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The growing availability of large diachronic corpora of scientific literature offers the opportunity of read- 

ing the temporal evolution of concepts, methods and applications, i.e., the history of disciplines involved

in the strand under investigation. After a retrieval process of the most relevant keywords, bag-of-words

approaches produce words × time-points contingency tables, i.e. the frequencies of each word in the set 

of texts grouped by time-points. Through the analysis of word counts over the observed period of time,

main purpose of the study is, after reconstructing the “life-cycle” of words, clustering words that have

similar life-cycles and, thus, detecting prototypical or exemplary temporal patterns. Unveiling such rele- 

vant and (through expert opinion) meaningful inner dynamics enables us to trace a historical narrative of

the discipline of interest. However, different history readings are possible depending on the type of data

normalization, which is needed to account for the fluctuating size of texts across time and the general

problems of data sparsity and strong asymmetry. This study proposes a methodology consisting of (1)

a stepwise information retrieval procedure for keywords’ selection and (2) a functional clustering two- 

stage approach for statistical learning. Moreover, a sample of possible normalizations of word frequencies

is considered, showing that the different concept of curve similarity induced in clustering by the type

of transformation heavily affects groups’ composition and size. The corpus of titles of scientific papers

published by the American Statistical Association journals in the time span 1888–2012 is examined for

illustration.
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. Introduction

A diachronic corpus is a collection of texts including informa-

ion on the time period to which they relate, e.g. the publication

ate of a document. In many situations these texts are arranged

nto groups (subcorpora) that refer to the same time interval, thus

enerating a sequence of text sets corresponding to chronologi-

al points on the time-axis. Diachronic corpora represent the ideal

round for studying the history of a “language”, e.g., when a cor-

us is able to reflect the relevant features of a text genre in a

ell-defined time period, the temporal evolution of word occur-

ences (frequencies) mirrors the historical development of the cor-

esponding concepts [see, e.g., [1–5] ]. In our work, the temporal

ourse of a word occurrence is viewed as a proxy of the word dif-
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usion and vitality, i.e. of the word “life-cycle”. The idea of studying

he words’ “quality of life” is innovative in language studies [4,6–

] since the history of language has always endeavored to date the

irth (or, sometimes, semantic changes) of individual words but

aid little attention to their fortunes (or death), i.e. to recognize

ords whose presence has grown over time, or that have disap-

eared, or that were very successful for a limited period and then

ell into oblivion, etc. 

In bag-of-words approaches a diachronic corpus originates a

ords × time points contingency table that reports the frequency

f each word at each time point. In this table, rows—each repre-

enting discrete observations of a word time trajectory—are the

deal basis to reconstruct words’ life-cycles, hence cluster words

aving similar life-cycles and detect (as cluster prototypes) any

rototypical or exemplary temporal patterns. If a corpus draws

pon the scientific literature of a discipline, unveiling important

as they are shared by groups of words) and meaningful (as the la-

ent content of word groups is interpreted through expert opinion

s a consistent ensemble of topics, methods and research areas) in-

https://doi.org/10.1016/j.knosys.2018.01.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2018.01.035&domain=pdf
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ner dynamics enables us to identify temporal phases and processes

hence to trace a historical narrative of the discipline under inves-

tigation. 

Since we are interested in shaping word histories, we adopt a

functional data analysis (FDA) approach under which observations

through time are viewed as a realization of an underlying contin-

uous function representing the temporal development of a word. 

In order to compare time trajectories of counts, further process-

ing is required. First, size of subcorpora (number of texts and their

size in word-tokens) may vary greatly over time. Hence, a sort of

data normalization by time point should be regarded as prelimi-

nary in order to adjust for the uneven document dimension across

time. Second, total frequency or “popularity” of individual words in

the entire corpus is greatly variable. As well as a strong asymmetry

characterizes the frequency spectrum by time-point, showing the

typical pattern of textual data where there are “few giants, many

dwarves”, namely a large number of word types having a quite low

probability of occurring. From the foregoing, a sort of normaliza-

tion by word is needed to compare word curves in terms of their

phase variation (or synchrony) rather than of their amplitude vari-

ability (or height). Lastly, we just note that a common problem in

FDA known as curve registration, i.e. the alignment of curves con-

ceived as having the same underlain pattern but appearing with a

lateral displacement/deformation, is not a concern to us. Rather, it

is the timing or phase variation to be of essential interest for clus-

tering, movements in different periods are not comparable when

the “clock time” is that of the history, the object of analysis [10,11] .

The most proper data transformation depends on the study

aims and it is crucial for a consistent reading of results. In this

work, we will examine how different data transformations affect

clusters’ generation. 

1.1. Method details 

From the foregoing overview of perspectives and issues, this pa-

per aims at introducing a procedural method that, starting from

a large database of scientific articles published by a selection of

premier journals of the discipline (or, more in general, knowledge

field) of interest, leads to the creation of a well-founded corpus

of scientific literature (organized as a keywords × time-points ma-

trix) and from this to a possible outline of the history of the disci-

pline (or knowledge field) under investigation. As regards the lat-

ter, the detection of groups of words having a similar life-cycle and,

thus, of prototypical (or exemplary) temporal patterns, allow us to

uncover the inner dynamics of the latent (to the word groups) top-

ics, methods and research areas, hence to trace a possible evolu-

tion of the discipline. The proposed method consists of (1) a step-

wise information retrieval procedure for keywords’ selection and

(2) a functional clustering two-stage approach for statistical learn-

ing. Step (1) starts with a massive download of any references to

all papers published by a mainstream scientific journal and ends

with a contingency table including the frequencies of the most rel-

evant keywords along a set of time-points. Step (2) can be divided

into two stages: (a) a filtering step in which functional data (FD)

are represented as smooth functions by a basis-expansion method,

(b) a distance-based clustering in which the k -means algorithm is

used combined with an opportunely chosen metric to measure dis-

tance between curves. In (a) B-splines are used as they consist in a

very flexible basis system for non-periodic FD, then, in (b) distance

is estimated on the evaluation points of the approximating curves.

Intrinsically connected to the underlying aim is the crucial

choice of how to properly normalize word raw frequencies. Any

decision on data transformation is likely to lead, through changing

the similarity frame between words, to a different history reading.

In this study, three different types of normalization will be in par-
2

icular analyzed: one by time dimension and two by both time and

ord dimensions. 

For illustration, we conduct an analysis of the life cycle of the

ost relevant keywords that occurred in the titles of papers pub-

ished by the Journal of the American Statistical Association (JASA)

nd its predecessors in the time span 1888–2012. 

.2. Related work 

In quantitative linguistics a number of textual features can be

bserved in form of linear sequences of linguistic units and/or their

roperties. The general problem of reading over time the evolution

f a linguistic phenomenon is often tackled by resorting to linguis-

ic laws [9,12,13] , Fourier analysis (and similar) or time series anal-

sis [14] . But, in our study, a word trajectory hardly shows a reg-

lar behavior (e.g. that fits a function) and is only apparently a

atter of time series analysis: this last is focused on studying the

orrelation of observations over time and, normally, seek a model

or prediction; the output is not a “shape” or a curve. 

Another important research area which partially shares aims

imilar to our project is topic modeling. A leading reference work

s by Griffiths and Steyvers [15] who conducted a co-word analysis

f abstracts of papers published in PNAS from 1991 to 2001, and

ntroduced a Latent Dirichlet Allocation (LDA) generative model to

iscover topics covered in the corpus. Analogies with [15] can be

stablished thanks to the particular data they examine: documents

an be referenced to time-points, hence co-occurrence is double-

ace (in documents/times); (latent) topics resemble our clusters

nd topic number selection parallels our cluster number selec-

ion; topic dynamics is an elementary and summary version of

ur temporal patterns. Nevertheless, differences appear evident in

he primary research object: unveiling topics (hence mapping sci-

nce and possibly tracking its evolution) versus tracing life-cycles

f words (hence dynamics of temporally homogeneous bundles

f word curves to eventually decipher the history of a knowl-

dge field). In other words, topic modeling produces clusters of

ords that should reflect a topic as they appear together in doc-

ments (but the shape of word trajectories is not relevant), our

pproach leads to clusters of words that should evolve similarly

ver time (but that might represent different topics, different ap-

roaches, different schools of thought). Still, LDA is a model-based

pproach whereas ours is an unsupervised learning methodology.

astly, notwithstanding LDA is very popular in text mining applica-

ions and its aims are similar to ours, some experiments demon-

trated that it does not represent the best approach to analyse cor-

ora that include texts of limited length [cfr. 16 , 17 , 18] , as in our

pplication (see Section 2 ). 

Topic modeling connects to scientometrics or, more in general,

uantitative methods for mapping knowledge domains from scien-

ific articles databases. Co-citation and co-word methods have long

een used for designing knowledge maps. Some approaches pro-

ose to use both terms occurrences and references. Recently, many

esearchers have adopted generative probabilistic models to topic

etection and tracking (TDT) or, in general, dynamic science map-

ing: LDA, yet some deficiencies undermined its role (it requires

o specify the number of topics in advance and tends to an even

istribution of topics) if our interest is in finding emerging top-

cs and how they evolve over time; hierarchical Dirichlet process

HDP), a nonparametric Bayesian model which can automatically

ecide the number of topics, thus considered more competent than

he former in dynamic topic analysis [19] . However, traditional ap-

roaches of topic analysis are relatively static; they ignore any pos-

ible change (in both the external representation and the internal

ontent of a scientific topic) resulting from time. Two recent works

acing with topic changes and emerging topic detection (ETD) are

5,20] which deal, in particular, with science, technology and inno-
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ation research and, respectively, the journal Knowledge-based Sys-

ems (KnoSys) topics. Both use a term clumping process for core

erm retrieval, then: [20] applies a k -means-based clustering to

btain topics and finally produces a “roadmapping” blending his-

orical analysis and expert-based forecasting; Zhang et al. [5] ap-

lies a LDA-based topic model to profile the topic landscape, then

 model of scientific evolutionary pathways to detect the topic

hanges in sequential time slices and to indicate emerging topics,

nally, a prediction model to foresee possible topic trends. Another

pproach to analyze the thematic evolution of a given research

eld is presented in [21] and carries out the following stages: co-

ord analysis is used in a longitudinal framework to create a sci-

nce map showing by thematic networks the different themes or

opics treated by the scientific field for each subperiod in a given

ime, strategic diagrams and thematic areas are used to study the

hematic evolution of the research field, finally, performance anal-

sis is used to quantify the impact of the research field and its

onceptual subdomains. This approach has been incorporated into

ciMAT [22] and used to perform a science mapping analysis of the

cientific content of KnoSys from 1991 to 2014 [23] , among other

pplications. Recently, the traditional topic evolution map based

n text corpora has been extended to more complex subjects like

ross-media data [24] and memes [25] . An interesting overview,

rom an epistemological perspective, of the literature on dynamic

cience mapping has been provided by Chavalarias and Cointet in

26] . The same authors have recently presented a methodology

hat reconstructs the dynamics of scientific fields and relies on an

daptation of the concept of the phylogenetic tree in analogy of

he evolution of science with the evolution of living organisms [2] .

ur work presents various connections with [2] for the assumption

hat scientific fields evolve over time like living organisms, for im-

lementing a bottom-up unsupervised learning procedure, and (in

ommon also with [5,20] ) for an accurate keyword selection. How-

ver, science mapping research is based on co-occurrences in docu-

ents, possibly observed over time so allowing the reconstruction

f science evolution, whilst our work considers term co-occurrence

olely in time being the temporal evolution of terms the primary

ocus. Indeed, the original aim of shaping the life-cycle of words

eflecting their quality of life continues to be a distinctive feature. 

Finally, we incorporate our choices of spline bases and k -means

lgorithm for functional clustering in the related literature. In a

revious study, within a model-based approach to curve cluster-

ng, we applied a wavelet-based decomposition which proved suc-

essful in recognizing the typical bumpy trend of word trajecto-

ies (see Fig. 1 ), besides being more computationally efficient in

 modeling context [4] . This time our objectives are recognizing

ontinuous hence more easily interpretable shapes—leading us to

pt for the splines—and setting up an exploratory and mostly au-

omated procedure (equipped with an R package)—making us de-

ide for a distance-based approach. This work connects to a project

 Section 6 ) involving an interdisciplinary research group (linguis-

ics, philosophy, psychology, sociology, statistics), whose aim is

o construct corpora of scientific literature by extracting impor-

ant keywords of a discipline from main specialized journals, and,

ence, to investigate whether a discipline history can be traced

rom analyzing the keywords’ temporal pattern. Then, the proce-

ure is asked to look for “interesting patterns”, without prescrib-

ng any specific interpretation, to be submitted to experts who

otentially formulate new research questions and hypotheses and

rive to research insights. This eminently exploratory task requires

he procedure to be fast and relatively easy to use and under-

tand even by non-statisticians of the research group. The alter-

ative approach to functional clustering, i.e. that model-based, is

ypically chosen for confirmatory analyses and is generally more

emanding in terms of computing and inferential expertise. Func-

ional model-based clustering is standardly based on finite mix-
3

ure models and classically assumes Gaussian processes for the

ixture distributions [27–29] . More recently mixed effects mod-

ls have been introduced [30,31] and either non-Gaussian distribu-

ions [32] or, within the Bayesian framework, Dirichlet processes

33–35] were assumed for mixture components. In [4] we used 

 functional mixed (normal mixture) model based on a wavelet-

ased decomposition adapting the approach developed in [31] to

he analysis of chronological corpora. 

Within distance-based methods, k -means type clustering algo-

ithms have been widely applied to FD especially when combined

ith the (most widely used) finite basis expansion approach to FD.

ther choices, which extend the classical k -means algorithm with

D, are: k -means algorithm on the functional principal components

FPC) scores (it performs dimensionality reduction and clustering

imultaneously), FPC subspace-projected k -centers functional clus-

ering approach (the subspace spanned by the FPC define cluster

enters) [see 36,37 , for a survey], functional principal points (FPP,

re the equivalent to k -means cluster centers when FD are defined

s random variables, [38,39] ). Though, they are more recent ex-

ensions, rarely used, thus less justifiable as the basis for our ex-

lorative approach. Indeed, several authors argue that the type of

lgorithm is not all that important when the use of clustering is

ata exploration and results are used in a qualitative context (such

s ours). It is the design of the human computer interaction inter-

ace, visualization and data manipulation capabilities of the system

o be more responsible for success or failure of the attempt to dis-

over structure in the data [40] . 

Finally, we mention other strategies for clustering FD: raw data

ethods (clustering is performed directly on the discretely ob-

erved raw data, hence is not performed on the signal but on

oisy data); filtering methods (clustering is performed on the fi-

ite set of parameters resulting from the filtering step); adaptive

ethods (functional representation and clustering are performed

imultaneously); distance-based methods (adaptation of geometric 

lustering algorithms for FD with a proper definition of distance

etween curves). Our method falls in the last category and con-

ects to the second, as we use a geometric clustering combined

ith a (classical) distance between curves which is approximated

y using the discretely observed evaluation points of the estimated

urves [see details in 36 ]. 

. Material: The corpus

As far as corpora collection is concerned, the (ex-ante) selec-

ion of the data sources is always crucial as we need outstanding

ournals able to cover main topics and represent the temporal evo-

ution of a specific knowledge field or discipline. 

The American Statistical Association (ASA) represents the world’s

argest community of statisticians and the JASA has long been con-

idered the world’s premier review in its field, besides of being the

ldest (and still available) statistical journal. 

We are aware to assume that the “shape” of the keywords’ tra-

ectories in terms of occurrences in JASA reflects the relevance of

he corresponding concepts and topics in the scientific discourse.

e believe that JASA is a good source to represent Statistics as a

hole and to mirror the history of Statistics. 

Established in 1922 by the ASA, JASA has inherited a long tra-

ition from two predecessors: Publications of the ASA (1888–1912)

nd Quarterly Publications of the ASA (1912–1921). Taking into ac-

ount only the texts of titles including content words and disre-

arding items that not refer to research papers (e.g., List of publica-

ions, News, Comment, Rejoinder ), the corpus includes 10,077 titles

out of 12,557) of articles published in the period 1888–2012 (125

ears, from Volume No. 1, Issue No. 1 to Volume No. 107, Issue No.

00, since at the very beginning the volumes of the ASA’s journals

ere biennial). The corpus is composed of 87,060 word-tokens and
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Fig. 1. Keyword trajectories (original data): y -axis represents the keyword frequency for each volume; line color identifies the keyword frequency class (Very Low, Low, High

and Very High denote equal-frequency intervals of keyword total frequency in the entire corpus). An example of word trajectory has been superimposed for each frequency

class.
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7,746 word-types. To solve the problem of identifying a set of key-

words that prove relevant for the study of the history of Statistics,

we adopt a stepwise procedure: 

1. to overcome some of the limitations of analyses based on sim-

ple word-types, we replace words with stems by means of the

popular Porter’s stemming algorithm [41,42] ;

2. to take into account compounds, multi-words and sequences of

words which have different meanings when they are consid-

ered in their context of use and together with adjacent words,

we identify n-stem-grams (sequences of stems occurring at

least twice and composed of a minimum of two and a maxi-

mum of six consecutive stems);

3. to identify the most relevant statistical keywords, we match

the vocabulary with popular statistics glossaries avail-

able on-line (over 12,700 unique entries obtained from

merging six sources): ISI-International Statistical Institute ;

OECD-Organisation for Economic Cooperation and Development ;

Statistics.com-Institute for Statistics Education ; StatSoft Inc. ;

University of California, Berkeley ; University of Glasgow ;

4. to reduce low frequency keywords we adopt a threshold and

select keywords with frequencies equal to or higher than 10.

The final contingency table includes the frequencies of 900 key-

words over 107 time-points. 

We list some notes relative to the above steps or as general re-

marks. With regard to step 1. we exploited Porter stemmer as a

preprocessing phase. In a text the nature of some lexical choices is

contingent, e.g., verb tenses and the plural forms of nouns. Then,

we carry out step 1. (e.g., word-types “model”, “models”, “mod-

eling”, “modelling” are replaced with the same stem “model”).

Porter’s algorithm is a popular stemmer in information retrieval

applications, an alternative is Lancaster stemmer but it seems more

aggressive and often leads to results that are not as readable as

they should be. Related to step 2. is the problem of changing

concepts in scientific literature, i.e., that the same words denote

quite different concepts/meanings in different periods. On this re-

gard, we note that in any text we have sequences of words that
4

ave different meanings if they are considered alongside adja-

ent words (KeyWord In Context or KWIC perspective). Observa-

ion of the frequency of multi-words (keywords that include two

r more words) increases the amount of information conveyed by

ords because a sequence of words reduces “noise” and disam-

iguate the meaning. Semantic changes and semantic shifts of a

ord over time should envisage also the arrival/appearance of new

ollocations and compounds and, when these new “objects” be-

ome relevant in a language (and in a scientific language), their

requency increases (and are taken into consideration for our anal-

ses). A word that is polisemic in potential can reduce its ambi-

uity by means of the context of use (KWIC) that is mirrored by

 sequence of words. When possible, i.e. when the frequency was

igher than the threshold, we included and preferred multiwords

ather than words. Lastly, related to both step 3. and 4., we are

ware that there are many ways to identify “relevant” words in a

ext. Nevertheless, we are working with titles of scientific papers

hat are extremely short, thick and concise. They include techni-

al words, nouns (e.g. research objects), names (e.g. authors), key-

ords and nothing else. When we achieve our vocabulary, we se-

ect nouns, names, and multiwords with frequency higher than 10.

fter matching with statistical glossaries no relevant word should

et lost. 

As a final remark, we choose to work with titles as they pro-

ided us with a series of 125 years going back to 1888, whereas

onger texts, such as abstracts (needed e.g. for LDA, see Section 1.2 )

ould have resulted in a considerable loss of information (our

rchival analysis shows that abstracts did not appear until the

930s–there is one in 1933, were sporadic in the 1940s and 1950s,

nd became increasingly regular and systematic after the 1960s

cfr. 4] ). 

. Method: A functional clustering two-stage approach

From a FDA perspective, discrete observations y i = { y i j } of the

requency of a keyword i ( = 1 , . . . , N) in the volumes j = 1 , . . . , T 

re viewed as a realization of an underlying continuous function

http://isi.cbs.nl/glossary/index.htm
http://stats.oecd.org/glossary/index.htm
http://www.statistics.com/glossary
http://www.statsoft.com/textbook/statistics-glossary
http://www.stat.berkeley.edu/~stark/SticiGui/Text/gloss.htm
http://www.stats.gla.ac.uk/steps/glossary
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 i ( t )—sufficiently smooth or regular—representing the word tem-

oral development. As y i is a noisy observation of the underly-

ng x i ( t ), an adequate model of their relationship is y i = x i (t ) + εi ,

here t = { t j } is the finite set of time-points associated with vol-

mes’ publication and εi = { εi j } is a zero mean vector with dis-

ersion matrix Var ( εi ) = �ε . In the standard model, the ε ij s, often

ermed “measurement errors”, are independent across j and ho-

oscedastic with Var( ε ij ) ≡σ 2 , but, in a more general case, �ε can

e regarded as full and time dependent. 

In our application, N = 900 , T = 107 and time-points t j s cor-

espond to years of volumes’ publication in the time span 1888–

012, generally occurring yearly except for the earliest period (up

o 1923) when the volumes were biennal. 

.1. B-spline smoothing 

For representing FD as smooth functions one method is the

asis function approach where x i ( t ) is represented by a finite-

imensional linear combination 

 i (t) = 

K∑

k =1

c ik φk (t) c ik ∈ � , K < ∞ (1)

or sufficiently large K , of real-valued functions φk called basis

unctions. 

The most common basis systems are monomial, Fourier and

-spline bases. Other useful systems are, e.g., wavelets, exponen-

ial and power bases. In this study we consider B-splines as they

onsist in a very flexible basis for non-periodic FD. Technically, B-

plines are a particular basis for building spline functions which

onsist of piecewise polynomials joined together “smoothly” at the

nterior nodes. 

More in detail, a polynomial spline of order m consists of piece-

ise polynomials of order m (degree m − 1 ) defined on a sequence

f subintervals partitioning the domain [ t 1 , t T ], with smoothness

ondition on each interior breakpoint or knot defined by m − 1

onstraints that correspond to continuity conditions for x ( t ) and its

 − 2 derivatives. 

As regards the positioning of breakpoints, a direct and reason-

ble choice is placing knots at each time-point t j . It entails that

imension K in (1) equals T + m − 2 (that is, a saturated or super-

aturated basis as long as m ≥ 2), hence basis expansion x i ( t ) is an

xact interpolator of data. Clearly we seek a model that offers an

mage of the data having fewer degrees of freedom than in the

riginal data. 

We adopt the roughness penalty or regularization approach for

stimation under which the estimate ˆ x i is that function that

inimizes the penalized residual sum of squares, PENSSE (x i ) =
SE (x i ) + λ·PEN r (x i ) , where SSE (x i ) = { y i − x i (t ) } T W { y i − x i (t ) } ( W
eing the reciprocal of �ε ) is the residual sum of squares, PEN r ( x i )

he penalty term and λ a smoothing parameter. In particular,

he penalty term measures a function roughness by the inte-

rated squared r -th derivative over the observation time, PEN r (x ) =
 

[ D 

r x (s )] 2 ds . Thus, the parameter λ measures the rate of exchange

etween fit to the data, as quantified by the residual sum of

quares, and roughness of the function x . In other words, λ reg-

lates the bias-variance tradeoff: as λ→ 0 the curve x approaches

n interpolant to the data, satisfying x (t j ) = y j for all j ; as λ→ ∞
he condition PEN r (x ) = 0 implies the fitted curve x to be a spline

f order r . Choosing λ is part of the model selection issue. 

A standard practice for choosing λ is to use cross-validation

CV) which is a resampling method for assessing a model gener-

lization performance. The basic idea is holding out a set of data

the validation set) from the fitting process, and then seeing how

ell the model fitted on the remainder of the data (the train-

ng set) predicts those held out observations. A widely used ap-

roach is K -fold CV in which data are partitioned into K equally
5

or nearly equally) sized folds and then K iterations of model

raining (on K − 1 combined folds) and validation (on the held-

ut fold) are performed. Model performance is typically assessed

sing mean squared error in the case of a quantitative outcome

nd K -fold CV returns the average of K such errors as the overall

erformance metric for the model. When tuning a smoothing pa-

ameter a common choice is K = 1 or the leave one-out CV, how-

ver, it may be computationally intensive expecially for large sam-

le sizes and lead to under-smoothing. Generalized cross validation

GCV), GCV (λ) = 

T 
(T −df (λ)) 2 

SSE ( ̂  x i ) , provides a convenient approxi-

ation to leave-one-out CV for linear fitting under squared error

oss. df ( λ) is the effective degrees of freedom under regulariza-

ion, which is monotone decreasing in λ with maximum equal to

 when λ = 0 . GCV can sufficiently remedy the tendency to under-

moothing unless the sample size is small or moderate [43,44] . 

We smooth the data by trying different spline orders ( m from 1

o 8), combined with various roughness penalties, and varying the

moothing parameter over an opportune range of values (log 10 λ
rom −6 to 9). Different penalty forms were tried for each spline

rder, in particular we set the derivative order of PEN r to be r =
 − 2 , 2 , 1 , 0 , i.e. let the function to be increasingly bumpy (notice

hat for m = 3 the highest possible order is r = 1 , for m ≤ 2 is r = 0

hat is the function itself). 

.2. Distance-based curve clustering 

Classical clustering concepts for vector-valued multivariate data

an typically be extended to FD, where, however, various addi-

ional considerations arise, such as dimension reduction of the

nfinite-dimensional FD objects and discrete approximations of dis-

ance measures [36,37] . 

In this study we set up a distance-based approach, in particu-

ar the k -means algorithm is used combined with the L 2 metric to

easure distance between curves. This is estimated on the evalu-

tion points of the approximating curves previously obtained from

he B-spline smoothing of FD. The evaluation points are the dis-

retely observed points common to all FD. 

Besides the L 2 metric (Euclidean distance) other measures of

roximity can be considered, such as the L 1 metric (Manhattan dis-

ance), the adaptive dissimilarity index (with either euclidean dis-

ance or Dynamic Time Warping, DTW), and the correlation-based

issimilarity. They are just a possible set of options, suitable to the

lustering objectives under study, which are taken from the broad

ange of dissimilarity measures set out to perform clustering of

ime series [see 45, and references therein] . A guideline for choos-

ng a dissimilarity is what are the specific distortions of the data to

hich it must be invariant [an interesting review is in 46] . In prac-

ice the option of a proper distance and that of a preprocessing to

emove distortions from data can be logically equivalent. For ex-

mple, DTW can be seen as a more robust distance measure, or it

an be seen as using the Euclidean distance after removing warp-

ng from data. Still, the correlation-based distance is invariant to

urve amplitude, but it would be equivalent to using the z -score

ow-normalization ( r 2 in Table A.2 ) and then apply L 2 norm. 

Here the objective is to compare curve profiles once a trans-

ormation has been performed in accordance with the clustering

urpose ( Section 4 ), then conventional distances between raw data

Euclidean or Manhattan, among others) evaluating a one-to-one

apping of each pair of point sequences can produce satisfactory

esults. 

Cluster validation, that is assessing the quality of a clustering

n a dataset, is an essential step in the cluster analysis process.

eyond being of interest in its own right, quality assessment of a

ingle clustering is the basis for comparing different clusterings,

articularly with different numbers of clusters (when clustering
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method and distance measure have been chosen), to help decide

what the most appropriate number is in a certain application [47] .

Within the approaches to cluster validation [47] , the use of

external information is a valuable and ultimately necessary tool.

Here, external information consists of an informal assessment of

subject matter experts who can decide to what extent a cluster-

ing is meaningful to them. Note that expert opinion should be ex-

amined in turn: it may provide useful information to improve the

clustering methodology, but it may also reflect expert’s preconcep-

tions. On the other side, a large number of indexes has been pro-

posed in the literature for a validation based on the clustered data

alone. It is well known that “one index does not fit it all”, rather,

the many existing indexes can be grouped into different types each

measuring a different aspect of clustering quality. Given this, and

given the exploratory and evocative task of our clustering, we have

gathered a large basket of indexes for not favoring any criterion,

each in principle equally valid. These include measures of within-

cluster homogeneity, e.g., Ball-Hall, Banfeld-Raftery, C-index, Marriot

( Ksq _ DetW ), Scott-Symons, Trace _ W ; of between-cluster separation,

e.g., Det _ Ratio, Scott ( Log _ Det _ Ratio ), Ratkowsky-Lance ; and of their

combination, e.g., Calinski-Harabasz, Hartigan ( Log _ SS _ Ratio ), Dunn

and its generalizations, Davies-Bouldin, Ray-Turi, Xie-Beni, S _ Dbw

validity, Friedman, SD, Silhouette, Tau ; besides of measures of simi-

larity between the empirical within-cluster distribution and distri-

butional shapes such as the Gaussian distribution, e.g., BIC, AIC and

their variants [see 4 8,4 9 , and references therein]. In this study, the

idea is that of pooling the ratings from a large number of inter-

nal validation indexes, without integrating subject matter knowl-

edge in a first instance, so as to let the data bring out a ranking

of the best candidates to cluster number rather than guide to a

unique solution. Our clustering procedure is thought of as a tool

of thorough investigation before submitting the results to experts

who possibly will guide towards other analyses (see details of the

procedure in Section 5 ). 

As a major conclusion, we point out that the analyst/user is

asked to choose from a number of options at every step of a cluster

analysis, here particularly when faced with the decisions on data

processing , on dissimilarity definition, and of the number of clus-

ters. If we start from the assumption that no “natural” or “true”

clusters exist in the available data, it is the definition of clustering

aim, hence of cluster concept and corresponding appropriate clus-

tering methodology, that will produce a grouping structure, either

“real” (that is, a meaningful structure in the observer-independent

reality) or “constructive” (a split-up for pragmatic use) or “useful”

(context-dependent). See [40,47,50] for a thorough discussion on

these different situations of clustering. 

4. Theory: Corpus data transformation

The decision about what data to use is an important part of the

clustering process, and often has a fundamental impact on the re-

sulting clusters. In this study we examine how different data rep-

resentations affect clusters’ generation. 

If we consider the keywords × time-points table by row, a typ-

ical feature of a word trajectory is a sharp peak-and-valley trend,

mainly due to the sparsity affecting frequency data of a corpus

( Fig. 1 ). On the other hand, if we look at data by column they ap-

pear strongly asymmetrical, in particular for the marked disparity

of frequency classes between the most popular words and all of

the others (in Fig. 1 color is increasingly darker with the keyword

frequency class). This is a typical feature of word-type frequency

distributions, also known as large number rare events (LNRE) prop-

erty, consisting in a large number of word-types occurring very

rarely. A result is the aforementioned sparsity, i.e., many cells of

the contingency table have small counts or are empty. Lastly, the

size of subcorpora (number of documents and their size in word-
6

okens) may vary greatly over time ( Fig. 2 ). Again, this reinforces

ata sparsity. 

In our research, we envisage several transformations which,

enerally speaking, address two different objectives: whether, in

ssessing two curves as similar, we should consider height (word

opularity) and timing (synchrony) jointly, or timing only. In the

rst case, we just need to adjust the uneven document dimension

cross time, then normalize data by column somehow. In the other

ase, in order to effectively gather the synchrony of word histories,

e need to normalize data by row, or better still, since a sort of

olumn-normalization should be regarded as preliminary (to rem-

dy the signal irregularity over time), to resort to some double nor-

alization. 

The normalization step ( Table A.2 ) of our procedure provides

everal transformations: by column, obtained from dividing each

eyword frequency on a time-point, n ij , by the total number of

ocuments ( c 1 ) or the total number of word-tokens ( c 2 ) in the

ubcorpus referring to the time-point, or else the column sum ( c 3 )

r the column maximum frequency ( c 4 ) of the lexical table at the

ime-point, lastly, calculating the cumulated frequency ( c 5 ) at the

ime-point weighted by a time dimension; by row, obtained from

ividing each n ij by the row sum (total frequency) for the keyword

 r 1 ), calculating the z -score of the keyword frequencies ( r 2 ), divid-

ng by the row maximum frequency for the keyword ( r 3 ), calcu-

ating a nonlinear transformation of the keyword frequencies ( r 4 ,

 4 b ), finally, calculating the relative (to the row sum) difference of

onsecutive keyword frequencies ( r 5 ). In our study, documents are

he titles (or articles) and a subcorpus is a volume. 

Within column normalizations, c 1 , c 2 and c 3 options are practi-

ally equivalent in order to adjust the uneven document dimension

cross time ( Fig. 2 ). Whilst c 4 seems to be the least appropriate

or being weakly correlated with document length over time (for

onstruction, it retraces the time profile of the most popular key-

ords). Option c 5 has been conceived for data featured by LNRE

nd consists, for each keyword, of a dynamic probability of occur-

ing converging to the overall relative frequency in the entire cor-

us. 

Row normalizations from r 1 to r 4 are increasingly effective at

educing the asymmetry of frequency spectrum. We note that r 1 
roduces a sort of “reversed” asymmetry, i.e., low frequency words

end to dominate (higher level curves) because of their greater

parsity. Methods r 4 and r 4 b consist of a more general nonlinear

ransformation (of which the standard normalization, r 3 , is a spe-

ial case) aimed at sterilizing asymmetry due to different variation

anges of keyword frequencies (here we refer to eq. 12 in [51] with

moothing coefficient p x (1) and p x (2) of eq. 15–16). Method r 5 has

een designed with the different perspective of describing relative

hange rather than the absolute one. 

Crossing a column- by a row-normalization generates a double

ormalization. Our comprehensive study examines all the transfor-

ations specifically indexed in the Table A.2 . Here we present a

mall subset to illustrate the procedure and highlight some of the

esults arising from the decision on transformation. 

.1. Calculation: Normalizations at comparison 

In this work we compare three different types of transforma-

ions, one by time dimension and two double normalizations. From

he foregoing ( Section 4 ), we choose c 2 for a preliminary column

ormalization as this is the most customary way to transform raw

ata into relative frequencies. After that, we consider d 1 which

s equivalent to calculate a χ2 distance between word profiles if

e use L 2 as measure of dissimilarity. This choice is in homage

o the correspondence analysis, one of the mostly used multivari-

te methods in the linguistic field. Finally, d 3 is chosen for it, al-

hough simple, substantially reduces the problem of asymmetry



0
50

10
0

15
0

20
0

18
88

/8
9

18
92

/9
3

18
96

/9
7

19
00

/0
1

19
04

/0
5

19
08

/0
9

19
12

/1
3

19
16

/1
7

19
20

/2
1

19
24

19
26

19
28

19
30

19
32

19
34

19
36

19
38

19
40

19
42

19
44

19
46

19
48

19
50

19
52

19
54

19
56

19
58

19
60

19
62

19
64

19
66

19
68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

volume/year

di
m

en
si

on

Number of titles

Number of word-tokens(/10) in titles

Number of keywords(/10) in titles

Maximum keyword frequency

Fig. 2. Subcorpora dimension: for each volume, number of titles/articles, total number of word-tokens in titles/10, total number of keywords in titles/10, maximum keyword

frequency.

a  

a  

N  

y

s  

s  

r

5

 

s  

f  

s  

t  

w  

p  

l  

p

 

b  

a  

(  

c  

m  

d  

l  

m  

a  

f  

m

 

t

 

h  

i  

t  

q  

F  

t  

o  

S  

p  

ρ

x  

(  

o  

c  

r  

c  

d  

c  

m  

t  

w  

e  

s  

p  

t  

a  

b  

i  

n  

t  

r  

fi  

w  

t  

6  

o  

a  

o  

t  

t

a

p  

l  

f  

fi

w  

i  

m  

w  

a  

o  
llowing to compare curves in terms of horizontal or phase vari-

tion. The computing is as follows: c 2 ) y i j = n i j /N j (×10 0 0) , where

 j is the total number of word-tokens in the subcorpus j; d 1 )

 i j = n i j / (n i. 
√

n . j /n ) , where n i . is the row- i sum, n . j the column- j

um and n the matrix total ( n . j / n is the column- j mass in corre-

pondence analysis); d 3 ) y i j = n i j / (M i N j )(×10 0 0) , where M i is the

ow- i maximum frequency. 

. Results

With the roughness penalty approach to estimation, the

moothing selection is carried out by varying roughness penalty

orm and, over opportune value ranges, spline order m and

moothing parameter λ ( Section 3.1 ). According to the GCV cri-

erion, optimal smoothing for c 2 normalized data is achieved

ith m = 5 and λ = 10 3 ( df = 7 . 7 ) after setting a PEN 2 roughness

enalty, whereas for both d 1 and d 3 normalized data the criterion

ead to m = 3 and λ = 10 1 . 75 ( df = 7 . 375 ) under a PEN 1 roughness

enalty. 

Curves are then partitioned by the k -means algorithm on the

asis of the Euclidean distance between the trajectories evalu-

ted on the observed sequence of time-points. As argued above

 Section 3.2 ), in the current study the L 2 distance is a proper

hoice within the set of possible alternatives. R software environ-

ent [52] contains several k -means implementations. Our proce-

ure uses the kml routine [49] which is designed specifically for

ongitudinal data and which provides, inter alia, various efficient

ethods of k means initialization. In the present illustration, the

lgorithm is re-run, for each k from 2 to 26, 20 times from dif-

erent initial configurations set through the k -means ++ seeding

ethod [53] . 

A set of 49 quality criteria are then computed in order to iden-

ify the best partition/number(s) of clusters (see Section 3.2 ). 

Visual representation of the rating for the cluster number can

elp in the analysis of results. In particular, we computed a rank-

ng of cluster number for each quality index, then pooled all

he rankings, and calculated for each cluster number the fre-

uency of being ranked first, second, third and fourth ( Fig. 3 ).

irst we note that in general partitions into two/three clus-

ers are the best rated. This reflects the substantial bifurcation

f the historical period around the sixties, when the birth of

tatistics as an autonomous and established discipline can be

laced [4] . Indeed, the contour plot of the correlation function,
7

x (s, t) = σx (s, t) / (σx (s, s ) , σx (t, t)) where σx (s, t) = �N 
i =1 

( ̂  x i (s ) −
¯
 (s ))(x i (t) − x̄ (t)) /N with x̄ (t) = �N 

i =1 
x i (t) /N, on smoothed data

 Fig. 4 ) shows, transversely to the transformations, a narrowing

f contours around the ’60s suggesting a caesura in the histori-

al period of reference (in general, a more rapid fall-off of cor-

elation is observed concurrently with rather erratic uncoupled

urves). Moreover, we can notice several time windows of slower

ecline of correlation (typical of periods in which curves are tightly

onnected and form bundles related temporally), four periods are

ore evident in all three panels: 1888/89-1918/19, ’20/21-’48, at

he turn of ’50/’60s-early ’80s, after 20 0 0. Moreover, partitions

ith a number of clusters close to the maximum of the consid-

red range (25, 26) have also been frequently selected. This re-

ult, on one hand, may reflect the lack of a defined structure and

arsimonious grouping, but, on the other, it may be a failure due

o the standard assumption—underlying by many quality criteria

s well as by k -means algorithm itself and typically by model-

ased clustering—of data normally distributed hence of clusters be-

ng compact and convex. From the foregoing, our extensive inter-

al evaluation suggests that, once discarded the solutions picking

he extremes, the most selected cluster numbers (considering the

anking obtained from the cumulated frequency of being in the

rst four positions—given by the bar height in Fig. 3 , but balanced

ith position importance—detected from the bar color composi-

ion) are: 5 for c 2 transformation (second best: 4, third: 9/22/6);

 for d 1 (second best: 19/4, third: 24/21/22) and 5 for d 3 (sec-

nd best: 22/24, third: 20/23). These rankings are the output of

n R code that essentially mimics a qualitative rating purely based

n a graphical inspection. To compare some aspects of how the

hree transformations affect clustering, we consider the best parti-

ion found with the cluster number ranked first, i.e., 5 for both c 2 
nd d 3 , 6 for d 1 ( Figs. 5–7 ). 

When data are solely column normalized, word “popularity”

lays a dominant role: clusters are primarily determined by high-

evel curves (high frequency words) leaving the majority of low

requency words in one or more fuzzy groups. In the instance of

ve-group clustering on c 2 normalized data ( Fig. 5 ), three clusters—

hich account for only about 10% of the total words—look interest-

ng, the rest being a singleton ( statistics , the most frequent word

aking group E) and an indistinct agglomerate of low frequency

ords (the massive group A). Conversely, a double normalization

llows for a more balanced partitioning where the shape and level

f curves play a role on a par. In both the clusterings into six and
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five groups for, respectively, d 1 and d 3 normalized data ( Figs. 6 and

7 ), some patterns which have already appeared for c 2 transforma-

tion are now confirmed and better structured by far more numer-

ous groups: the long time span is clearly divided by clusters of

words sharing similar life cycles. For instance, C group for c 2 , rep-

resenting the aforementioned period prior to the birth of Statistics

as an autonomous discipline, is temporally structured in F (demog-

raphy, population studies and official statistics) and C (economic

and public statistics) groups for d 1 and is embodied in B group for

d 3 ; B group for c 2 is temporally divided in A (statistics is born and

states with its own lexicon), D (the “golden age” of classic statis-

tics, 60s to 80s), B (contemporary statistics) and E (statistics of the

new millenium) groups for d . Note that clustering from d , while
1 3 

8

resenting strong similarities to that from d 1 , appears to split the

ime span in more blurring periods by creating transversal groups.

 possible interpretation is that, while clustering with d 1 is mainly

etermined by the alternating moments of a word vitality or ab-

ence along time, with d 3 the peculiarities of a word life, that is,

he pure form of its trajectory, primarily makes up the groups. Fi-

ally, D group for c 2 containing the most frequent “basic” words

f statistics—that are distributed in various clusters for d 1 —is en-

anced by a larger set of keywords (E group) for d 3 . 

Let us now examine some aspects of clustering, in the three

ases of normalization, by varying the number of clusters ( Table 1 ):

ow much groups are balanced (or the cluster sizes are uniform);

ow many groups are singletons; how much groups are hetero-
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Fig. 5. Clustering on c 2 column-normalized data: all five groups and individual clusters. Stems have been replaced with the singular noun or, in case this is not present in

the corpus, with the typical word related to the stem.

Table 1

Balance, presence of singletons and heterogeneity of frequency classes.

cluster#

normalization 2 3 4 5 6 7 8 9 10 15 20 25

Quality of balancing c 2 .00 .12 .26 .29 .44 .49 .56 .59 .63 .80 .86 .91

d 1 .72 .93 .90 .90 .94 .96 .95 .97 .97 .98 .98 .99

d 3 .84 .88 .92 .93 .93 .95 .95 .96 .97 .97 .98 .99

Number of singletons c 2 1 1 1 2 2 3 3 3 3 7 10 11

d 1 0 0 0 0 0 0 0 0 0 1 1 1

d 3 0 0 0 0 1 0 0 1 0 3 5 5

Heterogeneity of frequency classes c 2 1 .50 .06 .09 .02 .02 .05 .09 .09 .11 .05 .12

d 1 1 1 1 .99 .99 .99 .98 .98 .97 .96 .95 .94

d 3 .90 .95 .95 .93 .81 .85 .80 .82 .80 .80 .78 .77

g  

o  

m  

t  

c  

i  

i  

p  

q  

t  

t  

w  
eneous in being composed of words of different frequency class

r popularity. Both the balance and frequency class heterogeneity

etrics are measured by the normalized Gini index (considering

he median of values calculated on the 20 replications for each

luster number); the number of singletons is the maximum found

n the 20 replications. For c 2 case, it is evident a severe imbalance
9

n cluster size together with a high presence of singletons (which

artly creates the first). Moreover, a dominance of one/a few fre-

uency classes within groups is highlighted and we already know

hat, generally, the sole class of very high frequency words consti-

utes the dominant class. (Note also that the perfect uniformity, 1,

hen the cluster number is 2 is due to the impossibility of cal-



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A B C D E F260
(28.9%)

197
(22%)

177
(19.7%)

124
(14%)

101
(11.2%)

41
(5%)

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

census
report
vital statistics
american
massachusetts
year
city
bureau
statistical work
death
registration

school
children
municipality
marriage
england
college
women
infant mortality
wealth
death rate
new york

boston
railway
birth rate
divorce
crimin
new york city
negro
life insurance
mortality statistics
annual meeting
budget

germany
rural
sex
section
labor statistics
cause of death
sociology
race

41 wordsCluster F

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

statistics
population
problem
measure
study
note
correlation
production
economics
price
index
relative
industry
family
trend

value
mortality
income
program
state
series
social
deterministic
nation
federal
cost
area
practice
standard
business

research
statistical method
public
index number
trade
health
service
wage
market
demand
unemployment
seasonal
progress
interpretation
certain

consumer
record
agriculture
significance
growth
war
plan
labor
law
manufacturing
calculation
mathematics
statistician
unit
influence, etc.

177 wordsCluster C

0.
0

0.
1

0.
2

0.
3

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

test
distribution
method
generalization
probability
effect
mean
error
linear
design
variable
approximation
procedure
theory
parameter

survey
selection
comparison
rate
computation
condition
normal
information
forecast
power
rank
observation
class
classification
system

curve
sequential
group
factor
evaluation
control
independent
contingency table
confidence interv.
coefficient
type
bivariate
number
comparative
asymptotic

MLE
variation
biased
construction
property
technique
exact
proportion
simultaneous
fitting
adjustment
discrete
level
scale
frequency, etc.

260 wordsCluster A

0.
0

0.
1

0.
2

0.
3

0.
4

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

sample
variance
table
ratio
case
binomial
size
expectation
truncation
sample size
bound
chi square
least square
normal distrib.
small sample

optimum
order statistics
range
fisher
complete
sum
square
experiment
student
exponential distr.
normal populat.
unbiased
wilcoxon
unbiased estim.
random variable

modified
sample survey
confidence limit
finite sample
f
household
maximum
binomial distrib.
seasonal adjust.
life test
symmetric
large sample
factorial
hypothesis
lognormal

chi square test
multiple regression
interval estimation
kolmogorov
negative
sign
disturbance
stratified sample
interview
systematic
theorem
sampling plan
tau
linear combination
response error, etc.

124 wordsCluster D

0.
0

0.
1

0.
2

0.
3

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

model
data
analysis
regression
function
based
multivariate
approach
random
multiple
prediction
time series
robustness
regression model
process

structure
response
covariate
linear model
time
dependent
weight
cluster
local
transform
treatment
smoothing
bootstrap
combination
nonlinear

partial
survival
prior
mixture
stochastic
marginal
censoring
density
algorithm
density estimation
application
assessment
autoregression
quantile
bayesian analysis

diagnostics
monte carlo
mixed
simulation
GLM
disease
pattern
parametric
outlier
kernel
matching
binary
censored data
continuous
science, etc.

197 wordsCluster B

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

bayesian
nonparametric
likelihood
semiparametric
spatial
risk
dynamics
hierarchical
measurem. err.
longitudinal
event
longitudinal data
variable select.
joint
cancer

identification
missing data
hazard
calibration
network
model selection
data analysis
statistical model
gene
nonparam. regr.
heterogeneity
survival data
bayesian infer.
high dimension
wavelet

mixture model
observational st.
causal
dose
sparsity
bayesian model
dimens. reduct.
screening
mixed effect mod.
signal
tree
efficient estimat.
point process
spectral
microarray

epidemiology
MCMC
guide
principal
dimensional
framework
temporal
threshold
small area
additive model
genetic
stochastic process
time varying
hierarchical model
penal, etc.

101 wordsCluster E

Fig. 6. Clustering on d 1 doubly normalized data: all six groups and individual clusters.

 

 

 

 

 

 

 

t  

t  

n  

t  

p  

w  

a  

(  

i  

o  

l

culating the Gini index on singleton clusters.) Conversely, for both

double normalizations, groups appear well balanced in cluster size,

very rarely of singleton type, and uniformly composed of words

from all the four frequency classes. 

5.1. A possible history reading 

A narrative of the history of Statistics can be learned from the

inner dynamics of its methods, topics and research areas as recon-

structed by our clustering procedure. The normalization that best

enables to separate the entire historical period into subsequent
10
emporal phases is d 1 (see point 3 in Section 6 ). Thus, we consider

he clustering obtained from data transformed according to this

ormalization, giving some reference to the results produced with

he alternative transformations, better suited to discover other as-

ects of temporal evolution, as we summarize in Section 6 . It is

orth remembering that this paper was not intended to develop

 thorough and in-depth reconstruction of the history of Statistics

as in [4] ), then, here, we offer a synthetic draft, moreover lim-

ted by the cluster number previously selected for the primary aim

f comparing results from different nornalizations (that is, nor too

ow neither too large and of about the same size). 



0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

A B C D E353
(39.2%)

220
(24%)

174
(19.3%)

88
(10%)

65
(7.2%)

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

statistics
study
census
note
price
index
report
industry
family
comparative
trend
mortality
state
social
deterministic

vital statistics
nation
federal
cost
practice
standard
business
research
statistical method
public
index number
trade
american
health
service

graphic
wage
disease
demand
unemployment
seasonal
progress
correction
consumer
record
agriculture
analyzing
significance
growth
massachusetts

war
plan
labor
year
law
manufacturing
calculation
mathematics
investigation
city
influence
birth
life
concept
finance, etc.

220 wordsCluster B

0.
0

0.
1

0.
2

0.
3

0.
4

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

population
problem
measure
variance
correlation
theory
survey
production
rate
economics
forecast
relative
time
classification
system

curve
group
factor
table
control
coefficient
type
ratio
number
value
income
case
variation
biased
construction

technique
program
binomial
series
size
expectation
fitting
adjustment
level
truncation
frequency
component
sample size
limit
moment

minimum
linear regression
area
point
reliable
analysis of variance
chi square
finite population
least square
set
market
normal distribution
relationship
small sample
interpretation, etc.

88 wordsCluster D

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

MLE
simultaneous
exponential
hypotheses
choice
multinomial
bound
decision
Bayes
poisson
t
multiple comparis.
median
single
optimum

interaction
restriction
goodness of fit
science
order statistics
region
behavior
range
GOF test
fisher
matrix
two stage
sensitivity
medical
project

complete
discriminant anal.
statistical infer.
direct
experiment
survey data
count
finite
exponential distr.
confidence band
normal populat.
variance compon.
term
cross
polynomial

unbiased
homogeneity
wilcoxon
autocorrelation
character
categorical data
unbiased estim.
varying
log
stratif
random variable
represent
monoton
orthogon
markov, etc.

353 wordsCluster A

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

model
test
data
distribution
analysis
sample
method
regression
function
generalization
based
probability
multivariate
effect
approach

mean
error
linear
design
variable
random
multiple
prediction
approximation
procedure
time series
parameter
selection
robustness
comparison

computation
condition
normal
process
information
structure
response
covariate
power
rank
linear model
observation
class
sequential
evaluation

independent
contingency table
confidence interval
bivariate
asymptotic
treatment
property
exact
proportion
discrete
scale
rule
residual
location
subject, etc.

65 wordsCluster E

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

88
/8

9
94

/9
5

00
/0

1
06

/0
7

12
/1

3
18

/1
9

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

bayesian
nonparametric
regression model
likelihood
semiparametric
dependent
weight
spatial
cluster
local
risk
transform
smoothing
bootstrap
combination

nonlinear
partial
survival
dynamics
prior
mixture
stochastic
marginal
censoring
density
algorithm
density estimat.
application
assessment
autoregression

quantile
bayesian anal.
hierarchical
measurem. err.
diagnostics
monte carlo
mixed
longitudinal
simulation
event
score
GLM
pattern
parametric
outlier

kernel
matching
binary
longitudinal data
censored data
variance estimat.
continuous
trial
gaussian
variable selection
joint
missing
latent
cancer
spline, etc.

174 wordsCluster C

Fig. 7. Clustering on d 3 doubly normalized data: all five groups and individual clusters.

 

p  

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The birth of Statistics as an autonomous discipline should be

laced at the turn of ’50/’60s. Before this date, Statistics was pri-

arily ancillary to other subjects: 

– up to about 1920 ( Ancient History ), it was mainly social statis-

tics ( census, registration, school, children, marriage, women, di-

vorce, crimin, negro, race ) and demography ( vital statistics, infant

mortality, death rate, birth rate, life insurance, mortality statis-

tics, cause of death ), being an instrument of government ( bu-

reau, municipality, railway, budget ) (see clusters F for d 1 , Fig. 6 ,

partly B for d 3 , Fig. 7 , and C for c 2 , Fig. 5 );

– then, during 1920–1950 ( Middle Ages ) it was public statistics

( population, state, social, nation, federal, public, service, war, law )

and economic statistics ( production, economics, price, industry,

trend, income, cost, business, trade, health, wage, market, demand,

unemployment, progress, consumer, manifacturing ) and developed

first rudimental mathematical instruments ( measure, correlation,

statistical method, index number, significance ) (clusters C for d 1 ,

partly B/D for d 3 and C for c 2 ).

– From late ’50s, Statistics became established as a separate dis-

cipline, affirming its own lexicon and basic tools ( distribution,

probability, mean, error, linear, design, variable, parameter, survey,

independent, contingency table, test, confidence interval, asymp-

totic, MLE, linear regression ) (clusters A for d 1 , partly E/A for d 3
and B for c ).
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– Late ’50s-early ’80s ( Modern History ) represents the golden age

of “classical” Statistics ( variance, expectation, sample, sample size,

chi square, least square, normal distribution, binomial distribu-

tion, exponential distribution, small sample, large sample, order

statistics, fisher, experiment, factorial, student, unbiased estima-

tion, sample survey, finite sample, stratified sample, sampling plan,

wilcoxon, f, chi square test, kolmogorov, sign test, multiple regres-

sion, response error ) (clusters D for d 1 , partly A for d 3 and D/B

for c 2 ).

– Since late ’50s, with a plateau in 20 0 0 followed by a slow de-

cline, methods for data analysis are refined more and more

( model, data, analysis, function, algorithm, multivariate, multiple,

time series, robustness, regression model, process, linear model,

GLM, cluster, pattern, local, smoothing, nonlinear, survival, mix-

ture, censoring, density estimation, autoregression ) and technolog-

ical revolutions stimulated new modes of statistical computa-

tion, unthinkable before the arrival of modern computers ( boot-

strap, monte carlo, simulation, bayesian analysis ) (clusters B for

d 1 , partly E/C for d 3 and B for c 2 ).

– Since late ’90s and still on the rise ( Contemporary History ),

approaches ( bayesian, likelihood, nonparametric, semiparametric ),

classical issues ( variable selection, model selection, missing data,

calibration ), modeling classes ( mixture model, mixed effect model,

additive model, hierarchical model, longitudinal data, survival
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data, causal, dose, event, spectral, tree, point process, wavelet ) spe-

cialize and the new millenium heralds new topics and new

challenges such as the dimensionality and complexity of infor-

mation and the need for hybridization and interdisciplinarity

( spatial, risk, dynamics, network, genetic, epidemiology, small area,

cancer, gene, microarray, high dimensional, sparsity, dimension re-

duction ) (clusters E for d 1 , partly C for d 3 and B for c 2 ). 

6. Conclusions

In this study, we have showed how the history of a discipline

can be traced from analyzing the temporal evolution of relevant

keywords retrieved from articles of mainstream scientific journals

in the field. The history is reconstructed on the basis of the most

relevant inner dynamics as obtained from an opportunely set up

clustering of words’ life-cycles. The word’s life-cycle is the primary,

indivisible unit of our analysis (the functional datum, the curve-

imprint in time). Conceptually, our approach differs from the main

alternatives addressing the problem of knowledge evolution, like

those developed for TDT, ETD and, generally, for dynamic knowl-

edge mapping in scientometric studies. Focus of our analysis is the

detection of important dynamics representing, each, the temporal

evolution of a group of words. Thus, on principle, different topics,

research areas, schools of thought can be represented within the

same group of words. On the contrary, “topic-centered” methods

cited above focus, first, on the detection of topics, then, on track-

ing their evolution. To help in choosing between these two per-

spectives, we just point to some practical consequences. In “topic-

centered” methods, words that represent the same topic may have

unconcilable temporal evolution; topic evolution can only be a

“roadmapping”, an abstract description (being the average evolu-

tion of words grouped by co-occurrence criterion) of basic move-

ments over time; the abstract definition of topics is subjected to

continuous destruction and reconstruction by time, making topic

tracking a fragile and questionable artifact. 

As regards the crucial choice of data normalization, the anal-

ysis of three examples of transformation of word frequencies has

highlighted what influence each type can have on curve clustering

results. In what follows we summary the main findings. 

1. Normalization by column maintains the level of word popular-

ity differentiated and produces a dominance of high frequency
Table A1

Normalization plan.

12
words on the clustering results. Significant imbalance in clus-

ter size, large presence of singletons, lack of heterogeneity of

frequency classes in group composition and, finally, the pres-

ence of one or more “amorphous” groups (including almost ex-

clusively low frequency words) are some of the most evident

effects of this type of transformation. 

2. Conversely, the double normalization produces better balanced

groups both in cluster size and frequency classes, rare single-

tons, and almost never amorphous groups, though, it does lose

information on word popularity.

3. Type- d 1 normalization is better able to recognize any group

of words having “sparse”trajectories, i.e., which have experi-

enced birth and/or death over the period considered, while the

d 3 variant, which more properly “normalizes” the frequency ,

builds the groups primarily looking at the curve shape, i.e., at if

the “relative popularity” of a word has been constant over time

or if has fluctuated (and how) during its life cycle.

Future work plan will address the study of other types of

ormalizations, especially some transformations dealing with the

roblem of zero excess due to the LNRE feature of textual data.

oreover, with regard to clustering, we intend to deepen the dis-

ussion either on a technical side, such as studying the effect of

ifferent types of distance that measure the similarity between

rajectories, either on a more methodological level, in particu-

ar with reference to what line of thought should be adopted in

he final choice of cluster number. Lastly, in parallel to the study

f distance-based curve clustering, we will continue to review

nd propose model-based approaches, where the interweaving of

ata pre-processing and model assumptions becomes even more

omplex. 
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