a pressureless �uid

We can consider a pressureless �uid in the regime where the perturbations
evolve linearly (δ � 1) and the displacement are small. In this case we have
to work with the linearized equations of motion of the �uid:

∂δ

∂t
−∇ · v = 0 , (2.39)
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∂v

∂t
+
ȧ

a
= −∇Φ

a
. (2.40)

Using these two equations and the Poisson equation

∇2Φ = 4πGρ̄a2δ , (2.41)

we can derive the linear evolution of perturbations. In Fourier space we have:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρ̄δ , (2.42)

where ρ̄ is the mean density of the �uid and δk is the density �eld in Fourier
space de�ned as:

δk =

∫
d3x

(2π)3
δ(x)e−ik·x . (2.43)

Because of the linearization of the equations of motion, we lose some degree
of freedom; in particular we lose the vector component of the velocity, the
vorticity. It is possible to show that the Euler equation 2.40 contains the
extra degree of freedom due to the vorticity component. It is possible to
neglect it in linear theory because it scales like a−1, but it becomes important
in then non-linear regime.

The solution of eq. 2.42 has the following form:

δ(x, t) = D(t)δi(x) , (2.44)

where we de�ne the linear growth factor D(t). Substituting eq. 2.44 in eq.
2.42 we can �nd the two solutions for the growth rate, corresponding to the
growing and decaying modes, that we call respectively D+ and D−:

D− ∝ H(z) (2.45)

D+ ∝ H(z)

∫ ∞
z

dz′
1 + z′

E3(z)
, (2.46)

where H(t) is the Hubble function de�ned in eq. 2.2. The E(z) function
contains the information about cosmology:

E(z) =
H(z)

H0
= [Ωr(1 + z)4 + Ωm (1 + z)3 + Ωk (1 + z)2 + ΩΛ ]1/2 . (2.47)

For closed universe with cosmological constant, the solution is given by:

D+ ∼
5

2
H2

0 Ωm 0H(a)

∫ a

0

da′

(a′H(a′))3
. (2.48)

For a �at Universe (Ωm = 1) without cosmological constant in the
matter era the solutions reduce to:

D− ∝ a (2.49)

D+ ∝ a−3/2 . (2.50)
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Using the Poisson equation we can study also the evolution of the potential
perturbation:

Φk ∝ D(a)/a ; (2.51)

For a �at Universe without cosmological constant D(a) ∝ a therefore the
potential does not evolve; for an open Universe the potential decays because
the linear growth rate is suppressed.

2.2.4 Non-linear evolution and higher order correlators

In section 2.2 we have showed the evolution of perturbations under the as-
sumption that the density �eld δ is small; however perturbations grow in
time and when the density �eld becomes larger then 1 we enter in the non-
linear regime. The structures we observe are highly non-linear so the study
of this regime cannot be neglected as long as we aim to a precise description
of structures evolution.

Figure 2.9: Adimensional power spectrum ∆(k) = 4πk3P (k). In black the
linear power spectrum, in red the non-linear one; the comparison between
the two allows to determine a linear regime up to k ∼ 0.1h−1 Mpc and a
non-linear regime for larger wavenumbers (small scales).

In the previous section we have de�ned the two-point correlation func-
tion both in con�guration and in the Fourier space, so we can describe the
non-linear corrections to these correlators together with the higher order cor-
relators starting from the non-linear solution for the evolution of the density
�eld.
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In the Eulerian framework, we can write the expansion of the density
�eld as:

δNLk = δ
(1)
k + δ

(2)
k + δ

(3)
k + ... = δLk + δ

(2)
k + δ

(3)
k + ..., (2.52)

where the �rst term is the linear �eld and all of the other contributions
are higher-order corrections. For the quantities we will use in the following
chapters of this thesis we are interested in the second order and third order
corrections:

δ
(2)
k =

∫
d3k1d

3k2 δD(k− k12)F2(k1,k2)δLk1
δLk1

(2.53)

δ
(3)
k =

∫
d3k1d

3k2d
3k3 δD(k− k123)F3(k1,k2,k3)δLk1

δLk1
δLk3

,(2.54)

where δD is the Dirac delta and F2(k1,k2) and F3(k1,k2) are the two sym-
metric kernels, k12 = k1 − k2 and k123 = k1 − k2 − k3. The second order
kernel is given by:

F2(k1,k2) =
5

7
+

1

2

k1 · k2

k1k2

(k1

k2
+
k2

k1

)
+

2

7

( k1 · k2

k1k2

)2
, (2.55)

while the third order kernel is given by a summation of the non-symmetric
kernel F3

F3(k1,k2,k3) = F2(k1,k2)
[1

3
+

1

3

k1 · (k2 + k3)

(k2 + k3)2
+

4

9

k · k1

k2
1

k · (k2 − k1)

(k2 + k3)2

]
−2

9

k · k1

k2
1

k · (k2 + k3)

(k2 + k3)2

k3 · (k2 + k3)

k2
3

+
1

9

k · k2

k2
2

k · k3

k2
3

.

(2.56)

with all possible permutations of variables. The general expression for the
kernels we used here are derived in Goro� et al. (1986) and Jain and Bertschinger
(1994).

If we want to obtain the �rst non-linear contribution to the power spec-
trum we have to consider the density �eld up to the third order in eq. 2.54.
Considering Gaussian initial conditions we derive the 1-loop power spectrum:

Pnon-linear(k) = PL(k) + P22(k) + P13(k) , (2.57)

where P22 and P13 are given by:

P22(k) = 2

∫
d3q F 2

2 (k−q,q)PL(|k−q|)PL(q) (2.58)

P13(k) = 6PL(k)

∫
d3qF3(k,q,k− q)PL(q) . (2.59)

We use the name 1-loop in analogy with particle physics: 1-loop quantities
are characterized by one integral.
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Moving to higher-order statistics, we can de�ne the three-point function
in Fourier space, called bispectrum, de�ned as:

〈δk1δk2δk3〉 = δ
(3)
D (k1 + k2 + k3)B(k1, k2, k3) (2.60)

where δ(3)
D (k1 + k2 + k3) ensures that the three wavenumber must form a

closed triangle k1 + k2 + k3 = 0. Using the second order corrections to the
density �eld and assuming Gaussian initial �uctuations, we can write the
tree-level bispectrum (Verde et al., 1998) as follow:

B(k1,k2,k3) = 2F2(k1,k2)PL(k1)PL(k2) + perm , (2.61)

where F2 is de�ned in eq. 2.55. Again we use the term tree-level in analogy
with particle physics to designate quantities that do not involve integrals.

For the analyses we will show in the rest of the thesis it is important to
give the expression for the the four-point correlation function, the trispec-

trum:

〈δk1δk2δk3δk4〉 = δ
(3)
D (k1 + k2 + k3 + k4)T (k1, k2, k3, k4) . (2.62)

As we have already done for the bispectrum, we can equally write the tree-
level trispectrum using the third order corrections to the density �eld:

T (k1,k2,k3,k4) = 4F2(k13,−k2)F2(k13,−k1)F2(k13,−k2)PL(k1)PL(k2)PL(k13) + 11 perm.

+ 6F3(k1,k2,k3)PL(k1)PL(k2)PL(k13) + 3 perm. , (2.63)

where F3 is the symmetric third order kernel.
Here we describe only the tree-level case, because these are the objects

that we use in the following chapters.

2.2.5 Lagrangian perturbation theory

In the previous section we considered the evolution of perturbations when the
density �eld is small (δ � 1). This approach is called Eulerian Perturbation

Theory (EPT). A complementary approach is Lagrangian Perturbation The-

ory (LPT); in this approach the equations describe the evolution of a �uid
element along its trajectory. The bene�t of this approach is that it is possi-
ble to study the e�ects that would be non-linear in the Eulerian framework,
but still linear in the Lagrangian one.

If the position of the �uid element is q at time t = 0, at time t1 > 0 it
will be

x(t) = q + ψ(q, t) , (2.64)

where ψ is the displacement from the initial position. The number of particles
enclosed in the volume of the �uid element is conserved:

ρ̄ d3q = ρ̄(1 + δ(x)) d3x . (2.65)
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From this relation we can see that:

1 + δ(x) =
[
det
∣∣∣∂xi
∂qj

∣∣∣]−1
. (2.66)

Using the Poisson equation and the total conservation of the number of
particles we can derive the evolution equation for the displacement ψ:

∂2

∂t2
(∇x ·ψ) + 2H

∂

∂t
(∇x ·ψ) = −4πGρ̄

1− J(q)

J(q)
, (2.67)

where

J(q) = 1 +∇q ·ψ(q) +
[1

2
(∇q ·ψ)2 +

∑
i,j

ψi,jψi,j

]
+ O(ψ3) (2.68)

is the Jacobian de�ned in the righthand side of eq. 2.66.

2.2.6 Zeldovich approximation

If we are interested in the linear regime solution, eq. 2.67 becomes:

∂2

∂t2
(∇x ·ψ) + 2H

∂

∂t
(∇x ·ψ) = −4πGρ̄∇x ·ψ , (2.69)

At the �rst order we do not need to solve eq. 2.69. From the conservation
of matter we know that:

1 + δ =
1

J
; (2.70)

For small displacements, at �rst order J ' 1−∇x ·ψ, so that we can write
a relation between the Lagrangian density contrast and the displacement ψ:

1 + δ ' 1−∇x ·ψ(1) , (2.71)

where ψ(1) is the displacement at the �rst perturbative order.
Equation 2.71 goes under the name of Zeldovich Approximation (ZA)

for the displacement ψ). We know that the density �eld evolves with time
through the linear growth rate, δ(t) = D(t)δi, so the displacement is linked
with D(t):

∇q ·ψ(1) = −D(t)δq . (2.72)

The ZA describes the trajectory of a �uid element as a straight line, with the
distance traveled proportional to D(t), eq. 2.72. We call shell crossing when
two �uid elements cross their trajectories; when this happens the density
diverges.

This can be used to explain the structures gravitational collapse we ob-
serve in the Universe. The diagonalizable matrix Tij = ∂Ψi

∂qj
has three eigen-

values: Dλ1, Dλ2 and Dλ3; the density �eld is:

ρ(x, t) = ρ0(t)
1

(1−D(t)λ1(q))(1−D(t)λ2(q))(1−D(t)λ3(q))
. (2.73)
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At the time of shell crossing D(t) = λ−1(q) and ρ → ∞. Studying the
values of the eigenvalues at the shell crossing it is possible to select the type
of collapsed structure:

• λ1 > λ2 > λ3 > 0: the collapse happens in one direction given by
the eigenvector corresponding to λ1; the collapsed structure is two-
dimensional. We call it Pancake;

• λ1 = λ2 > λ3: the collapse happens in two directions given by the
eigenvectors of λ1 and λ2, the collapsed structure is one-dimensional
and in this case we call it Filament ;

• λ1 = λ2 = λ3: the collapse happens in three directions; the structure
is zero-dimensional and we call it Knot.

2.2.7 Higher order Lagrangian pertubation theory

The Zeldovich approximation we have described in the previous section is
valid for planar geometry. To improve the prediction obtained with the ZA
we have to consider higher-order corrections to eq. 2.72. The second order
Lagrangian Perturbation Theory (2LPT) can provide remarkable improve-
ments with respect ZA in describing the properties of the density and velocity
�eld. The correction to the ZA displacement is given by:

∇q ·Ψ(2) =
1

2
D2(t)

∑
i 6=j

(Ψ
(1)
i,i Ψ

(1)
j,j −Ψ

(1)
i,j Ψ

(1)
j,i ) , (2.74)

where Ψi,j ≡ ∂Ψi/∂qj , D2(t) is the second order growth factor and Ψ(1) is
the ZA displacement. It is convenient to de�ne the Lagrangian potential φ(1)

and φ(2) so that the position of the �uid element reads:

x(q) = q−D1(t)∇qφ
(1)(q) +D2(t)∇qφ

(2)(q) ; (2.75)

φ(1) is associated with the �rst perturbative order, ZA, while φ(2) is the �rst
correction to the ZA. 2LPT requires the determination of the potentials, φ(1)

and φ(2), this means we have to solve two Poisson equations:

∇2
qφ

(1)(q) = δq (2.76)

∇2
qφ

(2)(q) =
∑
i>j

[φ
(1)
,ii (q)φ

(1)
,jj (q)− (φ

(1)
,ij (q))2] , (2.77)

where φ,ii ≡ ∂2φ/∂qi∂qj .
The main reason why 2LPT works better than ZA is that 2LPT describes

the correction to the ZA displacement due to gravitational �eld e�ects; 2LPT
is only the �rst correction to the �rs order ZA. It is possible to go to the third
order in the displacement �eld Ψ (3LPT); 3LPT can improve the agreement
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with exact N-body simulations in same cases, but it becomes more costly
due to the increasing number of Poisson equations needed to solve. More
details on the 3LPT calculation are given in appendix A of Catelan (1995),
Monaco (1997), while details on the comparison of 2LPT and 3LPT are given
in Munari et al. (2017).

2.2.8 From LPT to EPT

In the previous section we derived the relation between the displacement
and the density �eld under the Zeldovich approximation, 2LPT and 3LPT.
Assuming Ψ to be small at the scales of interest, we can derive the expression
for the density �eld in Zeldovich approximation in Fourier space:

δZAk = D(t)δLk +
1

2

∫
d3k1d

3k2 δD(k− k12)FZA2 (k1,k2)δLq1
δLq2

, (2.78)

where FZA2 (k1,k2) is de�ned as

FZA2 (k1,k2) = 1 +
k1 · k2

k1k2

(k1

k2
+
k2

k1

)
+
(k1 · k2

k1k2

)2
(2.79)

Eq. 2.78 is obtained thanks to the fact that for small displacements we can
write:

Ψ(1) = −iD(t)
k

k2
δk . (2.80)

In �gure 2.10 we show a schematic representation of the information we can

Figure 2.10: Schematic representation of the di�erence between LPT and
EPT. The �rst line represents the evolution of the �uid element described
by its position, q, and its displacements from the initial position Ψ, while
the second line the evolution of perturbation described by the density �eld δ
and its non-linear correction. The arrows mean that we can move from LPT
to EPT and we can recover the information obtained with an EPT analysis.

derive moving from LPT to EPT. The solid black arrows means that from
the Zeldovich approximation in EPT, we can derive the full linear theory
in EPT and in the same way, from the 2LPT displacement analysis we can
derive the full linear theory and a full prediction for the non-linear kernel F2,
eq. 2.55. At the same time, with the dashed black arrow, we show that from
the ZA we can derive a an approximated prediction for the non-linear kernel
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F2, eq. 2.79, and from the 2LPT we can obtain an approximated prediction
for the non-linear kernel F3. We can proceed in this way looking at higher
order corrections and moving from LPT to EPT.

2.3 Galaxy correlations

In this section we address the problem of probing the cosmic density �eld,
with a particular attention to the large-scale structures analysis. What we
have access from observations are galaxies, that tend to form in those regions
of the Universe where the matter density is higher than other places. More-
over the evolution of galaxies is non-linear, as we have described in section
2.2.4, and is also non-local (Chan and Scoccimarro, 2012). For these rea-
sons the relation between the galaxy and matter density �elds is not trivial,
because galaxies are biased with respect mass distribution, and this bias is
given by di�erent contributions.

In the following sections we describe the relation between the galaxy and
matter �elds, starting from the most simple case of linear bias, and then
proceeding with the inclusion of the complication coming from non-linearity
and non-locality.

2.3.1 Sampling

We de�ne the cosmic density �eld as a continuous �eld so that for any
position and at any time we can de�ne δ(x, t) (eq. 2.19). In our case, δg(x, t)
is the galaxy density �eld. For numerous applications we cannot use directly
the continuous �eld, but we have to work with set of points that accurate
represents the continuous density �eld. The transition from the continuous
�eld to the set of points is obtained, usually, through a Poissonian sampling

of the density �eld. In this case the entire space is divided into sub-volumes
such that in each sub-volume the number of particles is distributed according
to Poisson distribution with mean equals to the mean density of the cell. The
mean number of particles in each sub-volumes is:

〈N(x)〉P = [1 + δg(x)]n̄∆V , (2.81)

where N(x) is the number of particles in each sub-volume, ∆V the volume of
each sub-volume and 〈...〉P is the average over the Poisson distribution. We
are interested in the probability of �nding a pair of particles from a random
choice of a pair of sub-volumes separated by a comoving distance equal to
x:

〈N(xi)N(xi + x)〉xi = (n̄∆V )2[1 + ξ(x)] ; (2.82)

this probability is proportional to the two-point correlation function de�ned
in eq. 2.25, that as we have already highlighted describes the excess proba-
bility, with respect to a Poisson distribution, to �nd a pair of particles in a
pair of randomly chosen sub-volumes with comoving separation x.
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2.3.2 Bias

The simpli�ed way to relate the matter and the density �elds is to consider
the two �elds to be proportional to each other:

δg(x) = bδ(x) , (2.83)

where b is for now a proportionality constant. Eq. 2.83 implies that also the
two-point statistics is biased: ξg(x) = b2ξ(x) and the same is valid also for
the power spectrum. This way to model the galaxy density �eld we observe
is simpli�ed; if we want to include also the non-Gaussian properties that
characterized the galaxy �eld we have to consider a more general relation.
We can assume, for example, a generic local relation between the galaxy
density �eld and the matter density �eld:

δg(x) =
ng(x)− n̄g

n̄g
= F [ρm(x)] , (2.84)

where F is used to describe a generic functional relation between the �elds.
Considering the galaxy density �eld smoothed on some scales and small on
large scales, we can write it as Taylor expansion of the matter density �eld:

δg(x) = b0 + b1δ(x) +
1

2
b2δ

2(x) +O(δ3(x)) . (2.85)

where we introduce the galaxy bias parameters b0, b1, b2, ... and δ(x) without
the subscript is the matter density �eld. Truncating the expansion at the
second order in the density �eld and imposing 〈δg(x)〉 = 0, we obtain:

δg(x) = b1δ(x) +
1

2
b2

(
δ2(x)− < δ2(x) >

)
; (2.86)

we call b1 linear bias and b2 quadratic non-linear bias. It is important to
stress that apart from the linear bias we have an in�nite number of non-linear
bias parameters equals to the perturbative order we decide to keep in.

The linear bias, b1, can be determined from simulations using the two-
point statistics:

ξg(r) = b21〈δ(x1)δ(x2)〉 = b21ξ(r) (2.87)

Pg(k) = b21P (k) (2.88)

where ξg(r) is the two-point correlation function of the galaxy and ξ(r) the
one for the matter; the same is valid in Fourier space.

In real observations the linear bias is degenerate with the amplitude of
the matter �uctuations, so we need at least an other quantity to its deter-
mination. To this address it is used the galaxy bispectrum that is linked to
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the matter bispectrum and power spectrum through the linear bias and the
quadratic bias:

Bg(k1,k2,k3) = b31B(k1,k2,k3) + b21b2

[
P (k1)P (k2) + 2 perm.

]
, (2.89)

where Bg is the galaxy bispectrum and B the matter one; P is the linear
matter power spectrum. For the determination of the bias parameters it is
useful to introduce the reduced bispectrum:

Qg(k1,k2,k3) ≡ Bg(k1,k2,k3)

Pg(k1)Pg(k2) + 2 perm.
=

1

b1
Q(k1,k2,k3) +

b2
b21

, (2.90)

because this quantity is highly sensitive to the values of the bias parameters:
looking at eq. 2.90 the �rst term 1/b1 represents a change in the shape-
dependence of the reduced bispectrum while b2/b21 is an additive constant.
If we know at least two triangular con�gurations, then we can �t eq. 2.90
for each con�guration and look at the variation of the amplitude and shape;
this makes it possible to �x b1 and b2 using only the bispectrum.

The assumption of locality was put in question for the �rst time by Chan
et al. (2012) and Baldauf et al. (2012): they �tted the bispectrum from
simulation �nding the value of b1 to be di�erent from that one obtained by
the power spectrum from the relation 2.88. In order to understand if this
di�erence is due to the locality assumption, Chan et al. (2012) modi�ed eq.
2.85 in the following way:

δg(x) = b1δ(x) +
1

2
b2δ

2(x) + γ2G2 , (2.91)

where γ2 is the non-local galaxy bias parameter and G2 is given by:

G2 = (∇ijφ)2 − (∇2φ)2 , (2.92)

where φ is the gravitational potential. ∇φ is directly related to the displace-
ment �eld in Zeldovich approximation; it follows that G2 is an invariant of
∇ijφ which measure the variations in displacements that a�ect the cluster-
ing. We can write G2 so that it matches the value obtained from simulations
(Chan et al., 2012):

G2 =

∫
d3q1

∫
d3q2 δD(q− q12)[cosθ12 − 1]δq1δq2 , (2.93)

with cosθ12 ≡ q̂1 · q̂2. Through this model, that includes also the non-locality
of the gravitation collapse, they were capable to recover the value of b1
obtained from the power spectrum.



Chapter 3

Probes of the galaxy

distribution

In this chapter we will introduce the main estimator (in all the text they
are quantities characterized by an hat) for the two-point statistic of clus-
tering both in con�guration and Fourier space. In the last section we will
describe two of the main probes to constrain the cosmological parameters,
the Baryonic Acoustic Oscillation (BAO) and the Redshift Space Distortion
(RSD) and a brief overview of the state of the art of cosmological constraints
coming from the past and future galaxy surveys is provided.

3.1 Measurements of galaxy clustering

Assuming a relation between mass and galaxy density, we can study the
spatial clustering of galaxies to infer the mass distribution and to constrain
the cosmological parameters.

When we observe a galaxy samples, we do not measure the real positions
of the galaxies, but their positions in redshift space that are a�ected by their
peculiar velocities. In the this section we will examine the distortion that
modi�es the true galaxy distribution in redshift space. A second factor we
have to take into account, in real observations, is the presence of some selec-
tion function W (x), which provides the probability that a galaxy, satisfying
some criterion, is included in the sample. Any survey is characterized by a
selection function that will change according to the observational target.

First of all we describe some of the estimators for the two-point statistic
of clustering in con�guration and Fourier space. In particular we consider
the two-point correlation function and the power spectrum for the cases of
periodic box without selection function; we describe only the power spectrum
in real space in the case we include a selection function and the redshift-power
spectrum to include the e�ect of anisotropy in the distribution of galaxy.
Then we focus on the evaluation of the covariance matrix of the two-point

41
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statistics that is a crucial point of this thesis.

3.1.1 Two point clustering estimators

The two-point correlation function, as we have mentioned in previous section
(eq. 2.82), is one of the main quantity to study the clustering of galaxies.
Although we have already provided the statistical de�nition of the two-point
correlation function, when considering a generic redshift survey the two-point
function is given by counting the pairs of given distance in the sample, with
a certain selection function, with respect to the galaxies in a random sample
with the same selection function of the survey sample:

ξ̂(r) =
DD(r)− 2DR(r) +RR(r)

RR(r)
− 1 (3.1)

where DD(r)∆r is the number of observed pairs with separation in the range
r±∆r/2, RR(r)∆r is the expected number of pairs in a random sample and
DR(r) is the number of cross-pair between the real and random samples in
the same range. Eq. 3.1 is the Landy and Szalay estimator (Landy et al.,
1998) and it is built to minimize the variance of the two-point correlation
function. The number of objects in the random catalog is expected to be
larger than the size of the observed sample, because we want that the shot-
noise is as low as possible with respect to the observed sample.
As we have done with the two-point correlation function, we can consider an
estimator for the counterpart in Fourier space, the power spectrum, in the
simple case of periodic cubic box of side L; using the reality condition 2.30
we have:

P̂tot(k) =
k3
f

Nk

∑
q∈k

δqδ−q , (3.2)

where kf = 2π/L, Nk are all the modes within each shell, the sum runs over
all the modes within the shell and the density contrast is de�ned as:

δk =
1

k3
f

1

Nk

∑
i

eik·xi , for k 6= 0 (3.3)

where the sum runs over all the galaxies in the box.
In this case the total power spectrum, including the shot-noise contribu-

tion, is given by:
P̂tot = 〈P̂ (k)〉 = P̂ (k) + P̂SN , (3.4)

where P̂SN is the shot-noise estimator, that in the more simple case is given
by the Poissonian noise, 1/N, with N the total number of galaxy in the box.
In order to recover the cosmological power spectrum we have to subtract the
shot-noise contribution.

As we have already mentioned in the initial part of this section the real
surveys are characterized by a selection function.
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One possibility is to enclose the survey into a box, (Baumgart and Fry,
1991), and de�ne an auxiliary �eld (Feldman et al., 1994) given by:

F (x) = wk(x)θ(x)[n(x)− αnr(x)] , (3.5)

where n(x) = n̄(1+δ(x)) is the observed density, nr(x) is the density from a
random catalog with no correlation; as we have already stressed, the density
of the random catalog is higher than the observed one, because we want that
the shot-noise in the random catalogs is as small as possible compared to
the observed sample; so, we de�ne α as the ratio n̄/n̄r; θ(x) is the window
function with value 1 or 0 for points inside or outside the survey; wk(x) is a
weight de�ned as:

wk(x) =
1

1 + (2π)3n̄(x)P (k)
. (3.6)

wk(x) is obtained imposing that the fractional variance of the power spec-
trum σ2

P (k)/P 2(k) is minimized. As it it clear from eq. 3.6, the de�nition of
the weight requires a preliminary estimation of the power spectrum we want
to measure. Usually we can assume P (k) ≡ P (k∗) ≡ P∗, with k∗ the scale
of interest for our analysis; for simplicity n̄ is assumed to be constant. The
Fourier transform of eq. 3.5 is:

Fk = k3
f

∑
q

W (q− k)δq , (3.7)

where W (k) = wkθk and kf is the fundamental frequency of the box given
by 2π/L with L the dimension of the box. The Fourier transform gives the
convolution between the weighted window function and the galaxy density
�eld. The power spectrum of this auxiliary �eld is then:

PF (k) = k6
f

∑
p

|W (k− p)|2Ptot(p) , (3.8)

where Ptot is the power spectrum of the box including the shot-noise contri-
bution. For a top-hat window function if k � 1/L we can approximate the
auxiliary power spectrum as:

PF (k) ' P (k)k6
f

∑
p

|W (k− p)|2 + k3
f

∑
p

|W (k− p)|2 1

N
. (3.9)

The estimator for the power spectrum is given by subtracting the shot-noise
contribution and dividing by the selection function. As we can see from
the equation above, the presence of the window function modi�es the power
spectrum, so that the quantity we have to estimate is both the convolution
between the power spectrum and the window function itself, and the shot-
noise term.
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In all the relations we have described, we did not consider the redshift
dependence. In the introduction of this section, we pointed out that cosmo-
logical surveys are carried out in redshift space and that peculiar velocities
distort the spatial distribution of cosmological objects (see section 3.2.2).
This distortion makes the galaxy distribution anisotropic and we have to
include this e�ect in the power spectrum estimator. In the following we
describe the estimator for the redshift power spectrum.

The general expression for the power spectrum in redshift space can be
given in terms of Legendre polynomials (Taylor and Hamilton, 1996):

P (k, z) = P (k, µ, z) =
∑

l=0,2,4,...

Pl(k, z)Ll(µ)(2l + 1) , (3.10)

where Ll are the Legendre polynomials, µ is the the directional cosine be-
tween the line of sight direction and k. For l = 0 we de�ne the monopole
P0(k, z) as the angular averaged power spectrum; for l = 2 we have the
quadrupole P2(k, z) quantifying the leading anisotropy in the power spec-
trum due to the redshift-space distortion. The quadrupole is an important
quantity that can be used to improve the constraints on the bias and cos-
mological parameters (Yamamoto et al., 2005).

3.1.2 Covariance matrix of clustering

The modeling of the errors on the two-point correlation function is fundamen-
tal as well the determination of the two-point function itself. The covariance
matrix of LS estimator for a periodic box has been derived in Peebles (1973)
Hamilton (1993) and Bernstein (1994) taking into account the non-Gaussian
and discreetness e�ects. A simpli�ed formula can be obtained, in term of the
power spectrum, in the Gaussian limit where non-Gaussian and discreteness
contributions can be neglected:

C(ξ̂i, ξ̂j) =
(2π)5

V

∫
dk k2P 2(k)J1/2(kri)J1/2(krj) , (3.11)

where J1/2 is a Bessel function.
As already pointed out by Bernardeau et al. (2002), the issue of cosmic

error computation is recurrent in cosmological surveys, so that various tech-
niques have been proposed in the literature. We can rely on two main meth-
ods, called bootstrap (Barrow et al., 1984) and jackknife (Tukey, 1958).
The �rst one consists in building an ensemble of sub-samples with the same
number of galaxies of the initial sample. The galaxies in each sub-sample
are chosen picking randomly from the initial sample with replacement, in
the sense the sub-sample can include the same galaxy more than once, while
others may not be included at all. In the second case the initial sample is
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divided in a set of disjoint sub-samples each containing N/Njackk galaxies,
where N is the number of galaxies in the initial sample and Njackk that one
of the speci�c sub-sample. After the ensemble of sub-samples is obtained we
proceed with the evaluation of the covariance matrix.

As for the two-point statistics we can move in Fourier space and consider
a general estimator for the power spectrum covariance matrix in a periodic
box (Hamilton, 1997; Scoccimarro et al., 1999):

C(P̂tot,i, P̂tot,j) =
2

Nki

P̂ 2
tot(ki)δij + k3

f T̃tot(ki, kj) , (3.12)

where N(ki) is the number of modes inside a k-shell of width ∆ki = 4πk2
i dki,

P̂tot(k) is the power spectrum including the shot-noise contribution given by
eq. 3.4, kf is the fundamental frequency and T̃tot(ki, kj) is the average of the
trispectrum T (ki,−ki,kj ,−kj) over the angle θ between the vectors ki and
kj , including all the shot-noise contributions:

T̃tot(ki, kj) ≡
1

2

∫ 1

−1
d cos θT (ki,−ki,kj ,−kj) . (3.13)

For next future surveys, as we will stress in the following chapters, we re-
quire a very large number of independent realizations of the Universe, so we
have to proceed with numerical simulations. In section 4 we highlight the
main properties of a full N-body simulation and we observe that this kind of
numerical approach is not a real possibility when we have to produce thou-
sands of galaxy catalogs. Using analytic approximations (see section 4.2) is
possible to reduce the computing time required by a full N-body simulations
in exchange of accuracy. As we will also show in chapter 6 these proce-
dures appears to be a valid alternative when a large number of synthetic
realizations is required. It is worth also to mention that the requirement
in terms of number of simulations needed for future surveys has lead to the
development of particular techniques to evaluate the covariance matrices of
clustering using a reduce number of simulations, but at same time preserving
the accuracy we can reach using the brute force approach. We describe some
of these methods in section 6.1.

3.2 Cosmological constraints from clustering

In this section we brie�y review the Baryonic acoustic features impress in the
power spectrum of CMB temperature �uctuation as in the two-point statis-
tics of clustering and the redshift distortions induced by the peculiar velocity
of galaxies. These two observations can be used to but tight constraints on
the cosmological parameters. In the last section we will discuss the state of
the art in the determination of the cosmological parameters, looking at the
present and near past galaxy survey achievements.
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3.2.1 Baryonic acoustic oscillation

The BAO is a signature imprinted by a series of sound waves that propagated
in the hot plasma of tightly coupled photons and baryons in the early Uni-
verse (Eisenstein and Hu, 1998). In section 2.1.1 we have already described
the main features of the CMB, stressing the fundamental importance of the
oscillations in the temperature power spectrum. The same oscillations are
present in galaxy clustering. Using perturbation theory it is possible to com-
pute the comoving distance, rs, that the sound waves can travel from the Big
Bang to the epoch of recombination, when photons decouple from matter:

rs =

∫ trec

0

cs(t)

a(t)
dt =

∫ ∞
zrec

cs(z)

H(z)
dz , (3.14)

where cs is the wave sound speed.
If we look at con�guration space we can consider an overdensity of pho-

tons and baryons propagating from a primordial overdensity peak of all
species (dark matter, baryons, neutrinos, and photons). The wave prop-
agates during the radiation-dominated epoch and slows down during the
matter dominated epoch. At time of recombination photons decouple from
baryons and they start to travel free, causing the weave to stall. A spherical
shell of baryons overdensity of radius equal to the distance traveled by the
wave until photons decoupling, eq. 3.14, take shape. During the time be-
tween the radiation and the matter epoch, the dark matter overdensity does
not evolve because it was already decoupled from the matter-radiation �uid
at time of primordial overdensity. After recombination the gravitational in-
stability increases because the mutual attraction between baryons and dark
matter; this interaction lets the perturbations to grow. In the �nal stage
the total matter overdensity is located at the center of a spherical shell of
150 Mpc radius (Eisenstein et al., 2007) (�gure 3.1). The comoving size, r||
and r⊥ of a generic object or feature, at �xed redshift, is related to the ob-
served size, ∆z and ∆θ, by the Hubble parameter H(z) and by the angular
diameter DA(z):

r|| =
c∆z

H(z)
along line of sight (3.15)

r⊥ = (1 + z)DA(z)∆θ transverse direction . (3.16)

From eqs. 3.15 and 3.16 it is clear that the measurement of the observed size
gives access to r||H(z) and to r⊥/DA(z). If the physical scales (r||, r⊥) of the
feature we are studying are known, we can have an estimation of H(z) and
DA(z). BAO can be used to measure the matter and baryon density allowing
us to have an estimate of the characteristic scale, s, of the BAO in matter or
galaxy clustering. In con�guration space the BAO appears as a bump the the
two-point correlation function, meaning that we are observing an excess in
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Figure 3.1: Linear-theory response to an initially overdensity at the origin.
In each plot it is shown the evolution of perturbation for the four species:
dark matter (black), baryons(blue), photons (red) and neutrinos (green), at
di�erent redshifts. (Eisenstein et al., 2007)

the number of pairs at that particular scale s; in Fourier space it appears as
a series of harmonic oscillations with peaks and troughs of their amplitudes
located at multiples of k = π/s. In �gure 3.2 we show both the two-point
correlation function and the power spectrum from SDSS-BOSS compared
with the best-�t models, with particular attention to the BAO (lower plots).
Operatively we look at the distribution of galaxies �nding the characteristic
scale where there is an excess clustering due to the BAO. When this scale is
measured in comoving coordinate, knowing the correspondent physical scale
we can determine independently the parameters H(z) and DA(z).

The Hubble and the angular diameter parameters are strictly related to
the dark energy density parameters and the dark energy equation of state
parameter w, so BAO features can be used as powerful probe to constraints
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Figure 3.2: In the top left panel the spherically averaged redshift-space two-
point correlation function of the full CMASS sample with error bars obtained
from a set of 600 mocks catalogs (Manera et al., 2013). The dashed line cor-
responds to the best-�tting CDM model obtained by combining the infor-
mation from the shape of the correlation function and CMB measurements
(Sánchez et al., 2017). In the bottom left panel the same as the upper left
panel, but rescaled by (s/sBAO)2, where sBAO = 107.2h−1 Mpc (Sánchez
et al., 2017). In the top right panel we show the power spectra for the North
galactic cap (blue dots) and for the South galactic cap (red dots) (Gil-Marín
et al., 2015). The red and blue solid lines correspond to the best-�t model;
the bottom sub-panels show the ratio between the power spectrum measure-
ments and the best-�t models; in the bottom right panel panel the power
spectrum of CMASS DR11 galaxies, divided by a smooth, no-BAO power
spectrum. Solid curve is the best-�t model (Anderson et al., 2014).

the dark energy parameter.
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3.2.2 Redshift-space distortion

The measurements of cosmological distances are very complicated, being
a�ected by large systematic. On the other hand, redshift is easier to obtain,
but it is not a direct measure of galaxy distance because of the peculiar
velocity of the galaxy itself. If the redshift is used as a distance indicator we
observe a distortion of the true galaxy distribution. If we consider a mass
shell with small overdensity (δ � 1), its expansion will be decelerated, but
its peculiar velocity is not enough large to compensate the Hubble expansion.
In redshift space we will observe the mass shell squashed along the line of
sight. When the density starts to increase, in the quasi linear regime (δ ∼ 1),
the mass shell is just turning around, its peculiar in-fall velocity is equal to
the Hubble velocity. In redshift-space, an observer at large distance sees
the shell totally collapsed. A mass shell that has already turned around
appears �attened along the line-of-sight, if its in-fall velocity is less than
twice the Hubble ones. At smaller radii we enter in the non-linear regime.
The mass distribution has collapsed and the peculiar in-fall velocities are
larger than the Hubble velocity because of the random contributions due to
the small-scales; in this case we observe the so called Finger-of-God, because
the distribution is elongated along the line of sight. It is clear that the
Hubble expansion and the peculiar velocity change the observed clustering
on di�erent scales.

The relation between the redshift-space position and the real distance is:

s = r + vr , (3.17)

where s is the distance of an object in redshift space, r is the distance in
real space and vr is the radial component of the peculiar velocity, that is
responsible for the change in the galaxy density �eld seen in redshift space.

The computation of the redshift-space distortion requires the de�nition
of the density �eld in redshift space δ(s). Using the conservation of the total
number of galaxies, it is possible to derive the relation between δ(r) and δ(s):

1 + δ(s) =
r2

(r + vr)2

(
1 +

∂vr
∂r

)−1(
1 + δ(r)

)
. (3.18)

Eq. 3.18 is a general expression valid for any perturbative order. If we reduce
to the case in which δ � 1 and we use the plane-parallel approximation
(Kaiser, 1987) we have, in Fourier space:

δ
(s)
k = (1 + βµ2

k)δk , (3.19)

where

β ≡ f( Ωm )

b
≡ −1

b

dlnD(z)

dln(1 + z)
(3.20)
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and µk ≡ kz/k. Using eq. 2.31 the power spectrum of the density �eld in
redshift space is:

P (s)(k, µ) = (1 + βµ2
k)2P (k) . (3.21)

When the linear approximation is not valid, eq. 3.21 should be corrected
to include the non-linear corrections needed to describe the �nger-of-god.
The dispersion model by Peacock and Dodds (1994) and (Hamilton, 1998)
considers the power spectrum in redshift space as the linear one, times the
contribution of the pair-wise velocity. The redshift space distortion can be
used to put constraints on the cosmological model, because the amplitude
of the power spectrum in redshift space depends on f( Ωm ) through β.
We cannot measure directly the value of β, so we need to �nd a way to
disentangle its value from the power spectrum. The usual procedure is to
take an harmonic expansion of eq. 3.21. The monopole and the quadrupole,
in linear approximation, are:

P
(s)
0 (k) ≡

(
1 +

2

3
β +

1

5
β2
)
P (k) (3.22)

P
(s)
2 (k) ≡

(4

3
β +

4

7
β2
)
P (k) ; (3.23)

the ratio P2/P0 depends only on β, so measuring P0 and P2 using eq. 3.21
we can �x the β value. β is given by f( Ωm )/b, where Ωm is the matter
density parameter and b is the linear bias. Putting constraints on β using
the ratio P2/P0 allow us to constraint the matter density parameter and
consequently testing the standard cosmological model. Measurements from
2dFGRS, (Peacock et al., 2001), show a value of β = 0.43 that implies
Ωm ∼ 0.3, value that is compatible with the ΛCDM model. This result is
obtained assuming some b-value for the 2dFGRS galaxies.

3.2.3 State of the art

During the last decade, an increasing number of surveys were used to ex-
tract cosmological information from large scales structures: Six degrees Field
Galaxy Survey (SdFGs, Beutler et al., 2011), Sloan Digital Sky Survey I-II
(SDSS, Eisenstein et al., 2005), WiggleZ Dark Energy Survey (WZDES,
Blake et al., 2011; Kazin et al., 2014), VIMOS Public Extragalactic Redshift
Survey(VIPERS, Guzzo et al., 2014), Baryon Oscillations Spectroscopy Sur-
vey(BOSS, Anderson et al., 2014; Cuesta et al., 2016; Ross et al., 2017;
Sánchez et al., 2017). Future large scales and high redshift experiments,
such as (DESI, Schlegel et al., 2011; Levi et al., 2013)), Extended Baryon
Oscillation Spectroscopic Survey (eBOSS), Large Synoptic Survey Telescope
(LSST, LSST Science Collaboration et al., 2009), Euclid (Laureijs et al.,
2011), Wide-Field Infrared Survey Telescope (WFIRST, Green et al., 2012)
and the Square Kilometer Array (SKA, Schilizzi et al., 2008), will give high
precision observations that, together with the previous results, will allow
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to improve our constraining power. Putting together all the observational

Figure 3.3: Comparison fσ8 measurements across previous BOSS measure-
ments in DR11 and DR12 samples. The blue shaded region is the conditional
constraint of fσ8 assuming Planck Λ background cosmology.

results coming from the large scales surveys that have gathered data be-
tween 2014 and late 2016, we can have an idea of both the high precision
clustering measurements, and of the advancing in modeling the clustering
properties. In �gure 3.3 (Alam et al., 2017) it is showed a comparison of the
fσ8 values from BOSS measurements from 2014 to 2016 with the predictions
from Planck ΛCDM model, while in �gure 3.4 they show the same compar-
ison, but using measurements coming from other surveys (2dfGRS, 6dFGS,
GAMA, WiggleZ, VIPERS). These comparisons also act as a validity test
of GR on large scales. Clustering measurements can be used in combination
with CMB especially to constrain the cosmological parameter related to the
dark energy in �gure 3.5 we show the Ωk-w and the w0-wa constraints. Near
future surveys will allow to reduce the uncertainty on these constraints and
start to put real boundaries on the right cosmological model. Looking at
�gure 3.5 we notice that including in the analysis, data from Planck and
BOSS together with those one from Joint Lightcurve Analysis (JLE) SNe
(Betoule et al., 2014), the constraints can be very tight and they seem to
be in agreement with a �at ΛCDM model. In �gure 3.6 we show the Eu-
clid forecasts for the dark energy cosmological parameters from the Euclid
De�nition Study Report (Laureijs et al., 2011). In combination with Planck
results, Euclid can improve upon current constraints by over a factor of 100.
These constraints will allow each of the broad classes of dark energy models
to be tested.
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Figure 3.4: Results from (Alam et al., 2017) compared with the measure-
ments of the 2dfGRS (Percival et al., 2004) and 6dFGS (Beutler et al., 2012),
the GAMA (Blake et al., 2012), the WiggleZ (Blake et al., 2013), the VVDS
(Guzzo et al., 2008), and the VIPERS (de la Torre et al., 2013) surveys,
as well as the measurements from the SDSS-I and -II main galaxy sample
(Howlett et al., 2015) and the SDSS-II LRG sample (Oka et al., 2014). The
blue shaded line is the same of �gure 3.3.

Figure 3.5: Parameter constraints for the owCDM (left), model which con-
siders a variation in the spatial curvature keeping constant the equation of
state for dark energy, and w0waCDM (right), model which allows a time-
evolving equation of state. The plots show the comparison from BAO and
BAO+FS to those with Type Ia SNe (Alam et al., 2017).
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Figure 3.6: The expected constraints from Euclid in the dynamical dark
energy parameter space. We show lensing only (green), galaxy clustering
only (blue), all the Euclid probes (lensing+galaxy clustering+clusters+ISW;
orange) and all Euclid with Planck CMB constraints (red) (Laureijs et al.,
2011).
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Chapter 4

Numerical methods for

cosmological simulations

The possibility to have access to a large number of cores, that speed up the
number of computations, and the potentiality of large memory storages has
given the possibility to study the evolution of complex dynamical systems
that in general have complex analytic solutions.

We can study the Universe using powerful numerical techniques; usually
we consider the mass distribution in the Universe as described by particles
or sampled on a grid. Knowing the equation of motions, it is possible to
obtain, numerically, the evolution of each particles.

In this chapter, �rst we describe brie�y what is an �exact� N-body sim-
ulations, underlining the main techniques and then we discuss of a various
number of approximate methods that we will use in the next chapters of this
thesis.

As we will also show in chapter 6, the approximated methods allow us to
produce large sets of galaxy catalogs that are needed to evaluate the covari-
ance matrix. Future large galaxy survey will require a very large number of
realizations (∼ 10′000) that cannot be obtained with full N-body simulations.

4.1 N-body simulations

Cosmological N-body codes are used to calculate the non-linear growth of
structures in the universe by following the trajectories of N particles interact-
ing between each others through gravity. An N-body code is characterized
by two main conditions: �rst some initial condition must be set in a way to
represent the prediction of linear theory; second the evolution of structures
described by the code has to be free of distortion due to the small number
of particles and the �nite size of the simulation volume.

One particle in a N-body simulation represents a large number of dark
matter particles; this means that the interaction between two mass particles

55
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mimics the interaction between two �uid elements. This assumption leads
to the introduction of a force softening scale: the �uid elements should feel
much less force than two mass particles. The scale at which the force has to
be softened is comparable with the average inter-particle separation.

We have already pointed out that the mass particles of an N-body sim-
ulation interact only because of gravity. To run a simulation it is needed
to evaluate the force, between the particles, and then to solve the equation
of motions. In cosmology we have to take in account that the Universe is
expanding with time, so the equations of motion are given by the classical
Newtonian equations where the expansion is controlled by the scale factor
a(t).

dxi
dt

= vi (4.1)

dvi
dt

= −2H(t)vi −
1

a2
∇xΦi (4.2)

∇2
xΦ = 4πGa2[ρ(x, t)− ρ̄(t)] , (4.3)

where H(t) is the Hubble parameter, Φ the gravitational potential due to
the density perturbations and we use comoving coordinates for convenience.

The calculation of the force between particles is needed to integrate the
equation of motion forward in time and it is the most consuming task for a
N-body simulation. For this reason many techniques have been developed
focus on this aspect (Bertschinger, 1998). For the purpose of this thesis we
will not go into the details of this topic, but we will focus our attention on
the approximated methods that are mainly used in the following chapters
and for all the analysis we have carried out.

4.2 Approximate methods

As we have stressed in the introduction, future surveys will be capable to
observe billions of galaxies; at this level, the constraints on the cosmological
parameters will be highly in�uenced by systematic, as we will show in chapter
5. Moreover an accurate evaluation of the covariance matrices of clustering
is required as we will show in chapter 6. Taking under control these two
quantities is one of the �rst requirement for the data analyses. One possible
way to address these issues is to simulate large number of galaxy catalogs
with the same features of the speci�c survey. A large number of simulated
catalogs is required to lower the noise in the estimate of the covariance of the
clustering measurements, so that it could be used in the likelihood estimation
and then in the cosmological parameters determination.

N-body simulations can provide realistic galaxy catalogs, but the number
of realizations needed to estimate the covariance with the precision required
by next future surveys is too large; for this reason, a program based only on
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N-body simulations is unfeasible. A valid alternative is to take advantage of
speci�c approximations to obtain the large scales density �eld and the Dark
Matter (DM) halo distribution. We describe methods based on two type
of approaches: those ones (PINOCCHIO, PTHalos, COLA, AugmentedLPT)
that take advantage of LPT to follow the particles evolution from the be-
ginning to the formation of the halo, and those ones (PATCHY, EZmocks,
HALOGEN) that use sophisticated bias model to populate the density �eld
with halos, calibrated on some big simulation.

Using these approximated methods allows one to produce a large num-
ber of synthetic galaxy catalogs reducing the computing time of a factor ∼
1000. The price to pay is a loss in accuracy, particularly at small scales
(k∼0.5h−1 Mpc) compared with N-body simulations. The following sections
are based on the review on approximate methods by Monaco (2016). In the
rest of the thesis a large part of the analyses will be done using the PINOC-
CHIO, but in chapter (6) we will also show a comparison between some of
the methods we describe in the this sections.

PINOCCHIO

The PINOCCHIO (PINpointing Orbit Crossing Collapsed HIerarchical Ob-
jects) algorithm (Monaco et al., 2002, 2013) is based on (i) generating a
linear density �eld on a grid, as usually done for the initial conditions of
an N-body simulation; (ii) estimating the time at which each grid point
(or particle) collapses, using a combination of ellipsoidal collapse model and
excursion set theory (Sheth et al., 2001); (iii) grouping together collapsed
particles into DM halos with an algorithm that mimics their hierarchical
assembly. Displacements of particles (and DM halos) from their initial po-
sitions are computed using LPT. Starting from the linear density �eld (i),
previously smoothed, the collapse time for each particle is computed. A halo
is set up using these collapsed particle with an algorithm that mimic the hi-
erarchical clustering. After the halo is formed it has to increase its mass and
this is done using single particle, that ends up at some point in that halo,
and by merging with smaller halos. The history of a halo is given by its
tree of merging, saved time-step after time step and output at the end. The
accuracy of the algorithm is given by its precision to assign the right halo
mass and to put the halos in the right �nal position. Using LPT it is possible
to have di�erent levels of precision: with 3LPT the halo power spectrum is
accurate within 10% at k ∼ 0.5 in redshift space (Munari et al., 2017).

PINOCCHIO has been used to build galaxy catalogs for the VIPERS sur-
vey (de la Torre et al., 2013) and is being used for the Euclid preparatory
science.
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Augmented LPT

An improvement of the standard LPT technique, the Augmented LPT (ALPT),
is proposed by (Kitaura and Heÿ, 2013). This method is based on splitting
the displacement �eld into a long- and a short-range component. 2LPT is
used to compute the long-range component, while for the short-range compo-
nent they use the solution coming from the spherical collapse approximation.
Using these two di�erent approximations for the two di�erent components
they can improve the a standard LPT based methods when compared with a
N-body simulations, but an additional free parameters is required to de�ne
the transition between the long- and short-range regimes.

PTHALOS

This second scheme, Perturbation Theory Halos (PTHalos), (Scoccimarro
and Sheth, 2002) is based on the generation of a density �eld with 2LPT
on which a FoF (Friend of Friend halo �nder) algorithm is run. Contrary
to PINOCCHIO, PTHalos uses a spherical collapse model. After the halos
are de�ned, their mass is rescaled to reproduce a speci�c mass function. In
this last step, the information of the halo mass is completely lost because
each halo is forced to be on the speci�c mass function, but still the code is
highly predictive on halo bias and clustering. This techniques has been used
to produce galaxy catalogs for the BOSS survey.

Particle-Mesh based schemes

One of the main di�erence between an N-body simulation and a PINOCCHIO
or PTHalos simulation is that the two approximated methods do not try
to resolve the inner structure of halos, while a large amount of time of an
N-body simulation is dedicated to solve the complex non-linear orbits of halo
particles. One way to speed-up an N-body simulation is to use a particle-
mesh scheme with few time step: after the distribution of particles has been
generated, dark matter halos are extracted using an halo-�nder code. The
recovery of the halos is strongly connected with the size of the mesh used
to compute the density. Usually the size of the mesh is 1/2 or 1/3 of the
inter-particle distance and for this reason the memory requirements are very
high. A simulation that follows this schema is in any case �approximated�
compared with an usual N-body simulation because it is does not describe
accurately the force at particle-particle level, as a proper N-body simulation
does.

Two main example of Particle Mesh based methods, optimized to repro-
duce the linear growth rate with few numbers of time-step are: the COmov-
ing Lagrangian Acceleration (COLA) algorithm by Tassev et al. (2013) and
the FastPM scheme by Feng et al. (2016).
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The basic idea of COLA is to decouple the large and small scales to
accurate describe both scales, but reducing the computing time with respect
a full N-body simulation: it solves the large scales using LPT and the small
scales using an N-body simulation. To split the two regime, the equations of
motion have to be recast by going in a frame comoving with LPT observers.
COLA has been used in the production of galaxy catalogs for the WiggleZ
survey (Drinkwater et al., 2010) and the main galaxy sample of SDSS.

In FastPM, assuming that the velocity evolves following the ZA, the kick
(update the position of a particle) and drift (update the velocity of a particle)
factor are rede�ned so that the linear growth factor is forced to be recovered
with few time-steps. In their paper Feng et al. (2016), show that they can
achieve an improvement of the 2LPT solution using 5 time-steps.

Di�erent PM codes have been used to produce catalogs for the BOSS
survey and for Euclid.

PATCHY

The PATCHY (Perturbation Theory Catalog generator of Halo and galaxY
distribution) algorithm by Kitaura et al. (2014) uses the matter density �eld
from Augmented LPT, described above, to built an halo distribution that �t
a given simulation at the 3-point level. The idea is to built a stochastic bias
model using a set of theoretically justi�ed free parameters. The halo density
�eld is a power-law of the matter density �eld and depends on parameters
that describe a threshold, an exponential cuto� and the normalization; then
the sampling of the halo density �eld is done with a dispersion larger than
Poisson so that the stochasticity of bias is reproduced. The mass of the halo
is assigned to reproduce the halo-dependent bias (Zhao et al., 2015). All the
free parameters that determine the halo density �eld are �xed using a large
exact N-body simulation.

PATCHY has been run to produce a large set of catalogs, 12'288, for the
BOSS survey.

EZmocks

EZmocks (E�ective Zeldovich approximation mock catalog) by (Chuang et al.,
2015) generates (i) a dark matter density �eld on a grid predicted using ZA
reproducing the clustering properties with a bias model (ii) then the proba-
bility distribution function of halos in the BigMultiDark simulation (Klypin
et al., 2016) is mapped in the ZA density �eld (iii) the amplitude of power
spectrum and bispectrum is �tted with a speci�c density threshold and (iv)
the shape of the power spectrum is modi�ed, changing the slope of the initial
power spectrum with a scale-dependent function; (v) the BAOs are �tted by
enhancing the amplitude of the oscillations in the initial power spectrum;
�nally (vi) the velocity �eld is computed within ZA.
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Halogen

This is the more recent approximated method by Avila et al. (2015). The
density �eld is generated using LPT on a grid and resampled on twice the
inter-particle distance; the halo distribution is given so that it samples an
analytic mass function. The sites for haloes are identi�ed using random
particles from the 2LPT snapshot and the cells containing the halos follow
a probability proportional the power of the density �eld (P ∝ ρα), without
overlapping particles. The mass conservation is guaranteed lowering the cell
mass by the halo mass. The halo velocity is �xed taking in to account the
velocity dispersion within a cell from a reference simulation. The parameter
α is obtained in each mass bin using a standard χ2 minimization technique.

4.3 Discussion

The methods we have described above are characterized by di�erent prop-
erties and they allow us to obtain di�erent levels of accuracy. The methods
based on Lagrangian theory (PINOCCHIO, PTHalos, COLA), can be very
predictive because they �nd simulated halos at the object-by-object level.
Between these codes, PM-based codes are quick N-body solvers, but the
memory requirements are very high because they are also required to solve
small halos. To the contrary PINOCCHIO does not require accuracy below
the inter-particle distance, so its memory request is lower than COLA, but
its accuracy in placing halos is limited by LPT.

Methods like PATCHY, EZmocks and HALOGEN are faster than the
LPT based methods, but they need a reference full N-body simulation for
the calibration of the parameters and this step requires many evaluation of
the clustering statistics. These codes can be used to produce a large number
of realizations of the Universe, but taking in mind that their productivity
is lowered with respect other methods we have described above, because for
each cosmology they need to calibrate the parameters on a large simulation
and they do not predict the halo mass function or halo merger histories, that
are given for example by PINOCCHIO.
As we have already highlighted at the beginning of the previous section, these
approximate methods use a di�erent approach to reach the same goal, that
is the fast and cheaper production of realizations of the Universe, compared
with a full N-body simulation. Having access to a large number of catalogs in
a relatively small amount of time allow us to evaluate the clustering covari-
ance matrices. In chapter 6 we describe some of these techniques, studying
how well they can reproduce the results of a full N-body simulation and
if they can be used for cosmological purpose, such as the determination of
cosmological parameters.



Chapter 5

Uncertainty in the visibility

mask of a survey and its e�ect

on the clustering of biased

tracers

5.1 General introduction to the foreground prob-

lem

Next large-volumes galaxy surveys will allow us to investigate very large
galaxy sample, so that with very high statistics, the error budget will be
dominated by systematics. On the largest scales, at or beyond the BAO
scale, it will become of fundamental importance to keep under control the
e�ect of foregrounds, due both to the zodiacal light and to the Milky Way
(galactic extinction and stellar contamination above all). These will act by
modulating the survey depth on the sky. A similar modulation will be due to
instrumental or survey features, like 0-point o�set of photometric calibration
(see for instance the calibration of BOSS photometry Padmanabhan et al.,
2008; Ross et al., 2011); in the following, for simplicity we will refer to fore-
ground removal as the process that we are addressing, but our approach is
equally valid for these systematics. Careful characterization of foregrounds
will make it possible to subtract them. However, the residuals from this
subtraction will, in most cases, be highly correlated on the sky, thus mim-
icking large-scale structure. So, the error on foreground subtraction must be
properly propagated to correctly assess the error on parameter estimation.

A great e�ort has been devoted to understanding the e�ect of Galactic
foreground and foreground removal for the 21-cm line emission in the reion-
ization epoch (e.g. Santos et al., 2005; Jeli¢ et al., 2008), 21-cm intensity
mapping survey at low redshift (e.g. Wolz et al., 2014). For the LSS an
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example of foreground analysis is given by the BOSS survey: they analyzed
the potential systematic e�ects on the galaxy observed density (Ross et al.,
2012) �nding that the major contributions come from stellar density and
Galactic extinction.

In this work we focus on the issue of how the uncertainty in the removal
of foregrounds (or other similar systematics, as said above) propagates to the
measurement of clustering at the two-point level and to its covariance. The
number of galaxies in an observed sample is given, on average, by the integral
of the galaxy luminosity function from a luminosity threshold, determined by
the survey �ux limit, to in�nity. In realistic cases, the �ux limit is modulated
on the sky by foregrounds, and these are typically correlated on large angular
scales. A visibility mask will quantify this e�ect in order to remove it, but this
removal will be done with some uncertainty. This will result in a modulation
of the luminosity threshold, that will propagate to the number density of
observed objects, creating fake large-scale structure.

To address this issue, we have used the approximate method PINOCCHIO

(Munari et al., 2017) to run 10,000 simulations of a box of 1.5 h−1 Gpc.
We will consider DM halo �mock� catalogs at redshift z = 1, where it is
possible to have observational access to large volumes and the lower level
of non linearities allows approximate methods to be more accurate. We
use DM halos in place of galaxies as biased tracers of the density �eld,
and their mass in place of galaxy luminosity. This simpli�cation of the
procedure is acceptable in this context, as long as clustering on very large
scales is considered and halo mass is simply used to implement the e�ect of
a varying �luminosity� threshold. As a note, a one-to-one correspondence
between luminosity and mass is equivalent to a simpli�ed halo occupation
distribution (HOD) model, as we will comment in section 5.3.

To derive analytic predictions of the clustering of these mock catalogs,
we build a toy model based on the following assumptions. (i) A mass-
independent bias scheme is implemented. DM halos and galaxies share the
property of having a mass- or luminosity-dependent bias, but this greatly
complicates the analytic approach. We implement mass-independent bias
by shu�ing halo masses among the objects, as explained in section 5.3. A
coincise analysis of the mass-dependent bias case will be outlined in section
2.3.2. (ii) We consider an idealized geometry for the mask. In a plane-
parallel approximation, the plane of the sky is identi�ed with the x − y
plane. This is tiled with squares of physical length l, and for each tile the
residual of foreground subtraction is quanti�ed by drawing a random num-
ber from a Gaussian distribution. No correlation among tiles is considered,
so the length l is to be interpreted as the projection (in a �at sky approxi-
mation), at the observation redshift, of the angular correlation length of the
residual foreground.

Using measurements of the power spectrum on the 10,000 mock catalogs
(with and without imposing a mask), and comparing them with analytic
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predictions, we will show that it is possible to fully quantify the impact
of the visibility mask on the power spectrum of biased tracers. This can be
written as the sum of a pure cosmological term, a pure mask term, and a term
involving their convolution. The same computation for the covariance matrix
of the power spectrum is much more complicated, because the convolution
term gives rise to a long list of mixed terms that are not easy to compute
analytically, even in this idealized setting. This leads to the conclusion that
the covariance matrix of the power spectrum cannot be simply written as
the sum of a cosmology term and a mask term. The result we discuss in this
chapter have been published in Colavincenzo et al. (2017).

5.2 Power spectrum of biased tracers in the pres-

ence of foregrounds

In this section we derive some simple analytical expressions describing the
corrections to the power spectrum (and its covariance) of a galaxy sample
de�ned by a given, nominal luminosity threshold L0 when some foregrounds
induce local variations δL to the e�ective threshold that depend on the
position on the sky.

5.2.1 Luminosity function and galaxy number density

Let us consider a �ux-limited sample of galaxies with luminosity function
Φ̄(L), and let Φ(x, L)dL be the galaxy number density at the position x
with luminosity between L and L+dL so that Φ̄(L) ≡ 〈Φ(x, L)〉, with 〈. . . 〉
(and the bar) denoting averages over a very large volume. In general, Φ(x, L)
cannot be factorized into the product of a luminosity-dependent (Φ̄(L)) and a
position-dependent function; if this were the case, the amplitude of clustering
would be independent of luminosity. This means that Φ(x, L) encodes the
information of luminosity-dependent bias.

If our determination of a galaxy luminosity is not a�ected by foregrounds,
the galaxy number density of a sample of galaxy characterised by the lower
luminosity threshold L0 will be given by

n(x;L0) =

∫ ∞
L0

dLΦ(x, L) , (5.1)

while its mean value will be

n̄(L0) =

∫ ∞
L0

dL Φ̄(L) , (5.2)

We can characterize spatial �uctuations in the number density of galaxies
of luminosity L by means of the galaxy overdensity δΦ(x, L) de�ned by the
relation

Φ(x, L) = Φ̄(L) [1 + δΦ(x, L)] . (5.3)
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For a sample of galaxies with luminosity threshold L0 we de�ne instead the
overdensity δ(x; L0) by means of the relation

n(x; L0) = n̄(L0) [1 + δ(x; L0)] . (5.4)

It follows that the two overdensities δΦ(x, L) and δ(x; L0) are related by

n̄(L0) δ(x; L0) =

∫ ∞
L0

dL Φ̄(L) δΦ(x, L) . (5.5)

In an observed sample, our measurement of the galaxy luminosity L
will be in�uenced by foregrounds. The two most obvious cases are galaxy
extinction, that will decrease the observed �ux, and zodiacal light, that
will increase the sky noise; contamination by �eld stars or survey features
(e.g., seeing conditions from the ground or solar aspect ratio from space),
or survey features like modulations of 0-point of photometric calibration are
other examples. For a �xed observed �ux limit, the true limiting magnitude,
and then the true density, will be modulated by these foregrounds, or by any
residual of a foreground removal procedure. We expect, with some generality,
such residuals to be highly correlated on the sky and we model here, in a
very simple way, how this correlation a�ects the measurement of the galaxy
power spectrum and its covariance.

We are interested in studying how a modulation of the intrinsic �ux
limit propagates to the observed galaxy density and its correlation functions.
To this aim, we assume that the e�ect of residual foregrounds consists in
changing locally the luminosity threshold L0 by a quantity δL(θ), where θ
is a vector that de�nes the position on the sky. We further assume that
such perturbations to L0 are small, i.e. δL/L0 � 1, and that, as residuals,
they have vanishing spatial mean, that is 〈δL(θ)〉 = 0, The observed galaxy
number density of a sample with nominal threshold L0 will then be written
as

nobs(x; L0) =

∫ ∞
L0+δL(θ)

dLΦ(x, L) ,

= n(x; L0) + δn(x; L0) , (5.6)

where the second contribution on the r.h.s., de�ned as

δn(x; L0) =

∫ L0

L0+δL(θ)
dLΦ(x, L) , (5.7)

represents the correction due to the mask foreground residuals. We notice
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that:

δn(x; L0) =

∫ L0

L0+δL(θ)
dL Φ̄(L) [1 + δΦ(x, L)]

=

∫ L0

L0+δL(θ)
dL Φ̄(L)

+

∫ L0

L0+δL(θ)
dL Φ̄(L) δΦ(x, L) . (5.8)

In the last equation, the �rst contribution on the r.h.s., describes the e�ect of
the �uctuations in luminosity δL(θ) on the mean density and has therefore
only an angular dependence. The second contribution, instead, accounts for
the e�ect of the �uctuations in the threshold on the density perturbation
and it is therefore expected to be subdominant (although not necessarily
negligible).

It is important to stress that, even if 〈δL(θ)〉 = 0, we cannot expect
that the ensemble average of the correction vanishes, i.e. 〈δn(x; L0)〉 = 0,
because of the nonlinear dependence on δL(θ). In particular, the mean
of the second contribution of equation (5.8) vanishes due to the fact that
density perturbations at high redshift are expected to be uncorrelated to
any foreground residual, and that 〈δΦ〉 = 0 by de�nition. The �rst term can
be Taylor-expanded:∫ L0

L0+δL(θ)
dL Φ̄(L) ' Φ̄(L0) δL+

1

2

dΦ̄

dL
(L0)(δL)2 + . . . (5.9)

It is clear that 〈δn(x; L0)〉 will be non-zero at the second-order in δL(θ). For
these reasons, in the de�nition of the observed galaxy overdensity δobs(x; L0)
given by the usual expression

nobs(x; L0) ≡ n̄obs(L0)
[
1 + δobs(x; L0)

]
, (5.10)

the mean value n̄obs(L0) does not equal to the true mean density n̄(L0).

5.2.2 The case of luminosity-independent bias

A possible analytical description of galaxy perturbations in the presence of
residual foregrounds consists in Taylor-expanding the observed number den-
sity nobs(L0) in the threshold perturbations δL(θ). Instead, in what follows
we will make the assumption that the quantity Φ(x, L) can be factorized as
the product of a luminosity-dependent and a position-dependent function.
In terms of equation (5.3):

Φ(x, L) ' Φ̄(L) [1 + δΦ(x)] . (5.11)
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This factorisation is clearly unphysical, as it amounts to neglecting any de-
pendence of bias on luminosity, but it allows a great simpli�cation of the
calculations.

For instance, we have

n(x; L0) = n̄(L0) [1 + δ(x)] , (5.12)

with δ(x) = δΦ(x). In particular, the corrections due to foregrounds become

δn(x; L0) =

∫ L0

L0+δL(θ)
dL Φ̄(L)

+

∫ L0

L0+δL(θ)
dL Φ̄(L) δ(x)

=[1 + δ(x)]

∫ L0

L0+δL(θ)
dL Φ̄(L) . (5.13)

Introducing now the notation

δnmask(θ; L0) =

∫ L0

L0+δL(θ)
dL Φ̄(L) (5.14)

for the perturbations in the number density exclusively due to foregrounds
(and therefore only dependent on the angle θ) we can write the observed

galaxy number density, dropping the explicit dependence on L0, as

nobs(x) = [1 + δ(x)] [n̄+ δnmask(θ)] . (5.15)

The observed density contrast δobs(x), accounting for both cosmological per-
turbations and foregrounds e�ect is de�ned as

nobs(x) ≡ n̄obs [1 + δobs(x)] . (5.16)

Noting that n̄obs = n̄+ 〈δnmask(θ)〉 we have then

n̄obs [1 + δobs(x)] = n̄obs [1 + δ(x)] [1− δmask(θ)] , (5.17)

where we introduced the density contrast

δmask(θ) ≡ δnmask(θ)− 〈δnmask(θ)〉
n̄obs

. (5.18)

It is important to stress that δmask can be seen both as a function of the
sky coordinate θ and as a function of space coordinate x, subject to the
constraint of being constant along the lines of sight. Finally we can express
the observed galaxy density contrast δobs(x) in terms of the actual density
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contrast δ(x) and the mask-induced relative density corrections δmask(x)
(expressed as a function of x) as

δobs(x) = δ(x)− δmask(x)− δmask(x) δ(x) . (5.19)

Adopting the following convention for the Fourier Transform

δ(k) =
1

(2π)3

∫
d3x eik·xδ(x) , (5.20)

the perturbed density contrast, eq. (5.19), in Fourier space will read:

δobs(k) =δ(k)− δmask (k)−
∫
d3q δ(q) δmask(k− q)

=δ(k)− δmask(k)− δconv(k) (5.21)

Here we introduced δconv ≡ δ ⊗ δmask as the convolution of δ(x) and δmask(x).
It is important to stress that, in our simpli�ed model we can write the

observed density contrast δobs, eq. (5.19), as a function of the independent
quantities δ and δmask.

5.2.3 Power spectrum

The real-space two-point correlation function for the observed overdensity
δobs(k) can be simply expanded as

〈δobs(k1) δobs(k2)〉 = 〈δ(k1) δ(k2)〉+ 〈δmask(k1)δmask(k2)〉+

〈δconv(k1) δconv(k2)〉 , (5.22)

since 〈δ δmask〉 = 〈δ δconv〉 = 〈δmask δconv〉 = 0 (they involve averages of either
δ or δmask). The total, observed power spectrum Pobs(k) will therefore be
given by:

Pobs(k) = Pcosmo(k) + Pmask(k) + Pconv(k) , (5.23)

where Pconv is the convolution of the cosmological and mask power spectra:

Pconv(k) =

∫
d3qPmask(q)Pcosmo(|k− q|) . (5.24)

This term is of great importance because it couples the cosmological signal
with the noise coming from the mask. Moreover, the integral generates
scale mixing, thus transferring power among di�erent scales. The procedure
presented above is analogous to that of computing the e�ect of the variance
of the window function of a survey on the cosmological power spectrum
(Takada and Hu, 2013).

Introducing a simple estimator for the power spectrum such as

P̂ (ki) =
1

Nki

∑
q∈ki

δqδ−q (5.25)
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where q ∈ ki denotes a sum over all modes for which k = |k| is in the i-th
bin of size twice the fundamental frequency, kf = 2π/L, of the box, we can
de�ne the power spectrum covariance matrix as

Cij ≡ cov[P̂ (ki), P̂ (kj)] = 〈δP̂ (ki)δP̂ (kj)〉 (5.26)

where δP̂ (ki) = P̂ (ki) − 〈P̂ (ki)〉 is the deviation of the P̂ (k), measured in
a given realization, from its ensemble average. It is easy to see that the
covariance of the observed power spectrum Pobs, eq. (5.23), can then be
written as

Cobs
ij ≡ cov(P̂obs(ki), P̂obs(kj))

= cov[P̂cosmo(ki), P̂cosmo(kj)] + cov[P̂mask(ki), P̂mask(kj)] + Cmixedij

= Ccosmij + Cmaskij + Cmixedij , (5.27)

i.e., as a sum of the covariance of the cosmological power spectrum, the co-
variance of the mask power spectrum Pmask(k) plus a mixed term accounting
for several contributions that can be written as a function of higher order
correlation functions of the density �eld and of the mask:

Cmixedij = 〈P̂conv(ki)P̂conv(kj)〉 − 〈P̂conv(ki)〉〈P̂conv(kj)〉+

〈P̂cosmo(ki)P̂conv(kj)〉 − 〈P̂cosmo(ki)〉〈P̂conv(kj)〉+

〈P̂mask(ki)P̂conv(kj)〉 − 〈P̂mask(ki)〉〈P̂conv(kj)〉+

〈P̂cosmo(ki)Ĝ(kj)〉+ 〈P̂mask(ki)Ĝ(kj)〉+

〈P̂conv(ki)Ĝ(kj)〉+ 〈Ĝ(ki)Ĝ(kj)〉 (5.28)

where Ĝ = 2δqδmask,q − δqδconv,q + δmask,qδconv,q, with q ∈ ki. Eq. (5.28)
shows all the terms that come from the coupling of the cosmological signal
with the mask. The mixed terms

Cobsij ⊃ 〈P̂cosmo(ki)Ĝ(kj)〉+ 〈P̂mask(ki)Ĝ(kj)〉+

〈P̂conv(ki)Ĝ(kj)〉+ 〈Ĝ(ki)Ĝ(kj)〉 (5.29)

are written in implicit form. We recall that

Ĝ = δqδmask,q − δqδconv,q + δmask,qδconv,q , (5.30)

Inserting eq. (5.30) into eq. (5.29) we end up with four mix terms that we
call Cimix, with i = 1...4. Let's start with the �rst contribution that come
from the �rst line of eq. (5.29):

C1
mix =

1

NkiNkj

∑
q∈ki

∑
p∈kj

〈δpδ−pδmask,qδconv,−q − δpδ−pδqδconv,−q −

δpδ−pδqδmask,−q〉 =

1

NkiNkj

∑
q∈ki

∑
p∈kj

∫
d3s 〈δpδ−pδ−q〉〈δmask,qδmask,−q〉+ cc = 0 ,(5.31)
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for all q di�erent from zero, with cc for complex conjugate. For the same
reason C2

mix = 0 = C3
mix. The only non zero contribution is:

C4
mix =

1

NkiNkj

∑
q∈ki

∑
q∈kj

[〈δmask,qδmask,pδconv,−qδconv,−p −

δmask,qδpδconv,−qδconv,−p − δmask,qδpδconv,−qδmask,−p −
δqδmask,pδconv,−qδconv,−p + δqδpδconv,−qδconv,−p +

δqδpδmask,−pδconv,q − δ−qδmask,qδmask,pδconv,−p +

δqδmask,−qδpδconv,−p + δqδmask,−qδpδmask,−p〉] =

1

NkiNkj

∑
q∈ki

∑
p∈kj

{∫
d3s1d

3s2 〈δ−qδ−p〉〈δmask,qδmask,pδmask,−q+s1δmask,−p+s2〉+

∫
d3s1d

3s2 〈δqδpδ−qδ−p〉〈δmask,−q+s1δmask,−p+s2〉+

〈δqδp〉〈δmask,−qδmask,−p〉
}

(5.32)

As we can see from the previous relations, the mixed terms are convolutions
of high order correlators of both cosmological and mask �elds.

It is possible to further expand the expressions, considering that all the
4-point correlators can be written in the form:

〈δ1δ2δ3δ4〉 = 〈δ1δ2δ3δ4〉connected + 〈δ1δ2〉〈δ3δ4〉+ perm. . (5.33)

We expect that the cosmological connected part are equal to zero, but we
cannot assume that the same is valid for the mask connected part.

There will be a scale at which perturbations δ and δmask are of the same
order of magnitude, in which case there is no obvious reason why mixing
terms should be small. A full analytical computation of the additional co-
variance contribution in Cmixedij is discouraging even in the context of our
simple model. Instead, to quantify the various terms we will resort to a
numerical assessment taking advantage of the large number of DM halo cat-
alogs produced for this project, to which we will add the e�ect of a mask as
explained in the next section.

In section (5.2) we made the simplifying assumption that the quantity
Φ(x;L) can be factorized into luminosity-dependent and position-dependent
functions (equation 5.11). This condition simpli�es the calculations, but it
is clearly an approximation sinces it implies luminosity-independent bias. It
is not the aim of this paper to study this other case, but it is worth to show
what happens when we drop our approximation.

Let us consider the number density of halos with mass greater than the
nominal threshold M0 to be given by

n(x,M0) =

∫ ∞
M0

dM Φ(x;M) , (5.34)
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then the observed number density, after the mask perturbation is

nobs(x;M0) =

∫ ∞
M0 [1+A(θ)]

dM Φ(x;M) . (5.35)

For small perturbations to the mass threshold, i.e. σA . 1, we can Taylor-
expand nobs with respect to A(θ) to get

nobs(x;M0) = n(x,M0) +
∂nobs

∂A

∣∣∣
A=0

A

+
1

2

∂2nobs

∂A2

∣∣∣
A=0

A2 +O(A3) . (5.36)

that we can formally express as

nobs(x,M0) = n(x,M0) + n(1)(x,M0)A(θ)

+n(2)(x,M0)A2(θ) +O(A3) , (5.37)

where

n(1)(x,M0) ≡ ∂n

∂(lnM0)
(5.38)

n(2)(x,M0) ≡ 1

2

∂2n

∂(lnM0)2
. (5.39)

We can now expand in A the halo density contrast, de�ned as

δobsh (x,M0) ≡ nobs(x,M0)

n̄obs(x,M0)
− 1 , (5.40)

and obtain

δobsh = δh(1− 1

2
C2σ

2
A) + C1A+ (C1δh + ε̃)A

+
1

2
C2(A2 − σ2

A) +
1

2
(C2δh + 2C1ε̃+ η̃)A2

+O(A3) . (5.41)

where δh is the cosmological halo density contrast and where we de�ned

C1(M0) ≡ ∂ ln n̄

∂ lnM0
(5.42)

C2(M0) ≡ M2
0

n̄

∂2n̄

∂M2
0

(5.43)

ε̃ ≡ M0
∂δh
∂M0

(5.44)

η̃ ≡ M2
0

∂2δh
∂M2

0

. (5.45)



5.2 Power spectrum of biased tracers in the presence of foregrounds 71

It is easy to see that if eq. (5.11) holds, then η̃ = ε̃ = 0 and the density
contrast reduces to the form of eq. (5.19). From equation 5.41, one can show
that the two-point correlation function in Fourier space is given by

〈δobsk1
δobsk2
〉 = δD(k12)Pδδ(k1)(1− C2σ

2
A) + 〈Ak1Ak2〉

+

∫
d3q[Pδδ(q) + 2C1Pδε̃(q) + C2

1Pε̃ε̃(q)]

×〈Ak1−qAk1+q〉

+
1

2
[C2Pδδ(k1) + 2C1Pδε̃(k1) + C3

1Pε̃η̃(k1)]

×
∫
d3q〈AqAk12−q〉

+(k1 ↔ k1) +O(A3) . (5.46)

Since we are interested in a comparison with eq. (5.23), using eq. (5.21) with
δobs from eq. (5.41) we obtain the monopole of the observed power spectrum
to be given by

P obs0 = Pδδ(1− C2σ
2
A) + PAA,0(k)

+

∫
d3q[Pδδ(q) + 2C1Pδε̃(q) + C2

1Pε̃ε̃(q)]PAA,0(|q− k|)

+[C2Pδδ(k1) + 2C1Pδε̃(k1) + C3
1Pε̃η̃(k1)]σ2

A

+O(A3) , (5.47)

where

PAA,0(k) =
k3
f

Vp(k)

∫
k
d3q〈|Aq|2〉 (5.48)

is the monopole of the mask power spectrum. The main di�erence with
(5.23), is given by the presence of the power spectra Pδε̃, Pδη̃ and Pη̃η̃, all
dependent on derivatives of the density contrast δh. Considering a local bias
expansion as δh =

∑
n bn(M)δnm these additional terms could be expressed

in terms of derivatives of the halo bias functions bn(M).
A modulation of the mass threshold implies a di�erent halo selection, and

then a di�erent bias. Because the relation between bias and threshold halo
mass is not linear, we expect that the bias of halos subject to a mask A(θ)
will be di�erent from the bias of unmasked halos, even when 〈A(θ)〉 = 0. As
a consequence, we expect the masked and unmasked catalogs not to match
at small scales, as they do in Figure 5.3.

We will not go into the computation details of the full covariance matrix,
because we can directly use mocks to see the e�ect of introducing the halo
bias.

For the following section, in which we show the results of our analysis,
we consider the esier case of luminosity-independent bias.
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5.3 Simulated catalogs

5.3.1 Cosmological catalogs

As mentioned in the Introduction, our choice is to use DM halos in place
of galaxies as biased tracers. Moreover, we will use the mass M of the DM
halo in place of the galaxy luminosity L. In particular, the nominal mass
threshold, i.e. the minimal mass de�ning the halo sample (in absence of
foregrounds) will be denoted as M0, corresponding to the L0 of the previous
section. This is equivalent to applying a minimal HOD model (Cooray and
Sheth, 2002) with one galaxy per halo and a linear relation between halo
mass and luminosity. This is known to be unrealistic, but we considered this
approximation proper for the idealised case presented in this paper.

The simulated catalogs we used for all the measurements are DM halo
catalogs obtained with the approximate method PINOCCHIO (Monaco et al.,
2002, 2013, see (Munari et al., 2017) for a review of approximate meth-
ods). We use the latest version of the code, V4.1, presented in Munari et al.
(2017), where displacements were computed with LPT up to the third or-
der, resulting in a sizable improvement of the predicted power spectrum:
the wavenumber at which the prediction of P (k) drops by 10 per cent, with
respect to an N-body simulation run on the same initial conditions, increases
from k = 0.1 h−1 Mpc to ∼ 0.3− 0.5 h−1 Mpc at redshift 0 or 1. This lack
of accuracy is not relevant for the present analysis, that is mostly focused
on large scales.

We generated 10,000 realizations of a cubic 1500 h−1 Mpc box, sampled
with 10003 particles. This is, to out knowledge, the largest set of catalogs
of DM halo catalogs ever presented. The cosmological parameters are Ωm =
0.285, ΩΛ = 0.715, Ωb = 0.044, h = 0.695 and σ8 = 0.285. We used outputs
at z = 1, where, as mentioned in the introduction, it is possible to have
observational access to large scales and PINOCCHIO is more accurate. The
particle mass is Mp = 2.67× 1011 h−1M�.

We will consider a halo sample de�ned by a mass threshold M0 = 50 ×
Mp. With this choice we have approximately 500, 000 halos in each catalog,
corresponding to a number density of 1.5× 10−4 h3 Mpc−3.

5.3.2 Implementation of the mask toy model

One side of the simulation box will be serving as the �eld-of-view in a distant-
observer approximation. For simplicity we model patches in the sky char-
acterised by a constant, uniform foreground residual as square tiles covering
the box side mentioned above. An �e�ective� threshold for halo detection will
then be de�ned, as a correction for the nominal one M0, for the whole vol-
ume (along the line-of-sight) behind a given tile. Fig. 5.1 provides a pictorial
representation of our toy model.
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A1
A2 A3

An

Line of sight

Figure 5.1: Every simulation box containing the halo catalogs is assumed
to represent a cosmological volume in the distant-observer approximation.
Patches of equal foreground error residual are modelled as square tiles cov-
ering the �eld-of-view, corresponding to one side of the box.

For each halo catalog, we produce a di�erent foreground mask consisting
of a correction to the mass thresholdM0 for each tile across the �eld-of-view.
We will describe the relative variation of threshold as the two-dimensional
quantity

A(θ) ≡ δM(θ)

M0
. (5.49)

Since A(θ) represents the e�ect of a residual foreground, we will assume
〈A(θ)〉 = 0, the bracket representing ensemble averages.

We divide the sky plane into square tiles of length l, within which A is
kept constant, so we can write:

A(θ) =

Nt∑
i=1

AiΘi(θ) (5.50)

where the function Θi(θ) = 1 if the angular position θ falls inside the i-th
tile and zero otherwise, and Nt is the total number of tiles. The coe�cients
Ai are assigned as independent random numbers, drawn from a Gaussian
distribution with standard deviation σA, so A-values in nearby tiles are un-
correlated. The length l therefore represents the physical correlation length
induced by the foreground residual; it will correspond to the projection, at
the observation redshift, of an angular correlation scale.

The production of masked halo samples proceeds as follows. First, the
DM halo masses provided by PINOCCHIO are modi�ed so as to be continuous.
Indeed, the discreteness due to the particle mass can be of the same order
of the correction to the mass threshold δM , leading to spurious e�ects in
the number density that would a�ect the covariance matrix. This procedure
is applied to all halos with more than 30 particles (we altogether ignore
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smaller groups); this is smaller than the 50 particles mass cut mentioned
above, because the mask modulation will decrease the mass cut in ∼half of
the sky tiles. Calling α the logarithmic slope of the DM halo mass function
aroundM0 (and computing α from the avaraged mass function of the 10,000
mocks), the halo mass M of a halo made of N particles (Mold = NMp) is
modi�ed as follows:

Mnew = Mold

{
1 + r

[(
N + 1

N

)α
− 1

]}1/α

(5.51)

where r is a random number between zero and one. Second, in order to
remove the mass dependence of halo bias, that invalidates equation (5.11),
in each mock catalog halo masses are randomly shu�ed among all the halos,
thus preserving the halo mass function. In this way, imposing a mass cut is
equivalent to a sparse sampling, and halos with di�erent mass cuts will have
a similar clustering amplitude. Finally, the catalog is selected by applying
the position-dependent mass cut M0 + δM(θ) = M0 [1 +A(θ)].

5.3.3 Analytical predictions

In terms of the adimensional �eld A(θ), and adopting now the halo mass as
proxy for the galaxy luminosity, we can rewrite eq. (5.18)

δmask(x) =
1

n̄obs

∫ M0

M0 [1+A(θ)]
dM Φ̄(M)− 〈δnmask〉

n̄obs

= −M0 Φ̄(M0)

n̄obs
A(θ) +O(A2)− 〈δnmask〉

n̄obs
, (5.52)

showing that the �eld A(θ) represents, modulo a − sign, the overdensity due
to the mask, δmask, up to a multiplicative constant.

From the de�niton of A(θ), eq. (5.50), it is simple to derive explicitly its
Fourier transform

Ak =
Lboxl

2

(2π)3

∑
i

Aie
ikxxieikyyij0

(
kxl

2

)
j0

(
kyl

2

)
δKkz ,0 (5.53)

where j0(x) is the zeroth-order Bessel function and δK , the Kronecker sym-
bol. The power spectrum of A(θ) is given by

PA(kx, ky, kz) =
Lboxl

2

(2π)3
kfσ

2
Aj

2
0

(
kxl

2

)
j2
0

(
kyl

2

)
δD(kz) (5.54)

where we took the continuum limit by replacing δK(k)/k3
f → δD(k) for

V → ∞. This term scales as PA ∝ l2σ2
A, so that at k < 2π/l it will

grow not only, as expected, with the variance of the residuals but also with
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the correlation length l. Finally, it is equally simple to write down the
convolution of the power spectrum PA(k) with a power spectrum P (k) as

Pconv,A(k) =

∫
d3q PA(q)Pcosmo(|k− q|)

=
σ2
Al

2Lboxkf
(2π)2

∫ kmax

kf

dqx dqy j
2
0

(
qxl

2

)
j2
0

(
qyl

2

)
×Pcosmo

(√
(kx − qx)2 + (ky − qy)2 + k2

z

)
. (5.55)

This term, as the previous one, scales as ∝ l2σ2
A. The integral in equa-

tion (5.55) can be computed numerically, once Pcosmo(k) is given. The theo-
retical prediction for the mask power spectrum makes it possible to analyti-
cally compute the convolution term of eq. (5.24), at least at linear order in
A(θ).

PA(k) and Pconv,A(k) represent, up to a multiplicative factor, analytical
predictions, respectively, for Pmask(k) and Pconv(k), since, as we will see,
corrections due to higher order terms in A(θ) are small. Of particular interest
is the relation between the variance of the mask-induced overdensity, σ2

mask ≡
〈δ2

mask〉, and the variance of the relative error on the mass threshold, σ2
A. To

�rst order in A we have

σ2
mask '

M2
0 Φ̄2(M0)

n̄2(M0)
σ2
A , (5.56)

where Φ̄(M0) represents now the halo mass function and n̄(M0) the number
density of objects above the threshold.

5.3.4 Power spectrum estimators

The power spectrum of the halo catalogs was measured using the estimator
of Sefusatti et al. (2016), that provides a sophisticated procedure to mini-
mize the impact of aliasing coming from the estimate of density of a set of
particles on a 6003 grid points. All the k-bins are multiples of the fundamen-
tal frequency of the box, kf = 2π/L = 0.041 h−1 Mpc, while the Nyquist
frequency is kNyq = Ngkf/2 = 1.256 h−1 Mpc, where Ng = 600 is the grid
size. The shot noise contribution has always been subtracted. Given that the
cosmological density �eld is isotropic in our case, we present here results for
the monopole of the power spectrum; clearly the mask will induce non-zero
multipoles, that will contaminate the redshift space distorsion signal; we do
not address this point in this paper.

The density �eld for the estimation of the mask power spectrum, Pmask(k),
was obtained directly from the two-dimensional �eld A(θ) as follows: δmask

is assumed to be equal to the constant value Ai along the whole i-th tile
(�g. 5.1), and the so-de�ned density �eld is Fourier-transformed without
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Figure 5.2: Comparison between measured (continuous line) and analytic
(dashed line) monopole of the mask power spectrum Pmask(k). The black
dashed vertical line corresponds to k = 2π/l. The lower panel gives the
residuals.

involving a density estimate on a set of points. As a consequence, the esti-
mation of Pmask(k) is not a�ected by shot noise. As a consistency test, we
show in �gure (5.2) the monopole of the mask power spectrum, computed
analytically from eq. (5.54) and numerically from 10,000 realisations of the
mask A(θ). The two results are remarkably consistent at large scales, while
at small scales the numerical determination shows some overestimate with
respect to the analytic one; this is likely due to sampling e�ects, but such
small di�erences in the range where the term drops are not a concern for
what follows.

We expect the mask to a�ect large scales because of its own geometry:
since points behind a given tile are subject to the same e�ective threshold
L0 + δL, they will present some level of induced correlation, even when their
separation along the line-of-sight is very large.

5.4 Results

The variance of δmask, σ2
mask ≡ 〈δ2

mask〉, gives the magnitude of the e�ect of
the mask on the observed density, and we are interested in the scale range
where it is comparable to the variance of the density perturbations δ (of
the same order of the tile length and of the BAO scale). In fact, the limit
σ2

mask � 1 corresponds to a very good knowledge of the foregrounds, and
therefore to a negligible e�ect of possible residuals, while the opposite limit
of large σ2

mask should describe a situation of poor knowledge of foregrounds
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that we are expected to avoid.
We will consider the two values σA = 0.05 and 0.2 (or errors of ∼ 0.05 and

∼ 0.20 magnitudes), corresponding respectively to σmask = 0.07 and 0.28.
The �rst value may be a good order of magnitude for a residual foreground
(this point will be addressed later), while the second value is very pessimistic
and is used to emphasize the e�ects of foreground removal. We will also
assume two di�erent values for the size of the tiles, l = 30 and 100 h−1 Mpc.
At z = 1 and for the cosmological parameters given above, these comoving
scales subtend angles of 0.74 and 2.5 degrees. We also tested the case σA =
0.01; the e�ect of the mask (for this toy case) is entirely negligible for both
the power spectrum and its covariance, so we will not show this case.

5.4.1 Power spectrum

Figure 5.3 shows the power spectra for all the four considered cases, with
l = 30 and 100 h−1Mpc (top and bottom panels) and σA = 0.05 and 0.2 (left
and right panels). Each panel in the �gure is composed by two plots. The
upper one shows the monopole of the power spectrum. The coloured lines
give the contributions to the power spectrum of eq. (5.23) (denoted by a
black line): the blue line is the cosmological power spectrum, Pcosmo(k), the
red line represents the pure mask contribution, Pmask(k), while the magenta
line is the convolution term Pconv (eq. (5.24)). Solid lines are obtained by
measuring the 10,000 mocks as explained in Section 5.3.4; the convolution
term is computed by di�erence:

Pconv = Pobs − Pcosmo − Pmask . (5.57)

The red and magenta dashed lines represent the theoretical prediction for
the power spectrum of the mask, eq. (5.54), and for the cross-term, Pconv.
The latter is obtained from PA(k) with the multiplicative factor from eq.
(5.52). In the lower plot of each panel we report the ratio between the
components and the observed power spectrum, to highlight the relative size
of each contribution. In this case we only report the quantities measured
from mocks. Vertical lines in all plots mark k = 2π/l, where the Fourier
transform of the mask starts to oscillate. This is equal to ∼ 0.2 h/Mpc for
l = 30 h−1 Mpc, and to ∼ 0.06 h/Mpc for l = 100 h−1 Mpc.

As anticipated in Figure 5.2, the contribution of the mask power spectrum
(the red line in the plots) is important at large scales, k < 2π/l. Its relevance
depends on lσA: for l = 30 h−1 Mpc it is found to level at about 1 per cent
for σA = 5% and in excess of 10 per cent for σA = 20%, while for l = 100 h−1

Mpc its importance gets increasingly large at large scales even for σA = 5%,
while it dominates at k < 0.03 h/Mpc for the higher variance case. At
k > 2π/l the mask is typically negligible, even though the �rst peaks still
get above the 1 per cent level in the high variance case. It is useful to recall
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Figure 5.3: Averaged power spectra of mock catalogs. Top panels: tile size
= 30 × 30 Mpc2/h2. Bottom panels: tile size = 100 × 100 Mpc2/h2. Left
panels: σA = 5%, right panels: σA = 20%. In all panels the solid lines
denote respectively the monopole of total power spectrum (black), cosmo-
logical power spectrum (blue), mask power spectrum (red) and convolution
term (magenta). These are all measured from catalogs, the last being deter-
mined by di�erence. The dashed red and magenta lines are the theoretical
predictions for the mask power spectrum (eq. (5.54)) and the convolution
term (eq. (5.55)). The vertical thin lines mark k = 2π/l. The lower plots
show the ratio of the various components with respect to the total power
spectrum; in this case we only show the measurements from the mocks.
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that these oscillations are simply the result of our toy model, and therefore
they do not necessarily have a real physical meaning.

The contribution of the cross-term does not fall down at small scales, but
remains at a fraction of the cosmological power spectrum. At small scales,
this fraction is always below the 1 per cent level for σA = 5%, but is found to
be ∼ 10 per cent in the higher variance case; notably, this fraction scales with
σA but not with l. The relatively larger contribution of Pconv with respect to
Pmask for k > 2π/l is the result of the transfer of large-scale power operated
by the convolution and does not show the rather arti�cial oscillations of the
latter. At large scales the convolution term is always overtaken by Pmask,
so it never becomes dominant, its relative weight ranging from tenths of
per cent to few per cent. Here we notice a small discrepancy between the
theoretical prediction for Pconv and the measured one at large scales that
could be due to the small di�erence between the theoretical prediction for
the mask power spectrum and the measured one at large scales (�g. 5.2).

The agreement of analytic and measured contributions allows us to be
con�dent in the control of the total power spectrum. In the analysis of the
power spectrum covariance we will only use the quantities measured from
the 10,000 mock catalogs.

As a concluding remark, the mask power spectrum Pmask(k) can easily
be important at large scales even when foreground removal is controlled to
within a few per cent. The reason lies in the scaling with (lσA)2: a highly
correlated foreground will anyway give a signi�cant contribution to large
scales. Conversely, the convolution term gives a roughly constant relative
contribution to the power spectrum, that is typically negligible if the uncer-
tainty in the foreground removal is controlled at the few per cent level, but
can become important in more pessimistic cases. Because the mask creates
power on large scales, within this toy model one could conclude that the
BAO scale should be safe at the per cent level if good control, to the few per
cent level, is achieved on foreground removal. We will get back to this point
in the Conclusions.

5.4.2 Covariance

Figure 5.4 shows the variance of the measured power spectra (all the di�erent
components), divided by the measured power spectrum squared, ∆P 2/P 2

obs.
For a purely cosmological Gaussian �eld it would correspond simply to the
inverse of the number of available k-modes 1/Nk; in fact, we checked that
our cosmological term is very similar to the Gaussian prediction. Here, the
magenta curve represents the mixed mask-cosmology contribution; we recall
that Cmixed

ij is not simply the covariance of the convolution Pconv, but in-
cludes a variety of di�erent combinations of cosmological and error residuals
perturbations, in addition to shot-noise. The mixed term is obtained as the
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Figure 5.4: Averaged diagonal components of the covariance matrix of mock
catalogs. Top panels: tile size = 30 × 30 h−1 Mpc. Bottom panels: tile size
= 100 × 100 h−1 Mpc. Left panels: σA = 5%, right panels: σA = 20%.
In all panels the solid lines denote respectively the variance of the total
power spectrum (black), cosmological power spectrum (blue), mask power
spectrum (red) and all mixed terms (magenta). These are determined by
di�erence, dotted lines denote negative values. The vertical thin lines mark
k = 2π/l. The lower plots show the ratio of the various components with
respect to the total power spectrum. In all �gures, the vertical ticks denote
the wavenumbers used to show the o�-diagonal terms in Figure 5.5.
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di�erence:

∆P 2
mixed = ∆P 2

obs −∆P 2
cosmo −∆P 2

mask , (5.58)

since all components on the r.h.s. can be measured independently. The
dotted parts of these curves denote the place where the mixed term gets
negative and then oscillates around zero. In this region the subtraction of
shot noise induces an uncertainty that is larger than the signal seeked for
(the measurement of the mask power spectrum is not a�ected by shot noise,
so we can detect a much lower signal). The lower plots show the contribution
of each component with respect to the total one, measured on masked mock
catalogs.

Like the power spectrum case, k = 2π/l marks the scale above which
the pure mask term is important. Comparing the contribution of di�erent
components to the total power spectrum variance we notice that the pure
mask component ∆P 2

mask and the mixed one ∆P 2
mixed present a similar scale-

dependence and comparable amplitudes, at least in the large-scale range
where the mixed terms can be measured. Starting from the con�guration
with σA = 0.05 and l = 30 h−1 Mpc, the pure mask and mixed terms
contribute to the total variance by a few per cent. Mixed terms are so small
in the �rst BAO region that they can hardly be measured even with this
statistics. So the contribution of mask terms is modest and limited to large
scales. Things become pretty di�erent when σA and l are increased. The
high variance case gives contributions of mask and mixed terms well in excess
of 10 per cent at the BAO scale, that become dominant at the largest scales
sampled by the boxes. In the large tile size case the mixed terms get to the
10 per cent level even with the modest mask variance of 5%, while in the
high variance, large tile size case the covariance is completely dominated by
the mask term on large scales, while the mixed term remains above the 10
per cent level but still larger than the cosmic variance. This is the only case
where the mixed terms give a measurable contribution at scales smaller (k
higher) than 2π/l; like the convolution term in the power spectrum, they
give a relevant and non-oscillating small-scale contribution.

This analysis only shows the diagonal of the covariance matrix. O�-
diagonal terms of the covariance matrix are of great importance, because they
get mixed with the diagonal term during the matrix inversion necessary to
determine the precision matrix that enters the likelyhood function. We now
consider how uncertainties in foreground subtraction a�ect the covariance
between di�erent wavenumbers by studying the cross-correlation coe�cients
de�ned as:

rij =
Cij√

Cobsii C
obs
jj

. (5.59)

where Cij is de�ned by eq. (5.26). These are shows in �gure 5.5 for some
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relevant values of kj (0.02, 0.07, 0.1 and 0.31 h/Mpc), as a function of ki.
These k-values span the range from very large to non-linear scales, and are
marked in Figure 5.4 as vertical ticks.
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Figure 5.5: Correlation coe�cient: Top panels: tile size = 30 × 30 h−1 Mpc.
Bottom panels: tile size = 100 × 100 h−1 Mpc. The color code is the same
of the previous �gures.

The �gure shows how contributions to the normalized covariance due to
mask and mixed terms are negligible in the �rst con�guration with σA = 5%
and l = 30h−1 Mpc. O�-diagonal terms are small in all cases, the cosmo-
logical one being appreciable at the highest kj . However, in the smallest kj
bin the mixed terms give a roughly constant contribution of few per cent.
Increasing the scale l, we do not notice a larger impact of mask or mixed
terms as we did for the diagonal; it seems that o�-diagonal terms become
signi�cant at k � 2π/l, a regime that is not yet reached at k = 0.02 h/Mpc
in this case. But when σA = 0.2, o�-diagonal terms become very signi�cant,
amounting to 5 per cent for l = 30h−1 Mpc and are in excess of 20 per cent for
l = 100h−1 Mpc, independently of scale. In this latter (rather extreme) case
the structure of the power spectrum covariance matrix is strongly modi�ed;
clearly, an inversion of this matrix without proper account of o�-diagonal
terms would lead to large errors in parameter determination.
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5.5 Discussion

In this chapter we have addressed the problem of how the uncertainty in
the removal of foregrounds, in an observational survey of biased tracers like
galaxies, propagates to the measurement of the cosmological power spectrum
and its covariance matrix. For this �rst investigation we have decided to use
a simpli�ed setting, so as to be able to formulate analytic solutions for the
two-point statistics. We have used DM halos as biased tracers, and their
mass as a proxy of galaxy luminosity, as in a simpli�ed HOD where each
halo is populated by a single galaxy. To this aim, we have produced a very
large set of 10,000 realizations of 1.5 h−1 Gpc boxes, and extracted DM ha-
los from these volumes at redshift z = 1 using the PINOCCHIO approximate
method. This is, to our knowledge, the largest set of cosmological catalogs
of DM halos. We have neglected luminosity- (mass-)dependent bias by ran-
domly shu�ing masses among DM halos in each catalog, so as to preserve
their mass function. As for the foreground, we have constructed a simple
toy model where, in a plane-parallel approximation, the x − y plane of the
box is tiled in squares of side l, that are characterised by a Gaussian residual
foreground of variance σ2

A that propagates to the density through a mod-
ulation of the mass limit M0; residuals in di�erent tiles are uncorrelated,
so l should be interpreted as the projection, at the observation redshift, of
an angular correlation scale of the foreground. The chosen values of 30 and
100 h−1 Mpc are subtended, at z = 1, by angles of 0.74 and 2.5 degrees
respectively.

The main conclusions of our analysis can be summarized as follows:
(1) The residuals of foreground subtraction (�mask�) enter the power

spectrum of masked catalogs as two terms, the power spectrum of the mask
and its convolution with the cosmological power spectrum. This is similar to
what happens when a survey geometry is applied to a cosmological volume.

(2) The mask term is signi�cant at k < 2π/l, while the convolution
term is usually smaller in this scale range, but can still be signi�cant at
smaller scales due to its scale mixing. Mask and convolution terms scale
as l2σ2

A, implying that large correlation lengths of the mask residuals may
have a signi�cant e�ect on large scales even when the foreground removal is
controlled to within a few per cent.

(3) Analytic estimations of mask and mixed power spectrum terms give
results consistent with those measured from mocks, giving con�dence on the
level of control of the various terms.

(4) The power spectrum covariance matrix contains not only the cosmo-
logical and mask contributions, but also several, additional terms due the
coupling of the convolution term with both mask and cosmology. The sum
of all these terms can only be determined by di�erence of measurements of
masked mocks, cosmological mocks and pure mask.

(5) Mask and mixed terms are found to have similar e�ect on the power



84 Uncertainty in the visibility mask

spectrum covariance matrix. A 5% accuracy on foreground removal guaran-
tees a modest impact of these terms, with the exception of k � 2π/l modes,
where they can signi�cantly contribute to the diagonal. In this case mixed
terms give a roughly constant contribution to non-diagonal elements of the
covariance matrix. The higher variance case of σA = 20% shows a dramatic
impact on the structure of the covariance matrix.

(6) As a consequence of the relevance of mixed terms, a simple model-
ing of the covariance matrix as the sum of a pure cosmological term and a
cosmology-independent term due to the mask appears to be an oversimpli�-
cation, as the mixed terms couple cosmology and mask.

As long as BAO is the main target of an observational project, the re-
sults presented in this paper point to the conclusion that a ∼ 5% error in
foreground removal should guarantee a modest impact of the mask on pa-
rameter estimation. Indeed, due to the l2σ2

A scaling, signals with smaller
correlation scales will have little impact, while a large correlation length l
will mostly impact on larger scales (we limited our analysis to correlation
lengths that are subtended, at z = 1, by relatively small angles because of
the constraints on the box size). These errors can be compared to estimated
errors in foreground removal or photometric calibration. Clearly, the case
σA = 20% is pessimistic, and has been shown only to illustrate the e�ect of
the mask. Photometric calibration can be controlled to the millimag level
(Padmanabhan et al., 2008), so its induced errors will likely be negligible.
Conversely, Galaxy extinction is know to the few per cent level (Schlegel
et al., 1998; Peek and Graves, 2010; Berry et al., 2012) and zodiacal light
can have a similar uncertainty far from the ecliptic (Planck Collaboration
et al., 2014). σA = 5% can then be considered a realistic order of magnitude
for the largest contribution to the visibility mask uncertainty. However, this
conclusion is based on a very idealized setting, so it should be taken only
as an indication, before tests with much more realistic mocks and masks are
performed. On the one hand, this toy model is mixing modes on the whole
box length; in a realistic survey a redshift bin would span a smaller comov-
ing distance on the line of sight, and this would reduce the impact of mixed
terms. On the other hand, a more complex mask like galactic extinction,
having power on a range of scales, may easily have a stronger impact than
our toy model; luminosity-dependent bias would also add to the covariance
in a way that needs to be addressed.

To reduce the impact of a foreground to a desired level, one can of course
work to improve the modeling of the foreground and of its correlated resid-
uals. But another way to reduce this impact is to work on the estimator
of the two- point statistics, with the aim of minimizing the impact of the
residuals. This has been done, in preparation to the DESI survey by Schlegel
et al. (2011), Levi et al. (2013)), by Burden et al. (2016) for the two-point
correlation function, and by Pinol et al. (2016) for the power spectrum. In
the �rst paper the authors modify the estimator of the correlation function
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to remove the angular mode contaminated by the incompleteness due to
�ber assignment; in the second paper they investigate di�erent methods to
de�ne the survey mean density, in particulare taking into accunt the �ber
assignment coverage.

Two conclusions from the tests we have presented are robust. Firstly, the
impact of foreground removal is of dramatic importance to properly sample
the large scales beyond the BAO. This is expected: foregrounds, especially
the zodiacal light, are correlated on large angular scales, that are projected
to very large scales where the clustering signal is weak. But the scaling with
lσA shows that mode coupling gives a large weight to large-scale correlations,
making the control of residual errors of great importance. It is convenient to
recall that measurement of non-Gaussianity with error on the fNL smaller
than unity, or e�ects of scale-dependent growth related to modi�ed gravity,
should be revealed at scales beyond the power spectrum peak; therefore the
e�ect of foreground residuals are crucial for these measurements. Secondly,
a poor control of foregrounds can lead to great changes in the covariance
matrix. In particular, a signi�cant presence of non-diagonal terms has deep
consequences in the the ability to invert the covariance matrix and produce
correct estimations of cosmological parameters and their errorbar. Control
of foregrounds to the few per cent level is con�rmed to be of paramount
importance for large-scale structure.
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Chapter 6

Covariance matrix comparison

As we have already showed in the previous chapter, because of the high sta-
tistical precision expected from next future surveys, the error budget will be
dominated by systematics. The accurate modeling of the data is fundamen-
tal to constrain the cosmological parameters, but for precision cosmology, it
is also important to revise the assumptions made when the observations are
compared to theory.

If we call D the measurements derived from the observations, i.e. the
galaxy power spectrum, and T(θ) the model that depends on set of pa-
rameters θ that we want to determine, then the probability that the data
D correspond to a realization of the model T(θ) is given by the likelihood
function:

L(D|θ,C) ∝ |C|1/2exp
[
−1

2

∑
i,j

(Di − Ti(θ))C−1
ij (Dj − Tj(θ))

]
; (6.1)

this expression is valid when the data follow a multi-variate Gaussian dis-
tribution with mean 〈D〉 and covariance matrix C. Eq. 6.1 comes directly
from the Bayes theorem:

P (T |D) =
P (T )P (D|T )

P (D)
, (6.2)

where P (T |D) is called posterior, P (D|T ) is the probability of the data
given the model (likelihood) and P (T ) is called prior; if we set P (D) = 1
and we ignore the prior then we can �nd the likelihood, eq. 6.1, maximizing
P (T |D).

From eq. 6.1 it is clear that an accurate evaluation of the inverse of
the covariance matrix, also called precision matrix, is needed to compute
the likelihood function. Usually, for clustering measurements, the precision
matrix is obtained using an ensemble of simulated galaxy catalogs. The main
aspect to consider is that we have available a �nite number of realizations, so
that the precision matrix is a�ected by some degree of noise (Dodelson and

87
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Schneider, 2013). The level of this noise depends on the number of synthetic
catalogs used for the estimation of the precision matrix. It is important to
control the noise because it will propagate into the parameter uncertainties
(Taylor et al., 2013). As pointed out in Monaco (2016) a large number of
galaxy catalogs will be required to correctly assess the covariance matrix of
future large-volume galaxy surveys.

The N-body simulations are the usual tools for the production of syn-
thetic galaxy catalogs. As we have described in section 4, with an N-body
approach we can describe the interaction of N particles under the e�ect of
gravity, following their evolution also in the deep non-linear regime. The
typical simulation volume that will be required by future surveys is of the
order of ∼ 4 Gp h−1; resolving the halos that host the faintest galaxies in
a survey, that dominate the number and then the measurements on which
cosmological parameter estimation is based, requires an halo resolution to
be of the order of ∼ 1011M�, the number of particles trajectories to follow is
of the order of ∼ 16, 0003, as pointed out in Monaco (2016). These numbers
are for a single big simulation, but the evaluation of the covariance matri-
ces of clustering requires a large number of simulated catalogs to lower the
statistical noise and to highlight the cosmological information. Just as an
example, for the SDSS-BOSS bispectrum analysis, they use 2048 simulated
galaxy catalogs using a k-bin large 6kf ; for a bin large 3kf there would been
needed of > 10, 000 independent realizations. Moreover to investigate the
di�erent cosmological models, we need to run this large simulation charac-
terizing it, each time, with di�erent values for the cosmological parameters.
It is not feasible, in terms of computing time and memory, to use full N-body
simulations to make thousands realizations for each cosmological model.

In this chapter we describe the possible alternatives to N-body simula-
tion approach. We focus, in particular, on various techniques to reduce the
number of galaxy catalogs needed to control the noise in the covariance ma-
trix and on the approximate methods that, using di�erent approximations,
allow us to have large number of simulations reducing the computing time
with respect to an N-body simulation.

6.1 Estimation of the covariance matrix with a re-

duced number of simulated catalogs

As we have already anticipated in the introduction to this chapter, there are
various techniques that allow us to reduce the number of simulated galaxy
catalogs that we need to estimate the covariance matrix, but allowing us, at
same time, to take under control the noise in the precision matrix.

In Pearson and Samushia (2016) the authors estimate the power spectrum
covariance matrix using a theoretically justi�ed parametric model calibrated
on simulated galaxy catalogs. The general expression for the power spectrum
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covariance matrix for a cubic volume is given by Scoccimarro et al. (1999):

Cij =
(2π)3

V (ki)

(P 2
i + n−1

2πk2
i δk

δij + T̄ (ki, kj)
)
, (6.3)

where V is the volume, n−1 is the inverse of the galaxy number density, δij
is the Kronecker delta function, δk is the size of the bin in Fourier space and
T̄ (ki, kj) is the bin averaged trispectrum. The term proportional to the power
spectrum, P 2

i , represents the Gaussian part of the covariance matrix while
the non-linear evolution of structures induces non-Gaussian corrections given
by the trispectrum. The evaluation of eq. 6.3 becomes highly complex when
we consider non-trivial survey windows that introduce additional terms. In
this case, the computation of the power spectrum covariance matrix is made
using an ensemble of simulated galaxy catalogs.

The alternative proposed by Pearson and Samushia (2016) is to use a
relatively simple, few-parameter function to approximate the true covariance
matrix, that includes the non-linear e�ects due to a survey window. The
main advantage of the �tting function approach is that the covariance matrix
elements converge to their true values much faster than the sample variance.

They have evaluated the covariance matrix using 600 galaxy catalogs
from BOSS DR11 (Manera et al., 2013) and they have compared it with the
covariance obtained with the �tting formula; they use ∼ 100 catalogs to �t
the free parameters. What they found is that the �tting function generated
covariance matrices, calibrated with few number of galaxy catalogs, were
statistically indistinguishable from the sample covariance matrix generated
with 600 catalogs.

The main result of this paper consists in the possibility of having a �tting
formula for the power spectrum covariance matrix, that reproduces the true
covariance matrix using only a very small number of galaxy catalogs. Future
survey will require to modify the functional form of the �tting formula in
order to include the power spectrum measurements on much smaller scales,
but once this functional form is found the method will work in the same way
of the speci�c case they analyze in the paper.

An alternative to the �tting procedure described above, is given by the
work of Pope and Szapudi (2008): they apply the idea of shrinkage estima-

tion by Schäfer and Strimmer (2005) to the determination of matter power
spectrum covariance matrix with a limited number of realizations. The aim
of this paper is to reduce the total noise in the covariance, while preserv-
ing as much information as possible on the real covariance from simulations.
The shrinkage estimation consists in combining a theoretical model with em-
pirical estimate. Given n sets of data, let x to be the measure for each of
them; if x(k)

i is the kth observation of the ith element of x, then the unbiased
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empirical covariance matrix of the data vector is given by:

Sij = Ĉov(xi, xj) =
1

n− 1

n∑
k=1

(x
(k)
i − x̄i)(x

(k)
j − x̄j) , (6.4)

where x̄i = 1
n

∑n
k=1 x

(k)
i is the empirical mean. The shrinkage procedure

requires to have also a target covariance matrix, Tij that is based on some
model with no or few free parameters. This covariance has a smaller vari-
ance with respect to the empirical covariance, but may be biased. The �nal
expression for the covariance matrix is given by a linear combination of the
empirical and the target covariances:

C = λ̂∗T + (1− λ̂∗)S , (6.5)

where λ̂∗ is called shrinkage intensity. The optimal estimator for this pa-
rameter, found by Schäfer and Strimmer (2005), is given by:

λ̂∗ =

∑
i,j V̂ ar(Sij)− Ĉov(Tij , Sij)∑

ij(Tij − Sij)2
, (6.6)

where Ĉov(Tij , Sij) is the estimate of the covariance of the elements of the
two covariance matrices. The value of the shrinkage intensity determines the
�nal covariance matrix C: if the estimation of λ̂∗ is larger than one, then the
condition λ̂∗ = 1 is imposed and in this case, from eq. 6.5, the covariance
matrix is the target one; if the estimate λ̂∗ is less than zero, then λ̂∗ is forced
to be zero and this corresponds to say that only the empirical covariance
matrix is used. The main conclusion of Pope and Szapudi (2008) is that the
shrinkage technique can provide a covariance matrix with a precision com-
parable the empirical one, using a limited number of simulations or jackknife
resampling (see 3.1).

The last technique we want to describe is based on the idea of Kaufman
et al. (2008) used to speed-up the calculation of maximum likelihood esti-
mation. In Paz and Sánchez (2015) the authors use the tapering technique
as tool to minimize the impact of the noise in the precision matrix. The
basic idea of tapering is that, in many cases, the correlation between distant
data pairs is negligible and little information is lost by treating these points
as being independent (Kaufman et al., 2008). With this assumption it is
possible to use fast numerical methods to evaluate the likelihood function.
When applied to cosmological covariance matrix we have to consider that
the o�-diagonal elements of the matrix can be non-negligible. The idea, in
this case, is to �rst build a new covariance matrix where the o�-diagonal
terms are reduced. To this address they introduce a speci�c function, called
tapering matrix T, de�ned in the following way:

Tij = K(||ri − rj ||) , (6.7)
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where ri is the i-th measurement location of the data space and K is a
positive compact-support function that sets to zero the o�-diagonal entries of
the covariance matrix. The new covariance matrix characterized by reduced
o�-diagonal terms is given by:

CT = Ĉ ◦T , (6.8)

where Ĉ is the estimate covariance matrix, CT is the tapering covariance
matrix. The precision matrix is not given simply by the inversion of eq.
6.8, because this is biased by the tapering function itself; moreover we want
the precision matrix to include the physical information coming from the
o�-diagonal part of the covariance matrix, but excluding the noise. An
estimation of the expression for the tapering precision matrix comes from
the matricial product of the inverse of the tapering covariance matrix and
the tapering matrix:

Ψt =
(

1− Nb + 1

Ns − 1

)(
Ĉ ◦T

)−1
◦T , (6.9)

where Ψ is the precision matrix and the prefactor provide an unbiased inverse
of the covariance matrix.

In the conclusion of the paper they stress that the covariance tapering
method leads to smaller errors than the standard technique, without intro-
ducing any systematic bias in the estimated parameters. Moreover they show
that the optimal tapering parameter depends only on the structure of the
underlying covariance matrix and it is insensitive to the bin size or to the
number of synthetic samples used in the estimation of the precision matrix.
The last result concerns the possibility of using this technique to estimate
the covariance matrix reducing the number of realizations: using 600 sim-
ulations from SDSS-DR9 BOSS clustering measurements (Anderson et al.,
2012), they obtain an uncertainty on BAO shift equivalent to the one ob-
tained with 2'300 simulations, but using the standard covariance technique.

6.2 Approximate methods

In the previous section we have described some possible alternatives to esti-
mate the covariance matrix with a reduced number of realizations using also
hybrid techniques to connect theoretical model and simulations. An alter-
native approach is to use simulated galaxy catalogs made with approximate
methods, that allow us to have a large number of realizations to precise esti-
mate the covariance matrix and reduce the statistical noise; these techniques
can introduce systematic errors that, if not spotted, propagete in the accu-
racy of cosmological parameters constraints. Within this project we aim to
estimate the weight of these errors on the covariance matrix, prceeding with
two main tests: �rst, we compare the covariance matrices obtained with
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approximate methods with that one obtained using full reference N-body
simulation runs with GADGET (Springel, 2005), called Minerva; second, we
compare the cosmological parameters constraints obtained with the N-body
covariance matrix and with the others covariance matrices. This project
is carried out within the Euclid Collaboration Galaxy Clustering Working
Group.

The techniques we test are the following: Pinocchio, COLA, Halogen,
PeakPatch (all these codes are described in section 4.2). Because we want to
compare how the covariance matrices of clustering di�er from what we can
obtain from full N-body simulations, we produce 300 realizations of the same
Universe with each of the code we have listed above and with the full N-body
simulation Minerva. To this account we use the same initial conditions of
the N-body simulation in order to reproduce the same (large-scale) scatter.

The main simulation properties are the following: periodic cubic box of
1500 h−1 Mpc sampled with 10003 particles. The cosmological parameters
are Ωm = 0.285, ΩΛ = 0.715, Ωb = 0.044, h = 0.695 and σ8 = 0.285. We
use output at z = 1. The mass particle is Mp = 2.67 × 1011 h−1M�. We
choose to focus at this particular redshift, because Euclid will, in particular,
observe galaxy in the redshift range 0.9-1.9.

The measures of the clustering statistics are carried out considering two
di�erent halo samples. The selection of the halos for the two cases is made
with the two following criteria: in the �rst case, we look at the halo masses
so that the sample is obtained considering all the halos above a certain mass
threshold. The �rst bin contains halos with mass larger than 1.06×1013M�,
while the second bin halos with mass larger than 2.66×1013M�. These mass
thresholds correspond, respectively, to a number of particles per halo of 40
(�rst bin) and 100 (second bin). We call this �rst selection �Hard� mass
cut (see table 6.1). The second selection, that we call abundance matching,
consists in �xing the number of halos in each sample by matching the halo
mass functions (see table 6.2). In this second case we match the the number
of halos in each bin, so we make sure that the di�erences between the di�erent
codes in the halo abundace is within 1%.

In the next two sections we describe the results for the comparison of
the power spectrum (Blot et al. in prep.) and bispectrum (Colavincenzo et
al. in prep). For both the two statistics, we show the average value over
300 realizations, studying in particular the di�erences with respect to the
values obtained using N-body simulations. For the analysis of the covariance
matrices we proceed with two separate steps: �rst, we compare the diagonal
of the covariance matrices highlighting the main di�erences with the average;
then we look at the o�-diagonal elements of the matrix by means of the
cross-correlation coe�cients. It is worth to stress that with this number of
realizations we can control the variance, but we expect the cross-correlation
coe�cients to be very noisy; in this case we compare the noise obtained from
the measures on the approximate methods with the noise obtained from the
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measures on full N-body simulations.

Table 6.1: �Hard� Mass Cut

Bin N M(1013)

1 40 1.06755
2 100 2.66887

Table 6.2: Abundance Matched Cut

M(1013)
Code bin 1 bin 2

Minerva 1.12092 2.66887
COLA 1.08566 2.76556

Pinocchio 1.04371 2.62971
Halogen 1.12092 2.66887

PeakPatch n.a. 2.35500

N
Code bin 1 bin 2

Minerva 719004 183638
COLA 716401 182070

Pinocchio 724788 184896
Halogen 721409 182016

PeakPatch n.a. 183561

6.2.1 Results: power spectrum

In this section we show and comment the results for the real and redshift-
space power spectrum. The study of the two-point statistic is important
becasue the Gaussian part of the covariance matrix depends directly from it.
Evaluating the power spectrum on the samples obtained with approximate
methods, we expect to well reproduce the large-scales and to over- or under-
estimate the smaller scales.

All the measuraments for the power spectrum are corrected for the shot-
noise contribution, that we consider as Poissonian. This is anyway true only
when we consider the power spectrum from n-body simulations, in the other
cases we expect it to be sub-Poissonian. In the �gures for the average power
spectrum we plot the Poissonian shot-noise prediction with a horizontal gray
line. The error bars are obtained from the the diagonal of the covariance
matrix after dividing for the total number of realizations (300).

In �gure 6.1 we show the real power spectrum (without RSD) for the two
di�erent cases, �hard� mass cut, upper plots, and abundance matching, bot-
tom plots. In the upper panels we show the average power spectra obtained
from the 300 realizations, while in the lower panels we show the relative
di�erences of each of the fast methods with respect the N-body simulation.

For the low mass bins we plot the power spectra from PINOCCHIO, COLA,
Halogen and Minerva, while for the high mass bins we include also Peak-
Patch, that does not have halos with masses in the �rst bin. In all the
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Figure 6.1: Average real space power spectrum on 300 realizations. On the
left low mass bins, on the right high mass bins. In the lower panels the
relative di�erence of the approximated methods with respect to Minerva.

cases we can see that for the large scales, small values of k, all the ap-
proximate methods well reproduce the simulation with an error below 5%.
The agreement remains constant up to 0.2 hMpc−1. For smaller scales
the approximate methods start to fail in reproduce the N-body simulations:
COLA is the most precise on these scales with a di�erence of ∼ 10% at
k ∼ 0.5hMpc−1; PINOCCHIO works slightly worst with a di�erence of ∼ 10%
at k ∼ 0.35hMpc−1 and larger then 20% at k ∼ 0.5hMpc−1; Halogen be-
haves like PINOCCHIO for the low mass �hard� cut, while for the low mass
abundance cut is more similar to COLA, instead for both the two high mass
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bins it overestimates the simulation by 20% starting from k ∼ 0.1hMpc−1;
PeakPatch is comparable to PINOCCHIO up to k ∼ 0.2hMpc−1, but then the
relative di�erence with respect to Minerva increases in the opposite direction
of PINOCCHIO. We expect to observe this behaviour at small scales looking
at the power spectrum obtained from approximate methods; the small scale
structrues evolution is not well reproduced like a full N-body simulation that
follows the particle trajectories also in the non-linear regime.

In �gure 6.2 we show the average redshift-space monopole power spec-
trum. As we have done for the real space we plot the two samples with the
two mass bins. The large scales, up to k ∼ 0.2hMpc−1, are well reproduced
by all the methods, even if PINOCCHIO and PeakPatch seem to work slightly
worse in the case of the high masses for the �hard� cut sample, but still the
di�erences are smaller than 5%. On smaller scales, k > 0.2hMpc−1, all the
codes, besides Halogen, show a better agreement with simulation when com-
pared with the real space; in all the cases the di�erences are almost the same
of those ones observed on large scales. Halogen is the only one to show the
same behavior in both real and redshift space in the case of the monopole.

In �gure 6.3 we plot the average quadrupole of the power spectrum. All
the codes look comparable on large scales reproducing the N-body simula-
tion up to k ∼ 0.3hMpc−1. Smaller scales are not correctly reproduced, but
for all the codes the quadrupole looks larger than Minerva for scales smaller
than k > 0.3hMpc−1. Halogen, di�erently from the other codes, underesti-
mates the simulation by 10% up to k ∼ 0.1hMpc−1. On smaller scales the
di�erence is greater than 50% on scales k > 0.2hMpc−1.

In �gure 6.4 we plot the average hexadecapole of the power spectrum.
Contrary to the power spectrum in real space and the other multiple orders,
the hexadecapole shows a high level of noise on large scales, while it oscil-
lates around zero for scale k > 0.02hMpc−1. Even if the signal enclosed in
the hexadecapole is hidden by noise on large scale, we can see that all the
codes show the same correlated noise as the N-body simulation. This is still
an important information because we want to test the accuracy of the ap-
proximate methods to reproduce the same features of the N-body simulation
even if this is noise. We will stress this point at the end of this chapter, in
the discussion section.

As we have already noticed, apart from the monopole power spectrum,
the real power spectrum as well as the quadrupole and the hexadecapole
have a worst behavior on smaller scales (k > 0.1hMpc−1) with respect
the N-body simulation. This is almost independent from the mass bin or
from the selection sample (�hard" or abundance mass cut). We are not
surprised by this behavior because the approximations, that characterize
the fast methods, are characterized by a less accurate description of the
small scales with respect to full N-body simulations. This is not a critical
issue because the goal of this project is to use and to test the approximate
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Figure 6.2: As �gure 6.1 but in redshift space: monopole.

methods to evaluate the covariance matrices, and we expect to reduce the
di�erences we observe having a large number of realizations.

The next �gures show the power spectrum variance, i.e. the diagonal of
the covariance matrix and the relative di�erence with respect to Minerva.
As we have done for the power spectrum, we show the two di�erent mass
cuts and the two mass bins. In �gure 6.5 we plot the real power spectrum
variance. Looking at the low mass bin of the �hard" mass cut, the N-body
variance is reproduced by all the codes with a di�erence lower than 10%.
The best method appears to be COLA with a few per-cent di�erences on all
the scales, while PINOCCHIO and Halogen seem to slightly overestimate the
variance. For the high mass bin COLA remains the best code in representing
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Figure 6.3: As �gure 6.1 but in redshift space: quadrupole.

the power spectrum variance, while the other ones overestimate it by 20%
an all the scales. When we look at the abundance matching case, the power
spectrum variances from the low mass bin appears to reproduce the N-body
simulation better when compared with the low mass bin of the �hard" mass
cut case. All the codes di�er by less than 10%. We can say the same for the
high mass bin apart from Halogen that remains similar to the other case.

What it is important to stress, that we will remarks at the end of the
chapter, is that contrary to the average power spectrum, the di�erence be-
tween the variance obtained with the di�erent approximate methods and
Minerva remains constant even on small scales, while the correspondent
power spectrum drops down or goes up so that the di�erence with simu-
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Figure 6.4: As �gure 6.1 but in redshift space: hexadecapole.

lation becomes larger than 20%.
In �gure 6.6 the variance of the monopole power spectrum is quite similar

to the one we have showed in �gure 6.5. The Halogen power spectrum
variance seems to behave better compared with the real case, in the low
mass bins for both the two sample.

The variance of the quadrupole and of the hexadecapole, �gures (6.7
and 6.8) look comparable in terms of precision to reproduce the N-body
variance. As for the real and monopole case the variances evaluated for the
abundance matching samples appears to reproduce the simulation variance
with an accuracy higher than the variance obtained from the "hard" mass
samples. For the low mass bin Halogen variance drops down for scale k >
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0.1hMpc−1, while for the high mass bin all the codes reproduce better the
simulation with di�erences below 10%.

The variance we just described is only a part of the covariance matrix. As
we have stressed at the beginning of this chapter, the constraints on the cos-
mological parameters required the de�nition of the precision matrix, that is
the inverse of the whole covariance matrix. For this reason we are interested
in the analysis of the o�-diagonal parts of the power spectrum covariance
matrix.
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Figure 6.5: Power spectrum variance in real space. On the left low mass
bins, on the right high mass bins. In the lower panels the relative di�erence
of the approximated methods with respect to Minerva.
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Figure 6.6: As �gure 6.5 but in redshift space: monopole.

There are di�erent ways to represent the power spectrum covariance ma-
trix, but because we want to highlight the o�-diagonal structure of the ma-
trix, we use the cross-correlation coe�cient, a quantity that we have also
used in the foreground analysis (see section 5.4.2):

rij =
Cij√
CiiCjj

, (6.10)

where Cij is the full covariance matrix and Cii is the variance of the matrix.
In this way when i = j we are looking at the diagonal element of the matrix
and rij = 1. When we move away from the diagonal, i 6= j, we are looking
at the o�-diagonal terms.
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Figure 6.7: As �gure 6.5 but in redshift space: quadrupole.

We have evaluated the cross-correlation coe�cient for the real power
spectrum and for all the power spectrum multipoles in redshift space, but
we describe only the case in real space because the di�erence between all the
cases are negligible and they give us the same information. The real space
power spectrum cross-correlation coe�cient, for the abuncance matching
case, is showed in �gure 6.9.

As for the power spectrum and its variance we show the two halo selec-
tion cases and the two mass bins. Figure 6.9 is composed by four panels
and in each of them we have �xed the value of one of the wavenumber, ki
and we have varied the other wavenumber, kj . We have chosen the values
for ki to investigate the behavior of the elements of the covariance matrix
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Figure 6.8: As �gure 6.5 but in redshift space: hexadecapole.

from large to small scales. Looking at the covariance matrix structure, it
appears not modi�ed by di�erent sample selections and mass binning. The
number of realizations we can use (300) to evaluate the covariance matrices
is not large enough to proceed with an accurate analysis of the o�-diagonal
elements of the matrix, but we can still look at noise and what we observe is
that the approximate methods and the N-body simulation cross-correlation
coe�cients are characterized by the same noise. It is after all true that for
some particular scale (ki ∼ 0.3hMpc−1), looking at the high mass sample,
we can identify an enhancement of the amplitude of particular o�-diagonal
elements of the covariance matrix both using the approximate methods and
N-body simulations. We will further comment on these two last results in
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the discussion section.
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Figure 6.9: Power spectrum cross-correlation coe�cient in real space. On
the top low mass bins, on the bottom high mass bins.

6.2.2 Results: bispectrum

In our test, in addition to the two-point statistics, we consider as well higher-
order correlation functions, as the bispectrum. We study this quantity be-
cause the power spectrum covariance matrix is a�ected by non-Gaussianity,
that are induced by non-linear correlators.

In this particular case we analyze the bispectrum and its covariance ma-
trix. The selection we make on the simulated catalogs is the same of the
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case of power spectrum analysis (see table 6.1 and 6.2), but we have access
to only the bispectrum measures on PINOCCHIO and COLA catalogs for the
approximate methods, and of course the measures on Minerva. Moreover we
show only real space analysis.

In �gure 6.10 we plot the average bispectrum in real space. The power
spectrum depends on only one wavenumber, so its representation is trivial,
but the bispectrum is a function of three wavenumbers with the condition,
given by the Dirac delta function (eq. 2.60), to form a closed triangle. For
this reason its representation is more complex. We want to study how well
the di�erent triangular con�gurations are reproduced by the approximate
methods compared with the N-body simulation. For this reason we decide
to plot all the possible triangular con�gurations given by di�erent values of
k1, k2 and k3, showing on the x-axis one wavenumber only the value of one
vertex k1. In this way, each point represents one particular bispectrum value
for a particular triangle con�guration. Points between vertical gray lines have
the same k1 and span all allowed values of k2 and k3. In the lower panels
we show the ratio, con�guration by con�guration, between the approximate
methods and Minerva. Looking at the low mass bin for the �hard� mass
selection, we can see that on large scales (k < 0.11hMpc−1) PINOCCHIO

(green dots) shows slightly larger di�erences than COLA, but it shows a
larger number of con�gurations that are in better agreement with Minerva;
COLA shows smaller disagreements, but a greater part of its con�gurations
underestimate the simulation by 10%. A smaller scales (k > 0.11hMpc−1)
PINOCCHIO and COLA show a di�erent behaviour with PINOCCHIO that
is less precise to reproduce the simulation; This di�erences are larger than
those one observed on large scales. The number of con�gurations that agree
with simulation is smaller, and for k > 0.16hMpc−1 a considerable por-
tion of points is below one, meaning that an increasing number of triangular
combinations reproduce Minerva with an accuracy that can be lower than
20% (k ∼ 0.26hMpc−1). COLA appears to be more under control than
PINOCCHIO; the di�erences with Minerva vary from ∼ 10% up to a max
of ∼ 20%. For the higher mass bin, up to k ∼ 0.16, a large number of
PINOCCHIO con�gurations overestimates Minerva by ∼ 10%. For smaller
scales the spread increases, so that certain con�gurations agree better, but
for k > 0.21hMpc−1

PINOCCHIO is larger or smaller with respect to Minerva
by 10%. COLA behavior is similar to the previous case with an increasing
accuracy on large scales, with a di�erence smaller than 10%. For the abun-
dance matching case, the situation appears to be unchanged for both the
mass bins, with a few per-cent improvement, showed by COLA on large
scales.

As we have already highlighted for the power spectrum, we are interested
in the variance and the covariance of the correlators. In �gure 6.11 we plot
the bispectrum variance squared divided by the bispectrum squared for all
the triangular con�gurations and in the lower panels we show the squared
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q

Figure 6.10: Average real space bispectrum over 300 realizations. On the
left low mass bins, on the right high mass bins. Each dot represents the
bispectrum for a particular triangular con�guration with that particular k1.
In the lower panels the relative di�erence of the approximated methods with
respect to Minerva.

ratio between the variance obtained with approximate methods and Minerva.
Looking at the �hard� mass selection, COLA bispectrum variance following
the same behavior of the correspondent bispectrum, showing a disagreement
with simulation variance larger than 20% for a large number of triangular
con�gurations; PINOCCHIO shows a smaller di�erences for the most part not
larger than 20%. In the higher mass bin, PINOCCHIO variance shows an en-
hancement of ∼ 20% for the majority of the triangular con�gurations while
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COLA shows the opposite behavior, underestimating the simulation by not
more than 20%. The situation we show for the abundance matching case is
very di�erent from the previous case: for the low mass bin the bispectrum
variance of both COLA and PINOCCHIO shows disagreements smaller than
the other cases. All the triangular con�gurations well reproduce the simula-
tion with a di�erence smaller than ∼ 10% at large scales (k < 0.14hMpc−1)
and smaller than 20% on smaller scales. COLA di�erences appeared to be
a little reduced with respect to PINOCCHIO, but overall the two methods
agree very well between each other and with simulation. Also for the high
mass bin we can improve the results compared with the �hard� mass cut
case; both PINOCCHIO and COLA show improvement in reproducing the
simulation variance, keeping the di�erences smaller than 20%. As we have
already noticed, PINOCCHIO tends to overestimates the bispectrum variance
obtained from simulations, while COLA tends to underestimates it.

The last plot we show, �gure 6.12, concerns the analysis of the bispectrum
cross-correlation coe�cient, de�ned in the same way of eq. 6.10. The main
di�erence is that the power spectrum covariance depends on two wavenum-
bers we have called ki and kj , while the bispectrum covariance matrix de-
pends on six wavenumbers, so that in this case the subscript i correspond to
one triangular con�guration, de�ned by (ki,1, ki,2, ki,3), and the subscript j
to another triangular con�guration, de�ned by (kj,1, kj,2, kj,3).

We plot the cross-correlation coe�cient in analogy with what we have
done for the power spectrum. Each panel is a slice of the bispectrum co-
variance matrix obtained �xing one particular triangular con�guration i
and varying the others con�gurations j. On the x-axis we plot the three
wavenumbers values, kj,1, kj,2, kj,3, of the the various triangular con�gura-
tions. From the plot we can study the correlation of the error between
di�erent triangular con�gurations. We have chosen the covariance row to
show the structure of the covariance matrix at di�erent scales. As we have
already noticed in the power spectrum analysis, the information given by the
di�erent mass bins and matching procedures is the same. It is clear that the
approximate methods are capable to reproduce the features of the bispec-
trum cross-correlation coe�cient obtained with simulation. As for the power
spectrum, the noise in the o�-diagonal elements of the covariance evaluated
with N-body simulation, is well reproduced by PINOCCHIO and COLA.

6.3 Discussion

In this section we want to summarize the main results of this chapter, stress-
ing what we have learned in the analysis of the approximate methods. As we
have already noticed, the accuracy of the power spectrum and bispectrum
evaluated on samples obtained with approximate methods is lower when
compared with the measures on full N-body simulation. This is due to the
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Figure 6.11: Bispectrum variance in real space. On the left low mass bins,
on the right high mass bins. In the lower panels the relative di�erence of the
approximated methods with respect to Minerva.

approximations that characterize the fast methods and that do not allow us
to well reproduce the non-linear scales.

What we observe, looking at the average power spectrum, is in fact a
lack of power in the description of the small scales, k > 0.1hMpc−1; on
these scales the simulations cannot be reproduced with an accuracy smaller
than 20%, apart from the hexadecapole that is a quantity very noisy and
very close to zero on these scales. We observe a similar behavior for the
average bispectrum, but because B ∼ P 2, for this statistics, the accuracy
of the approximate methods appears to be smaller when compared with
the power spectrum. The bispectrum is a more complex quantity and we
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Figure 6.12: Bispectrum cross-correlation coe�cient in real space. On the
left low mass bins, on the right high mass bins.

have to take in account that there are di�erent triangular con�gurations, so
di�erent combinations of the three wavenumbers. Looking at large scales
(k < 0.11hMpc−1) the majority of the con�gurations well reproduce the
simulation, but going to smaller scales, a signi�cant part of the total tri-
angular con�gurations systematically overestimates or underestimates the
simulation. It is worth to say that for the power spectrum and bispectrum
analyses, COLA is slightly better than the other codes in reproducing the
simulation, but we can expect this high accuracy by COLA, because it use
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a procedure very similar to an N-body simulation: it solves the large scales
using LPT and the small scales using an N-body simulation (see section 4.2).
The lack of accuracy on small scales is not the main issue, because the aim of
this project is not to use the approximate methods to describe the statistics
of clustering, but to accurate evaluate their covariance matrices. What we
hope is to reproduce the errors on the power spectrum and bispectrum better
than spectra themselfs. This is what we observe looking at the variances: for
the power spectrum we are capable to reproduce the variance also on small
scales, with a accuracy higher than that observed for the power spectrum;
moreover all the codes agree better between each other, so that they appear
to reproduce the same error an all scales. This is true also looking at the
bispectrum variance: the spread of the di�erent triangular con�gurations
is smaller and constant an all scales; almost all the con�gurations coming
from simulations are reproduced with a accuracy higher than the one of the
bispectrum itself. Constraints on the cosmological model requires the mod-
eling of the full covariance matrix, so in the last part of the section on power
spectrum and bispectrum we have showed how the o�-diagonal elements of
the metrices behave. Because of the small number of realizations we have
used, we cannot to really see the correlations of the error on di�erent scales,
but what we can conclude is just as important: the noise in the o�-diagonal
terms that we observe from the measures on the simulation is the same that
we observe using approximate methods; not only the level of the noise is the
same, but also the correlation of the noise is very well reproduced. In conclu-
sion the approximate methods can reproduce the features of the covariances
matrix obtained with a full N-body simulation. It is worth to mention that
for the power spectrum case, looking at particular scales we can see small
enhancements of the particular o�-diagonal terms of the covariance matrix
that are not due only to statistical noise. Increasing the number of real-
izations we can really lower this noise and study the correlation between
di�erent scales. We will show how a large ensemble of realizations a�ects
the structure of the covariance matrix in chapter 8.
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Chapter 7

Galaxy power spectrum

covariance matrix

In the previous chapters we have stressed the necessity to have a large set of
simulated galaxy catalogs for the accurate evaluation of the power spectrum
covariance matrix. We have also described various techniques aimed at de-
termining the covariance matrix with a limited number of simulations, facing
the problem from another perspectives. All these techniques are character-
ized by some kind of analytic approximations or they depend on a certain
number of free parameters.

One could consider, at same time, a full analytic prediction for the power
spectrum covariance matrix that includes the correlation of modes on the
non-linear scales that determines non-Gaussianity. (Scoccimarro et al., 1999;
Hu and White, 2001; Cooray and Hu, 2001). A great e�ort was put into
place in the last years to model the matter power and its covariance matrix
(Takahashi et al., 2009; Sato et al., 2011; Takada and Hu, 2013; Mohammed
and Seljak, 2014; Blot et al., 2015, 2016). As we have already highlighted, the
aim of this project is to go beyond the matter density �eld, therefore to model
the galaxy power spectrum covariance. At same time it is worth to brie�y
describe the state of the art of the matter power spectrum covariance matrix
analyses. This is the purpose of the �rst section. This kind of introduction
will help us to point out the di�erences between what is already been done
and what we want to achieve with our analysis.

An accurate description of a real galaxy survey requires the modeling of
the galaxy density �eld, that is the observable we have access to. The model-
ing of the galaxy power spectrum covariance matrix is more complex because
of galaxy bias and discreetness e�ects. When realistic e�ects are taken in
account, such as selection function features or systematic e�ects, like those
described in chapter 5, an analytic estimation is too complex and numerical
methods are required. For this reason we do not expect the analytic pre-
dictions to replace numerical evaluations of the covariance matrix, but they
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can help to reduce the number of realizations needed for its evaluation (see
section 6.1).

In the following sections we describe how to include the shot-noise con-
tribution in the power spectrum covariance matrix. Then we de�ne the bias
model we use and how this de�nition enters in the theoretical predictions. In
the results section we show the comparison between the analytic predictions
and the measurements of the power spectrum covariance matrix obtained
using 10'000 PINOCCHIO simulated galaxy catalogs, highlighting the terms
that mainly contribute to the variance and to the o�-diagonal elements of
the matrix. In the last section we discuss the results and we describe how to
improve them.

7.1 The state of the art

In section 6.1 we have already described some procedures to model the matter
power spectrum covariance. A full power spectrum matter covariance matrix
prediction is given by Bertolini et al. (2016) and Mohammed et al. (2017).

In Mohammed et al. (2017) the authors use perturbation theory at 1-
loop order and they compare the prediction with simulations. Their matter
power spectrum covariance model includes the non-Gaussian part given by
the trispectrum considering both the modes outside and inside the survey.

To show how the di�erent components contribute they decompose the
non-Gaussian part of total covariance matrix in three terms:

CovFull
ij = CovG

ij +
[
CovBC

ij + CovTree−level
ij + Cov1−loop

ij

]
, (7.1)

where CovG
ij is the diagonal Gaussian contribution, CovBC

ij is a tree-level
contribution that is responsible for the beat coupling (BC) or super-sample
covariance (SSC), e.g. (Hamilton et al., 2006; Sefusatti et al., 2006; de Putter
et al., 2012), CovTree−level

ij is the term proportional to the tree-level trispec-

trum and Cov1−loop
ij is the 1-loop contribution from the 1-loop trispectrum

that they consider in their model. The BC term is given by the tree-level
trispectrum in the squeezed limit that can be modeled as the response of the
matter power spectrum to the change of the background density:

CovBC
ij = σ2

b

∂P (ki)

∂δb

∂P (kj)

∂δb
, (7.2)

where σ2
b is the variance of the mean density �eld in the survey window.
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The tree-level trispectrum is given by (Scoccimarro et al., 1999):

T̄ (ki, kj) =

∫
ki

d3k1

Vs(ki)

∫
ki

d3k2

Vs(kj)

(
12F

(s)
3 (k1,−k1,k2)PL(k1)2PL(k2)

)
+ 8F

(s)
2 (k1 − k2,k2)2PL(k2)2PL(k2 − k1)

+ 8F
(s)
2 (k1 − k2,k2)F

(s)
2 (k2 − k1,k1)PL(k1)PL(k2 − k1) (7.3)

+ {k1 ↔ k2} . (7.4)

A full calculation on all the 1-loop contribution has been recently presented
in Bertolini et al. (2016); in the speci�c case of Mohammed et al. (2017) the
1-loop contribution that they consider has the following form:

Cov1−loop
ij =

1

V π2

∫
dq P 2

L(q)q2V(q, ki)V(q, kj) , (7.5)

where V(q,k) is the normalized functional derivative given by Nishimichi
et al. (2016):

V(q,k) =
PL(q)

∆2(q)

〈δP1-loop(k)

δPL(k)

〉
Ω
, (7.6)

where δ stays for the functional derivative, ∆2(q) = 4πq3P (q)/(2π)3 and
〈...〉 is the angle averaging.

The covariance matrix, eq. 7.1, evaluated in this way is compared with
a large set of N-body simulations (Blot et al., 2015) (see section 3 of Mo-
hammed et al. (2017)).

In �gure 7.1 they show a quantity that we will use in the next section,
de�ned as the full covariance matrix normalized to the power spectrum:

cij ≡
Cij

Ptot(ki)Ptot(kj)
(7.7)

where Ptot include the shot-noise contributions.
All the three components are showed, tree-level term with a green dashed

line, one-loop term with a blue dotted line and the BC term with a yellow
dashed line. The predictions are compared with the simulations, the solid
black line; the cyan solid line is the only Gaussian part of the matrix. They
are capable to reproduce the results from simulations to about 10% in the
quasi linear regime. The BC term ends up to be the most relevant one,
while the tree-level trispectrum is important on large scales. The smaller
scales are dominated by the 1-loop term. They �nd that the agreement with
simulations is better when the BC is included even without the additional
non-linear correction. The non-Gaussian part of the matrix is dominated
by one single eigenmode so that the non-Gaussian response has always the
same shape, but its amplitude can varies. If one eigenmode dominates, an
alternative approach could be the following: the non-Gaussian covariance
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Figure 7.1: Comparison from, (Mohammed et al., 2017), of the analytic
model with simulations from (Li et al., 2014a,b) at redshift 0.0.

is ignored and the eigenvector response is included as a �ctitious external
parameter in the analysis. The only issue with this procedure is that the
parameter would be quite degenerate with other cosmological parameters.
They show also results at high redshift where the non-linear contribution
is suppressed relative to the BC one and the agreement with simulations is
improved.

As they pointed out in the conclusion of the paper, this model could be
applied to galaxy clustering surveys only if the bias, the shot-noise and the
redshift space distortions terms are included.

In the next sections we describe our model for the galaxy power spectrum
covariance, studying two of these additional contributions: the bias and the
shot-noise terms.

7.2 Covariance of the galaxy power spectrum

We want to obtain a theoretical prediction for the covariance of the power
spectrum of biased objects, halos in this case, for the simple case of cubic
periodic box in real space. The estimator for the power spectrum we use is
de�ned in eq. 3.2. The estimator for the shot-noise-corrected power spectrum
can then be written as

P̂ (k) = P̂tot − P̂SN . (7.8)

It is important to stress that P̂SN is the shot-noise of the single realization.
This is a fundamental point because it impacts in the way we treat the
shot-noise terms in the the covariance matrix prediction.
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7.2.1 Biased tracers

We consider an approximation for the second contribution in the r.h.s of the
equation 7.7, consisting in the linear theory and tree-level PT predictions
respectively for the power spectrum P and the higher-order correlators, the
bispectrum B and the trispectrum T . We assume the following bias model
for the halo overdensity δh (Chan et al., 2012):

δh = b1δ +
1

2
b2δ

2 + γ2G2 +
1

6
b̃3δ

3 +O(δ4) . (7.9)

with δ being the matter overdensity and where G2 de�ned by eq. 2.93.
In eq.7.9, b̃3 is to be interpreted as an e�ective cubic bias correction since

we are ignoring all non-local correction beyond the quadratic one. We choose
to write, and compute, all contributions with their explicit dependence on
bias parameters. This is more practical since, factoring-out the bias, what
is left is the same bias for all halo masses and needs to be computed once.
In addition one can highlight the relative importance of each parameter.

We consider the simple linear approximation for the halo power spectrum

Pg(k) = b21 PL(k) (7.10)

PL(k) being the linear matter power spectrum, but we will explain later
that non-linear correction are needed to study the o�-diagonal term of the
covariance matrix in a consistent way.

As we have already pointed out in eq. 8.18, for the bispectrum we have

Bg(k1,k2,k3) = b31Bm(k1,k2,k3) + b21 b2 PL(k1)PL(k2) + perm.+

2 b21 γ2 Σ2(k1,k2)PL(k1)PL(k2) + perm.

(7.11)

where the matter bispectrum is de�ned by eq. 2.61 and Σ2(k1,k2) ≡
cos12 θ − 1. In the same way of the galaxy bispectrum we can obtain the
expression for the galaxy trispectrum:

Tg(k1,k2,k3,k4) = b41 Tm(k1,k2,k3,k4)

+ b31b2[PL(k1)Bm(k3, k4, k34) + 11 perm.]

+ 2b31γ2[Σ2(k1,k34)PL(k1)Bm(k3, k4, k34) + 11 perm.]

+ b21b
2
2 [PL(k1)PL(k2)PL(k13) + 11 perm.]

+ 4b21γ
2
2 [Σ(k1,−k13)Σ(k2,−k24)PL(k1)PL(k2)PL(k13) + 11 perm.]

+ b21b2γ2 {[Σ(k1,−k13) + Σ(k2,−k24)]PL(k1)PL(k2)PL(k13) + 11 perm.}
+ b31b̃3PL(k1)PL(k2)PL(k3) + 3 perm.

. (7.12)

We denote the contributions in the expressions above as

Tg = Tg,b1 + Tg,b2 + Tg,γ2 + Tg,b22 + Tg,γ22 + Tg,b2γ2 + T
g,̃b3

, (7.13)
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where the notation should be clear enough.

7.2.2 Power spectrum covariance and shot-noise

The covariance of P̂ should account, in addition to the terms depending on
P̂tot, for the contribution due to the shot-noise correction. In fact, we have

Cij ≡ 〈P̂ (ki)P̂ (kj)〉 − 〈P̂ (ki)〉〈P̂ (kj)〉
= 〈P̂tot(ki)P̂tot(kj)〉 − 〈P̂tot(ki) P̂SN 〉 − 〈P̂tot(kj) P̂SN 〉+ 〈P̂ 2

SN 〉 .
(7.14)

Since

〈P̂ 2
SN 〉 ≡ 〈P̂SN 〉〈P̂SN 〉+ ∆P 2

SN , (7.15)

where we denoted with ∆P 2
SN = Var(P̂SN ) the variance of the shot-noise

contribution, we have

〈P̂tot(ki) P̂SN 〉 = 〈P̂tot(ki)〉〈P̂SN 〉+ ∆P 2
SN (7.16)

so that, introducing the covariance Ctotij ≡ 〈P̂tot(ki)P̂tot(kj)〉−〈P̂tot(ki)〉〈P̂tot(kj)〉
of the total power spectrum estimator P̂tot(k), we obtain

Cij = Ctotij − 〈P̂tot(ki)〉〈P̂SN 〉 − 2 ∆P 2
SN − 〈P̂tot(kj)〉〈P̂SN 〉+ ∆P 2

SN + 〈P̂SN 〉2

−
{
−
[
〈P̂tot(ki)〉+ 〈P̂tot(kj)〉

]
〈P̂SN 〉+ 〈P̂SN 〉2

}
= Ctotij −∆P 2

SN (7.17)

We can estimate this quantity in terms of the variance in the total number
of objects N , assumed to be a Poisson variable:

∆P 2
SN '

1

k6
f

1

〈N〉4
∆N2 =

1

k6
f

1

〈N〉3
= k3

f P
3
SN . (7.18)

The covariance for the estimator P̂tot can be expressed as

Ctotij ≡ 〈P̂tot(ki)P̂tot(kj)〉 − 〈P̂tot(ki)〉〈P̂tot(kj)〉

' δij
2

Nki

P 2
tot,g(ki) + k3

f T̃tot,g(ki, kj) (7.19)

where the �rst term is the Gaussian contribution while the second is the
average of the trispectrum Tg(ki,−ki,kj ,−kj) over the angle θ between the
vectors ki and kj , given by

T̃g(ki, kj) ≡
1

2

∫ +1

−1
d cos θ Tg(ki,−ki,kj ,−kj) . (7.20)
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We then obtain

T̃g(ki, kj) = b41T̃m(ki, kj)

+ 4b31b2 [PL(ki) + PL(kj)] B̃m(ki, kj)

+ 8b31γ2

{
PL(ki)

∫ 1

−1
d cos θBm(ki,kj) [Σ2(ki,−kij) + Σ2(kj ,−kij)]

}
+ 2b21b

2
2 [PL(ki) + PL(kj)]

2 P̃L(ki, kj)

+ 8b21γ
2
2

{
P 2
L(ki)

∫ 1

−1
d cos θijΣ

2
2(ki,−kij)PL(kij)

+ 2PL(ki)PL(kj)

∫ 1

−1
d cos θijΣ2(ki,−kij)Σ2(kj ,kij)PL(kij)

+ P 2
L(kj)

∫ 1

−1
d cos θijΣ

2
2(kj ,−kij)PL(kij) }

+ 4b21b2γ2

{
P 2
L(ki)

∫ 1

−1
d cos θijΣ2(ki,−kij)PL(kij)

+ PL(ki)PL(kj)

∫ 1

−1
d cos θij [Σ2(ki,−kij) + Σ2(kj ,kij)]PL(kij)

+ P 2
L(kj)

∫ 1

−1
d cos θijΣ2(kj ,−kij)PL(kij) }

+ 2b31b̃3PL(ki)PL(kj) [PL(ki) + PL(kj)] . (7.21)

where B̃g(ki, kj) is the average of the bispectrum B(kij ,ki,kj) over the angle
θ between the vectors ki and kj , given by:

B̃g(ki, kj) = b31, B̃m(ki, kj)

+ b21b2

[
PL(ki)PL(kj) + PL(ki)P̃L(ki, kj) + PL(kj)P̃L(ki, kj)

]
+ 2b21γ2

[
−1

3
PL(ki)PL(kj) + PL(ki)

∫
d cos θijΣ2(ki,−kij)PL(kij)

+PL(kj)

∫
d cos θijΣ2(kj ,−kij)PL(kij)

]
. (7.22)

All correlation functions appearing in the expression for Ctotij include shot-
noise contributions, so

Ptot(k) = Pg(k) + PSN , (7.23)

Ttot(k1,k2,k3,k4) = Tg(k1,k2,k3,k4) + PSN [Bg(k12, k3, k4) + 5 perm.]

+P 2
SN [Pg(k1) + Pg(k2) + Pg(k3) +

Pg(k4) + Pg(k12) + Pg(k13) + Pg(k14)] + P 3
SN .(7.24)
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In particular,

Ttot(q,−q,p,−p) = Tg(q,−q,p,−p)

+ 2PSN [Bg(q + p,−q,−p) +Bg(q− p,−q,p)]

= P 2
SN [2Pg(q) + 2Pg(p) + Pg(|q + p|) + Pg(|q− p|)]

+P 3
SN (7.25)

so that

T̃tot(ki, kj) '
1

2

∫ +1

−1
d cos θ Tg(ki,−ki,kj ,−kj)

+ 4PSN
1

2

∫ +1

−1
d cos θ Bg(kij ,−ki,−kj)

+ 2P 2
SN [Pg(ki) + Pg(kj)] + 2P 2

SN

1

2

∫ +1

−1
d cos θ Pg(kij) + k3

f P
3
SN

≡ T̃g(ki, kj) + 4PSN B̃g(ki, kj)

+2P 2
SN

[
Pg(ki) + Pg(kj) + P̃g(ki, kj)

]
+ P 3

SN ,

(7.26)

where kij = kij(ki, kj , θ) = |kij | and where we further de�ned

B̃(ki, kj) ≡
1

2

∫ 1

−1
d cos θ B(kij , ki, kj)

=
1

2 ki kj

∫ ki+kj

|ki−kj |
dq q B(q, ki, kj) , (7.27)

and

P̃ (ki, kj) ≡
1

2

∫ 1

−1
d cos θ P (kij)

=
1

2 ki kj

∫ ki+kj

|ki−kj |
dq q P (q) . (7.28)

We can therefore express the covariance Cij with all explicit shot-noise con-
tributions as:

Cij = δij
2

Nki

P 2
tot(ki) + k3

f T̃tot(ki, kj) + k3
f P

3
SN −∆P 2

SN

' δij
2

Nki

[Pg(ki) + PSN ]2

+k3
f

{
T̃g(ki, kj) + 4PSN B̃g(ki, kj)

+2P 2
SN

[
Pg(ki) + Pg(kj) + P̃g(ki, kj)

]}
,

(7.29)
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where we assumed ∆P 2
SN ' k3

f P
3
SN . In particular, the power spectrum

variance reads:

∆P 2
g (k) =

2

Nk
[Pg(k) + PSN ]2 + k3

f

{
T̃g(k, k) + 4PSN B̃g(k, k)

+2P 2
SN

[
2Pg(k) + P̃g(k, k)

]}
(7.30)

We are particularly interested in a theoretical description of the o�-diagonal
contributions to the covariance matrix Cij . A robust prediction for the Gaus-
sian, diagonal component can simply be given in terms of the measured, total
power spectrum Ptot. An interesting quantity, therefore, it is the reduced,
adimensional covariance already de�ned in eq. 7.7, that in our case reads:

cij ≡
Cij

Ptot(ki)Ptot(kj)

= δij
2

Nki

+ k3
f

T̃g(ki, kj) + 4PSN B̃g(ki, kj) + 2P 2
SN

[
Pg(ki) + Pg(kj) + P̃g(ki, kj)

]
[Pg(ki) + PSN ] [Pg(kj) + PSN ]

.

(7.31)

In order to be consistent with the tree-level approximation for the trispec-
trum, we would need to include 1-loop corrections to Pg(k), eq. 7.10 in the
denominator of the reduced covariance matrix de�ned above.

The diagonal corresponds to

∆P 2(k)

P 2
tot(k)

=
2

Nk

+ k3
f

T̃g(k, k) + 4PSN B̃g(k, k) + 2P 2
SN

[
2Pg(k) + P̃g(k, k)

]
[Pg(k) + PSN ]2

.

(7.32)

7.3 Results

In this section we show the comparison between the theoretical prediction
and the measures obtained from the simulated galaxy catalogs. We use the
10,000 PINOCCHIO catalogs we have already described in section 5.3.1. We
consider all the halos above the mass threshold given by 40 times the halo
particle mass Mp = 2.67× 1011M�.

In �gure 7.2, we show the average measured power spectrum with and
without shot-noise (red and green solid lines), compared with the linear (cyan
dashed line) and non-linear (blue dashed line) power spectrum in Standard
Perturbation Theory (SPT) with Gaussian initial conditions, eq. 2.57; to
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compare the average power spectrum measured on the simulated catalogs,
the theory power spectra account for a shot-noise contribution obtained as
the average shot-noise over all the 10,000 realizations. The horizontal gray
line is the average shot-noise. In the lower panel we plot the ratio between
the two predictions and the total measured power spectrum. The power
spectrum measured from the PINOCCHIO realizations matches with the pre-
diction up to k ∼ 0.3hMpc−1 where the di�erences are of 5%. A comparision

Figure 7.2: Comparison of the averaged power spectrum over 10'000 realiza-
tions with (solid red line) and without (solid green line) shot-noise, against
the theory predictions in linear theory (dashed cyan line) and non-linear
theory (dashed blue line). Theory includes the average shot-noise over the
10,000 realizations, plotted with a solid gray line. In the lower panel the
residuals is given by the ratio of the theory predictions with respect the
measured power spectrum including shot-noise.

of the measured power spectrum with the expected one from theory is fun-
damental for the following analysis of the power spectrum covariance matrix:
the Gaussian part of eq. 7.29 is de�ned directly using the measured power
spectrum, so we have to be sure that it well reproduces the theory on the
scales of interest.

Our aim is to model the o�-diagonal elements of the covariance matrix
that take into account the non-Gaussianity. First of all we can check if our
model is capable to reproduce the diagonal of the matrix. We expect the
major contribution comes from the Gaussian part, but the diagonal is also
modi�ed by non-Gaussian corrections, eq. 7.30. In �gure 7.3 we plot, in
the upper panel, the power spectrum variance divided by the total power
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spectrum, in the middle panel the ratio between the measured variance with
respect the analytic prediction and in the lower panel the contributions given
by the main trispectrum terms to the total variance prediction. In the upper
panel the solid red line is the measured variance, the solid purple line the
Gaussian prediction while the solid, the dashed and the dotted lines are
the most relevant contributions coming from the galaxy trispectrum and its
shot-noise corrections:

TSN1(ki, kj) ≡ 4PSN B̃g(ki, kj) (7.33)

TSN2(ki, kj) ≡ 2P 2
SN

[
Pg(ki) + Pg(kj) + P̃g(ki, kj)

]
, (7.34)

where B̃g(ki, kj) is de�ned in eq. 7.22. The solid black line is the full
predicted variance. It seems clear that on the scales we are investigating the
Gaussian term is dominant, while the trispectrum corrections are negligible.

In the middle panel the red solid line shows the ratio between our mea-
sured variance and the predictions. As we have already mentioned, the vari-
ance is dominated by the Gaussian term so the large scales (k < 0.01hMpc−1)
di�erence is due to sample variance, while on the intermediate scales we are
able to match the prediction with an error smaller than 10%. For scales
smaller than k ∼ 0.3hMpc−1 t he decreasing trend seems to indicate an ini-
tial e�ect of the non-Gaussian corrections. Even if the trispectrum terms
are smaller than the Gaussian one, they represent the largest additional
contributions to the diagonal. In the lower panel we see how the term pro-
portional to the matter trispectrum (solid green line) is decreasing on scales
smaller than k ∼ 0.1hMpc−1, while the two shot-noise corrections to the
trispectrum, eq. 7.34, begin to gaining power at same scales.

We do not plot the other non-Gaussian contributions of eq.7.21 because
they are smaller than these three terms. For this analysis, we neglect the
terms proportional to b3 because we expect to be negligible with respect the
other contributions.

In eq. 7.31 we have de�ned the adimensional covariance matrix to in-
vestigate the non-Gaussian correction to the Gaussian contribution simply
given by 2/Nk. In �gure 7.4 we plot the reduced covariance matrix for par-
ticular values of ki varying kj . From this �gure we can study the accuracy
of the predictions of the non-Gaussian terms and how they a�ect the struc-
ture of the covariance matrix. The solid red line is the measured reduced
covariance, the solid black line the total prediction including the Gaussian
part and all the trispectrum terms; the solid green line is the term propor-
tional to b41T while the dashed and the dotted green lines are the trispectrum
shot-noise terms. When ki = kj the reduced covariance matrix shows a peak
corresponding to the Gaussian contribution plus the small, as we have seen
in �gure 7.3, corrections to the diagonal. We expect the black line to re-
produce the observed covariance matrix, but we observe that our prediction
overestimate our measurements on all the scales. The main reason appears
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Figure 7.3: Comparison of the diagonal of the power spectrum covariance ma-
trix obtained from 10'000 measured power spectrum (solid red line), against
the Gaussian prediction (solid magenta line) and the full prediction (solid
black line). In green are showed the main trispectrum contributions: the
solid line represents the term proportional the b41, the dashed and the dotted
lines are the two shot-noise terms in the trispectrum. In the middle panel it
is plotted the ratio between the measured variance and the full prediction,
while in the lower panel the it is showed the ratio of the three trispectrum
terms with respect to the full theory.

to be the overestimation of the shot-noise contributions to the trispectrum
that produce an enhancement of the o�-diagonal elements of the matrix.

7.4 Discussion

In this chapter we have described our analytic model for the full galaxy
power spectrum covariance matrix. We have considered a bias model that
includes the linear bias, the quadratic bias, the �rst non-local bias and an
e�ective bias b3 to model other non-linear corrections in the galaxy density
�eld. From the analysis of the shot-noise contribution, we have discovered
that it is fundamental to correct the measured power spectrum on each
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Figure 7.4: Adimensional reduced covariance matrix obtained varying ki for
particular values of kj . The color code is the same of �gure 7.3.

realization with the shot-noise of that particular realization and not with
a constant value across the realizations. The power spectrum estimator is
modi�ed when we consider this kind of shot-noise term; the consequence is
a correction term in the power spectrum covariance matrix (see eq. 7.17).

Looking at the diagonal of the covariance matrix, we can say that it
is dominated by sample variance at very large scales and by the Gaussian
term for scale up to k ∼ 0.3hMpc−1. The main non-Gaussian corrections,
coming from the �rst term of the galaxy trispectrum and from its shot-noise
corrections are negligible on these scales, but the shot-noise contributions
begin to get larger at scales smaller than k = 0.3hMpc−1. The measured
variance is well reproduced by the prediction.

To study the o�-diagonal terms of the covariance matrix we have de-
�ned the adimensional covariance matrix as the full covariance normalized
by the total power spectrum. We have divided the Gaussian part by the
measured power spectrum, while the non-Gaussian part is divided by the
1-loop power spectrum. This quantity allow us to quantify how relevant
are the non-Gaussian corrections to the Gaussian term. As for the variance
there were the most relevant terms are those one we have described above.
Contrary to the variance our full prediction is not capable to describe the
features of the measured covariance matrix due to our modeling; we observe
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an overestimation on all the scales.
To get a more reliable and accurate description of the o�-diagonal ele-

ments of the covariance matrix we will proceed with two main analyses:

• we have considered the simple case of Poissonian shot-noise; this is
an approximation that probably is not valid in our case and it is
known that non-Poissonian correction can be modeled and can be
non-negligible, e.g. (Hamaus et al., 2010). The more important non-
Gaussian terms that in�uence the o�-diagonal covariance matrix de-
pends on shot-noise, so a better modeling of this quantity will improve
the modeling of all the covariance structure;

• the only measured quantity in the full covariance matrix prediction is
the galaxy power spectrum, but it is also possible to obtain a measure-
ments of the averaged trispectrum. A measurements of the trispectrum
directly from the simulation can be compared with our predictions for
the galaxy trispectrum.

We belive that these these two furhter analyses will provide insights on how
to improve the agreement between model predictions and observations.



Chapter 8

Toward an analysis of the

bispectrum

When we look at the early Universe (z∼1100) we observe a Gaussian dis-
tribution; all the information we need to describe this �eld is given by the
two-point statistics the power spectrum or the two-point correlation function,
all the higher-order correlators are zero. Gravitational instability ampli�es
the initial Gaussian perturbations allowing the formation of structures we
observe today. Gravity is an intrinsic non-linear process and these non-
linearities give rise to non-zero higher-order statistics, that have to be take
into account for a correct clustering analyisis.

We focus on the bispectrum that is the three-point function in Fourier
space. As we have already mentioned in section 2.3.2, the bispectrum can
be used to break some degeneracy in the galaxy bias parameters (Fry, 1994;
Matarrese et al., 1997; Scoccimarro et al., 1998), but it is also a powerful
tool to obtain constraints on cosmological parameters.

In this chapter we procede with the analysis of the galaxy bispectrum
with the aim of constrain the galaxy bias parameters. The �rst part of the
chapter is devoted to a short introduction to the bispectrum evaluation: as
we have pointed out, the correct de�nition of the bispectrim for all the tri-
angular con�gurations requires a large number of simulated galaxy catalogs;
the number of simulations required cannot be obtained with full N-body
simulations, so one alternative is to reduce the number of triangular con�g-
urations without losing too much information. In section 8.1.1 we brea�y
describe some quantities that can make possible to reduce the number of
the triangular con�gurations needed to de�ne the bispectrum. The other
alternative, is to take advantage of the large set of realizations (10,000) ob-
tained with PINOCCHIO that allow us to work with the full bispectrum. In
this context we describe the model that we use for the galaxy bispectrum
and the analysis we have carried out for the estimation of the galaxy bias
parameters. In the last part of the chapter we show our results putting in
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evidence the qualities and the limitation of our model. The last section is
devoted to a discussion on the results and on the future improvements that
have to be done.

8.1 The bispectrum challenge

In the �rst chapter we have introduced the 2-point and 3-point functions
in Fourier space. It is useful to write the two expressions to make some
comparison and understand why the bispectrum analysis is challenging:

〈δk1δk2〉 = δ
(3)
D (k1 + k2)P (k)

〈δk1δk2δk3〉 = δ
(3)
D (k1 + k2 + k3)B(k1, k2, k3) .

We assume the spatial isotropy so that the power spectrum depends on one
wavenumber only: k = |k1| = |k2|. The bispectrum is a more complex
object because it depends on three wavenumbers with the only condition
that the three k's form a closed triangle. There are many con�gurations of
triangles that we have to take into account and this number increases faster
than the case of the power spectrum. Our aim is to use the bispectrum as a
cosmological probe and this means that we have to compute its covariance
matrix. The smaller are the scales we want to investigate, the larger is
the number of triangular con�gurations and the larger is the size of the
bispectrum covariance matrix.

It is useful to show an example to stress that the evaluation of the bis-
pectrum and its covariance matrix requires a large number of realizations,
because of the large number of triangular con�gurations: considering a peri-
odic box of side 3.5h−1 Gpc looking at scale up to kmax ∼ 0.3hMpc−1 there
are ∼1000 triangle con�gurations using a bin-width of 6kf , with kf = 2π/L
the fundamental frequency of the box of side L. For this type of con�gura-
tion in the SDSS-BOSS collaboration bispectrum analysis (Gil-Marín et al.,
2017), they use ∼2000 simulations. This number has to be considered as a
�lower limit�, in the sense that is the minimal request in terms of number
of simulations to get a well de�ned bispectrum on those scales. The inves-
tigation of smaller scales than k = 0.3hMpc−1 require a larger number of
realizations.

8.1.1 Alternative bispectrum estimators

It is possible to reduce the number of triangles using di�erent bispectrum
estimators, that are de�ned as the average of particular set of triangular
con�gurations. These quantities allow us to reduce the size of the covariance
matrix, but the price to pay is a loss in the information contained in it. In
this chapter we brie�y describe some of these aggregations, to distinguish
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them from the full bispectrum.

The integrated bispectrum was �rst proposed by Chiang et al. (2014).
This quantity considers particular con�gurations with one wavenumber, ki,
much smaller than the other two. These con�gurations are called �squeezed�
con�gurations. Assuming k3 � k1, k2 the 3-point function can be expressed
as the correlation between the single long-wavelength mode δ(k3) and the
2-point function 〈δ(k1)δ(k2)〉. The cubic survey volume is divided in Ns

sub-volumes centered at positions rL; the integrated bispectrum is de�ned
as:

iB(k) ≡
∫
d2k

4π
〈P (k, rL)δ̄(rL)〉Ns , (8.1)

where P (k, rL) is the power spectrum computed in each sub-volume and
δ̄(rL) is the average overdensity in the sub-volume; the expectation is taken
over all sub-volumes. Following Chiang et al. (2014) we can expand the
power spectrum in powers of δ̄(rL); at leading order the average in eq. 8.1
is:

〈P (k, rL)δ̄(rL)〉Ns ≈
d ln P (k)

dδ̄

∣∣∣∣
δ̄

P (k)σ2
L , (8.2)

with σ2
L ≡ 〈δ̄2(rL)〉Ns . Eq. 8.2 tells us that the integrated bispectrum

describes variation of the power spectrum in response to changes in the
large-scale overdensity. The power spectrum and its variance can be di-
rectly measured so that any new information in the integrated bispectrum
is contained in the normalized component:

ib(k) ≡ iB(k)

P (k)σ2
L

≈ d lnP (k)

dδ̄

∣∣∣
δ̄=0

, (8.3)

where d lnP (k)/dδ̄ is the linear response function that can approximate ib(k)
on large scales.

The Line Correlation Function (LCF) is an estimator based on the
property of the bispectrum to encode information on both amplitude and
phases. The line correlation function was for the �rst time proposed by
Obreschkow et al. (2013) to measure a subset of 3-point phase correlation of
the density �eld; in particular this subset accounts for collinear con�gura-
tions. The de�nition of the LCF is given, as for the integrated bispectrum,
by an average of the phase �eld smoothed on a scale r:

l(r) ≡ V 3

(2π)9

(r3

V

)3/2
∫
d2r

4π
〈εr(x)εr(x + r)εr(x− r)〉 , (8.4)

where V 3

(2π)9
is a volume regularization, εr(x) is the real phase �eld de�ned

as

εr(x) =

∫
d3k

(2π)3
ε(k)eik·xW (k|r) , (8.5)
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with W (k|r) the Fourier transform of the smoothing window function and
ε(k) ≡ δ(k)/|δ(k)|. From the works by Wolstenhulme et al. (2015) and
Eggemeier and Smith (2017) we know that the Fourier transform of the 3-
point phase function 〈εr(x)εr(x + r)εr(x− r)〉: using eq. 8.5 into 8.4 we can
obtain the three-point function of εr(k) that is associated to the bispectrum;
at lowest order we can write (Wolstenhulme et al., 2015):

〈εr(k1)εr(k2)εr(k3)〉 ≈ (2π)3

V

(√π
2

) B(k1,k2,k3)√
V P (k1) P (k2) P (k3)

×δD(k1+k2+k3)

(8.6)
therefore the LCF contains some fraction of the information on the bispec-
trum. We stress that is only a fraction of the information because l(r) is an
average over speci�c collinear con�gurations, so it represents a compression.

The modal bispectrum is equivalent to the usual bispectrum except
that we exchange the Fourier basis eik·x for a set of alternative modes that
are adapted to the structure of the bispectrum. Following Fergusson and
Shellard (2009); Regan et al. (2010), we can de�ne the basis function Qn so
that:

B(k1, k2, k3) ≈ Bmodal(k1, k2, k3) ≡ 1

w(k1, k2, k3)

nmax−1∑
n=0

βQn Qn(k1, k2, k3) ,

(8.7)
where βQn are the �modal coe�cient� and w(k1, k2, k3) is a weight function.
Qn can be factorized in three functions depending respectively on k1, k2 and
k3; this factorization make easier to evaluate the amplitude of the bispectrum
in the limit of weak non-Gaussianity (Schmittfull et al., 2013a).

Eq. 8.7 can be seen as an expansion of the bispectrum over a set of
con�gurations picked out by the corresponding Qn. nmax is the number of
triangles used to represent the bispectrum and to reduce the number of mode
it is expected to be nmax � Ntriangles.

Finally, the quadratic estimator developed by Schmittfull et al. (2015)
describes the tree-level bispectrum as three separate components, which can
be Legendre decomposed in three terms. The �rst one is the squared density :

δ2(x) =

∫
d3k

(2π)3
eik·x

∫
d3q

(2π)3
P0(µ)δ(q)δ(k− q) , (8.8)

the second is shift-term:

−Ψ(x)∇· δ(x) = −
∫

d3k

(2π)3
eik·x

∫
d3q

(2π)3
F 1

2 (q, |k−q|)P1(µ)δ(q)δ(k−q) ,

(8.9)
with Ψ(k) = − ik

k2
δ(k) and F 1

2 is the symmetric part of the kernel de�ned in
eq. 2.55, and the third is the tidal-term

s2(x) =

∫
d3k

(2π)3
eik·x

∫
d3q

(2π)3
P2(µ)δ(q)δ(k− q) , (8.10)
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The Legendre polynomial in eqs. 8.8, 8.9, 8.10 are:

P0(µ) = 1 (8.11)

P1(µ) = µ (8.12)

P2(µ) =
3

2

(
µ2 − 1

3

)
(8.13)

and µ is the cosine between q and k − q. In the limit where the tree-level
theory applies, one optimal way to write the bispectrum estimator is using
the three terms we have de�ned above. In particular the procedure consists
in computing the cross-spectra between the quadratic �elds and the density.
Following the notation of Schmittfull et al. (2015) we have:

P̂δ2,δ(k) ∼
∑

k,|k|=k

[δ2](k)δ(−k) (8.14)

P̂−Ψi∂iδ,δ(k) ∼
∑

k,|k|=k

[−Ψi∂iδ](k)δ(−k) (8.15)

P̂s2,δ(k) ∼
∑

k,|k|=k

[s2](k)δ(−k) , (8.16)

where they de�ne a general quadratic �eld

D[δ](k) =

∫
d3q

(2π)3
D(q,k− q)δ(q)δ(k− q) (8.17)

with a kernel D(q,k− q) given by one of the Legendre polinomials de�ned
above. Eq. 8.15 carries almost the total bispectrum information on the linear
bias b1; eqs. 8.14 and 8.16 can improve the constraints on b2 and on the
non-local bias bs2 . From the results of Schmittfull et al. (2015) these cross-
spectra contain the same constraining power on bias parameters as a full
Fourier bispectrum. From the comparison with the theoretical expectation
this procedure works up to k . 0.9hMpc−1 at z = 0.55. The cross-spectra
depend only on a single wavenumber so that the modeling of the covariance
can be simpli�ed.
The modal bispectrum can well approximate the Fourier bispectrum by ∼ 50
modes (Schmittfull et al., 2013b; Lazanu et al., 2016), resulting in one of the
best estimator.

Our analysis is based on the usual bispectrum, because we want to use
as much as possible information carried by the bispectrum. In this case the
covariance matrix can be estimated only using fast approximate methods
that allow us to produce a large set of synthetic galaxy catalogs.

8.2 The bispectrum model

In section 2.3.2 we have stressed that the relation between the matter density
�eld and the galaxy density �eld is not trivial. To relate the two �elds in
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the following analysis, we consider the linear bias b1, the quadratic bias b2
and the non-local bias γ2 (see eq. 2.91). The tree-level galaxy bispectrum
model, eq. 2.61, depends on these three parameters:

Bg(k1,k2,k3) = b31B(k1,k2,k3)

+ b21b2

[
PL(k1)PL(k2) + PL(k2)PL(k3) + PL(k1)PL(k3)

]
+ b21γ2

[
Σ2,12PL(k1)PL(k2) + Σ2,23PL(k2)PL(k3)

+Σ2,13PL(k1)PL(k3)
]
,

(8.18)

where is B(k1,k2,k3) is the matter bispectrum, eq. 2.61, and we introduce
the kernel:

Σ2(q1,q2) ≡ cos2 θ12 − 1 (8.19)

with cos θ12 ≡ q̂1 · q̂2. To keep the model as easy as possible we include the
lowest non-linear and non-local corrections: we consider the quadratic bias
b2 to include the non-linear corrections and the non-local bias γ2 to account
also for the non-locality.

In all the analysis that we will present in the following, the bispectrum
depends only on the three galaxy bias parameters; the cosmology dependence
is not included. The set of simulations we use is the same described in section
6.2 with �xed cosmology.

8.2.1 Likelihood analysis

We assume that the parameter distribution follows a multi-variate Gaussian
likelihood:

L(b1, b2, γ2) =
1√

2π|detC|1/2
exp
[
−1

2

∑
ij

(
B̄i −Bg,i

)
C−1
ij

(
B̄j −Bj,g

)]
,

(8.20)
where |detC| is the determinant of the bispectrum covariance matrix, the sum∑

ij runs over all the triangles, B̄i = B̄i(k1,k2,k3) is the average bispectrum
over 300 realizations, Bg,i = Bg,i(k1,k2,k3) is given by eq. 8.18 and C−1

ij is
the inverse of the bispectrum covariance matrix, with:

Cij = 〈δBiδBj〉 = 〈(Bi − B̄i)(Bj − B̄j)〉 , (8.21)

where 〈...〉 is the average on all the realizations.
Given the likelihood of the parameters it is possible to proceed with

a Maximum Likelihood Estimation (MLE): �nding the set of values that
maximize the likelihood corresponds to �nd the best model to represent to
observed data. The bispectrum model, given by eq. 8.18, depends explicitly
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on the bias parameters. This allows to compute analytically the values that
maximize the likelihood.

From now on we will work with the natural logarithm of the likelihood
to simplify the calculation:

ln L(b1, b2, γ2) = −1

2

∑
ij

(
B̄i −Bg,i

)
C−1
ij

(
B̄j −Bj,g

)
+ lnA , (8.22)

where A is the normalization factor.
Maximazing the likelihood function with respect the three bias parame-

ters we obtain three equations for b1, b2 and γ2. We numerically solve the
equation to �nd the value of the parameters in function of the scale that
maximize the likelihood.

8.2.2 Fisher matrix analysis

Considering the set of parameters that maximize the likelihood (b∗1,b
∗
2,γ
∗
2)

we make a Taylor expansion of the logarithm of the likelihood around the
maximum:

ln L(b1, b2, γ2) = ln L(b∗1,b
∗
2, γ
∗
2) +

(∂ln L
∂θi

)
θ=θ∗

(θi − θ∗)

+
1

2

(∂2ln L
∂θi∂θj

)
θ=θ∗

(θi − θ∗)(θj − θ∗) , (8.23)

where we omit the sum on i, j = 1, ..., 3 and θi = (b1, b2, γ2). By de�nition
the �rst derivative of the likelihood, evaluated to the maximum, vanishes:

ln L(b1,b2, γ2) = ln L(b∗1,b
∗
2, γ
∗
2)+

1

2

(∂2ln L
∂θi∂θj

)
θ=θ∗

(θi−θ∗)(θj−θ∗) . (8.24)

We can de�ne the Hessian matrix in the �owing way:

Hij ≡ −
∂2ln L
∂θi∂θj

. (8.25)

This matrix contains the information we need on the parameters error. The
Fisher matrix is given by:

Fij ≡ −〈
∂2ln L
∂θi∂θj

〉 = 〈Hij〉 . (8.26)

where 〈...〉 denotes an ensemble average over observational data. The error
matrix is given by the inversion of the Hessian matrix:

F−1
ij ≤ σ

2
ij , (8.27)

where Fij is given by eq. 8.26.
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In eq. 8.27 we used an inequality between the Fisher matrix and the error
matrix, named Cramer-Rao inequality : the Fisher matrix approach always
gives an underestimate of the errors (Verde, 2010).

In general if the data errors are Gaussian distributed then it is correct
to use a multi-variate Gaussian distribution. If the data are not Gaussianly
distributed it is always possible to re-bin the data so that in each bin there is a
superposition of a set of independent measurements (central limit theorem);
after the re-binning the �nal distribution will be bettere approximated by a
multi-variate Gaussian. It is worth to stress that the data can be Gaussianly
distributed, but the parameters can follow a distribution that is not described
by a multi-variate Gaussian: for this to be true it is required that the model
depends linearly on the parameters. Looking at eq. 8.18 it seems that we
are not in this case, but we can always re-de�ne the parameters in a way to
have a linear dependent model; for example one can de�ne:

P1 = b31

P2 = b21b2

P3 = b31γ2 , (8.28)

so that eq. 8.18 becomes:

Bg(k1,k2,k3) = P1B(k1,k2,k3)

+ P2

[
PL(k1)PL(k2) + PL(k2)PL(k3) + PL(k1)PL(k3)

]
+ P3

[
Σ2,12PL(k1)PL(k2) + Σ2,23PL(k2)PL(k3)

+Σ2,13PL(k1)PL(k3)
]

;

(8.29)

In this case the model for the bispectrum will depends, linearly, on three
parameters P1, P2 and P3. In this sense in our analysis we use the likelihood
is Gaussian, therefore we assume that the Fisher matrix and the error matrix
are equal.

The covariance matrix of the parameter is:

[F ]−1 = [C] =

 σ2
b1

σb1b2 σb1γ2
σb2b1 σ2

b2
σb2γ2

σγ2b1 σγ2b2 σ2
γ2

 (8.30)

The marginalized errors on the parameters are given by σb1 ,σb2 and σγ2 .
After we get the parameter error matrix from the Fisher analysis, we can
plot the error ellipses corresponding to the error on two parameters after
marginalizing on the third. The marginalization process produces three new



8.2 The bispectrum model 133

covariance matrices:

Cb1b2 =

[
σ2
b1

σb1b2
σb1b2 σ2

b2

]
Cb1γ2 =

[
σ2
b1

σb1γ2
σb1γ2 σ2

γ2

]
Cb2γ2 =

[
σ2
b2

σb2γ2
σb2γ2 σ2

γ2 .

]
(8.31)

The ellipse parameters depend on these covariance matrices; for a general
matrix of the type:

C =

[
σ2
x σxy

σxy σ2
y .

]
(8.32)

the eigenvalues are:

λ1 =
σ2
x + σ2

y

2
+

√
(σ2
x − σ2

y)
2

4
+ σ2

xy (8.33)

λ2 =
σ2
x + σ2

y

2
−

√
(σ2
x − σ2

y)
2

4
+ σ2

xy : (8.34)

the semi-axes of the ellipse parallel to the x-axis are given by:

a =

{√
max(λ1, λ2) if σx > σy√
min(λ1, λ2) if σy > σx ,

(8.35)

while the semi-axis parallel to the y-axis is:

b =

{√
min(λ1, λ2) if σx > σy√
max(λ1, λ2) if σy > σx .

(8.36)

The inclination of the ellipse is:

tan θ =
2σxy

σ2
x − σ2

y

. (8.37)

The semi-axes a and b should be multiplied by a rescaling factor α to account
for the di�erent con�dence levels (table 8.1).

The Fisher matrix analysis allow us to determine the parameters covari-
ance matrices, so that the error for each of the parameters is associated to
its mean value. In the next sections we study how the parameter likelihood
changes when we consider only the diagonal of the bispectrum covariance
matrix or the full covariance matrix.
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Table 8.1: Con�dence Ellipses

σ CL ∆χ2 α =
√

∆χ2

1 68.3 % 2.3 1.52
2 95.4 % 6.17 2.48
3 99.7 % 11.8 3.44

8.2.3 Bispectrum variance and covariance

In the �rst part of this chapter we have pointed out the need of having a
large number of realizations to build a reliable bispectrum covariance matrix.
Using the 300 N-body realizations, that we have described in chapter 6, we
are able to estimate the bispectrum variance, while the o�-diagonal elements
of the covariance matrix are too noisy to extract physical information. On
the other hand using the 10,000 realizations made with PINOCCHIO, all the
noise is lowered and what remains is the physical correlation between speci�c
triangle con�gurations. In �gure 8.1 we show a density plot of the bispectrum
cross-correlation coe�cient; the squares are red when the cross-correlation
coe�cient is 1, while they are blue when it is -1, all the other colors are
for values between -1 and 1. On the x- and y-axes there are the di�erent
triangular con�gurations, represented as a triplet of values, as already done in
the bispectrum comparison in section 6.2.2. On the left the case with 300 N-
body simulations, on the right the case with 10,000 PINOCCHIO realizations.
We derive the bias parameters values using both the 300 N-body realizations

Figure 8.1: Cross-correlation coe�cient de�ned by eq. 8.39. On the left the
case with 300 realizations, on the right the case with 10,000 realizations.
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and the 10,000 PINOCCHIO.
In the �rst case, we know that we can trust only of the diagonal of the

covariance matrix. In this case we use a likelihood that depends only on the
bispectrum variance ∆B2

i :

ln L(b1, b2, γ2) ∝ −1

2

∑
i

(
B̄i −Bg,i

)2

∆B2
i

. (8.38)

In the second case we have to de�ne the covariance matrix in the following
way: we start from the PINOCCHIO cross-correlation coe�cient

rPIN
ij =

CPIN
ij√

CPIN
ii CPIN

jj

, (8.39)

where CPIN
ij is the covariance matrix and CPIN

ii the diagonal of the matrix,
the variance. This quantity gives information on the o�-diagonal part of the
matrix as shown in �gure 8.1. Eq. 8.39 is a general relation and for the 300
Minerva simulations we can write:

CN−body
ij = rN−body

ij

√
CN−body
ii CN−body

jj . (8.40)

We want to built our �nal covariance matrix using the diagonal coming
from the N-body simulations and the o�-diagonal elements from the 10,000
PINOCCHIO. To this purpose we start from eq. 8.40 and we replace the cross-
correlation from the N-body with that computed using the PINOCCHIO, eq.
8.39. The �nal expression for the covariance matrix is:

Cij = rPIN
ij

√
CN−body
ii CN−body

jj , (8.41)

It is worth to use a matricial language to express the covariance matrix with
all its elements. In this way the cross-correlation in eq. 8.41 becomes:

rPIN
ij ≡ r =

[
r11 r12

r21 r22

]
, (8.42)

with r11 and r22 equal to one by de�nition of cross-correlation coe�cient;
The variance from the simulations can be thought as a diagonal matrix as:√

CN−body
ii ≡ D =

[√
d1 0
0

√
d2

]
. (8.43)

Using this language we can write our covariance matrix in eq. 8.41 as:

C = D r D . (8.44)
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In the expression of the likelihood, eq. 8.20, enters the inverse of the covari-
ance matrix:

C−1 = D−1 r−1 D−1 . (8.45)

It useful to compute how the signal-to-noise ratio changes when all the ele-
ments of the covariance matrix are included. Moreover we can compare the
information coming from power spectrum only, bispectrum only and from
the covariance that include the cross-correlation between power spectrum
and bispectrum:

Ctot
ij =

 〈δPiδPj〉 〈δPjδBj1,j2,j3〉

〈δPjδBj1,j2,j3〉 〈δBi1,i2,i3δBj1,j2,j3〉

 (8.46)

The generic de�nition for the signal-to-noise, for a generic quantity X, is the
following: ( S

N

)2

X
=
∑
i,j

Xi(C
−1
ij )XXj ; (8.47)

for example for the power spectrum we have:

( S
N

)2

P
=

Nk∑
i=1

Nk∑
i=j

Pi(C
−1
ij )PPj , (8.48)

with Nk the number of modes. In �gure 8.2 we show the signal-to-noise,
as function of k for the power spectrum (blue lines), the bispectrum (green
lines) and power spectrum plus bispectrum (red lines) for two di�erent halo
samples. The measurements are done on the 10,000 PINOCCHIO galaxy cat-
alogs. The solid lines are for the signal-to-noise computed using all the
element of the covariance matrix, while the dashed line comes only from the
variance (eq. 8.47 with i = j). In the lower panel we plot the ratio of all
the di�erent components with respect the Gaussian prediction (dotted black
line) given by: ( S

N

)2

Gauss
=
N2
k

2
. (8.49)

As we expect the bispectrum only signal-to-noise computed with all the bis-
pectrum covariance matrix is smaller than that one computed with only the
variance for k > 0.02hMpc−1. At scale k ∼ 0.07hMpc−1, the smaller scale
we consider in our analysis, the total signal-to-noise (solid red) is higher when
all the covariance matrix is considered with respect to the power spectrum
alone; this means that we can gather more information by considering the
power spectrum and the bispectrum together including the cross-correlation
between the two.
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Figure 8.2: Signal-to-Noise as function of k for two di�erent mass bins. The
main panel shows the signal-to-noise for the power spectrum (blue lines), for
the bispectrum (green lines) and for the power spectrum plus bispectrum
(red lines). The dotted lines give information when only the variance is
used while the solid ones include the whole covariance matrix. The red
lines include in the covariance the cross-correlation between power spectrum
and bispectrum. The black dashed line gives the signal-to-noise Gaussian
prediction without shot-noise. In the lower panel is plotted the ratio between
all of the signal-to-noise terms and the Gaussian prediction.

8.2.4 Power spectrum prior

In section 8.2.1 we use the bispectrum to �nd the bias values to maximize
the likelihood. In that case we do not assume any prior. It is useful to
compare the results found in that case with those obtained by assuming a
prior for the linear bias using the power spectrum. At tree-level the galaxy
power spectrum is related to the matter power spectrum through b1:

Pg(k) = b21P (k) . (8.50)

The likelihood for b1 is trivial:

ln LP(b1) ∝ −1

2

Nk∑
i=1

(P̄i − Pg,i)
2

∆P2
i

(8.51)

where P̄ is the average power spectrum over 300 N-body simulations and
∆P 2 is the error on the mean. The maximization of eq. 8.51 is done analyt-
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ically computing the derivative with respect to b1:

∂ln LP

∂b1
= 0 → b∗1 . (8.52)

We use b∗1 as prior in the bispectrum likelihood that depends only on b2 and
γ2. Eq. 8.22 reads:

ln L(b∗1,b2, γ2) ∝ −1

2

∑
ij

(
B̄i − Bg,i(b

∗
1, b2, γ2)

)
C−1

ij

(
B̄j − Bj,g(b∗1,b2, γ2)

)
.

(8.53)
At this point the values for b2 and γ2, that maximize the likelihood, are given
by putting to zero the derivatives with respect to b2 and to γ2, of eq. 8.53,
equal to zero. The �nal set of bias values is therefore (b∗1, b

∗∗
2 , γ

∗∗
2 ).

8.3 Results

Figure 8.3: Galaxy bias parameters b1 (blue line), b2 (red line) and γ2 (green
line) for two di�erent mass bins obtained using the bispectrum without prior;
in the likelihood of the parameters enters only the bispectrum variance. The
shaded area is the 1σ error obtained from Fisher analysis. The last panel
(cyan line) shows the χ2 per degree of freedom. The vertical gray line cor-
responds to k = 0.062hMpc−1.
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In this section we show the results on the constraints of the galaxy bias
parameters and their error ellipses. The analyses we have done concern the
dependence of these parameters on the maximum value for the wavenumber
k = kmax that can be predicted and their errors.

Figure 8.3 shows the result assuming no prior and deriving all of the three
parameters using only the bispectrum and its variance from the 300 N-body
simulations, eq. 8.38. In the two series of plots are shown the values for b1,
b2 and γ2 for two mass bins, obtained using a MLE. The shaded area is the
marginalized 1σ error computed using the Fisher analysis. In the last panel
(cyan line) we plot the reduced χ2 de�ned as−2ln L/d.o.f, where the d.o.f are
the number of triangles in the k-shell. We stop at k ∼ 0.075hMpc−1 because
for smaller scales the χ2 takes unacceptable values because the model for
the bispectrum we are using is not accurate enough to describe those smaller
scales; moreover we expect that the values of the parameters at smaller scales
should change. In �gure 8.4 we show the same results, but compared with
the determination of the parameters using a prior for the linear bias. The

Figure 8.4: The same as �gure 8.3, but the values computed using only the
bispectrum are compared with those ones computed using b1 as prior. The
likelihood of the parameters is diagonal.

light colors and the cyan dashed line for the χ2 are the values assuming
b1 from the power spectrum. The shaded area is again the 1σ error from
Fisher analysis. Up to the scale we investigate the two determinations are
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compatible within 1− 2σ

The agreement starts to fail at k ∼ 0.065hMpc−1 and at same scale the
χ2 starts to diverge.

Moving to the case where all the bispectrum covariance is used in the
likelihood estimation, eq. 8.22, we do not really see any substantial change
either in the biases determination or in the χ2 (�gure 8.5). This is true for

Figure 8.5: The same of �gure 8.4, but using the whole covariance in the
likelihood.

both the two cases of prior assumption on b1 and no-prior. From the Fisher
analysis we obtain the error ellipses we show in �gure 8.6. On the left we
plot the ellipses obtained using the diagonal likelihood, while on the right
the one obtained using all the bispectrum covariance. The red and the blue
ellipses are respectively the 1σ and 2σ marginalized error. In the plane γ2-b2
we plot also the ellipses coming assuming the linear bias from the power
spectrum. The estimation is done at k ∼ 0.06hMpc−1 that is the smallest
scale at which we can trust the theoretical model. The di�erence in the
two ellipses in the the plane γ2-b2 plane is the same we observe in �gures
(8.4, 8.5) looking at the determination of b2, γ2 with or without using prior
information.

As we already notice, the error ellipses do not show signi�cant changes
when a full likelihood is used in placed of a diagonal likelihood, because, as
we will stress in the discussion section, the e�ect of the o�-diagonal elements
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Figure 8.6: Error ellipse for b1, b2 and γ2 at k = 0.06hMpc−1. The red and
the blue ellipse are respectively the 1σ and 2σ error. In the plane γ2-b2 it is
showed the constraint for b2 and γ2 assuming b1 �xed by the power spectrum.
On the left the errors computed using the diagonal likelihood while on the
right the whole bispectrum likelihood.

of the covariance matrix are negligible at the scale we are studying.

8.4 Discussion

In this chapter we have described the main challenges in the evaluation of the
bispectrum and its covariance matrix; various bispectrum proxies have been
described as possible alternative the the full Fourier bispectrum to reduce
the number of modes, therefore the size of the covariance matrix.

The analysis we have carried out consists in the evaluation of the Fourier
bispectrum. The problem of having a large covariance matrix, is managed
using fast approximated methods that allow us to produce a large number
of synthetic galaxy catalogs.

The galaxy bispectrum model we have decided to use for this analysis,
depends on three bias parameters: the linear bias b1, the quadratic bias
b2 and the non-local bias γ2. We assume a Gaussian distribution for these
parameters and we proceed with a MLE to derive their values. The error on
the parameters are computed using a Fisher matrix analysis.

The likelihood analysis consisted of two parts: in the �rst part, using only
the bispectrum covariance matrix measured over 300 N-body simulations, we
have derived the parameters with a diagonal likelihood, because the small
number of realizations that we had did not allow to use the o�-diagonal
elements of the covariance matrix that are highly noisy; in the second part
we have computed the covariance matrix using 10,000 realizations, made
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with PINOCCHIO; we have showed that with this number of realizations it
is possible to lower the noise that a�ects the o�-diagonal elements of the
matrix. With all the elements of the matrix available, we have estimated
the parameters from the full likelihood. All these derivations can be done
analytically because the bispectrum model depends only on the galaxy bias
parameters.

In the section of the results, we have showed a comparison between the
bias values derived using the diagonal likelihood and the full likelihood, as
function of k. Moreover we have also obtained the linear bias from the power
spectrum and we have used this value as prior for the determination of b2
and γ2.

At this level we cannot draw any de�nitive conclusion on the values of
the galaxy bias parameters and their errors. It seems clear that the galaxy
bispectrum model we are using is not accurate enough to describe scales
smaller than k ∼ 0.07hMpc−1 and in particular that the e�ects of the
bispectrum covariance matrix are not important at the scales we have in-
vestigated. We could expect this behavior by looking at �gure 8.2: the
bispectrum only signal-to-noise, at k ∼ 0.06hMpc−1, when using only the
variance is quite similar to the signal-to-noise computed using the bispec-
trum covariance. Probably an analysis at smaller scales would have showed
the di�erences in considering the o�-diagonal elements of the matrix. What
we can observe is that on these scales, the additional non-linear corrections
are quite negligible.

One way to push the analysis on more non-linear scales and to increase
the constraining power is to include, in the bispectrum model, the 1-loop
corrections; moreover from the signal-to-noise analysis we know that consid-
ering the whole covariance matrix, including the cross-correlation between
the power spectrum and the bispectrum eq. 8.46, can increase the informa-
tion we get, even at the scales we have already investigated. The challenge
we have to tackle in this case concerns the inversion of such covariance ma-
trix that appears more complicated than the bispectrum or power spectrum
only covariance matrix.

The last, but not least, point is to extend the analysis to derive con-
straints on cosmological parameters. These can be done measuring the power
spectrum and the bispectrum for a set of cosmological models and then run-
ning a Monte Carlo Markov Chain (Robert, 2004; Gamerman and Lopes,
2006) on the grid of cosmological parameters.



Chapter 9

Conclusions

This Ph.D Thesis was devoted to model the covariance matrices of cluster-
ing measures. The estimation of the covariance matrices is one of the main
requirements to improve the knowledge on the history and evolution of the
Universe through the determination of cosmological parameters.

The structures we observe today are the result of the growth of initial �uc-
tuations in the cosmic density �eld due to gravitation instability. The prop-
erties of the cosmological model de�ne the characteristics of the spectrum
of perturbations. Constraints on cosmological parameters are obtained from
di�erent observations; in chapter 2 we focused in particular on the baryonic
acoustic oscillations, that provides constraints on the dark energy density
parameters and the dark energy equation of state, and on the redshift-space
distortions, that are used to extract statistical information on the large-scale
peculiar velocity �eld traced by galaxies and, from this, on the rate of growth
of density perturbations.

Future surveys will observe millions of galaxies, so that the error budget
will be dominated by systematics. Chapter 5, is focused on the e�ects of the
visibility mask on the clustering statistics. The visibility mask includes all
the foreground e�ects due to galactic extinction and stellar contamination
as well as instrumental or survey features.

The main results of this part of the Thesis can be summarized as follows:

• the subtraction of the mask is not perfect so we have to consider the
presence of a residual foreground that can mimic the large-scale struc-
tures, a�ecting the accuracy in the determination of cosmological pa-
rameters;

• the foreground residual modeling is of fundamental importance to ac-
curately sample large scales beyond the BAO scale;

• we measured a non-negligible coupling between di�erent scales that

143
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a�ects the structure of the power spectrum covariance matrix;

• the o�-diagonal elements of the power spectrum covariance matrix are
non-negligible. It is not correct to separate the contributions due to
the cosmic variance alone and the cosmology-independent covariance
because of the coupling term between the mask and the cosmological
signal.

In chapter 6 we focused on the results we have obtained from the �compari-
son project� of approximate methods within the Euclid collaboration galaxy
clustering working group. The main purposes of this project are to prove
that the covariance matrices obtained using fast methods are unbiased and
that they can be used, instead of N-body simulations, to quantify the er-
rors on cosmological parameters. We have identi�ed a number of interesting
results:

• the average quantities obtained from the approximate methods do not
reproduce the same quantities computed on simulations on small scales
because of the nature of the approximate methods;

• the diagonal of the covariance matrices is well reproduced also at
smaller scales with the required precision of 1%;

• the structure of the covariance matrix is well reproduced, even if, at
this level, we have compared only the noise in the o�-diagonal elements
of the matrices;

• from forecast analyses we have checked that the errors obtained from
a covariance matrix estimated from N-body simulations are indistin-
guishable from those obtained using approximate methods.

The large set of simulated galaxy catalogs obtained from fast approximate
methods allows us to evaluate covariance matrices of clustering to be com-
pared with analytic predictions.

In chapter 7 we focused on the inclusion of the bias and shot-noise terms
in the prediction of the power spectrum covariance matrix. From the compar-
ison of our analytic prediction with the power spectrum covariance evaluated
using 10,000 simulated galaxy catalogs generated with PINOCCHIO, we have
drawn the following conclusions:

• looking at the variance we have found that it is well reproduced by the
Gaussian term, with small di�erences on large scales due to sample
variance;

• for the variance the main trispectrum contributions are the two shot-
noise terms and the �rst term of the galaxy trispectrum: these are
larger than all the other non-Gaussian corrections, but they appear to
be still negligible at k ∼ 0.3hMpc−1;
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• the analytic prediction for the o�-diagonal elements of the matrix
overestimates the measurements, showing an enhancement of the non-
Gaussian contributions of the power spectrum covariance matrix.

We repeatedly stressed that even if the primordial �uctuations are Gaussian,
non-Gaussianity arise due to non-linear higher-order correlators: three and
four point functions.

In chapter 8 we presented an analysis of the bispectrum and its covariance
matrix aimed at constraining the linear, the quadratic and the non-local
galaxy bias. From the analysis we have carried out, we obtained the following
main results:

• at the scale we are looking (k ∼ 0.07hMpc−1) the bias parameters
estimation is not a�ected by a high level of non-linearity: the o�-
diagonal terms of the bispectrum covariance matrix do not a�ect the
parameters and their errors;

• the model for the bispectrum we have used is not accurate enough to
describe scales smaller than k ∼ 0.07hMpc−1;

In all the analyses we have presented in this Thesis we have emphasized that
a precise estimation of the clustering covariance matrices is mandatory to
maximize the cosmological information to be extracted from large galaxy
surveys. In particular, our attention was focused on the Euclid space mis-
sion. In this context it is of primary importance to have an accurate and
realistic model for the systematic errors; we have started with a toy-model
for a generic visibility mask, but we want to extend our future analyses to-
ward a more realistic situation: the measurements of the foreground from
cross-correlation of di�erent redshift bins. We expect that the angular cross-
correlation of di�erent redshift bins is nearly vanishing, so that the observed
power spectrum will directly give information on the mask power spectrum;
we have to take into account that there are also other contributions to the
cross-correlation, apart from the foreground contamination, given by grav-
itational lensing and by catastrophic redshift errors. This kind of analysis
will require to generate halo catalogs on the light cones with PINOCCHIO, to
perform an abundance matching of halos with a luminosity function of Hα
emitters and �nally to apply a realistic galactic extinction map, e.g. Planck's
maps.

The study of systematic errors as well as all the studies that involve the
evaluation of the covariance matrices of clustering require to have access to
a large number of realizations of the Universe: in this respect, approximate
methods o�er a viable approach. Apart from testing other types of tech-
niques, we plan to make forecasts for the determination of the cosmological
parameters also using the bispectrum covariance matrix. Besides resorting
to Fisher matrix analyses we aim to include a large number of cosmological
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parameters; in this case we will use numerical methods, like Monte Carlo
Markov Chain, for their determination.

From the analytic side, for what concerns the prediction for the galaxy
power spectrum covariance matrix, a more accurate modeling of the shot-
noise contributions to the trispectrum should solve the overestimation of the
o�-diagonal elements of the covariance matrix; moreover we plan to test the
predictions of the galaxy trispectrum against a direct measurements of the
trispectrum on simulations. After the o�-diagonal terms are recovered, we
will introduce a selection function and then we will move to redshift-space.
In the �rst step we will use a spherical selection function that allows us to
give an analytic prediction for the covariance thanks to the simpli�ed geom-
etry; then we will consider more realistic selection functions: in these more
realistic cases the analytic description need to be supported by numerical
computations. In any case we expect that the power spectrum covariance
matrix will present new terms due to the coupling of modes outside and in-
side the selection function. These terms could be larger than the trispectrum
corrections we have already included in our model.

Looking at higher-order statistics, the bispectrum, we aim to increase the
precision in the bias determination including the information coming from
the cross-correlation of power spectrum and bispectrum. Clearly to extend
the analysis to smaller scales we need a bispectrum model where the 1-loop
corrections are implemented at the bias level; this bispectrum model has to
be used along with a full bispectrum covariance matrix, evaluated on 10,000
realizations, that includes the cross-correlations with the power spectrum.
Using such covariance matrix we will face the problem of a more complex
inversion of the matrix, as required in the likelihood function: an accurate
eigenvalues analysis will be required in order to invert the matrix in the
smartest way possible.

As already highlighted the bispectrum is also useful to constrain cosmo-
logical parameters: we will extend the analysis we have carried out, mea-
suring the bispectrum for a set of cosmological models and then running a
Monte Carlo Markov Chain to constrain such cosmological parameters.

From all the analyses and results we have obtained with this Thesis,
it appears to be clear that an accurate characterization of the theoretical
and observational systematics will be fundamental for the estimation of the
clustering covariance matrix in preparation for next future galaxy surveys
that will allow us to understand the nature of the constituents of the Universe
and the physics that govern its evolution.



Bibliography

Alam, S., Ata, M., Bailey, S., Beutler, F., Bizyaev, D., Blazek, J. A.,
Bolton, A. S., Brownstein, J. R., Burden, A., Chuang, C.-H., Comparat,
J., Cuesta, A. J., Dawson, K. S., Eisenstein, D. J., Esco�er, S., Gil-Marín,
H., Grieb, J. N., Hand, N., Ho, S., Kinemuchi, K., Kirkby, D., Kitaura,
F., Malanushenko, E., Malanushenko, V., Maraston, C., McBride, C. K.,
Nichol, R. C., Olmstead, M. D., Oravetz, D., Padmanabhan, N., Palanque-
Delabrouille, N., Pan, K., Pellejero-Ibanez, M., Percival, W. J., Petitjean,
P., Prada, F., Price-Whelan, A. M., Reid, B. A., Rodríguez-Torres, S. A.,
Roe, N. A., Ross, A. J., Ross, N. P., Rossi, G., Rubiño-Martín, J. A.,
Saito, S., Salazar-Albornoz, S., Samushia, L., Sánchez, A. G., Satpathy,
S., Schlegel, D. J., Schneider, D. P., Scóccola, C. G., Seo, H.-J., Shel-
don, E. S., Simmons, A., Slosar, A., Strauss, M. A., Swanson, M. E. C.,
Thomas, D., Tinker, J. L., Tojeiro, R., Magaña, M. V., Vazquez, J. A.,
Verde, L., Wake, D. A., Wang, Y., Weinberg, D. H., White, M., Wood-
Vasey, W. M., Yèche, C., Zehavi, I., Zhai, Z., and Zhao, G.-B. (2017).
The clustering of galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample.
Mon. Not. R. Astron. Soc., 470:2617�2652.

Allen, S. W., Evrard, A. E., and Mantz, A. B. (2011). Cosmological Parame-
ters from Observations of Galaxy Clusters. Annu. Rev. Astron. Astrophys,
49:409�470.

Anderson, L., Aubourg, É., Bailey, S., Beutler, F., Bhardwaj, V., Blanton,
M., Bolton, A. S., Brinkmann, J., Brownstein, J. R., Burden, A., Chuang,
C.-H., Cuesta, A. J., Dawson, K. S., Eisenstein, D. J., Esco�er, S., Gunn,
J. E., Guo, H., Ho, S., Honscheid, K., Howlett, C., Kirkby, D., Lupton,
R. H., Manera, M., Maraston, C., McBride, C. K., Mena, O., Monte-
sano, F., Nichol, R. C., Nuza, S. E., Olmstead, M. D., Padmanabhan,
N., Palanque-Delabrouille, N., Parejko, J., Percival, W. J., Petitjean, P.,
Prada, F., Price-Whelan, A. M., Reid, B., Roe, N. A., Ross, A. J., Ross,
N. P., Sabiu, C. G., Saito, S., Samushia, L., Sánchez, A. G., Schlegel,
D. J., Schneider, D. P., Scoccola, C. G., Seo, H.-J., Skibba, R. A., Strauss,
M. A., Swanson, M. E. C., Thomas, D., Tinker, J. L., Tojeiro, R., Magaña,
M. V., Verde, L., Wake, D. A., Weaver, B. A., Weinberg, D. H., White, M.,

147



148 Bibliography

Xu, X., Yèche, C., Zehavi, I., and Zhao, G.-B. (2014). The clustering of
galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon
acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Mon.
Not. R. Astron. Soc., 441:24�62.

Anderson, L., Aubourg, E., Bailey, S., Bizyaev, D., Blanton, M., Bolton,
A. S., Brinkmann, J., Brownstein, J. R., Burden, A., Cuesta, A. J., da
Costa, L. A. N., Dawson, K. S., de Putter, R., Eisenstein, D. J., Gunn,
J. E., Guo, H., Hamilton, J.-C., Harding, P., Ho, S., Honscheid, K.,
Kazin, E., Kirkby, D., Kneib, J.-P., Labatie, A., Loomis, C., Lupton,
R. H., Malanushenko, E., Malanushenko, V., Mandelbaum, R., Manera,
M., Maraston, C., McBride, C. K., Mehta, K. T., Mena, O., Montesano,
F., Muna, D., Nichol, R. C., Nuza, S. E., Olmstead, M. D., Oravetz,
D., Padmanabhan, N., Palanque-Delabrouille, N., Pan, K., Parejko, J.,
Pâris, I., Percival, W. J., Petitjean, P., Prada, F., Reid, B., Roe, N. A.,
Ross, A. J., Ross, N. P., Samushia, L., Sánchez, A. G., Schlegel, D. J.,
Schneider, D. P., Scóccola, C. G., Seo, H.-J., Sheldon, E. S., Simmons, A.,
Skibba, R. A., Strauss, M. A., Swanson, M. E. C., Thomas, D., Tinker,
J. L., Tojeiro, R., Magaña, M. V., Verde, L., Wagner, C., Wake, D. A.,
Weaver, B. A., Weinberg, D. H., White, M., Xu, X., Yèche, C., Zehavi,
I., and Zhao, G.-B. (2012). The clustering of galaxies in the SDSS-III
Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in
the Data Release 9 spectroscopic galaxy sample. Mon. Not. R. Astron.
Soc., 427:3435�3467.

Avila, S., Murray, S. G., Knebe, A., Power, C., Robotham, A. S. G., and
Garcia-Bellido, J. (2015). HALOGEN: a tool for fast generation of mock
halo catalogues. Mon. Not. R. Astron. Soc., 450:1856�1867.

Baldauf, T., Seljak, U., Desjacques, V., and McDonald, P. (2012). Evidence
for quadratic tidal tensor bias from the halo bispectrum. Phys. Rev. D,
86(8):083540.

Barrow, J. D., Bhavsar, S. P., and Sonoda, D. H. (1984). A bootstrap resam-
pling analysis of galaxy clustering. Mon. Not. R. Astron. Soc., 210:19P�
23P.

Baumgart, D. J. and Fry, J. N. (1991). Fourier spectra of three-dimensional
data. Astrophys. J., 375:25�34.

Bennett, C. L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon,
M., Meyer, S. S., Page, L., Spergel, D. N., Tucker, G. S., Wollack, E.,
Wright, E. L., Barnes, C., Greason, M. R., Hill, R. S., Komatsu, E.,
Nolta, M. R., Odegard, N., Peiris, H. V., Verde, L., and Weiland, J. L.
(2003). First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Ob-



Bibliography 149

servations: Preliminary Maps and Basic Results. Astrophys. J. Suppl.,
148:1�27.

Bernardeau, F., Colombi, S., Gaztañaga, E., and Scoccimarro, R. (2002).
Large-scale structure of the Universe and cosmological perturbation the-
ory. Phys. Rep., 367:1�248.

Bernstein, G. M. (1994). The variance of correlation function estimates.
Astrophys. J., 424:569�577.

Berry, M., Ivezi¢, �., Sesar, B., Juri¢, M., Schla�y, E. F., Bellovary, J.,
Finkbeiner, D., Vrbanec, D., Beers, T. C., Brooks, K. J., Schneider, D. P.,
Gibson, R. R., Kimball, A., Jones, L., Yoachim, P., Krugho�, S., Connolly,
A. J., Loebman, S., Bond, N. A., Schlegel, D., Dalcanton, J., Yanny, B.,
Majewski, S. R., Knapp, G. R., Gunn, J. E., Allyn Smith, J., Fukugita,
M., Kent, S., Barentine, J., Krzesinski, J., and Long, D. (2012). The
Milky Way Tomography with Sloan Digital Sky Survey. IV. Dissecting
Dust. Astrophys. J., 757:166.

Bertolini, D., Schutz, K., Solon, M. P., Walsh, J. R., and Zurek, K. M.
(2016). Non-Gaussian covariance of the matter power spectrum in the
e�ective �eld theory of large scale structure. Phys. Rev. D, 93(12):123505.

Bertschinger, E. (1998). Simulations of Structure Formation in the Universe.
Annu. Rev. Astron. Astrophys, 36:599�654.

Betoule, M., Kessler, R., Guy, J., Mosher, J., Hardin, D., Biswas, R., Astier,
P., El-Hage, P., Konig, M., Kuhlmann, S., Marriner, J., Pain, R., Reg-
nault, N., Balland, C., Bassett, B. A., Brown, P. J., Campbell, H., Carl-
berg, R. G., Cellier-Holzem, F., Cinabro, D., Conley, A., D'Andrea, C. B.,
DePoy, D. L., Doi, M., Ellis, R. S., Fabbro, S., Filippenko, A. V., Fo-
ley, R. J., Frieman, J. A., Fouchez, D., Galbany, L., Goobar, A., Gupta,
R. R., Hill, G. J., Hlozek, R., Hogan, C. J., Hook, I. M., Howell, D. A., Jha,
S. W., Le Guillou, L., Leloudas, G., Lidman, C., Marshall, J. L., Möller,
A., Mourão, A. M., Neveu, J., Nichol, R., Olmstead, M. D., Palanque-
Delabrouille, N., Perlmutter, S., Prieto, J. L., Pritchet, C. J., Richmond,
M., Riess, A. G., Ruhlmann-Kleider, V., Sako, M., Schahmaneche, K.,
Schneider, D. P., Smith, M., Sollerman, J., Sullivan, M., Walton, N. A.,
and Wheeler, C. J. (2014). Improved cosmological constraints from a joint
analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys.,
568:A22.

Beutler, F., Blake, C., Colless, M., Jones, D. H., Staveley-Smith, L., Camp-
bell, L., Parker, Q., Saunders, W., and Watson, F. (2011). The 6dF Galaxy
Survey: baryon acoustic oscillations and the local Hubble constant. Mon.
Not. R. Astron. Soc., 416:3017�3032.



150 Bibliography

Beutler, F., Blake, C., Colless, M., Jones, D. H., Staveley-Smith, L., Poole,
G. B., Campbell, L., Parker, Q., Saunders, W., andWatson, F. (2012). The
6dF Galaxy Survey: z=0 measurements of the growth rate and sigma8.
Mon. Not. R. Astron. Soc., 423:3430�3444.

Blake, C., Baldry, I. K., Bland-Hawthorn, J., Christodoulou, L., Colless,
M., Conselice, C., Driver, S. P., Hopkins, A. M., Liske, J., Loveday, J.,
Norberg, P., Peacock, J. A., Poole, G. B., and Robotham, A. S. G. (2013).
Galaxy And Mass Assembly (GAMA): improved cosmic growth measure-
ments using multiple tracers of large-scale structure. Mon. Not. R. Astron.
Soc., 436:3089�3105.

Blake, C., Brough, S., Colless, M., Contreras, C., Couch, W., Croom, S.,
Croton, D., Davis, T. M., Drinkwater, M. J., Forster, K., Gilbank, D.,
Gladders, M., Glazebrook, K., Jelli�e, B., Jurek, R. J., Li, I.-h., Madore,
B., Martin, D. C., Pimbblet, K., Poole, G. B., Pracy, M., Sharp, R.,
Wisnioski, E., Woods, D., Wyder, T. K., and Yee, H. K. C. (2012). The
WiggleZ Dark Energy Survey: joint measurements of the expansion and
growth history at z < 1. Mon. Not. R. Astron. Soc., 425:405�414.

Blake, C., Kazin, E. A., Beutler, F., Davis, T. M., Parkinson, D., Brough, S.,
Colless, M., Contreras, C., Couch, W., Croom, S., Croton, D., Drinkwater,
M. J., Forster, K., Gilbank, D., Gladders, M., Glazebrook, K., Jelli�e, B.,
Jurek, R. J., Li, I.-H., Madore, B., Martin, D. C., Pimbblet, K., Poole,
G. B., Pracy, M., Sharp, R., Wisnioski, E., Woods, D., Wyder, T. K., and
Yee, H. K. C. (2011). The WiggleZ Dark Energy Survey: mapping the
distance-redshift relation with baryon acoustic oscillations. Mon. Not. R.
Astron. Soc., 418:1707�1724.

Blot, L., Corasaniti, P. S., Alimi, J.-M., Reverdy, V., and Rasera, Y. (2015).
Matter power spectrum covariance matrix from the DEUS-PUR ΛCDM
simulations: mass resolution and non-Gaussian errors. Mon. Not. R. As-
tron. Soc., 446:1756�1764.

Blot, L., Corasaniti, P. S., Amendola, L., and Kitching, T. D. (2016). Non-
linear matter power spectrum covariance matrix errors and cosmological
parameter uncertainties. Mon. Not. R. Astron. Soc., 458:4462�4470.

Borgani, S. and Guzzo, L. (2001). X-ray clusters of galaxies as tracers of
structure in the Universe. Nature, 409:39�45.

Burden, A., Padmanabhan, N., Cahn, R. N., White, M. J., and Samushia, L.
(2016). Mitigating the Impact of the DESI Fiber Assignment on Galaxy
Clustering. ArXiv e-prints.

Catelan, P. (1995). Lagrangian dynamics in non-�at universes and non-linear
gravitational evolution. Mon. Not. R. Astron. Soc., 276:115�124.



Bibliography 151

Chan, K. C. and Scoccimarro, R. (2012). Halo sampling, local bias, and loop
corrections. Phys. Rev. D, 86(10):103519.

Chan, K. C., Scoccimarro, R., and Sheth, R. K. (2012). Gravity and large-
scale nonlocal bias. Phys. Rev. D, 85(8):083509.

Chiang, C.-T., Wagner, C., Schmidt, F., and Komatsu, E. (2014). Position-
dependent power spectrum of the large-scale structure: a novel method
to measure the squeezed-limit bispectrum. J. Cosmol. Astropart. Phys.,
5:048.

Chuang, C.-H., Kitaura, F.-S., Prada, F., Zhao, C., and Yepes, G. (2015).
EZmocks: extending the Zel'dovich approximation to generate mock
galaxy catalogues with accurate clustering statistics. Mon. Not. R. As-
tron. Soc., 446:2621�2628.

Colavincenzo, M., Monaco, P., Sefusatti, E., and Borgani, S. (2017). Uncer-
tainty in the visibility mask of a survey and its e�ects on the clustering of
biased tracers. J. Cosmol. Astropart. Phys., 3:052.

Coles, P. and Lucchin, F. (1995). Cosmology: the origin and evolution of

cosmic structure. John Wiley.

Cooray, A. and Hu, W. (2001). Power Spectrum Covariance of Weak Grav-
itational Lensing. Astrophys. J., 554:56�66.

Cooray, A. and Sheth, R. (2002). Halo models of large scale structure. Phys.
Rep., 372:1�129.

Corbelli, E. and Salucci, P. (2000). The extended rotation curve and the
dark matter halo of M33. Mon. Not. R. Astron. Soc., 311:441�447.

Croton, D. J., Springel, V., White, S. D. M., De Lucia, G., Frenk, C. S.,
Gao, L., Jenkins, A., Kau�mann, G., Navarro, J. F., and Yoshida, N.
(2006). The many lives of active galactic nuclei: cooling �ows, black holes
and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc.,
365:11�28.

Cuesta, A. J., Vargas-Magaña, M., Beutler, F., Bolton, A. S., Brownstein,
J. R., Eisenstein, D. J., Gil-Marín, H., Ho, S., McBride, C. K., Maraston,
C., Padmanabhan, N., Percival, W. J., Reid, B. A., Ross, A. J., Ross, N. P.,
Sánchez, A. G., Schlegel, D. J., Schneider, D. P., Thomas, D., Tinker, J.,
Tojeiro, R., Verde, L., and White, M. (2016). The clustering of galaxies
in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic
oscillations in the correlation function of LOWZ and CMASS galaxies in
Data Release 12. Mon. Not. R. Astron. Soc., 457:1770�1785.



152 Bibliography

de la Torre, S., Guzzo, L., Peacock, J. A., Branchini, E., Iovino, A., Granett,
B. R., Abbas, U., Adami, C., Arnouts, S., Bel, J., Bolzonella, M., Bottini,
D., Cappi, A., Coupon, J., Cucciati, O., Davidzon, I., De Lucia, G., Fritz,
A., Franzetti, P., Fumana, M., Garilli, B., Ilbert, O., Krywult, J., Le
Brun, V., Le Fèvre, O., Maccagni, D., Maªek, K., Marulli, F., McCracken,
H. J., Moscardini, L., Paioro, L., Percival, W. J., Polletta, M., Pollo, A.,
Schlagenhaufer, H., Scodeggio, M., Tasca, L. A. M., Tojeiro, R., Vergani,
D., Zanichelli, A., Burden, A., Di Porto, C., Marchetti, A., Marinoni,
C., Mellier, Y., Monaco, P., Nichol, R. C., Phleps, S., Wolk, M., and
Zamorani, G. (2013). The VIMOS Public Extragalactic Redshift Survey
(VIPERS) . Galaxy clustering and redshift-space distortions at z = 0.8 in
the �rst data release. Astron. Astrophys., 557:A54.

de Putter, R., Wagner, C., Mena, O., Verde, L., and Percival, W. J. (2012).
Thinking outside the box: e�ects of modes larger than the survey on
matter power spectrum covariance. J. Cosmol. Astropart. Phys., 4:019.

Dodelson, S. (2003). Modern cosmology. Academic Press, San Diego, CA.

Dodelson, S. and Schneider, M. D. (2013). The e�ect of covariance estimator
error on cosmological parameter constraints. Phys. Rev. D, 88(6):063537.

Drinkwater, M. J., Jurek, R. J., Blake, C., Woods, D., Pimbblet, K. A.,
Glazebrook, K., Sharp, R., Pracy, M. B., Brough, S., Colless, M., Couch,
W. J., Croom, S. M., Davis, T. M., Forbes, D., Forster, K., Gilbank,
D. G., Gladders, M., Jelli�e, B., Jones, N., Li, I.-H., Madore, B., Martin,
D. C., Poole, G. B., Small, T., Wisnioski, E., Wyder, T., and Yee, H. K. C.
(2010). The WiggleZ Dark Energy Survey: survey design and �rst data
release. Mon. Not. R. Astron. Soc., 401:1429�1452.

Eggemeier, A. and Smith, R. E. (2017). Cosmology with phase statistics:
parameter forecasts and detectability of BAO. Mon. Not. R. Astron. Soc.,
466:2496�2516.

Einasto, J., Kaasik, A., and Saar, E. (1974). Dynamic evidence on massive
coronas of galaxies. Nature, 250:309�310.

Eisenstein, D. J. and Hu, W. (1998). Baryonic Features in the Matter Trans-
fer Function. Astrophys. J., 496:605�614.

Eisenstein, D. J., Seo, H.-J., and White, M. (2007). On the Robustness of
the Acoustic Scale in the Low-Redshift Clustering of Matter. Astrophys.
J., 664:660�674.

Eisenstein, D. J., Zehavi, I., Hogg, D. W., Scoccimarro, R., Blanton, M. R.,
Nichol, R. C., Scranton, R., Seo, H.-J., Tegmark, M., Zheng, Z., Anderson,
S. F., Annis, J., Bahcall, N., Brinkmann, J., Burles, S., Castander, F. J.,



Bibliography 153

Connolly, A., Csabai, I., Doi, M., Fukugita, M., Frieman, J. A., Glaze-
brook, K., Gunn, J. E., Hendry, J. S., Hennessy, G., Ivezi¢, Z., Kent, S.,
Knapp, G. R., Lin, H., Loh, Y.-S., Lupton, R. H., Margon, B., McKay,
T. A., Meiksin, A., Munn, J. A., Pope, A., Richmond, M. W., Schlegel,
D., Schneider, D. P., Shimasaku, K., Stoughton, C., Strauss, M. A., Sub-
baRao, M., Szalay, A. S., Szapudi, I., Tucker, D. L., Yanny, B., and York,
D. G. (2005). Detection of the Baryon Acoustic Peak in the Large-Scale
Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J.,
633:560�574.

Feldman, H. A., Kaiser, N., and Peacock, J. A. (1994). Power-spectrum
analysis of three-dimensional redshift surveys. Astrophys. J., 426:23�37.

Feng, Y., Chu, M.-Y., Seljak, U., and McDonald, P. (2016). FASTPM: a
new scheme for fast simulations of dark matter and haloes. Mon. Not. R.
Astron. Soc., 463:2273�2286.

Fergusson, J. R. and Shellard, E. P. S. (2009). Shape of primordial non-
Gaussianity and the CMB bispectrum. Phys. Rev. D, 80(4):043510.

Freedman, W. L., Madore, B. F., Gibson, B. K., Ferrarese, L., Kelson, D. D.,
Sakai, S., Mould, J. R., Kennicutt, Jr., R. C., Ford, H. C., Graham, J. A.,
Huchra, J. P., Hughes, S. M. G., Illingworth, G. D., Macri, L. M., and
Stetson, P. B. (2001). Final Results from the Hubble Space Telescope Key
Project to Measure the Hubble Constant. Astrophys. J., 553:47�72.

Fry, J. N. (1994). Gravity, bias, and the galaxy three-point correlation
function. Physical Review Letters, 73:215�219.

Gamerman, D. and Lopes, H. F. (2006). Markov chain Monte Carlo: stochas-

tic simulation for Bayesian inference. CRC Press.

Gil-Marín, H., Noreña, J., Verde, L., Percival, W. J., Wagner, C., Manera,
M., and Schneider, D. P. (2015). The power spectrum and bispectrum of
SDSS DR11 BOSS galaxies - I. Bias and gravity. Mon. Not. R. Astron.
Soc., 451:539�580.

Gil-Marín, H., Percival, W. J., Verde, L., Brownstein, J. R., Chuang, C.-H.,
Kitaura, F.-S., Rodríguez-Torres, S. A., and Olmstead, M. D. (2017). The
clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic
Survey: RSD measurement from the power spectrum and bispectrum of
the DR12 BOSS galaxies. Mon. Not. R. Astron. Soc., 465:1757�1788.

Goro�, M. H., Grinstein, B., Rey, S.-J., and Wise, M. B. (1986). Coupling of
modes of cosmological mass density �uctuations. Astrophys. J., 311:6�14.



154 Bibliography

Green, J., Schechter, P., Baltay, C., Bean, R., Bennett, D., Brown, R., Con-
selice, C., Donahue, M., Fan, X., Gaudi, B. S., Hirata, C., Kalirai, J.,
Lauer, T., Nichol, B., Padmanabhan, N., Perlmutter, S., Rauscher, B.,
Rhodes, J., Roellig, T., Stern, D., Sumi, T., Tanner, A., Wang, Y., Wein-
berg, D., Wright, E., Gehrels, N., Sambruna, R., Traub, W., Anderson, J.,
Cook, K., Garnavich, P., Hillenbrand, L., Ivezic, Z., Kerins, E., Lunine,
J., McDonald, P., Penny, M., Phillips, M., Rieke, G., Riess, A., van der
Marel, R., Barry, R. K., Cheng, E., Content, D., Cutri, R., Goullioud,
R., Grady, K., Helou, G., Jackson, C., Kruk, J., Melton, M., Peddie, C.,
Rioux, N., and Sei�ert, M. (2012). Wide-Field InfraRed Survey Telescope
(WFIRST) Final Report. ArXiv e-prints.

Grieb, J. N., Sánchez, A. G., Salazar-Albornoz, S., and Dalla Vecchia, C.
(2016). Gaussian covariance matrices for anisotropic galaxy clustering
measurements. Mon. Not. R. Astron. Soc., 457:1577�1592.

Guzzo, L., Pierleoni, M., Meneux, B., Branchini, E., Le Fèvre, O., Mari-
noni, C., Garilli, B., Blaizot, J., De Lucia, G., Pollo, A., McCracken,
H. J., Bottini, D., Le Brun, V., Maccagni, D., Picat, J. P., Scaramella,
R., Scodeggio, M., Tresse, L., Vettolani, G., Zanichelli, A., Adami, C.,
Arnouts, S., Bardelli, S., Bolzonella, M., Bongiorno, A., Cappi, A., Char-
lot, S., Ciliegi, P., Contini, T., Cucciati, O., de la Torre, S., Dolag, K.,
Foucaud, S., Franzetti, P., Gavignaud, I., Ilbert, O., Iovino, A., Lamareille,
F., Marano, B., Mazure, A., Memeo, P., Merighi, R., Moscardini, L., Pal-
tani, S., Pellò, R., Perez-Montero, E., Pozzetti, L., Radovich, M., Vergani,
D., Zamorani, G., and Zucca, E. (2008). A test of the nature of cosmic
acceleration using galaxy redshift distortions. Nature, 451:541�544.

Guzzo, L., Scodeggio, M., Garilli, B., Granett, B. R., Fritz, A., Abbas, U.,
Adami, C., Arnouts, S., Bel, J., Bolzonella, M., Bottini, D., Branchini,
E., Cappi, A., Coupon, J., Cucciati, O., Davidzon, I., De Lucia, G., de la
Torre, S., Franzetti, P., Fumana, M., Hudelot, P., Ilbert, O., Iovino, A.,
Krywult, J., Le Brun, V., Le Fèvre, O., Maccagni, D., Maªek, K., Marulli,
F., McCracken, H. J., Paioro, L., Peacock, J. A., Polletta, M., Pollo, A.,
Schlagenhaufer, H., Tasca, L. A. M., Tojeiro, R., Vergani, D., Zamorani,
G., Zanichelli, A., Burden, A., Di Porto, C., Marchetti, A., Marinoni, C.,
Mellier, Y., Moscardini, L., Nichol, R. C., Percival, W. J., Phleps, S.,
and Wolk, M. (2014). The VIMOS Public Extragalactic Redshift Survey
(VIPERS). An unprecedented view of galaxies and large-scale structure at
0.5 < z < 1.2. Astron. Astrophys., 566:A108.

Hamaus, N., Seljak, U., Desjacques, V., Smith, R. E., and Baldauf, T. (2010).
Minimizing the stochasticity of halos in large-scale structure surveys. Phys.
Rev. D, 82(4):043515.



Bibliography 155

Hamilton, A. J. S. (1993). Toward Better Ways to Measure the Galaxy
Correlation Function. Astrophys. J., 417:19.

Hamilton, A. J. S. (1997). Towards optimal measurement of power spectra
- I. Minimum variance pair weighting and the Fisher matrix. Mon. Not.
R. Astron. Soc., 289:285�294.

Hamilton, A. J. S. (1998). Linear Redshift Distortions: a Review. In Hamil-
ton, D., editor, The Evolving Universe, volume 231 of Astrophysics and

Space Science Library, page 185.

Hamilton, A. J. S., Rimes, C. D., and Scoccimarro, R. (2006). On measuring
the covariance matrix of the non-linear power spectrum from simulations.
Mon. Not. R. Astron. Soc., 371:1188�1204.

Harnois-Déraps, J. and Pen, U.-L. (2012). Non-Gaussian error bars in galaxy
surveys - I. Mon. Not. R. Astron. Soc., 423:2288�2307.

Heitmann, K., Higdon, D., White, M., Habib, S., Williams, B. J., Lawrence,
E., and Wagner, C. (2009). The Coyote Universe. II. Cosmological Mod-
els and Precision Emulation of the Nonlinear Matter Power Spectrum.
Astrophys. J., 705:156�174.

Heitmann, K., White, M., Wagner, C., Habib, S., and Higdon, D. (2010).
The Coyote Universe. I. Precision Determination of the Nonlinear Matter
Power Spectrum. Astrophys. J., 715:104�121.

Howlett, C., Ross, A. J., Samushia, L., Percival, W. J., and Manera, M.
(2015). The clustering of the SDSS main galaxy sample - II. Mock galaxy
catalogues and a measurement of the growth of structure from redshift
space distortions at z = 0.15. Mon. Not. R. Astron. Soc., 449:848�866.

Hu, W. and White, M. (2001). Power Spectra Estimation for Weak Lensing.
Astrophys. J., 554:67�73.

Hubble, E. (1929). A relation between distance and radial velocity among
extra-galactic nebulae. Proceedings of the National Academy of Sciences,
15(3):168�173.

Jain, B. and Bertschinger, E. (1994). Second-order power spectrum and
nonlinear evolution at high redshift. Astrophys. J., 431:495�505.

Jeli¢, V., Zaroubi, S., Labropoulos, P., Thomas, R. M., Bernardi, G., Brent-
jens, M. A., de Bruyn, A. G., Ciardi, B., Harker, G., Koopmans, L. V. E.,
Pandey, V. N., Schaye, J., and Yatawatta, S. (2008). Foreground simu-
lations for the LOFAR-epoch of reionization experiment. Mon. Not. R.
Astron. Soc., 389:1319�1335.



156 Bibliography

Kaiser, N. (1987). Clustering in real space and in redshift space. Mon. Not.
R. Astron. Soc., 227:1�21.

Kaufman, C. G., Schervish, M. J., and W., N. D. (2008). The cosmological
simulation code gadget-2. Am. Statist. Assoc., (15451555).

Kazin, E. A., Koda, J., Blake, C., Padmanabhan, N., Brough, S., Colless,
M., Contreras, C., Couch, W., Croom, S., Croton, D. J., Davis, T. M.,
Drinkwater, M. J., Forster, K., Gilbank, D., Gladders, M., Glazebrook,
K., Jelli�e, B., Jurek, R. J., Li, I.-h., Madore, B., Martin, D. C., Pimb-
blet, K., Poole, G. B., Pracy, M., Sharp, R., Wisnioski, E., Woods, D.,
Wyder, T. K., and Yee, H. K. C. (2014). The WiggleZ Dark Energy Sur-
vey: improved distance measurements to z = 1 with reconstruction of the
baryonic acoustic feature. Mon. Not. R. Astron. Soc., 441:3524�3542.

Kiessling, A., Cacciato, M., Joachimi, B., Kirk, D., Kitching, T. D., Leonard,
A., Mandelbaum, R., Schäfer, B. M., Sifón, C., Brown, M. L., and Rassat,
A. (2015). Galaxy Alignments: Theory, Modelling Simulations. Space
Science Reviews, 193:67�136.

Kitaura, F.-S. and Heÿ, S. (2013). Cosmological structure formation with
augmented Lagrangian perturbation theory. Mon. Not. R. Astron. Soc.,
435:L78�L82.

Kitaura, F.-S., Yepes, G., and Prada, F. (2014). Modelling baryon acoustic
oscillations with perturbation theory and stochastic halo biasing. Mon.
Not. R. Astron. Soc., 439:L21�L25.

Klypin, A., Yepes, G., Gottlöber, S., Prada, F., and Heÿ, S. (2016). Multi-
Dark simulations: the story of dark matter halo concentrations and density
pro�les. Mon. Not. R. Astron. Soc., 457:4340�4359.

Komatsu, E., Smith, K. M., Dunkley, J., Bennett, C. L., Gold, B., Hinshaw,
G., Jarosik, N., Larson, D., Nolta, M. R., Page, L., Spergel, D. N., Halpern,
M., Hill, R. S., Kogut, A., Limon, M., Meyer, S. S., Odegard, N., Tucker,
G. S., Weiland, J. L., Wollack, E., and Wright, E. L. (2011). Seven-year
Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmo-
logical Interpretation. Astrophys. J. Suppl., 192:18.

Landy, S. D., Szalay, A. S., and Broadhurst, T. J. (1998). The Pairwise
Velocity Distribution of Galaxies in the Las Campanas Redshift Survey.
Astrophys. J. Lett., 494:L133�L136.

Laureijs, R., Amiaux, J., Arduini, S., Auguères, J. ., Brinchmann, J., Cole,
R., Cropper, M., Dabin, C., Duvet, L., Ealet, A., and et al. (2011). Euclid
De�nition Study Report. ArXiv e-prints.



Bibliography 157

Lazanu, A., Giannantonio, T., Schmittfull, M., and Shellard, E. P. S. (2016).
Matter bispectrum of large-scale structure: Three-dimensional comparison
between theoretical models and numerical simulations. Phys. Rev. D,
93(8):083517.

Levi, M., Bebek, C., Beers, T., Blum, R., Cahn, R., Eisenstein, D., Flaugher,
B., Honscheid, K., Kron, R., Lahav, O., McDonald, P., Roe, N., Schlegel,
D., and representing the DESI collaboration (2013). The DESI Experi-
ment, a whitepaper for Snowmass 2013. ArXiv e-prints.

Li, Y., Hu, W., and Takada, M. (2014a). Super-sample covariance in simu-
lations. Phys. Rev. D, 89(8):083519.

Li, Y., Hu, W., and Takada, M. (2014b). Super-sample signal. Phys. Rev.
D, 90(10):103530.

Liddle, A. (2003). An introduction to modern cosmology; 2nd ed. Wiley,
Chichester.

LSST Science Collaboration, Abell, P. A., Allison, J., Anderson, S. F., An-
drew, J. R., Angel, J. R. P., Armus, L., Arnett, D., Asztalos, S. J., Axelrod,
T. S., and et al. (2009). LSST Science Book, Version 2.0. ArXiv e-prints.

Manera, M., Scoccimarro, R., Percival, W. J., Samushia, L., McBride, C. K.,
Ross, A. J., Sheth, R. K., White, M., Reid, B. A., Sánchez, A. G., de Put-
ter, R., Xu, X., Berlind, A. A., Brinkmann, J., Maraston, C., Nichol, B.,
Montesano, F., Padmanabhan, N., Skibba, R. A., Tojeiro, R., and Weaver,
B. A. (2013). The clustering of galaxies in the SDSS-III Baryon Oscilla-
tion Spectroscopic Survey: a large sample of mock galaxy catalogues. Mon.
Not. R. Astron. Soc., 428:1036�1054.

Matarrese, S., Verde, L., and Heavens, A. F. (1997). Large-scale bias in the
Universe: bispectrum method. Mon. Not. R. Astron. Soc., 290:651�662.

Mather, J. C., Cheng, E. S., Cottingham, D. A., Eplee, Jr., R. E., Fixsen,
D. J., Hewagama, T., Isaacman, R. B., Jensen, K. A., Meyer, S. S., No-
erdlinger, P. D., Read, S. M., Rosen, L. P., Shafer, R. A., Wright, E. L.,
Bennett, C. L., Boggess, N. W., Hauser, M. G., Kelsall, T., Moseley, Jr.,
S. H., Silverberg, R. F., Smoot, G. F., Weiss, R., and Wilkinson, D. T.
(1994). Measurement of the cosmic microwave background spectrum by
the COBE FIRAS instrument. Astrophys. J., 420:439�444.

Mo, H., van den Bosch, F. C., and White, S. (2010). Galaxy Formation and

Evolution.

Mohammed, I. and Seljak, U. (2014). Analytic model for the matter power
spectrum, its covariance matrix and baryonic e�ects. Mon. Not. R. Astron.
Soc., 445:3382�3400.



158 Bibliography

Mohammed, I., Seljak, U., and Vlah, Z. (2017). Perturbative approach to
covariance matrix of the matter power spectrum. Mon. Not. R. Astron.
Soc., 466:780�797.

Monaco, P. (1997). A Lagrangian Dynamical Theory for the Mass Function
of Cosmic Structures - I. Dynamics. Mon. Not. R. Astron. Soc., 287:753�
770.

Monaco, P. (2016). Approximate Methods for the Generation of Dark Matter
Halo Catalogs in the Age of Precision Cosmology. Galaxies, 4:53.

Monaco, P., Sefusatti, E., Borgani, S., Crocce, M., Fosalba, P., Sheth, R. K.,
and Theuns, T. (2013). An accurate tool for the fast generation of dark
matter halo catalogues. Mon. Not. R. Astron. Soc., 433:2389�2402.

Monaco, P., Theuns, T., and Ta�oni, G. (2002). The pinocchio algorithm:
pinpointing orbit-crossing collapsed hierarchical objects in a linear density
�eld. Mon. Not. R. Astron. Soc., 331:587�608.

Munari, E., Monaco, P., Sefusatti, E., Castorina, E., Mohammad, F. G.,
Anselmi, S., and Borgani, S. (2017). Improving fast generation of halo
catalogues with higher order Lagrangian perturbation theory. Mon. Not.
R. Astron. Soc., 465:4658�4677.

Nishimichi, T., Bernardeau, F., and Taruya, A. (2016). Response function of
the large-scale structure of the universe to the small scale inhomogeneities.
Physics Letters B, 762:247�252.

Obreschkow, D., Power, C., Bruderer, M., and Bonvin, C. (2013). A Ro-
bust Measure of Cosmic Structure beyond the Power Spectrum: Cosmic
Filaments and the Temperature of Dark Matter. Astrophys. J., 762:115.

Oka, A., Saito, S., Nishimichi, T., Taruya, A., and Yamamoto, K. (2014).
Simultaneous constraints on the growth of structure and cosmic expansion
from the multipole power spectra of the SDSS DR7 LRG sample. Mon.
Not. R. Astron. Soc., 439:2515�2530.

Ostriker, J. P., Peebles, P. J. E., and Yahil, A. (1974). The size and mass of
galaxies, and the mass of the universe. Astrophys. J. Lett., 193:L1�L4.

Padmanabhan, N., Schlegel, D. J., Finkbeiner, D. P., Barentine, J. C., Blan-
ton, M. R., Brewington, H. J., Gunn, J. E., Harvanek, M., Hogg, D. W.,
Ivezi¢, �., Johnston, D., Kent, S. M., Kleinman, S. J., Knapp, G. R.,
Krzesinski, J., Long, D., Neilsen, Jr., E. H., Nitta, A., Loomis, C., Lup-
ton, R. H., Roweis, S., Snedden, S. A., Strauss, M. A., and Tucker, D. L.
(2008). An Improved Photometric Calibration of the Sloan Digital Sky
Survey Imaging Data. Astrophys. J., 674:1217�1233.



Bibliography 159

Paz, D. J. and Sánchez, A. G. (2015). Improving the precision matrix for
precision cosmology. Mon. Not. R. Astron. Soc., 454:4326�4334.

Peacock, J. A., Cole, S., Norberg, P., Baugh, C. M., Bland-Hawthorn, J.,
Bridges, T., Cannon, R. D., Colless, M., Collins, C., Couch, W., Dalton,
G., Deeley, K., De Propris, R., Driver, S. P., Efstathiou, G., Ellis, R. S.,
Frenk, C. S., Glazebrook, K., Jackson, C., Lahav, O., Lewis, I., Lumsden,
S., Maddox, S., Percival, W. J., Peterson, B. A., Price, I., Sutherland, W.,
and Taylor, K. (2001). A measurement of the cosmological mass density
from clustering in the 2dF Galaxy Redshift Survey. Nature, 410:169�173.

Peacock, J. A. and Dodds, S. J. (1994). Reconstructing the Linear Power
Spectrum of Cosmological Mass Fluctuations. Mon. Not. R. Astron. Soc.,
267:1020.

Pearson, D. W. and Samushia, L. (2016). Estimating the power spectrum
covariance matrix with fewer mock samples. Mon. Not. R. Astron. Soc.,
457:993�999.

Peebles, P. J. E. (1973). Statistical Analysis of Catalogs of Extragalactic
Objects. I. Theory. Astrophys. J., 185:413�440.

Peek, J. E. G. and Graves, G. J. (2010). A Correction to the Standard Galac-
tic Reddening Map: Passive Galaxies as Standard Crayons. Astrophys. J.,
719:415�424.

Percival, W. J., Burkey, D., Heavens, A., Taylor, A., Cole, S., Peacock, J. A.,
Baugh, C. M., Bland-Hawthorn, J., Bridges, T., Cannon, R., Colless,
M., Collins, C., Couch, W., Dalton, G., De Propris, R., Driver, S. P.,
Efstathiou, G., Ellis, R. S., Frenk, C. S., Glazebrook, K., Jackson, C.,
Lahav, O., Lewis, I., Lumsden, S., Maddox, S., Norberg, P., Peterson,
B. A., Sutherland, W., and Taylor, K. (2004). The 2dF Galaxy Redshift
Survey: spherical harmonics analysis of �uctuations in the �nal catalogue.
Mon. Not. R. Astron. Soc., 353:1201�1218.

Percival, W. J., Samushia, L., Ross, A. J., Shapiro, C., and Raccanelli, A.
(2011). Redshift-space distortions. Philosophical Transactions: Mathe-

matical, Physical and Engineering Sciences, pages 5058�5067.

Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Cas-
tro, P. G., Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M.,
Kim, A. G., Kim, M. Y., Lee, J. C., Nunes, N. J., Pain, R., Pennypacker,
C. R., Quimby, R., Lidman, C., Ellis, R. S., Irwin, M., McMahon, R. G.,
Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B. J., Filippenko,
A. V., Matheson, T., Fruchter, A. S., Panagia, N., Newberg, H. J. M.,
Couch, W. J., and Project, T. S. C. (1999). Measurements of Ω and Λ
from 42 High-Redshift Supernovae. Astrophys. J., 517:565�586.



160 Bibliography

Pinol, L., Cahn, R. N., Hand, N., Seljak, U., and White, M. (2016). Imprint
of DESI �ber assignment on the anisotropic power spectrum of emission
line galaxies. ArXiv e-prints.

Planck Collaboration, Adam, R., Ade, P. A. R., Aghanim, N., Akrami, Y.,
Alves, M. I. R., Argüeso, F., Arnaud, M., Arroja, F., Ashdown, M., and
et al. (2016a). Planck 2015 results. I. Overview of products and scienti�c
results. Astron. Astrophys., 594:A1.

Planck Collaboration, Ade, P. A. R., Aghanim, N., Armitage-Caplan, C.,
Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., Baccigalupi,
C., Banday, A. J., and et al. (2014). Planck 2013 results. XIV. Zodiacal
emission. Astron. Astrophys., 571:A14.

Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown,
M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartlett,
J. G., and et al. (2015). Planck 2015 results. XIII. Cosmological parame-
ters. ArXiv e-prints.

Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown,
M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartlett,
J. G., and et al. (2016b). Planck 2015 results. XIII. Cosmological param-
eters. Astron. Astrophys., 594:A13.

Planck Collaboration, Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J.,
Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartlett, J. G., Bartolo,
N., and et al. (2016c). Planck 2015 results. XI. CMB power spectra,
likelihoods, and robustness of parameters. Astron. Astrophys., 594:A11.

Pope, A. C. and Szapudi, I. (2008). Shrinkage estimation of the power
spectrum covariance matrix. Mon. Not. R. Astron. Soc., 389:766�774.

Regan, D. M., Shellard, E. P. S., and Fergusson, J. R. (2010). General CMB
and primordial trispectrum estimation. Phys. Rev. D, 82(2):023520.

Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A.,
Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P.,
Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer,
R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntze�, N. B., and Tonry,
J. (1998). Observational Evidence from Supernovae for an Accelerating
Universe and a Cosmological Constant. Astron. J., 116:1009�1038.

Robert, C. P. (2004). Monte carlo methods. Wiley Online Library.

Roberts, M. S. and Rots, A. H. (1973). Comparison of Rotation Curves of
Di�erent Galaxy Types. Astron. Astrophys., 26:483�485.



Bibliography 161

Ross, A. J., Beutler, F., Chuang, C.-H., Pellejero-Ibanez, M., Seo, H.-J.,
Vargas-Magaña, M., Cuesta, A. J., Percival, W. J., Burden, A., Sánchez,
A. G., Grieb, J. N., Reid, B., Brownstein, J. R., Dawson, K. S., Eisenstein,
D. J., Ho, S., Kitaura, F.-S., Nichol, R. C., Olmstead, M. D., Prada, F.,
Rodríguez-Torres, S. A., Saito, S., Salazar-Albornoz, S., Schneider, D. P.,
Thomas, D., Tinker, J., Tojeiro, R., Wang, Y., White, M., and Zhao, G.-
b. (2017). The clustering of galaxies in the completed SDSS-III Baryon
Oscillation Spectroscopic Survey: observational systematics and baryon
acoustic oscillations in the correlation function. Mon. Not. R. Astron.
Soc., 464:1168�1191.

Ross, A. J., Ho, S., Cuesta, A. J., Tojeiro, R., Percival, W. J., Wake, D.,
Masters, K. L., Nichol, R. C., Myers, A. D., de Simoni, F., Seo, H. J.,
Hernández-Monteagudo, C., Crittenden, R., Blanton, M., Brinkmann, J.,
da Costa, L. A. N., Guo, H., Kazin, E., Maia, M. A. G., Maraston, C.,
Padmanabhan, N., Prada, F., Ramos, B., Sanchez, A., Schla�y, E. F.,
Schlegel, D. J., Schneider, D. P., Skibba, R., Thomas, D., Weaver, B. A.,
White, M., and Zehavi, I. (2011). Ameliorating systematic uncertainties
in the angular clustering of galaxies: a study using the SDSS-III. Mon.
Not. R. Astron. Soc., 417:1350�1373.

Ross, A. J., Percival, W. J., Sánchez, A. G., Samushia, L., Ho, S., Kazin,
E., Manera, M., Reid, B., White, M., Tojeiro, R., McBride, C. K., Xu, X.,
Wake, D. A., Strauss, M. A., Montesano, F., Swanson, M. E. C., Bailey,
S., Bolton, A. S., Dorta, A. M., Eisenstein, D. J., Guo, H., Hamilton, J.-
C., Nichol, R. C., Padmanabhan, N., Prada, F., Schlegel, D. J., Magaña,
M. V., Zehavi, I., Blanton, M., Bizyaev, D., Brewington, H., Cuesta, A. J.,
Malanushenko, E., Malanushenko, V., Oravetz, D., Parejko, J., Pan, K.,
Schneider, D. P., Shelden, A., Simmons, A., Snedden, S., and Zhao, G.-
b. (2012). The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: analysis of potential systematics. Mon. Not. R.
Astron. Soc., 424:564�590.

Rubin, V. C., Thonnard, N., and Ford, Jr., W. K. (1978). Extended rota-
tion curves of high-luminosity spiral galaxies. IV - Systematic dynamical
properties, SA through SC. Astrophys. J. Lett., 225:L107�L111.

Sánchez, A. G., Scoccimarro, R., Crocce, M., Grieb, J. N., Salazar-Albornoz,
S., Dalla Vecchia, C., Lippich, M., Beutler, F., Brownstein, J. R., Chuang,
C.-H., Eisenstein, D. J., Kitaura, F.-S., Olmstead, M. D., Percival, W. J.,
Prada, F., Rodríguez-Torres, S., Ross, A. J., Samushia, L., Seo, H.-
J., Tinker, J., Tojeiro, R., Vargas-Magaña, M., Wang, Y., and Zhao,
G.-B. (2017). The clustering of galaxies in the completed SDSS-III
Baryon Oscillation Spectroscopic Survey: Cosmological implications of



162 Bibliography

the con�guration-space clustering wedges. Mon. Not. R. Astron. Soc.,
464:1640�1658.

Santos, M. G., Cooray, A., and Knox, L. (2005). Multifrequency Analysis of
21 Centimeter Fluctuations from the Era of Reionization. Astrophys. J.,
625:575�587.

Sato, M., Takada, M., Hamana, T., and Matsubara, T. (2011). Simulations
of Wide-�eld Weak-lensing Surveys. II. Covariance Matrix of Real-space
Correlation Functions. Astrophys. J., 734:76.

Schäfer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale
covariance matrix estimation and implications for functional genomics.
Statistical applications in genetics and molecular biology, 4(1).

Schilizzi, R. T., Dewdney, P. E. F., and Lazio, T. J. W. (2008). The Square
Kilometre Array. In Ground-based and Airborne Telescopes II, volume
7012 of Intern. Soc. Opt. Eng., page 70121I.

Schlegel, D., Abdalla, F., Abraham, T., Ahn, C., Allende Prieto, C., Annis,
J., Aubourg, E., Azzaro, M., Baltay, S. B. C., Baugh, C., Bebek, C., Be-
cerril, S., Blanton, M., Bolton, A., Bromley, B., Cahn, R., Carton, P. .,
Cervantes-Cota, J. L., Chu, Y., Cortes, M., Dawson, K., Dey, A., Dick-
inson, M., Diehl, H. T., Doel, P., Ealet, A., Edelstein, J., Eppelle, D.,
Esco�er, S., Evrard, A., Faccioli, L., Frenk, C., Geha, M., Gerdes, D.,
Gondolo, P., Gonzalez-Arroyo, A., Grossan, B., Heckman, T., Heetderks,
H., Ho, S., Honscheid, K., Huterer, D., Ilbert, O., Ivans, I., Jelinsky, P.,
Jing, Y., Joyce, D., Kennedy, R., Kent, S., Kieda, D., Kim, A., Kim, C.,
Kneib, J. ., Kong, X., Kosowsky, A., Krishnan, K., Lahav, O., Lamp-
ton, M., LeBohec, S., Le Brun, V., Levi, M., Li, C., Liang, M., Lim,
H., Lin, W., Linder, E., Lorenzon, W., de la Macorra, A., Magneville,
C., Malina, R., Marinoni, C., Martinez, V., Majewski, S., Matheson, T.,
McCloskey, R., McDonald, P., McKay, T., McMahon, J., Menard, B.,
Miralda-Escude, J., Modjaz, M., Montero-Dorta, A., Morales, I., Mostek,
N., Newman, J., Nichol, R., Nugent, P., Olsen, K., Padmanabhan, N.,
Palanque-Delabrouille, N., Park, I., Peacock, J., Percival, W., Perlmutter,
S., Peroux, C., Petitjean, P., Prada, F., Prieto, E., Prochaska, J., Reil, K.,
Rockosi, C., Roe, N., Rollinde, E., Roodman, A., Ross, N., Rudnick, G.,
Ruhlmann-Kleider, V., Sanchez, J., Sawyer, D., Schimd, C., Schubnell,
M., Scoccimaro, R., Seljak, U., Seo, H., Sheldon, E., Sholl, M., Shulte-
Ladbeck, R., Slosar, A., Smith, D. S., Smoot, G., Springer, W., Stril, A.,
Szalay, A. S., Tao, C., Tarle, G., Taylor, E., Tilquin, A., Tinker, J., Valdes,
F., Wang, J., Wang, T., Weaver, B. A., Weinberg, D., White, M., Wood-
Vasey, M., Yang, J., Yeche, X. Y. C., Zakamska, N., Zentner, A., Zhai,
C., and Zhang, P. (2011). The BigBOSS Experiment. ArXiv e-prints.



Bibliography 163

Schlegel, D. J., Finkbeiner, D. P., and Davis, M. (1998). Maps of Dust In-
frared Emission for Use in Estimation of Reddening and Cosmic Microwave
Background Radiation Foregrounds. Astrophys. J., 500:525�553.

Schmittfull, M., Baldauf, T., and Seljak, U. (2015). Near optimal bispectrum
estimators for large-scale structure. Phys. Rev. D, 91(4):043530.

Schmittfull, M. M., Regan, D. M., and Shellard, E. P. S. (2013a). Fast esti-
mation of gravitational and primordial bispectra in large scale structures.
Phys. Rev. D, 88(6):063512.

Schmittfull, M. M., Regan, D. M., and Shellard, E. P. S. (2013b). Fast esti-
mation of gravitational and primordial bispectra in large scale structures.
Phys. Rev. D, 88(6):063512.

Scoccimarro, R., Colombi, S., Fry, J. N., Frieman, J. A., Hivon, E., and
Melott, A. (1998). Nonlinear Evolution of the Bispectrum of Cosmological
Perturbations. Astrophys. J., 496:586�604.

Scoccimarro, R. and Sheth, R. K. (2002). PTHALOS: a fast method for
generating mock galaxy distributions. Mon. Not. R. Astron. Soc., 329:629�
640.

Scoccimarro, R., Zaldarriaga, M., and Hui, L. (1999). Power Spectrum Cor-
relations Induced by Nonlinear Clustering. Astrophys. J., 527:1�15.

Sefusatti, E., Crocce, M., Pueblas, S., and Scoccimarro, R. (2006). Cosmol-
ogy and the bispectrum. Phys. Rev. D, 74(2):023522.

Sefusatti, E., Crocce, M., Scoccimarro, R., and Couchman, H. M. P. (2016).
Accurate Estimators of Correlation Functions in Fourier Space. Mon. Not.
R. Astron. Soc..

Sheth, R. K., Mo, H. J., and Tormen, G. (2001). Ellipsoidal collapse and an
improved model for the number and spatial distribution of dark matter
haloes. Mon. Not. R. Astron. Soc., 323:1�12.

Springel, V. (2005). The cosmological simulation code gadget-2. Monthly

Notices of the Royal Astronomical Society, 364(4):1105�1134.

Springel, V., White, S. D. M., Jenkins, A., Frenk, C. S., Yoshida, N., Gao,
L., Navarro, J., Thacker, R., Croton, D., Helly, J., Peacock, J. A., Cole,
S., Thomas, P., Couchman, H., Evrard, A., Colberg, J., and Pearce, F.
(2005). Simulations of the formation, evolution and clustering of galaxies
and quasars. Nature, 435:629�636.

Takada, M. and Hu, W. (2013). Power spectrum super-sample covariance.
Phys. Rev. D, 87(12):123504.



164 Bibliography

Takahashi, R., Yoshida, N., Takada, M., Matsubara, T., Sugiyama, N., Kayo,
I., Nishizawa, A. J., Nishimichi, T., Saito, S., and Taruya, A. (2009).
Simulations of Baryon Acoustic Oscillations. II. Covariance Matrix of the
Matter Power Spectrum. Astrophys. J., 700:479�490.

Tassev, S., Zaldarriaga, M., and Eisenstein, D. J. (2013). Solving large scale
structure in ten easy steps with COLA. J. Cosmol. Astropart. Phys., 6:036.

Taylor, A., Joachimi, B., and Kitching, T. (2013). Putting the precision in
precision cosmology: How accurate should your data covariance matrix
be? Mon. Not. R. Astron. Soc., 432:1928�1946.

Taylor, A. N. and Hamilton, A. J. S. (1996). Non-linear cosmological power
spectra in real and redshift space. Mon. Not. R. Astron. Soc., 282:767�778.

The Planck Collaboration (2006). The Scienti�c Programme of Planck.
ArXiv Astrophysics e-prints.

Tukey, J. W. (1958). Bias and con�dence in not-quite large samples. Ann.
Math. Statist.

Verde, L. (2010). Statistical Methods in Cosmology. In Wolschin, G., editor,
Lecture Notes in Physics, Berlin Springer Verlag, volume 800 of Lecture
Notes in Physics, Berlin Springer Verlag, pages 147�177.

Verde, L., Heavens, A. F., Matarrese, S., and Moscardini, L. (1998). Large-
scale bias in the Universe - II. Redshift-space bispectrum. Mon. Not. R.
Astron. Soc., 300:747�756.

Wolstenhulme, R., Bonvin, C., and Obreschkow, D. (2015). Three-point
Phase Correlations: A New Measure of Non-linear Large-scale Structure.
Astrophys. J., 804:132.

Wolz, L., Abdalla, F. B., Blake, C., Shaw, J. R., Chapman, E., and Rawlings,
S. (2014). The e�ect of foreground subtraction on cosmological measure-
ments from intensity mapping. Mon. Not. R. Astron. Soc., 441:3271�3283.

Yamamoto, K., Bassett, B. A., and Nishioka, H. (2005). Dark Energy
Re�ections in the Redshift-Space Quadrupole. Physical Review Letters,
94(5):051301.

York, D. G., Adelman, J., Anderson, Jr., J. E., Anderson, S. F., Annis, J.,
Bahcall, N. A., Bakken, J. A., Barkhouser, R., Bastian, S., Berman, E.,
Boroski, W. N., Bracker, S., Briegel, C., Briggs, J. W., Brinkmann, J.,
Brunner, R., Burles, S., Carey, L., Carr, M. A., Castander, F. J., Chen,
B., Colestock, P. L., Connolly, A. J., Crocker, J. H., Csabai, I., Czarap-
ata, P. C., Davis, J. E., Doi, M., Dombeck, T., Eisenstein, D., Ellman, N.,



Bibliography 165

Elms, B. R., Evans, M. L., Fan, X., Federwitz, G. R., Fiscelli, L., Fried-
man, S., Frieman, J. A., Fukugita, M., Gillespie, B., Gunn, J. E., Gur-
bani, V. K., de Haas, E., Haldeman, M., Harris, F. H., Hayes, J., Heckman,
T. M., Hennessy, G. S., Hindsley, R. B., Holm, S., Holmgren, D. J., Huang,
C.-h., Hull, C., Husby, D., Ichikawa, S.-I., Ichikawa, T., Ivezi¢, �., Kent,
S., Kim, R. S. J., Kinney, E., Klaene, M., Kleinman, A. N., Kleinman,
S., Knapp, G. R., Korienek, J., Kron, R. G., Kunszt, P. Z., Lamb, D. Q.,
Lee, B., Leger, R. F., Limmongkol, S., Lindenmeyer, C., Long, D. C.,
Loomis, C., Loveday, J., Lucinio, R., Lupton, R. H., MacKinnon, B.,
Mannery, E. J., Mantsch, P. M., Margon, B., McGehee, P., McKay, T. A.,
Meiksin, A., Merelli, A., Monet, D. G., Munn, J. A., Narayanan, V. K.,
Nash, T., Neilsen, E., Neswold, R., Newberg, H. J., Nichol, R. C., Nicin-
ski, T., Nonino, M., Okada, N., Okamura, S., Ostriker, J. P., Owen, R.,
Pauls, A. G., Peoples, J., Peterson, R. L., Petravick, D., Pier, J. R., Pope,
A., Pordes, R., Prosapio, A., Rechenmacher, R., Quinn, T. R., Richards,
G. T., Richmond, M. W., Rivetta, C. H., Rockosi, C. M., Ruthmansdorfer,
K., Sandford, D., Schlegel, D. J., Schneider, D. P., Sekiguchi, M., Sergey,
G., Shimasaku, K., Siegmund, W. A., Smee, S., Smith, J. A., Snedden,
S., Stone, R., Stoughton, C., Strauss, M. A., Stubbs, C., SubbaRao, M.,
Szalay, A. S., Szapudi, I., Szokoly, G. P., Thakar, A. R., Tremonti, C.,
Tucker, D. L., Uomoto, A., Vanden Berk, D., Vogeley, M. S., Waddell,
P., Wang, S.-i., Watanabe, M., Weinberg, D. H., Yanny, B., Yasuda, N.,
and SDSS Collaboration (2000). The Sloan Digital Sky Survey: Technical
Summary. Astron. J., 120:1579�1587.

Zhao, C., Kitaura, F.-S., Chuang, C.-H., Prada, F., Yepes, G., and Tao,
C. (2015). Halo mass distribution reconstruction across the cosmic web.
Mon. Not. R. Astron. Soc., 451:4266�4276.


	Introduction
	Large-scale structure
	Standard cosmological model
	The cosmic microwave background
	The dark sector
	Dark Matter
	Dark Energy

	Theory of structure formation
	Cosmic density field as stochastic field
	Collisionless fluid
	Linear solution for a pressureless fluid
	Non-linear evolution and higher order correlators
	Lagrangian perturbation theory
	Zeldovich approximation
	Higher order Lagrangian pertubation theory
	From LPT to EPT

	Galaxy correlations
	Sampling
	Bias


	Probes of the galaxy distribution
	Measurements of galaxy clustering
	Two point clustering estimators
	Covariance matrix of clustering

	Cosmological constraints from clustering
	Baryonic acoustic oscillation
	Redshift-space distortion
	State of the art


	Numerical methods for cosmological simulations
	N-body simulations
	Approximate methods
	Discussion

	Uncertainty in the visibility mask
	General introduction to the foreground problem
	Power spectrum of biased tracers in the presence of foregrounds
	Luminosity function and galaxy number density
	The case of luminosity-independent bias
	Power spectrum

	Simulated catalogs
	Cosmological catalogs
	Implementation of the mask toy model
	Analytical predictions
	Power spectrum estimators

	Results
	Power spectrum
	Covariance

	Discussion

	Covariance matrix comparison
	Covariance matrix with few number of catalogs
	Approximate methods
	Results: power spectrum
	Results: bispectrum

	Discussion

	Galaxy power spectrum covariance matrix
	The state of the art
	Covariance of the galaxy power spectrum
	Biased tracers
	Power spectrum covariance and shot-noise

	Results
	Discussion

	Toward an analysis of the bispectrum
	The bispectrum challenge
	Alternative bispectrum estimators

	The bispectrum model
	Likelihood analysis
	Fisher matrix analysis
	Bispectrum variance and covariance
	Power spectrum prior

	Results
	Discussion

	Conclusions
	Bibliography

