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1. Detailed synthesis of PDI2 photosensitizer

The PDI2 photosensitizer was synthesized using a modified previously reported procedure[1-3]

depicted in Scheme S1.
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Scheme S1. Schematic synthesis of PDI2.

Perylene-bis-anhydride (2.0 g, 5.2 mmol), tris-(2-aminoethyl)amine (37 mL, 259 mmol) and
imidazole (100 g) were heated at 170°C for 24 h. The reaction was cooled to RT and a mixture of
ethanol and diethyl ether (1:3) was added. The mixture was filtered, washed with diethyl ether and
dried under vacuum to give a red solid (1) in 80% yield. *H-NMR (400 MHz, CF;COOD): § 8.79-
8.96 (m, 8H), 4.92 (m, 4H), 4.37 (m, 4H), 4.00-4.20 (m, 16H) ppm.

200 mg of 1 (0.3 mmol) were dissolved in 100 ml of a methanol/acetonitrile mixture. The solution
was stirred at RT for 15 min. Formaldehyde (1.5 ml, 12 mmol) was added and stirred for one hour.
750 mg of NaBH3;CN (12 mmol) were added and the solution was heated at 70°C for 16 hours.
Diethyl ether was added and the precipitate was filtered and dried under vacuum to give a red solid
(2) in 76 % yield. *H-NMR (400 MHz, CF;COOD): & 8.99-9.31 (m, 8H), 5.10 (m, 4H), 4.22-4.78
(m, 16H), 3.99 (m, 4H), 3.40 (s, 24H) ppm.

A mixture of 2 (150 mg, 0.2 mmol), 6 ml of MeOH and 100 mg of Na,CO3 was stirred at room
temperature for 12 h and methyl iodide (0.5 ml) was added, heated at 60°C for 4 hours, then 72
hours at RT. The precipitated was washed with 4 x 20 mL of diethyl ether. The red solid was dried
under vacuum to give PDI2 in 61% yield. *H-NMR (400 MHz, CF;COOD): & 8.90-9.15 (m, 8H),
5.02 (m, 4H), 4.44 (s, 20H), 4.19 (s, 6H), 3.56 (s, 36H) ppm.
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In order to exchange the anion and to make the dye soluble in acetonitrile, PDI2 was dissolved in
the minimum amount of water. In a second flask, 50 g of (NH;)PFg were dissolved in 100 mL of
water. The two solutions were mixed together and stirred for 2 hours. As soon as the two solutions
were combined, a precipitate was obtained and subsequently filtered and washed with 3 x 30 mL of
a (NH,)PFg saturated solution and with 3 x 30 mL of milliQ.

2. Electrochemistry of PDI and PDI aggregates
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Figure S1. (A) Square wave voltammetry (anodic scan) of PDI aggregates deposited onto FTO in 0.1
M TBAPFs in ACN in order to identify the E%,; (B-C) Square wave voltammetry (cathodic scan) of
PDI aggregates deposited onto FTO, tested in either 0.1 M TBAPFg in ACN (C) or in 0.1 M NaBr
(pH 1).
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3. Photoanodes characterization

3.1. AFM images
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Figure S2. AFM images of the nanostructured semiconductors deposited onto FTO. A-B) ATO, 1
and 3 um scan size respectively; C-D) SnO,, 1 and 3 um scan size respectively; E) WO3, 3 um scan

size.

3.2. UV-Vis spectra of the dye-sensitized photoanodes
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Figure S3. UV-Vis spectra of the PDI- (A) and PDI2- (B) sensitized photoanodes, not corrected for
the contribution of the bare SC. Thus, in these spectra the absorptions of the dye-sensitized WOs3
photoelectrodes are the sum of the contribution of both the dye and the bare WO3 (for A < 460 nm).

S6




3.3. J-V curves of the PDI-sensitized photoanodes
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Figure S4. J-V curves of the PDI-sensitized photoanodes in 0.1 M HBr (pH 1). 10 mV/s scan rate.
ATO-PDI (A) and SnO,-PDI (C) electrodes under continuous (black) or chopped (red) illumination
(0.1 W/cm? irradiation power, AM1.5G filter). The J-V curves registered in the presence of a
further 435 nm cut-off filter are also reported for ATO-PDI (B), SnO,-PDI (D) and WO3-PDI (E).




3.4. J-V curves of the PDI2-sensitized photoanodes
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Figure S5. J-V curves of the PDI2-sensitized photoanodes in 0.1 M HBr (pH 1). 10 mV/s scan rate.

ATO-PDI2 (A) and SnO,-PDI2 (C) electrodes under continuous (black) or chopped (red)
illumination (0.1 W/cm? irradiation power, AM1.5G filter). The J-V curves registered in the

presence of a further 435 nm cut-off filter are also reported for ATO-PDI2 (B), SnO,-PDI2 (D) and

WO3-PDI2 (E). Dark curves in blue.
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3.5. IPCE/APCE curves
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Figure S6. IPCE (A) and APCE (B-C) curves of the dye-sensitized photoanodes. Recorded in 0.1
M HBr (pH 1) under 0.8 V applied bias. Average of 2 electrodes with the corresponding error bars.

3.6. Static and time-resolved emission spectra
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Figure S7. Emission spectra of the PDI-sensitized photoanodes. Average of two different

electrodes. Aeyc = 485 nm.
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Figure S8. Fluorescence decay for ATO-PDI (A), WOs-PDI (B), SnO,-PDI (C) and ZrO,-PDI (D)
in 0.1 M NaClO,4 pH 3 (blue traces), compared to that of PDI in ACN (E, blue trace). Aexc = 460 nm;

Aprobe = 680 nm. Light source traces (red trace); exponential fittings (black trace).
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3.7. Transient Photocurrent Generation
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Figure S9. Photocurrent transient decays registered after the 532 nm laser excitation (0.6 m\W/cm?
intensity) under different applied bias for WO3-PDI and SnO,-PDI in the absence (A, C) or in the
presence (B, D) of an additional white light illumination (0.14 W/cm? intensity). In 0.1 M HBr, pH

1.
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Figure S10. Rise intensity (A) and amplitude weighted lifetimes t,, (B) as a function of the applied

bias for the dye-sensitized photoanodes under pulsed 532 nm laser excitation (0.6 mW/cm?

intensity) in the absence (empty markers) or in the presence (full markers) of an additional white

light illumination (0.14 W/cm? intensity). In 0.1 M HBr, pH 1.
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Figure S11. (A) Photocurrent transient decays of ATO-PDI after 532 nm laser excitation (0.6

mW/cm? intensity) under 0.3 V in the absence (black) or in the presence (red) of continuous white

light illumination of 0.14 W/cm? intensity. In 0.1 M HBr, pH 1. (B) Traces reported in the inset

Figure 2B (main text) translated to the same baseline (arbitrarily set to 0) for sake of better

comparison.
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3.8. Femto- and Nano-second transient absorption spectra and kinetics

ZrO,-PDI
0.3 ' . , ' ~ 0.3 - :
—480 nm —480 nm
MHA quﬁ M wd—Fit iy —Fit  §
—680 nm
= 0.1 1 = 0.1
[ [
< <
0 0
- .1F : : : -0.1 :
0 50 100 150 200 250 300 -0.2 0 0.2 04 06 08 1
Time (ps) Time (ps)
A
ATO-PDI
1 ‘ ' , ' 1 ;
—480 nm —480 nmH
\\-—Fit — Fit
550 nm|| I
0.5 __Fit ] 0.5
e —680 nm e
= —Fit >
< 0 < 0
R
-0.5 : : -0.5 :
0O 50 100 150 200 250 300 -0.2 0 0.2 04 06 08 1
Time (ps) Time (ps)
: : 0.1 ;
550 nm —680 nm
-0.05¢ e —Fit
0
-0.1+¢
= =-0.1
- A =
5 0.15 5
_02 '02
-0.25 -0.3 :
-02 0 02 04 06 08 1 -0.2 0 0.2 04 06 08 1
Time (ps) Time (ps)
B

S13




WO,;-PDI

3 ; : 3 ; ‘
—480 nm —480 nm
—Fit —Fit
: 550 nm| 2
—Fit
= 1 —680 nmy; =17
- —Fit =
< <
0 0
= - : . - : -1 - : k - ‘
0 50 100 150 200 250 300 -02 0 02 04 06 08 1
Time (ps) Time (ps)
0.2 ‘ - ,
550 nm . 650 nm
0 —Fit 0= —Fit
-0.1¢
=-0.2 =
= F-02}
5 5 0.2
'04 _03
-0.6 : : : -04 - : :
-02 0 02 04 06 08 1 -02 0 02 04 06 08 1
Time (ps) Time (ps)
C
SnO,-PDI
0.6 : : 0.05 , :
—480 nm —480 nm
—Fit —Fit
550 nm!| | 0
—Fit
"rifed —680 M| =-0.05
—Fit >
<
-0.1
—O W

2 ‘
0 50 100 150 200 250 300

Time (ps)

A9
-02 0 02 04 06 0.8

Time (ps

)

1

S14




0.05 i
550 nm
—Fit
0
-
<-0.05

A
-02 0 0.2 04 06 0.8
Time (ps)

—680 nm
—Fitr

2 e
02 0 02 04 06 08 1

Time (ps)

Figure S12. Decay traces and corresponding fittings (in the range 0-300 ps) for the 480, 550 and
680 nm features observed for the dye-sensitized ZrO, (A), ATO (B), WOz (C) and SnO; (D) after

the femtosecond laser excitation at 485 nm. The corresponding fittings in the < 1000 fs range are

also reported.
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Figure S13. Global analysis of the AT/T maps for the dye-sensitized ZrO,, ATO, WO3 and SnO,.

For each sample the black and red curves are the decay-associated spectra (DAS), with

corresponding time constants indicated in the legend.[4,5]
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Table S1. Time constants associated to the formation and recombination of the charge separated

species SC(e)-PDI(+) after the femtosecond laser excitation of the PDI-sensitized photoanodes.

# 550 nm initial rise, 550 nm decay,
i.e. SC(e)-PDI(+) formation i.e. SC(e)-PDI(+) recombination
ATO-PDI 1= 173 +£8fs t=174+2ps
WO;-PDI T=174+51s t=133+1ps
SnO,-PDI 1=362+12fs t=165+3 ps
1.0

1=4.2+0.2 us
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Figure S14. Kinetic evolution of the absorption feature at 550 nm (due to the ATO(e’)-PDI(+)
charge separated state) after the nanosecond laser excitation at 532 nm; 1.48 kV laser pump;
average of 60 laser shots, corrected for the pulser baseline; 5 s delay; 350 Q impedance (300 ns
pulse time base). In 0.1 M NaClO,4 pH 3.
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3.9. Functionalization with IrO, WOC
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Figure S15. J-V curves of the ATO-PDI photoanodes before (black) and after (green) the
functionalization with IrO, water oxidation catalyst. In 0.1 M NaClO,4 (pH 3); 10 mV/s scan rate;

under chopped (B) illumination (0.1 W/cm? irradiation power, AM1.5G filter).
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