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Abstract In this paper, we study the ‘wrong skewness 
phenomenon’ in stochastic frontiers (SF), which consists in 
the observed difference between the expected and estimated 
sign of the asymmetry of the composite error, and causes the 
‘wrong skewness problem’, for which the estimated 
inefficiency in the whole industry is zero. We propose a 
more general and flexible specification of the SF model, 
introducing dependences between the two error components 
and asymmetry (positive or negative) of the random error. 
This re-specification allows us to decompose the third 
moment of the composite error into three components, 
namely: (i) the asymmetry of the inefficiency term; (ii) the 
asymmetry of the random error; and (iii) the structure of 
dependence between the error components. This decom-
position suggests that the wrong skewness anomaly is an ill-
posed problem, because we cannot establish ex ante the 
expected sign of the asymmetry of the composite error. We 
report a relevant special case that allows us to estimate the 
three components of the asymmetry of the composite error 
and, consequently, to interpret the estimated sign. We pre-
sent two empirical applications. In the first dataset, where the 
classic SF has the wrong skewness, an estimation of our 
model rejects the dependence hypothesis, but accepts the 
asymmetry of the random error, thus justifying the sign of 
the skewness of the composite error. More importantly, we 
estimate a non-zero inefficiency, thus solving the wrong

skewness problem. In the second dataset, where the classic
SF does not yield any anomaly, an estimation of our model
provides evidence for the presence of dependence. In such
situations, we show that there is a remarkable difference in
the efficiency distribution between the classic SF and our
class of models.
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1 Introduction

The basic formulation of a production stochastic frontier
(SF) model1 can be expressed as y ¼ f x; βð ÞeE , where y is
the firm production, x is a vector of inputs; β is vector of
unknown parameters. The error term, E ¼ V � U, is
assumed to be made of two statistically independent com-
ponents, a positive random variable, denoted by U, and a
symmetric random variable, denoted by V. U reflects the
difference between the observed value of y and the frontier
and can be interpreted as a measure of firms’ inefficiency,
while V captures random shocks, measurement errors and
other statistical noise.

One major difficulty analysts often face when estimating
an SF model is related to the choice of the distributions of* Filippo Domma
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1 The original formulation of the SF model is based on the pioneering
works of Aigner et al. (1977), Meeusen and van den Broek (1977) and
Battese and Corra (1977) (see Kumbhakar and Lovell (2000) and
Coelli et al. (2005), for a recent and comprehensive overview).
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the random variables U and V. Different combinations have
been proposed, including the normal—half-normal model
(Aigner et al.1977; Battese and Corra1977), the normal—
exponential model (Meeusen and van denBroek1977), the
normal—truncated normal model (Stevenson 1980), and the
normal—Gamma model (Greene 1990; Stevenson 1980).
Perhaps the range of alternatives has been so far limited by
computational challenges due to issues about the tractability
of taking the convolution of the two error components. The
choice of distributional specification is sometimes a matter
of computational convenience.

The limited alternatives for the possible distributions also
poses empirical challenges. For instance, several authors
have addressed the problem related to the observed differ-
ence between the expected and the estimated sign of the
asymmetry of the composite error. Specifically, for the
standard SF model, the third central moment of E is

Ef½E � EðEÞ�3g ¼ �Ef½U � EðUÞ�3g; ð1Þ
thereby meaning, for example, that a positive skewness for
the inefficiency term U implies an expected negative
skewness for the composite error E. However, in many
applications, the residuals yield the wrong sign. This is
called in the literature the wrong skewness phenomenon in
SF models, initially pointed out by Green and Mayes
(1991). In SF models, this phenomenon is important
because it implies that the estimated variance of the ineffi-
ciency component is zero with positive probability. This, in
turn, causes the inefficiency scores to be zero.

To overcome this problem, several authors have pro-
posed the use, for the inefficiency component, of distribu-
tion functions with negative asymmetry. In particular,
Carree (2002) uses the binomial probability function,
Tsionas (2007) suggests the Weibull distribution whilst
Qian and Sickles (2009),Almanidis and Sickles (2011) and
Almanidis et al. (2014) consider a double truncated normal
distribution.

More recent attempts to obtain the desired direction of
the residual skewness are Feng et al. (2015), where the
authors propose a finite sample adjustment to the existing
estimators, and Hafner et al. (2016), where the authors
propose a new approach to the problem by generalizing the
distribution used for the inefficiency variable.

In this paper we argue that the wrong skewness problem
has been only partially addressed because the relation
described by Eq. (1), and the consequent discussion of the
wrong skewness anomaly, is a direct consequence of all the
assumptions underlying the specification of the basic for-
mulation of an SF model. In fact, in a more general fra-
mework, where we relax the hypothesis of symmetry for V,
of positive skewness for U, and of independence between U

and V, after simple but tedious algebra, the third central
moment of the composite error turns out to be2

Ef½E � EðEÞ�3g ¼ �Ef½U � EðUÞ�3g þ Ef½V � EðVÞ�3g
þ3CovðU2;VÞ � 3CovðU;V2Þ � 6½EðUÞ � EðVÞ�CovðU;VÞ:

ð2Þ

From Eq. (2), it is clear that the sign of the asymmetry of
U and V and the dependence between U and V both affect
the expected sign of the asymmetry of the composite error.

In order to take into account the different sources
affecting the asymmetry of the composite error, in this
paper we propose a very flexible specification of the SF
model, introducing skewness in the random error V through
a distribution whose shape can be asymmetric negative,
positive, or symmetrical, depending on the value of one of
its parameters, and the dependence between the two error
components U and V. The dependence structure is modeled
with a copula function that allows us to specify the joint
distribution with different marginal probability density
functions. Moreover, we use a copula function able to
model positive or negative dependence, and the special case
of independence, depending on the value of a dependence
parameter.

In some special cases, the convolution between the two
error components admits a semi-closed expression also in
cases of statistical dependence between U and V. An
example is provided in Smith (2008), who uses FGM
copulas to relax the assumption of the independence of the
two error terms. In a basic economic setting and with simple
marginal distribution, Smith (2008) points out that the
introduction of a statistical dependence between the two
error terms may have a substantial impact on the estimated
efficiency level. The author obtains an expression for the
density of the composite error in terms of hypergeometric
functions for a model with an exponential distribution for
the inefficiency error and a standard logistic distribution for
the random error. We propose a first generalization of Smith
(2008) by using a Type I Generalized Logistic (GL) dis-
tribution for the random error. This distribution describes
situations of symmetry or asymmetry (positive or negative),
depending on the value of one of its parameters. This allows
us to analyze the statistical properties of a model which has
both statistical dependence and possible asymmetry in the
random error component. While Kumbhakar and Lovell
(2000) attribute some well-known limitations of the SF
approach to incorrect specifications of the frontiers, we
point out that some of the anomalies observed in the
empirical literature may come from an incorrect specifica-
tion of the shape of the density function of the two error
components.

2 The proof of this statement is available upon request.
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A relevant point is the economic interpretation of our
assumption about the dependence and asymmetry of the
random error. As stressed by some authors, (Gómez-Déniz
and Pérez-Rodriguez 2015; Pal and Sengupta 1999; Smith
2008), there are no statistical and economic reasons to
assume the orthogonality of the errors. In particular, the
independence of these error components in a productive
industry is, in the opinion of Smith (2008), not obvious
from either the economic or the statistical point of view. Pal
and Sengupta (1999) argue that managerial efficiency may
be affected by natural factors (representing statistical noise)
in the agricultural sector. In addition, in a context in which
current managerial decisions are influenced by past natural
shocks (even in the short period), it easy to understand that
the assumption of independence is too stringent. This holds
particularly in agriculture, since a disturbance in one season
will affect future decisions, thereby influencing the ineffi-
ciency component. Given that the same disturbance will
affect the random error component, this could lead to the
presence of a dependence between the random noise and the
inefficiency. Also in this respect, Gómez-Déniz and Pérez-
Rodriguez (2015) and Smith (2008) propose some examples
of dependence in the agricultural sector. There are some
good farmers who deal better with bad climatic conditions
than do others. This will affect their efficiency when the
weather is bad, meaning that a dependence among the error
components cannot be excluded. A different interpretation
is according to misspecification errors. In fact, there are
some variables affecting the efficiency that cannot be
included in the model because they are not well defined or
not measurable (e.g., managerial ability, personal bias).
Thus, they can flow into the statistical noise, given that it
contains all things not included in the model, and this could
lead to the presence of dependence (Pal and Sengupta
1999). In the manufacturing sector, unexpected events can
occur in different phases of the productive process, influ-
encing managerial decisions, e.g. damage to industrial
machines, and defective products.

Regarding the asymmetry of the random error term, we
depart from the huge literature which addresses this issue
from a statistical point of view. In fact, some research deals
with the normality of the residuals in different economic
contexts (Azzalini 2005). From an economic perspective,
unexpected shocks might affect the random error compo-
nent, which does not necessarily follow a normal distribu-
tion. Normality seems to be a convenient assumption for
mathematical computations. In several fields of research
(economics, finance, sociology, engineering) error struc-
tures in regression models are not symmetric (Lewis and
McDonald 2013; Lin et al.2013; Wu 2013). A more general
example, in our opinion, would relate to a panel data con-
text, thinking, for instance, macro-shocks affect the noise
component of a production function. We expect that the

skewness of this noise component could vary over time,
following macro-cyclical patterns. For example, regarding
our first empirical analysis of data from the NBER, we
estimated production functions for different years and only
in 19 years out of the 1958–2005 period were there cases of
wrong skewness. We find that in one of these years (1979),
the asymmetric random component contributes greatly to
the decomposition of the third central moment. This dataset
is a well known example of data evidencing wrong skew-
ness (Bădin and Simar 2009; Hafner et al. 2016). The
empirical results suggest that the dependence between the
two error components is statistically rejected. Nonetheless,
a strong positive asymmetry of the random error can be
accepted. But, more importantly, our approach is able to
estimate a non-zero inefficiency term, thus solving, at least
in this dataset, the wrong skewness problem.

The second dataset has been chosen to test the class of
models proposed in this paper when no wrong skewness is
present in the data. In this empirical analysis, we find a
strong non-linear dependence structure between the two
sources of error. We show that this dependence structure
has a significant impact on the observed Technical Effi-
ciency (TE) scores.

Our model allows for statistical dependence through
copulas in a straightforward manner. Thus, our paper is also
related to the growing strand of the literature which uses
copulas in stochastic frontiers. In particular, Amsler et al.
(2014, 2016) introduce time dependence through copulas.
Carta and Steel (2012) use copula functions to introduce a
dependence between the outputs in a multi-output context.
Lai and Huang (2013) propose a model taking into account
the correlation among a set of individuals. Shi and Zhang
(2011) use copulas for modeling the dependence in long-tail
distributions. Tran and Tsionas (2015) model the depen-
dence through a copula between endogenous regressors and
the overall error term in a case in which external instru-
ments are not available. We contribute to this literature by:
(i) Giving a specification that generalizes Smith (2008); (ii)
Indicating the exclusion of dependence as a possible cause
of the wrong skewness phenomenon and the relative wrong
skewnees problem; (iii) Suggesting that the presence of
dependence between the two sources of error might con-
siderably affect the estimation of TE scores.

This paper is organized as follows. In Section 2 we
introduce the economic model and we list the steps required
for the construction of the likelihood function and for the
calculation of the TE. The new specification of the SF
models is presented in Section 3, where a semi-closed
expression for the probability density function of the model
in terms of hypergeometric functions is derived. This allows
us to discuss the statistical properties of the model in a
rather transparent way. Section 4 reports the results of the
two applications. In Section 5, we conclude. Then,
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Appendix 1 presents the proof of our Proposition 1. Despite
the semi-closed formula for the composite error function,
the estimation of our examples requires a numerical dis-
cretization of the density. In this paper we use Gaussian
quadratures, and the entire procedure is described in
Appendix 2. Finally, Appendix 3 presents the analytical
derivation of the TE and Appendix 4 presents the statistical
properties of the copulas used in the empirical applications.

2 Stochastic frontiers and copula functions

The generic model of a production function for a sample of
N firms is described as follows:

y ¼ xβ þ V � U ð3Þ
where y is an (N× 1) vector of firms’ log-outputs; x is an
(N× K) matrix of log-inputs; β is a (K× 1) vector of
unknown elasticities; V is an (N× 1) vector of random
errors; U is an (N× 1) vector of random variables
describing the inefficiencies associated to each firm (for a
detailed discussion Kumbhakar and Lovell 2000).

To complete the description of the model, we need to
specify the distributional properties of the random variables
(U,V). The standard specification assumes independence
between the random error and the inefficiency component,
and a normal distribution for both random variables
(although the inefficiency error must be truncated at zero to
guarantee positiveness). We depart from this specification
by considering a general joint probability density function
fU,V (⋅, ⋅,Θ) for the couple (U,V), where Θ is the vector of
parameters to be estimated, which includes β, the marginal
and the dependence parameters. This density is defined on
ℝ+×ℝ, since inefficiency needs to be non-negative. The
probability density function (pdf) of the composite error
E :¼ V � U is the convolution of two dependent random
variables U and V, i.e.

fE ϵð Þ ¼
Z

<þ

fU;V u; ϵþ uð Þdu ð4Þ

where the joint probability density function, fU,V (u,v), is
constructed using the properties of copula functions.

Copulas are widely appreciated tools used for the con-
struction of joint distribution functions. To highlight the
potential of this tool, it is sufficient to note that a copula
function joins margins of any type (parametric, semi-para-
metric, and non-parametric distributions), not necessarily
belonging to the same family, and captures various forms of
dependence (linear, non-linear, tail dependence, etc.). A
two-dimensional copula is a bivariate distribution function
whose margins are uniform on (0,1). The importance of
copulas stems from Sklar’s theorem, which states how

copulas link joint distribution functions to their one-
dimensional margins. Indeed, according to Sklar’s theo-
rem, any bivariate distribution H(x,y) of the variables X and
Y, with marginal distributions F(x) and G(y), can be written
as H(x,y)=C(F(x),G(y)), where C(.,.) is a copula function.
Thus any copula, together with any marginal distribution,
allows us to construct a joint distribution.

For the sake of parsimony, in this paper we do not
include the rigorous construction of the copula function
(details are Nelsen 1999). Rather, we describe the procedure
we use to embed the copula into the stochastic frontier
model described above (see also Smith (2008)), through
5 steps:

1. The choice of marginal distributions for the ineffi-
ciency error and the random error. We denote by fU(⋅),
gV(⋅) their pdfs, and by FU(⋅), GV(⋅) their distribution
functions.

2. The selection of the copula function Cθ (FU(⋅),GV (⋅)).
This usually involves additional dependence para-
meters, denoted here by θ.

3. The joint distribution function fU,V (u,v) has the
following standard representation:

fU;V u; vð Þ ¼ fU uð ÞgV vð Þcθ FU uð Þ;GV vð Þð Þ; ð5Þ
where cθ FU uð Þ;GV vð Þð Þ ¼ ∂2Cθ FU uð Þ;GV vð Þð Þ

∂FU uð Þ∂GV vð Þ is the den-
sity copula.

4. The pdf of the composite error fϵ(·;Θ) is the
convolution of the joint density as in (4). Now,
observing that ϵi ¼ yi � xiβ, the likelihood function is
given by

L ¼
YN
i¼1

fE yi � xiβ;Θð Þ ð6Þ

where xi is the ith row of x.
5. Finally, the technical efficiency (TEΘ) is

TEΘ¼E e�U Ej ¼ ϵ�
� �¼ 1

fE ϵ�;Θð Þ
Z

<þ

e�ufU;V u; ϵþ u;Θð Þdu:

ð7Þ
The complexity of the procedure described above

depends on the choice of the marginal distribution functions
FU(⋅), GV(⋅) and the copula function Cθ(⋅,⋅). It is equally
obvious that the same choice influences the flexibility of the
model. In the next section, we present a specification that
represents a balanced trade-off between complexity and
flexibility.

3 A new specification of SF models

In this section we propose a new specification for the com-
posite error, which gives rise to a semi-closed expression for
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the composite error of a production stochastic frontier. The
density functions and the distribution functions of our spe-
cification are presented in Table 1. We model the inefficiency
component of the composite error through an exponential
random variable. This is a natural choice for the distribution
of the inefficiency term, and has been used in many empirical
applications (see Greene 1990; Smith 2008 to mention only a
few). To model the random component of the composite
error, we use a slight modification of the Type I generalized
logistic distribution. To this end, we assume that the random
variable V′ is distributed as a Type I generalized logistic

distribution with parameters (αv, δv, λv) and distribution

function GV ′ v′ð Þ ¼ 1þ e�
v0�λv
δv

� ��αv
, where αv is a shape

parameter, δv is a scale parameter, and λv is a location
parameter (see, for example, Johnson et al. (1995)), and with
expected value and variance given by E[V′]= λv+ δv[Ψ(αv)
−Ψ(1)] and Var(V′)= δv[Ψ′(αv)+Ψ′(1)], respectively.

In order to interpret V′ as a random error with zero
mean, we consider the difference V= V′−E(V′). It is
immediate to verify that the distribution function of V is

GV vð Þ ¼ 1þ e�
vþδv Ψ αvð Þ�Ψ 1ð Þ½ �

δv

� ��αv
, with E(V)= 0 and Var(V)

= Var(V′).3 Moreover, this choice makes our results directly
comparable with those of Smith (2008), who uses a stan-
dard logistic distribution. Our results thus specialize to
Smith (2008) when αv= 1. This particular choice for the
distribution of the random error is motivated by the need for
flexibility. Indeed, as shown in Domma (2004) and in
Domma and Perri (2009), such s distribution is capable of
generating either symmetric or positively/negatively skewed
distributions. However, despite this flexibility, its density
function is simple enough to be handled with relative ease.
The final ingredient of our specification is the FGM copula.
This assumption is motivated by the need to obtain a semi-
closed form solution for the density of the random com-
ponent. We would like to emphasize that in empirical
applications, this copula is likely to produce poor estimates
because of its well-known limitations. However, while at
this stage the tractability is a priority, we will perform our
empirical analyses with different specifications of the
copula to check the robustness of our empirical results.

The following proposition presents a semi-explicit for-
mulation of the pdf of the composite error in terms of a
linear combination of hypergeometric functions,4 the
expected value, the variance and the third central moment of
the composite error.

Proposition 1 Assuming that U � Exp δuð Þ, V �
GLðαv; δvÞ and the dependence between U and V is modeled
by an FGM copula. Let k1(ϵ) be defined as k1 ϵð Þ
¼ exp � ϵþδv Ψ αvð Þ�Ψ 1ð Þ½ �

δv

n o

1. The density function of the composite error is

fE ϵ;Θð Þ ¼ w1 ϵð Þ2F1 αv þ 1;
δv
δu

þ 1;
δv
δu

þ 2;�k1 ϵð Þ
� �

þw2 ϵð Þ2F1 αv þ 1; 2
δv
δu

þ 1; 2
δv
δu

þ 2;�k1 ϵð Þ
� �

þw3 ϵð Þ2F1 2αv þ 1;
δv
δu

þ 1;
δv
δu

þ 2;�k1 ϵð Þ
� �

þw4 ϵð Þ2F1 2αv þ 1; 2
δv
δu

þ 1; 2
δv
δu

þ 2;�k1 ϵð Þ
� �

ð8Þ

where the functions w1(.), w2(.), w3(.) and w4(.) are
defined by

w1 ϵð Þ ¼ ð1� θÞ αvk1 ϵð Þ
δvþδu

w2 ϵð Þ ¼ 2θ αvk1 ϵð Þ
2δvþδu

w3 ϵð Þ ¼ 2θ αvk1 ϵð Þ
δvþδu

w4 ϵð Þ ¼ �4θ αvk1 ϵð Þ
2δvþδu

2. The expected value, the variance, and the third
central moment of the composite error are

E E½ � ¼ �δu; ð9Þ

Table 1 Marginal distribution
functions and FGM copula

Parameters Probability density function Distribution function

Exponential δu> 0 1
δu
e�

u
δu 1� e�

u
δu

GL αv, δv> 0 αv
δv

e
�vþδv Ψ αvð Þ�Ψ 1ð Þ½ �

δv

1þe
�vþδv Ψ αvð Þ�Ψ 1ð Þ½ �

δv

� �αvþ1 1þ e�
vþδv Ψ αvð Þ�Ψ 1ð Þ½ �

δv

� ��αv

FGM θ ∈ (−1,1) 1+ θ(1−2Fu)(1−2Gv) FuGv(1+ θ(1−Fu)(1−Gv))

3 Throughout this paper, we will denote this distribution by GL(αv,
δv).

4 The general form of a hypergeometric function is given by 2F1 a;ð
b; c; sÞ ¼ Γ cð Þ

Γ c�bð ÞΓ bð Þ
R 1
0t

b�1 1� tð Þc�b�1 1� stð Þ�adt ¼ P1
i¼0

að Þi bð Þi
cð Þi

si

i! In the

region x : sj j<1f g, it admits the following representation:

2F1 a; b; c; sð Þ ¼ P1
i¼0

að Þi bð Þi
cð Þi

si

i! where Γð:Þ is the Gamma function and (d)i

= d(d+1)…(d+i−1) is the Pochhammer symbol, with (d)0= 1.
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Var E½ � ¼ δ2u þ δ2v Ψ′ αvð Þ þ Ψ′ 1ð Þ½ � � θδuδv
2

Ψ 2αvð Þ � Ψ αvð Þ½ �
ð10Þ

and

Ef½E � EðEÞ�3g ¼ �2δ3u þ δ3v ½Ψ′′ðαvÞ � Ψ′′ð1Þ�

þ 3
4
θδuδvfδu½Ψð2αvÞ � ΨðαvÞ�

þ2δv½Ψ′ðαvÞ þΨ′ð1Þ� � δv½Ψð2αvÞ

�ΨðαvÞ�2 � δv½Ψ′ð2αvÞ þ Ψ′ð1Þ�g

ð11Þ

where Ψ( ⋅ ), Ψ ′( ⋅ ) and Ψ ′′( ⋅ ) are, respectively, the
Digamma, Trigamma and Tetragamma functions.

Proof See Appendix 1.
To appreciate the flexibility of our model, we point out

that depending on the values of some parameters, we can
specify the following four possible models:

● for θ= 0 and αv= 1, we get the model of independence
and symmetry, denoted by (I,S);

● for θ= 0 and αv ≠ 1, we have the model of independence
and asymmetry, denoted by (I,A);

● for θ ≠ 0 and αv= 1, we obtain the model of dependence
and symmetry, denoted by (D,S);

● for θ ≠ 0 and αv ≠ 1, we have the model of dependence
and asymmetry, denoted by (D,A)

In what follows, we will assess the impact of the
asymmetry of the random error (via parameter αv) and the
effect of the dependence (via parameter θ) between U and V
on the variance of the composite error. In particular, we
compare four variances of the composite error, corre-
sponding to the four models described above. First, we
observe that for αv= 1, given that ψ ′ 1ð Þ ¼ π2

6 and ψ(2)−ψ
(1)= 1, and by Eq. (10), we obtain the special case

Var D;Sð Þ
E ¼ δ2u þ

π2

3
δ2v �

θδuδv
2

ð12Þ

which overlaps Smith (2008) in the case of the symmetry of
V and a dependence between U and V (this corresponds to a
variance of E of the DS model). Moreover, to make the
discussion simple, we highlight that the variance of the
composite error in the cases of (a) independence and
asymmetry and (b) independence and symmetry, are given,
respectively, by Var I;Að Þ

E ¼ δ2u þ δ2v ψ ′ αvð Þ þ ψ ′ 1ð Þ½ � and
Var I;Sð Þ

E ¼ δ2u þ π2

3 δ
2
v . Obviously, the variance of the com-

posite error in the case of dependence and asymmetry is
Var D;Að Þ

E ¼ Var Eð Þ reported in Eq. (10).

Figure 1 plots the variance of E as a function of αv. The
three lines corresponds to different dependence structures
(θ=−1, θ= 0 or θ= 1). In this figure, the effect of
asymmetry on the variance of the composite error is parti-
cularly evident.

Next, we determine the effects of αv on the distribution
function of E.5 In fact, Fig. 2 shows how the asymmetry of
the random error affects the distribution of the composite
error. Imposing a maximal positive dependence between U
and V (θ= 1), we plot different pdfs for different values of
αv and observe that αv affects not only the shape of the
density, but also, and more importantly, the behavior of the
distribution at the tails. The effect is more pronounced for
negatively skewed distributions of the random error. This

Fig. 1 Plot of Var Eð Þ for a production frontier with θ=−1, θ= 0 and
θ= 1 (αv ranges between 0 and 2)

10 5 10

0.05

0.10

0.15

0.20

0.25

0.30

v 0.25; v 1; v 3

5

Fig. 2 Density function of E of a production frontier with δu= δv= 1,
αv= 1 and θ= 1 (αv ranges between 0.25 and 3)

5 We have analyzed the impact of the dependence structure on the pdf
of E. Smith (2008) demonstrate this effect in the case of symmetric-v.
We observe the same results under different conditions of skewness for
V (negative or positive). For this reason, we do not show the plots here.
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explains the impact on the variance observed above: nega-
tive skewness assigns much more probability mass to the
extreme negative values of E than does positive skewness.

The empirical literature often finds estimated skewed
density functions of the composite error which contrast with
the theoretical predictions of the model (the ‘wrong skew-
ness’ anomaly). In this regard, there is no general consensus
on the interpretation of this misalignment between the
assumptions and the observed facts. For instance, Kumb-
hakar and Lovell (2000) ascribe the misalignment to eco-
nomically significant model misspecifications, while Simar
and Wilson (2010) and Simar and Wilson (2011) claim that
it may be due to an unfortunate sampling from a correctly
specified population. Smith (2008) argues that the observed
skewness may arise from the dependence between the
random error and the inefficiency. Here, we contribute to
the debate by suggesting one more possible explanation: it
could be the interaction between the dependence (as argued
by Smith) and the fundamental asymmetry of the distribu-
tion of the random error.

4 Empirical examples of production frontiers

In this section we present two empirical applications.6 We
use two different data samples, one in which a case of
wrong skewness occurs, and one in which it does not occur.

For each dataset, we estimate the classic SF model and
different variations within our class of models. For the
reader’s convenience, Table 2 presents the acronyms used to
distinguish the models, together with their statistical prop-
erties. The acronyms have been chosen to mimic the sta-
tistical properties of the models analyzed, so that IS stands
for Independence and Symmetry, IA for Independence and
Asymmetry, and DA for Dependence and Asymmetry. IS is
the most parsimonious, and is the specification closest to the
classic SF. It cannot capture either asymmetries in the
random component of the composite error or any depen-
dence between the two error components.

In empirical applications, when selecting a copula
function to capture some kind of dependence structure, one
must take into account several factors, such as its tract-
ability, the type of dependence (linear or non-linear), and
the strength of the dependence. This last factor is usually
measured with Kendall’s τK (see Joe 1997; Nelsen 1999),
which is defined as

τK ¼ 4
Z Z

I2

C Fu;Gvð ÞdC Fu;Gvð Þ � 1

for two arbitrary marginal U and V with distribution func-
tions FU and FV coupled with the density copula C(⋅, ⋅). We
test three different specifications of the copula function. The
FGM copula (Nelsen 1999) (models DS and DA) has the
advantage of producing a quasi-closed form density func-
tion for the composite error, and this allows us to obtain the
decomposition in Proposition 1. However, in our applica-
tions this copula may suffer from some limitations. In
particular, it can describe only situations where the depen-
dence structure is limited, since it can only capture situa-
tions where τK∈[−2/9, 2/9]. Stronger dependence structures
need more sophisticated copulas. The bivariate Gaussian
copula (included in DSGauss and DAGauss models) captures a
linear dependence between two random variables. It is used
mainly because it is easy to parametrize (Meyer 2013). It
alleviates at least in part the limitations of the FGM, given
that τK ¼ 2

π arcsin θð Þ where θ, in this case, is the correlation
measure, but has the drawback of only being capable of
capturing linear dependence. Lastly, the Frank copula
(models DSFrank and DAFrank) is capable of capturing
a non-linear dependence structure. It belongs to the
family of Archimedean copulas and has a Kendall’s
τk ¼ 1� 4

θ þ 4 D1 θð Þ
θ , where D1 θð Þ ¼ 1

θ

R θ
0

x
expx�1 dx (Huynh

et al. 2014) and θ the association parameter. In Appendix 4,
we present some of the mathematical characteristics of the
Gaussian and Frank copula functions.

4.1 Wrong skewness in the data from the NBER
database

We test our models in an SF production frontier using data
from the NBER manufacturing productivity database
(Bartelsman and Gray 1996). This archive is freely available
online and contains annual information on US manu-
facturing industries from 1958 to the present.

In the underlying economic model, the variable ‘value
added’ is our output, and total employment (lemp) and
capital stock (lcap) are the input factors (all variables are in
logarithms). The frontier assumes the Cobb-Douglas func-
tional form.

We focus on the data for 1979 since we find the presence
of a strong positive skewness in 1979, while negative
skewness was expected from the traditional model (this was
also shown in Hafner et al. (2016)). The wrong skewness
phenomenon present in this data implies the wrong skew-
ness problem in the sense that, according to the classical SF,
the inefficiency hypothesis should be rejected.

4.1.1 Estimation

In this section we present the results in Tables 3 and 4,
where significant coefficients are in bold (t-statistics are in
parentheses).

6 The maximization routine has been developed through the software
R-project using the ‘maxLik’ package and then the estimates have been
controlled with the algorithm discussed in Appendix 2.
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What we observe first is a significant and strong positive
asymmetry of the random error that, following the reason-
ing of this paper, should be the unique cause of the wrong
skewness phenomenon (and the relative problem) of the
data at hand.

Second, we observe that the DS and DA models
(Table 3) provide non-significant association measures. In
any case, testing the hypothesis θ= 0 means testing whether
there is independence between the inefficiency and the
random component of the composite error. In this particular
dataset, the data suggest that no dependence structure
should be included.7

The Akaike Information Criterion (AIC) does not give a
strong indication of which model should be preferred, since
for the IA model the AIC is equal to −22.45, followed by IS
(−21.15), DA (−20.52) and DS (−19.19).8 However, even
if each of our four models may be indifferent to the others
(Burnham and Anderson 2004), the association measures
are not significant and, comparing IA with IS, the former is
preferred. Thus, the better fit goes in the direction of pre-
ferring models capturing asymmetry of the random error
and not involving dependence structure.

As a robustness check, and driven by the high but not
significant association parameters of the FGM copula, we
have run a set of estimations in order to test whether other
copulas can capture different forms of dependence. In more
detail, we estimate both the DS and DA models, in which
the dependence is captured through both the Gaussian and
the Frank copulas. We present the results in Table 4. The
main findings are: (i) If we look at the significance test on
each estimated θ, the results suggest again the absence of
dependence; (ii) Comparison of all the estimated models

suggests that the IA model remains the better fit, evidencing
in a second way the absence of dependence in the NBER
sample.

5 Asymmetry decomposition and technical
efficiency

We now use the results of Proposition 1 to investigate the
statistical aspects of the wrong skewness phenomenon and
to decompose the asymmetry of the composite error.

Table 5 contains some descriptive statistics for the esti-
mated parameters and the estimated composite error ε̂. Each
column represents one model, whose statistical character-
istics are in Table 2. It is worth noting that the true direction
of asymmetry is measured by factoring the sum of the
deviations from the median (Zenga 1985).9 One element of
this decomposition is E E � E Eð Þ½ �3, which is the measure
derived in Eq. (11). Table 5 presents the contributions of the
single components to explain E E � E Eð Þ½ �3 and
E E �Me Eð Þ½ �3.

We find a positive skewness of E in the IA and DA
models, in which the v-component is strongly positive. The
DS model also has a positive skewness due to the positive
dependence-component. For the IS model, we can accept
the symmetry of E (all the skewness measures are very close
to 0). For the other specifications (IA, DS and DA) we have
no wrong skewness anomaly. In fact, the signs of
E E �Me Eð Þ½ �3 and

P
ϵ̂�Me ϵ̂ð Þ½ �3 are the same. We

remark that: (i) IS assumes a priori that the v-component
and the dependence-component are equal to 0, as in the
classic SF; (ii) the dependence-component is positive for
both models with a dependence structure, DA and DS, but it

Table 2 Summary of the
statistical models

Name Random error distribution Inefficiency distribution Dependence

Classic SF Normal ~ 0; σv2ð Þ Half-Normal ~ 0; σ2u
� �

No

IS Symmetric GL ~(αv= 1,δv) Exp ~(δu) No

IA GL ~(αv,δv) Exp ~(δu) No

DS Symmetric GL ~(αv= 1,δv) Exp ~(δu) FGM copula

DA GL ~(αv,δv) Exp ~(δu) FGM copula

DSGauss Symmetric GL ~(αv= 1,δv) Exp ~(δu) Gaussian copula

DSFrank Symmetric GL ~(αv= 1,δv) Exp ~(δu) Frank copula

DAGauss GL ~(αv,δv) Exp ~(δu) Gaussian copula

DAFrank GL ~(αv,δv) Exp ~(δu) Frank copula

7 Note, however, that the fact that the association parameter θ in models
DS and DA is extremely high suggests that the FGM copula does not
account correctly for the dependence. In fact, Kendall’s τK is probably
well above the maximum level which the FGM copula can account for
(0.22)
8 Burnham and Anderson (2004) employ the measure Δi = AICi −
AICmin and consider that models having Δi⩽ 2 are supported with
substantial evidence, those for which 4⩽Δi⩽ 7 have less support, and
those for which Δi>10 have no support.

9 Departing from the demonstration of Zenga (1985) for descriptive
measures, we obtain the following expression to account for the sign
of the skewness:

E½E �MeðEÞ�3 ¼ E½E � EðEÞ�3 þ ½EðEÞ �MeðEÞ�3 þ 3½EðEÞ
�MeðEÞ�VarðEÞ: ð13Þ
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is very small, and also (iii) dependence is statistically
rejected in this data sample.

Table 6 presents some descriptive statistics for the esti-
mated TE for each model.10

The wrong skewness problem is evident in the classic SF
and IS specifications. These models, indeed, present an
industry where all manufacturers are perfectly efficient (the
mean TE score is 1), and there is no variability (the variance
of the efficiency score approaches zero). What we observe
in our preferred model (IA) is that we can actually estimate
a non-zero TE. In other words, the IA model has the ability
to estimate the variability in the industry, thus solving, at
least in this dataset, the wrong skewness problem.

5.1 Application to a sample of Italian manufacturing
firms

We use data from AIDA (‘Analisi Informatizzata delle
Aziende Italiane’), which is a database containing financial
and accounting information of Italian firms. This dataset
does not evidence wrong skewness. Nonetheless, we would
like to determine the impact of our specification on the
distribution of the efficiency scores. It turns out, indeed, that
incorporating dependence between the two sources of error
significantly affects the estimated TE.

We use again a Cobb-Douglas production function
where the dependent variable is the value added, repre-
senting the firms’ output, while labor and capital are the
traditional inputs. Moreover, we introduce ICT and R&D

Table 3 Estimations of
production SF using US textile
industry data (1979)

Classic SF IS IA DS DA

β0 2.4507 2.4218 2.3969 2.5075 2.4117

(8.85) (19.25) (20.83) (16.40) (21.92)

β1 (lemp) 0.7920 0.7968 0.8323 0.7995 0.8306

(20.67) (23.84) (24.74) (23.09) (24.66)

β2 (lcap) 0.1913 0.1912 0.1815 0.1879 0.1821

(6.28) (7.12) (7.03) (6.89) (7.04)

δu 0.0002 0.0184 0.0750 0.0317

(0.01) (0.26) (0.79) (0.31)

αv – 6.1212 – 6.0202

(33.46) (50.20)

δv 0.0994 0.1368 0.1035 0.1377

(8.63) (7.61) (3.48) (3.24)

θ – – 0.99998 0.4063

(0.35) (0.07)

Obs 54 54 54 54 54

log-likelihood 13.58 15.58 17.22 15.59 17.26

AIC −17.17 −21.15 −22.45 −19.19 −20.52

Source: our elaborations on data from the NBER productivity database. The dependent variable is the value
added (in log). 5% significant coefficients are in bold

Table 4 Estimations of models capturing dependence through
Gaussian and Frank copulas. NBER dataset

DSGauss DSFrank DAGauss DAFrank

β0 2.4804 2.4859 2.3978 2.4755

(20.33) (16.74) (19.20) (10.66)

β1 (lemp) 0.7937 0.7944 0.8333 0.8148

(25.12) (24.90) (20.68) (13.12)

β2 (lcap) 0.1873 0.1940 0.1809 0.1905

(7.37) (7.29) (6.85) (3.22)

δu 0.0132 0.0788 0.0170 0.0974

(3.00) (0.90) (1.34) (2.58)

αv – – 6.2964 7.6870

(0.38) (0.41)

δv 0.0949 0.1169 0.1384 0.1879

(6.41) (4.38) (4.09) (4.12)

θ 0.2677 5.0666 0.0588 11.4830

(0.52) (1.22) (0.03) (1.29)

Obs 54 54 54 54

log-likelihood 14.74 15.96 17.19 17.48

AIC −17.48 −19.91 −20.38 −20.95

Source: our elaborations on data from the NBER productivity
database. The dependent variable is the value added (in log). 5%
significant coefficients are in bold

10 The derivation of the TEΘ scores is presented in Appendix 3.
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investments as additional inputs. All variables refer to the
calendar year 2009 and are in logarithms.11

5.1.1 Estimation

The results from Table 7 highlight the robustness of the
estimates across our models and the significance of all fitted
parameters (t-statistics are in brackets). Moreover, in terms
of the AIC, the classic SF models are very far from the other
specifications. The distance is much more than 10 points
(Burnham and Anderson 2004). In particular, the more
general DA model has the better fit (AIC 1042.26), but the
AIC for the DS model is very close (1042.46). Hence, we
reject the asymmetry of the random error for all the speci-
fications. Thus, the results indicate the presence of a posi-
tive dependence and the symmetry of V in this data sample.

The estimated values for θ give reasons to further
investigate the dependence, but even more, the calculated
values of τk convinced us to carry out a more in-depth
analysis of the dependence (0.18 for the DS model and 0.22
for the DA model, considering that 0.22 is the maximum
value for τk with the FGM copula). Table 8 presents the
estimations of the DS and DA models capturing the
dependence through the Gaussian and Frank copulas. If we
look at the AIC, we can say that the better model is DSFrank

(1034.47), also with respect to the estimations in Table 7.
This means a strong positive dependence between U and V,
in fact τk is equal to 0.48 (the maximum is 1).

5.1.2 Technical efficiency

In the previous subsection, we showed that from a purely
statistical point of view, the dataset evidences a strong non-
linear dependence between the inefficiency error and the
random error. The questions are: Does this dependence
affect the distribution of the efficiency scores? In which
ways?

Table 9 displays the summary statistics of the efficiency
scores for each of the 9 models under investigation (the
classic SF as well as 8 models with different variants of our
specification). We find significant differences in the
observed distributions of the TE scores of the classic SF and
our models. In particular, an inspection of Table 9 reveals
that the left tails of the distributions are completely differ-
ent. For instance, the classic SF gives a minimum efficiency
level of 0.33, whereas the minimum level is 0.87 for
DSFrank, which is the best model in terms of AIC. We also
observe a pronounced difference in terms of the expected
values and the variability in the industry. To better highlight
the difference in the distribution of the efficiency scores, we
plot in Fig. 3 the kernel densities of the distributions of the
efficiency scores observed in the classic SF and DSFrank.
The classic SF presents an industry where the efficiency is
more variable among the firms than it is for DSFrank. A
number of firms in the industry are very inefficient: only a
few firms are very efficient. On the other hand, DSFrank

Table 5 Summary measures
and skewness of the composite
error (data from NBER)

IS IA DS DA

δu 0.0002 0.0184 0.0750 0.0317

αv 1 6.1212 1 6.0202

δv 0.0994 0.1368 0.1035 0.1377

θ 0 0 0.99998 0.4063

E(ϵ) −0.0002 −0.0184 −0.0750 −0.0317

V(ϵ) 0.0325 0.0344 0.0370 0.0340

Me(ϵ) −0.0009 −0.0432 −0.0744 −0.0562

E[ϵ−E(ϵ)]3 −1.82E-11 0.006057 0.001575 0.006412

u-component −1.82E-11 −0.000012 −0.000844 −0.000064

v-component 0 0.006069 0 0.006192

dependence-component 0 0 0.002419 0.000283

E[ϵ−Me(ϵ)]3 −1.84E-06 0.0086 0.0015 0.0090P
ϵ̂�Me ϵ̂ð Þ½ �3 0.4513 0.5781 0.4498 0.4949

Source: our elaborations on data from the NBER productivity database

E ϵ�Me ϵð Þ½ �3 ¼ E ϵ� E ϵð Þ½ �3 þ E ϵð Þ �Me ϵð Þ½ �3 þ 3 E ϵð Þ �Me ϵð Þ½ �V ϵð Þ
E[ϵ−E(ϵ)]3= u-component+ v-component+ dependence-componentP

ϵ̂�Me ϵ̂ð Þ½ �3 is calculated as shown in Zenga (1985) for descriptive measures

11 We calculate the ICT and R&D investments as percentages of yearly
sales. This percentage is from the EFIGE dataset (European Firms in a
Global Economy: Internal policies for external competitiveness),
which combines measures of firms’ international activities with
quantitative and qualitative information, with a focus on R&D and
innovation.
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presents a completely different picture of the industry. Here,
a large number of firms are concentrated around the very
high expected value, and only a few firms are moderately
inefficient.

The observed differences in the distribution of the effi-
ciency scores raise the question of whether the underlying
economic model is correctly specified.

A possible explanation of the remarkable difference in
the distributions of the TE is due to misspecification errors
of the underlying economic model. In fact, some variables
affecting the efficiency cannot be included in the model
because they are either not well defined or not measurable.
Thus, the bias in the economic model can flow into the
statistical noise, given that this noise contains everything
not included in the model, and this might introduce a
dependence between the two different sources of error (see

Pal and Sengupta 1999). In such situations, not properly
taking into account the dependence structure might produce
an estimated TE producing a different picture of the
industry.

6 Conclusions

In this paper, we have shown that the so-called ‘wrong
skewness’ anomaly in stochastic frontiers is a direct con-
sequence of the basic hypotheses, which appear to be overly
restrictive. In fact, relaxing the hypotheses of the symmetry
of the random error and the independence of the compo-
nents of the composite error, we obtain a re-specification of
the stochastic frontiers model that is sufficiently flexible.
This allows us to explain the difference between the

Table 6 Some descriptive
statistics of Technical Efficiency
(data from NBER)

Classic SF IS IA DS DA DSGauss DSFrank DAGauss DAFrank

Mean 0.999546 0.9998 0.9819 0.9305 0.9693 0.9763 0.9725 0.9811 0.9781

Stand. Dev. 6.18E-07 2.26E-07 0.0022 0.0085 0.0034 0.0021 0.0046 0.0022 0.0103

Min 0.999545 0.9997 0.9738 0.9066 0.9543 0.9721 0.9599 0.9731 0.9483

Max 0.999548 0.9998 0.9840 0.9385 0.9709 0.9795 0.9765 0.9832 0.9895

Source: our elaborations on data from the NBER productivity database

Table 7 Estimations of
production SF for the Italian
manufacturing firms using data
from AIDA (2009)

Classic SF IS IA DS DA

β0 2.4104 2.3340 2.3232 2.4288 2.3737

(19.23) (20.30) (20.54) (18.55) (19.80)

β1 (llabour) 0.7224 0.7411 0.7420 0.7434 0.7447

(34.52) (37.06) (37.10) (37.36) (37.24)

β2 (lcapital) 0.0928 0.0944 0.0952 0.0946 0.0958

(7.24) (7.74) (7.87) (7.82) (7.98)

β3 (lICT) 0.1119 0.0991 0.0979 0.0980 0.0961

(7.55) (6.98) (6.94) (6.95) (6.82)

β4 (lR&D) 0.1035 0.0994 0.0997 0.0986 0.0985

(7.37) (7.53) (7.61) (7.53) (7.58)

δu 0.1117 0.1047 0.1980 0.1376

(3.41) (4.87) (2.24) (3.32)

αv – 0.8819 – 0.8252

(8.76) (7.32)

δv 0.2234 0.2144 0.2299 0.2231

(26.48) (19.35) (10.69) (14.58)

θ – – 0.8032 0.9990a

(2.03) (1.27)

Obs 937 937 937 937 937

log-likelihood −536.27 −514.72 −514.15 −513.23 −512.13

AIC 1084.54 1043.44 1044.30 1042.46 1042.26

Source: our elaborations on data from the AIDA dataset. The dependent variable is the value added (in log)
a 20% significant level. 5% significant coefficients are in bold
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expected and the estimated signs of the asymmetry of the
composite error that is found in various applications of the
classic stochastic frontier model.

We have decomposed the third moment of the composite
error into three components, namely: (i) the asymmetry of
the inefficiency term; (ii) the asymmetry of the random
error; and (iii) the dependence structure of the error com-
ponents. This enables us to reinterpret the unusual asym-
metry in the composite error by measuring the contribution
of each component in the model. This has been shown in
one of the two empirical examples, i.e. the data from the
NBER archive, for which a case of wrong skewness has
been reported when using the classic SF specification.

When wrong skewness occurs, estimations with classic
SF correspond to OLS estimations, and the inefficiency
scores are zero. This misleads one to the conclusion that
there is no inefficiency. Our specification allows

Table 8 Estimations of models
capturing dependence through
Gaussian and Frank copulas.
AIDA dataset

DSGauss DSFrank DAGauss DAFrank

β0 2.2951 2.5573 2.3179 2.4125

(20.36) (20.74) (53.90) (16.57)

β1 (llabour) 0.7377 0.7531 0.7362 0.7532

(36.89) (38.42) (54.94) (37.85)

β2 (lcapital) 0.0953 0.0965 0.0967 0.0973

(7.81) (8.32) (8.95) (8.32)

β3 (lICT) 0.0997 0.0917 0.0982 0.0912

(7.07) (6.74) (5.31) (6.61)

β4 (lR&D) 0.1025 0.0966 0.1014 0.0953

(7.77) (7.67) (5.79) (7.45)

δu 0.1031 0.2887 0.1039 0.1361

(5.00) (4.07) (3.55) (1.58)

αv – – 1.0092 0.8188

(8.46) (6.60)

δv 0.2208 0.2867 0.2203 0.2585

(25.98) (8.12) (25.25) (15.86)

θ −0.1621 5.4569 −0.1135 4.7315

(−0.71) (2.37) (−1.07) (3.04)

Obs 937 937 937 937

log-likelihood −514.62 −509.23 −514.59 −509.47

AIC 1045.24 1034.47 1047.19 1036.93

Source: our elaborations on data from the AIDA database. The dependent variable is the value added (in
log). 5% significant coefficients are in bold

Table 9 Some descriptive
statistics of technical efficiency
(data from AIDA)

Classic SF IS IA DS DA DSGauss DSFrank DAGauss DAFrank

Mean 0.7638 0.8996 0.9054 0.8348 0.8791 0.9389 0.9180 0.9295 0.9494

Stand. Dev. 0.0794 0.0255 0.0221 0.0364 0.0060 0.0122 0.0092 0.0153 0.0080

Min 0.3371 0.8179 0.8448 0.6661 0.8688 0.9087 0.8677 0.8890 0.9273

Max 0.9137 0.9306 0.9342 0.8655 0.9124 0.9553 0.9255 0.9494 0.9580

Source: our elaborations on data from AIDA database
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overcoming this difficulty, as witnessed in both empirical
applications, where our estimates of the output elasticities
with respect to the inputs are more robust than those
involved in the standard SF specification and the estimated
efficiency scores are lower than unity.

Acknowledgements We would like to thank Francesco Aiello,
Antonio Alvarez, Sergio Destefanis, Sabrina Giordano, Luis Orea,
Léopold Simar and all participants to LECCEWEPA 2015 held in
Lecce.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interests.

Appendix 1

1.1 Proof of proposition 1

In order to prove Proposition 1 easily, we report some
preliminary results in the following Lemma.

Lemma 1

1. U ~ Exp(δu) then

● r-th moment is E Urð Þ ¼ δruΓ r þ 1ð Þ. Consequently, we
have: E(U)= δu, E U2ð Þ ¼ 2δ2u and E U3ð Þ ¼ 6δ3u.

● Denoted with FðuÞ ¼ 1� e�
u
δu the distribution function

of the random variable U, after algebra, we obtain
E UrF Uð Þ½ � ¼ E Urð Þ 1� 1

2rþ1

� �

2. If V ~GL(αv,δv), with pdf gV vð Þ ¼ αv
δv
e�

vþδv Ψ αvð Þ�Ψ 1ð Þ½ �
δv

1þ e�
vþδv Ψ αvð Þ�Ψ 1ð Þ½ �

δv

� ��αv�1
then

● E(V)= 0;
● E V2ð Þ ¼ Var Vð Þ ¼ δ2v Ψ′ αvð Þ þΨ′ 1ð Þ½ �;
● E V3ð Þ ¼ δ3v Ψ′′ αvð Þ � Ψ′′ 1ð Þ½ �.
● Denoted with GV ðvÞ ¼ 1þ e�

vþδv Ψ αvð Þ�Ψ 1ð Þ½ �
δv

� ��αv
the

distribution function of the random variable V, it
is easy to prove that E[VkG(V)]= (1/2)E{[δv(Ψ(2αv)
−Ψ(αv))+ V]k|2αv,δv}, where E[.|2αv,δv] is the expecta-
tion with respect to the GL with parameters 2αv and δv.
In particular, for k= 1 and k= 2 we have E VG Vð Þ½ � ¼
δv
2 Ψ 2αvð Þ � Ψ αvð Þ½ � and E V2G Vð Þ½ � ¼ δ2v

2 Ψ 2αvð Þ�½f
Ψ αvð Þ�2 þ Ψ′ 2αvð Þ � Ψ′ 1ð Þ½ �g, respectively.

3. if (U,V) ~ fU,V(u,v)= fU(u)gV(v)[1+ θ(1−2FU(u))
(1−2GV(v))] then

E UrVk
� � ¼ 1þ θð ÞE Urð ÞE Vk

� �

�2θ E Urð ÞE VkG Vð Þ� �þ E UrF Uð Þ½ �E Vk
� ���

2E UrF Uð Þ½ �E VkG Vð Þ� �� ¼ E Urð ÞE Vk
� �þ

θ
1
2r

� 1

� �
E Urð Þ E Vk

� �� E VkGV

�
Vð Þ� �

Now, we can prove the Proposition 1.

1. The pdf of composite error is fE ϵð Þ ¼R
<þ fU;V u; ϵþ uð Þdu where fU,V(u,ϵ+ u)= fU(u)V

(ϵ+ u)c(FV(u),GV(ϵ+ u)). Given that c(⋅, ⋅) is a
density copula of a FGM copula, we have

fU;V u; ϵþ uð Þ ¼ 1þ θð ÞfU uð ÞgV ϵþ uð Þ � 2θfUðuÞ

gV ϵþ uð ÞGV ϵþ uð Þ � 2θfUðuÞgV ϵþ uð ÞFU uð Þ

þ4θfUðuÞgV ϵþ uð ÞFU uð ÞGV ϵþ uð Þ
ð14Þ

Using (14), we have fE ϵð Þ ¼ 1þ θð ÞI1 � 2θ I2þf
I3 � 2Ig, where I ¼ R

<þ fU uð ÞgV ϵþ uð ÞFU uð Þ
GV ϵþ uð Þdu, and Ii, for i= 1,2,3 are special cases
of I.
Now, in order to calculate the integral I, we observe
that

fU uð ÞgV ϵþ uð ÞFU uð ÞGV ϵþ uð Þ

¼ αvk1 ϵð Þ
δuδv

e�
u
δu
� u

δv 1� e�
u
δu

� �
1þ k1 ϵð Þe� u

δu

� ��2αv�1

ð15Þ
where k1 ϵð Þ ¼ e�

ϵþδv Ψ αvð Þ�Ψ 1ð Þ½ �
δv . After algebra, we can write

I ¼ αvk1ðϵÞ�2αv

δuδv

Z

<þ

ðe�uÞ 1
δu
þ 1

δv ½1þ k1ðϵÞðe�uÞ 1
δv ��2αv�1du�

8<
:

�
Z

<þ

ðe�uÞ 2
δu
þ 1

δv ½1þ k1ðϵÞðe�uÞ 1
δv ��2αv�1du

9=
;

If before we put y= e−u and then t ¼ y
1
δv , after algebra, we

obtain

I ¼ αvk1 ϵð Þ
δu

Z1

0

t
δv
δu 1þ k1 ϵð Þtð Þ�2αv�1dt �

Z1

0

t2
δv
δu 1þ k1 ϵð Þtð Þ�2αv�1dt

8<
:

9=
;
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Bearing in mind that for hypergeometric function is true the
following

Γ c� bð ÞΓ bð Þ
Γ cð Þ 2F1 a; b; c; sð Þ ¼

Z1

0

tb�1 1� tð Þc�b�1 1� stð Þ�adt

We obtain

I ¼ αvk1 ϵð Þ
δu

1
δv
δu
þ1 2F1 2αv þ 1; δvδu þ 1; δvδu þ 2;�k1 ϵð Þ

� ��

� 1
2δvδuþ1 2F1 2αv þ 1; 2 δv

δu
þ 1; 2 δv

δu
þ 2;�k1 ϵð Þ

� ��

2. By Lemma 1, we can to verify that

● E(ϵ)=−E(U)=−δu
● Var ϵð Þ ¼ Var Uð Þ þ Var Vð Þ � 2cov U;Vð Þ ¼ δ2u þ δ2v

Ψ′ αvð Þ þ Ψ′ 1ð Þ½ � � 2cov U;Vð Þ, where cov U;Vð Þ ¼
θ
2E Uð ÞE VGV Vð Þ½ � ¼ θ

4 δuδv Ψ 2αvð Þ � Ψ αvð Þ½ �:
● Moreover, recalling that for a generic random variable,

Z, we have E[Z−E(Z)]3= E(Z3)−3E(Z2)E(Z)+ 2[E
(Z)]3, after simple algebra, E U � E Uð Þ½ �3 ¼ 2δ3u and
E V � E Vð Þ½ �3 ¼ δ3v Ψ′′ αvð Þ � Ψ′′ 1ð Þ½ �. Moreover, by
Lemma, we have:

cov U2;V
� � ¼ E U2V

� � ¼ 3
4
θδ2uδv Ψ 2αvð Þ � Ψ αvð Þ½ �

and

cov U;V2
� � ¼ � θ

4
δuδ

2
v 2 Ψ′ αvð Þ þΨ′ 1ð Þ½ � � Ψ 2αvð Þ½f

�Ψ αvð Þ�2 � Ψ′ 2αvð Þ þ Ψ′ 1ð Þ½ �g

by (2), after algebra, we obtain E[ϵ−E(ϵ)]3 as in Eq. (11).

Appendix 2

2.1 The numerical procedure

The estimation of models like those described in Section 2
requires the ability to compute the density of the composite
error. Closed-form expressions for this quantity are avail-
able only in some few special cases, such as the noteworthy
case addressed by Smith (2008). While in the previous
section we provided one more example of a closed-form
expression, this section is intended to describe the scheme
we use to approximate the likelihood (6) starting from a
general joint density fU,V. Our goal is to provide a numerical
tool capable of managing different joint distributions for the
couple (U,V), thus widening the set of alternatives one can
use when defining an SF model.

Our approach is fairly simple. We approximate the
convolution of U with V by means of a numerical quad-
rature. To be more precise, put E ¼ V � U. Its density
function, fE �;Θð Þ, is obtained by the convolution of U
with V:

fE x;Θð Þ ¼
Z1

0

fU;V u; xþ u;Θð Þdu ð16Þ

An explicit evaluation of the integral in (16) is in general
infeasible, which has kept a potential range of possible joint
densities almost unexplored. However, an approximation of
(16) by Gauss-Laguerre quadrature has proved to be easy
and effective, and is presented below.

Let us first rewrite (16) as

fE x;Θð Þ ¼
Z1

0

e�ugx uð Þdu; ð17Þ

with gx(u)= eufU,V (u,x+ u). Fix an integer m, which we
will refer to as the order of quadrature. For h= 1…,m, let:
(i) th be the h-th root of the Laguerre polynomial of order m,
Lm(u), and (ii) ωh be defined by the following system of
linear equations12,13

Z1

0

ske�sds ¼
Xn
h¼1

ωht
k
h k ¼ 1; ¼ ; 2m� 1: ð18Þ

Then, we can write

fE x;Θð Þ �
Xm
h¼1

ωhgx thð Þ: ð19Þ

Inasmuch as the function gx( ⋅ ) is Riemann integrable on
the interval [0,∞), standard results in numerical analysis
ensure the goodness of the approximation.

We can thus approximate the integral appearing in (16)
(and its gradient with respect to Θ) by a finite sum, and
insert the approximating density function and its gradient
into a quasi Newton-like iteration (however, from experi-
ence with the normal—half-normal model with the FGM
copula, a few initial iterations with the algorithm of Berndt
et al. (1974) is highly recommended). As for the order of
quadrature, practice with the normal—half-normal case
with the FGM copula shows that m= 12 is sufficient to
obtain safe approximations. For values of m around 12,
computations of the Laguerre nodes and weights require a
fraction of a second, and this is needed only once.

12 The system is over-determined, but possesses a unique solution ω1,
…,ωn.
13 These are basic concepts in numerical analysis. For more details
about orthogonal polynomials and Gaussian quadrature, any textbook
in this topic may be consulted. A standard reference for economists is
Judd (1998).
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Appendix 3

3.1 Calculation of TE scores

Given the Proposition 1, its Proof in Appendix 1 and
Eq. (7) in Section 2, we derive the formula to calculate the
Technical Efficiency scores TEΘ for our models.

We can write

TEΘ¼E e�U Ej ¼ ϵ�
� �¼ 1

fE ϵ�;Θð Þ
Z

<þ

e�ufU;V u; ϵþ u;Θð Þdu

ð20Þ
where fU,V(u,ϵ+ u) is derived in Eq. (14).

After algebra, we obtain:

TEΘ ¼ E e�U Ej ¼ ϵ½ �

¼ ω1 ϵð ÞH1 ϵð Þþθ ω1 ϵð ÞH1 ϵð Þ�2ω2 ϵð ÞH2 ϵð Þ�2ω3 ϵð ÞH3 ϵð Þþ4ω4 ϵð ÞH4 ϵð Þ½ �
ω1 ϵð ÞH1 ϵð Þ�θ ω1 ϵð ÞH1 ϵð Þ�2ω2 ϵð ÞH2 ϵð Þ�2ω3 ϵð ÞH3 ϵð Þþ4ω4 ϵð ÞH4 ϵð Þ½ �

ð21Þ
where the H−functions represent hypergeometric functions.
In particular, we have:

H1¼2F1 αv þ 1;
δv
δu

þ δv þ 1;
δv
δu

þ δv þ 2;�k1 ϵð Þ
� �

H1¼2F1 αv þ 1;
δv
δu

þ 1;
δv
δu

þ 2;�k1 ϵð Þ
� �

H2

¼ 1

δv 1
δu
þ 1

� �h i 2F1 αv þ 1; δv
1
δu

þ 1

� �
þ 1; δv

1
δu

þ 1

� �
þ 2;�k1 ϵð Þ

� �

� 1

δv 2
δu
þ 1

� �h i 2F1 αv þ 1; δv
2
δu

þ 1

� �
þ 1; δv

2
δu

þ 1

� �
þ 2;�k1 ϵð Þ

� �

H2 ¼ 2F1 αv þ 1; 2 δv
δu
þ 1; 2 δv

δu
þ 2;�k1 ϵð Þ

� �

H3 ¼ 2F1 2αv þ 1; δvδu þ δv þ 1; δvδu þ δv þ 2;�k1 ϵð Þ
� �

H3 ¼ 2F1 2αv þ 1; δvδu þ 1; δvδu þ 2;�k1 ϵð Þ
� �

H4

¼ 1

δv 1
δu
þ 1

� �h i 2F1 2αv þ 1; δv
1
δu

þ 1

� �
þ 1; δv

1
δu

þ 1

� �
þ 2;�k1 ϵð Þ

� �

� 1

δv 2
δu
þ 1

� �h i 2F1 2αv þ 1; δv
2
δu

þ 1

� �
þ 1; δv

2
δu

þ 1

� �
þ 2;�k1 ϵð Þ

� �

H4 ¼ 2F1 2αv þ 1; 2 δv
δu
þ 1; 2 δv

δu
þ 2;�k1 ϵð Þ

� �

with k1 ϵð Þ ¼ e�
ϵþδv Ψ αvð Þ�Ψ 1ð Þ½ �

δv and the ω−functions are respec-
tively defined as:

ω1 ϵð Þ ¼ ω3 ϵð Þ ¼ αvk1 ϵð Þ
δu δv 1

δu
þ1ð Þ½ � ω2 ϵð Þ ¼ ω4 ϵð Þ ¼ αvk1 ϵð Þ

δu

ω1 ϵð Þ ¼ ω3 ϵð Þ ¼ αvk1 ϵð Þ
δvþδv

ω2 ϵð Þ ¼ ω4 ϵð Þ ¼ αvk1 ϵð Þ
2δvþδv

Appendix 4

4.1 Gaussian and Frank copula functions

Gaussian Frank

Parameter θ∈(−1,1) θ∈(−∞, +∞)\{0}

Density 1ffiffiffiffiffiffiffiffi
1�θ2

p exp
2θΦ�1 F uð Þ½ �Φ�1 G vð Þ½ ��θ2 Φ�1 F uð Þ½ �2þΦ�1 G vð Þ½ �2ð Þ

2 1�θ2ð Þ
� �

θ 1�e�θð Þe�θ F uð ÞþG vð Þð Þ

1�e�θð Þ� 1�e�θF uð Þð Þ 1�e�θG vð Þð Þ½ �2

Distribution Φ(Φ−1[F(u)],Φ−1[G(v)];θ) �θ�1ln 1þ e�θF uð Þ�1ð Þ e�θG vð Þ�1ð Þ
e�θ�1ð Þ

� �

Legend: Φ is the Standard Normal distribution and Φ−1 is the inverse function.
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