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ABSTRACT 

Inflammatory bowel disease (IBD) is a chronic immune-mediated condition of the 

gastrointestinal tract that includes Crohn disease and ulcerative colitis. Pediatric IBDs are of 

particular interest since their incidence is rising and, even if different pharmacological strategies 

are used, the optimal treatment is far from being achieved. Glucocorticoid (GCs) are prescribed 

for inducing remission but there is a high risk of adverse effects especially in subjects that poorly 

respond to these agents and require long treatments.  

The long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) interacts with the 

activated glucocorticoid receptor (GR), inhibiting the transcription of GCs responsive genes. 

The first part of my thesis project is focused on the study of GAS5 as a molecular marker of 

GCs resistance. We evaluated the association between the lncRNA and the efficacy of steroids, 

in terms of inhibition of proliferation, in two immortalized cell lines from colon and ovarian 

cancers, a GC-resistant and GC-sensitive model, respectively. After GCs treatment in the GC-

resistant cells GAS5 upregulation was observed and, in response to the drug, the lncRNA 

accumulated more in the cytoplasm compared to the nucleus. Furthermore, we evaluated GAS5 

levels in the peripheral blood mononuclear cells of pediatric IBD patients at diagnosis and after 

4 weeks of GCs administration. Gene expression analysis have shown an upregulation of the 

lncRNA in patients with unfavourable steroid response. These preliminary results suggest that 

GAS5 could be considered a novel pharmacogenomic marker useful for the personalization of 

GC therapy.  

GAS5 expression was also measured in IBD patients’ colon biopsies and its levels have been 

evaluated with respect to the gene and protein expression of two metalloproteinases (MMP-2, 

MMP-9) involved in tissue damage in IBDs. The GAS5 downregulation observed in inflamed 

tissues compared with the non-inflamed one is inversely related to MMPs expression suggesting 

a role of this lncRNA in controlling the activity of these molecules.  

In the second part of my thesis project we evaluated the role of the tristetraprolin (TTP) protein 

in IBDs. TTP is a zinc finger protein able to interact and inhibit pro-inflammatory cytokines 

through the binding with AU-rich elements on the 3’ untranslated region on mRNA. The role of 

phosphorylation on TTP activity was also evaluated, since this post-translational modification 

could impair protein activity and consequently the stabilization of cytokines levels. TTP protein 

expression was studied in pediatric IBDs patients’ colon tissues and in macrophages 

differentiated from peripheral blood mononuclear cells. An upregulation of TTP expression in 

both inflamed colon tissues and in macrophages of IBD patients was observed, and was closely 

related to the phosphorylation of the protein. These preliminary results, if confirmed with further 
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experiments, could open new perspectives in the study of IBDs and in the investigation of new 

target therapy based on the modulation of TTP phosphorylation by phosphatases to favour pro-

inflammatory cytokines degradation. 
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RIASSUNTO 

Le malattie infiammatorie corniche intestinali (MICI) sono un gruppo di malattie infiammatorie 

immunomediate che comprendono il morbo di Crohn e la rettocolite ulcerosa. Nella popolazione 

pediatrica le MICI sono di particolare interesse a causa della aumentata incidenza della malattia 

e, sebbene siano stati sviluppati diversi approcci terapeutici, è molto difficile individuare il 

trattamento ottimale. I glucocorticoidi (GC) sono farmaci prescritti per indurre la remissione ma 

alcuni pazienti risultano resistenti al trattamento o richiedono terapie prolungate e tali pazienti 

sono soggetti a numerosi reazioni avverse.  

Il long non-coding RNA (lncRNA) growth-arrest specific 5 (GAS5) interagisce con il 

complesso GC-recettore dei glucocorticoidi (GR) inibendo l’attività trascrizionale dei geni 

responsivi ai GC. La prima parte del mio progetto di tesi si occupa di studiare il ruolo di GAS5 

come marker molecolare della resistenza farmacologica ai GC. L’associazione tra il lncRNA e 

l’efficacia degli steroidi, espressa in termini di inibizione della proliferazione, è stata valutata 

su due linee cellulari tumorali di colon e ovaio che sono state identificate rispettivamente come 

modello di resistenza e sensibilità farmacologica ai GC. Inoltre, il ruolo di GAS5 è stato 

osservato nelle cellule mononucleate del sangue periferico di pazienti pediatrici affetti da MICI 

sia alla diagnosi che dopo 4 settimane di trattamento con GC; una maggiore espressione di 

GAS5 è stata osservata nei pazienti con una risposta sfavorevole agli steroidi. Questi risultati 

preliminari indicano che GAS5 potrebbe essere considerato un nuovo biomarker di resistenza 

farmacologica ai GC. 

I livelli di espressione di GAS5 sono stati valutati anche nelle biopsie di colon di pazienti 

pediatrici affetti da MICI anche rispetto ai livelli di espressione proteica e genica di due 

metalloproteasi (MMP) coinvolte nel danno tissutale. La downregolazione di GAS5 osservata 

nei tessuti infiammati rispetto ai tessuti non infiammati è inversamente correlata all’espressione 

delle MMP suggerendo che il lncRNA potrebbe controllare l’attività di queste proteine. 

Nella seconda parte del mio progetto di tesi abbiamo valutato i livelli di espressione proteica 

della tristetraprolin (TTP) nelle MICI. La TTP e una proteina zinc finger capace di interagire e 

inibire le citochine pro-infiammatorie attraverso il legame con gli elementi ricchi di AU sul 3’ 

UTR degli mRNA target. Abbiamo considerato anche il ruolo della sua fosforilazione, poiché 

questa modificazione post-traduzionale interferisce con l’attività della TTP che in questo stato 

è responsabile della stabilizzazione delle citochine d’interesse. L’espressione proteica della TTP 

è stata valutata nei tessuti di colon e nei macrofagi dei pazienti pediatrici affetti da MICI. 

L’espressione della TTP risulta upregolata sia nei tessuti di colon che nei macrofagi. I risultati 

inoltre confermano il coinvolgimento della fosforilazione nell’attività della TTP. Questi risultati 
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preliminari, se confermati con ulteriori esperimenti, potrebbero aprire nuove prospettive nello 

studio delle IBD e nella formulazione di una nuova terapia farmacologica mirata in grado di 

modulare la fosforilazione della TTP attraverso l’uso di fosfatasi e favorire così la degradazione 

delle citochine pro-infiammatorie. 

  



	
   - 5 - 

 

 

 

 

 

1.INTRODUCTION 
  



	
   - 6 - 

1.1  Inflammatory bowel disease 

Inflammatory bowel disease (IBD) is a chronic immune-mediated condition of the gastro-

intestinal tract, IBD is considered a heterogeneous group of diseases that includes both 

ulcerative colitis (UC) and Crohn disease (CD) 1,2. The incidence and prevalence of IBD is 

increasing, it is most often diagnosed in adolescent and young adult, with a rising incidence in 

pediatric population 3. Indeed, approximately 25% of patients with IBD are before age of 20 

years, among children with IBD, 4% before age of 5 years and 18% before age of 10 years 4,5. 

The IBD study is of particular interest in children because of the negative consequence on 

growth, development and psychosocial function 6.  

CD can affect any part of the gastrointestinal tract, from the mouth to the anus. Most commonly, 

in children, it involves the terminal ileum and colon. Endoscopic feature of CD showed a 

discontinuous inflammation and aphthous ulcers often in an irregular distribution 7. CD typically 

demonstrates transmural inflammation that could cause disease complications such as fistulae 

and intra-abdominal or perianal abscess formation. Only in CD patients, perianal abscesses 

causing the formation of anal skin tags, fissures, fistulae and abscesses 2.  

UC is characterized by continuous mucosal inflammation of the colon starting from the rectum 

and extending proximally 2,3. In UC patients, the small bowel is not involved in the 

histopathology and it is possible observe the presence of backwash ileitis. The inflammation in 

UC patients, is much more superficial and largely limited to the mucosa 7 (Figure 1). Pediatric 

IBDs present a wide variety of symptoms, both gastrointestinal and extraintestinal. UC 

symptoms are more evident than on CD. In fact, UC patients initially present commonly 

abdominal pain and bloody diarrhea. A child with CD, when affected by colitis, may have 

bloody diarrhea or, otherwise, indistinct symptoms such as no-bloody diarrhea, weight loss or 

growth failure, fatigue, anemia and fever 6,8. Extraintestinal manifestations are more common 

in CD patients and can involve the dermatologic, musculoskeletal, hepatic, ophthalmologic, 

renal, pancreatic or hematologic systems 2. IBD is a multifactorial disease that involves a series 

of interactions between genetics, environmental factors, gut microbiota and the immune 

response 9. In recent years, genome-wide association studies have identified more than 200 risk-

associated loci with IBD 10; many of the genes identified code for proteins involved in innate 

and adaptive immunity, autophagy and mucosal barrier integrity.  
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Figure 1 A. Normal vascular pattern, villous epithelium, and lymphoid nodularity. B. Normal mucosa and delicate vascular network. C. 

Terminal ileum in a child with CD. D. Linear ulcer directly adjacent to normal colon mucosa in a young child with CD. E. stomach antrum of 

a child with CD. F. An adolescent with UC 3. 

 

 

This immune dysregulation could alter the intestinal microbial composition causing the chronic 

inflammation 11,12. The tissue injury observed in IBD has a major role in the progression of the 

disease. On this perspective, an interesting role is attributed to a family of proteins called matrix 

metalloproteinases (MMPs). MMPs are a group of almost 20 proteins that are involved in the 

breakdown and reconstitution of extracellular matrix in physiological processes, like 

remodelling during development, growth and wound repair, or in pathological conditions as 

observed in arthritis or in tumor progression 13. Among MMPs, the gelatinases MMP-2 and 

MMP-9 play a role in particular on the degradation of basement membrane type IV collagen, 

and in addition on collagen type I, V, VII, X, elastin, laminin and fibronectin 14. MMP-2 and 

MMP-9 are involved in different mechanisms, among which intestinal tissue injury mediated 

by T cells in IBD 15. Different studies demonstrated that MMP-9 and MMP-2 participate actively 

in the inflammatory and remodelling processes of IBD and a significantly increase of their 

expression was observed in inflamed tissues compared with non-inflamed colon mucosa of IBD 

patients 16,17. Expression of MMPs was also evaluated in pediatric IBD patients and a prominent 

increase of expression was observed in the urine of CD and UC patients respect to a control 

group, demonstrating that MMPs could be considered non-invasive biomarkers in the evaluation 

of IBDs 18.  

 

A B

C D
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1.2  Role of cytokines in IBD  

Genetic and environmental factors have a crucial role in the pathogenesis of IBD since a 

combination of both seems to initiate an alteration in epithelial barrier. An important role is 

covered by an aberrant and excessive cytokine response that causes subclinical or acute mucosal 

inflammation. In particular, mucosal immune cells (macrophages, T cells and innate lymphoid 

cells) produce cytokines that can promote chronic inflammation of the gastrointestinal tract 19. 

Cytokines drive intestinal inflammation and associated symptoms in particular in progressive 

and destructive forms where intestinal stenosis, rectal bleeding, abscess and fistula formation 

are present 20,21. Since 1980 it is known that in circulating immune cells and immune cells from 

intestinal lamina propria of IBD patients there is an altered cytokines production, however the 

functional relevance of these alterations is still unclear 22. Lamina propria dendritic cells (DCs) 

and macrophages are key antigen-presenting cells (APCs) that have an important role in 

inflamed mucosa in IBDs. For instance, members of interleukin (IL)-12 family of heterodimeric 

cytokines (IL-12, IL-23, IL-27 and IL-35) are produced by APCs during intestinal inflammation. 

In fact, an increased expression of IL-12 in CD but not in UC has been observed 23; similar 

results were described in CD patients for IL-23, a cytokine able to perpetuate local T helper 17 

cells response and suppress regulatory T cells activity 24. A significant decrease of IL-1RA was 

found in both CD and UC patients compared to control subjects, indicating an increased 

activation of IL-1 family of cytokines in IBD 25. Furthermore, experiments on mice lacking IL-

1β-converting enzyme (also known as caspase 1), that cleaves IL-1β and IL-18 into the active 

form, showed an improvement of DSS-induced colitis mice, suggesting that IL-1 family could 

be a target for therapy of chronic intestinal inflammation 26. IL-6 production by lamina propria 

macrophages is also increased in experimental colitis and in IBD patients. IL-6 can regulate 

different pro-inflammatory functions trough the activation of multiple target cells such as APCs 

and T cells 27. Interestingly, antibody-mediated blockade of IL-6 signalling suppressed chronic 

intestinal inflammation in mouse models and led to clinical response in CD patients. These 

effects were associated with a reduction of T cell apoptosis and reduction of other cytokines, 

such as interferon (INF) γ, tumor necrosis factor alpha (TNF-α) and IL-1β 28,29. However, further 

studies are warranted to determine the therapeutic potential of this approach in IBDs. The well-

studied cytokine TNF-α is produced both in membrane-bound and soluble form by lamina 

propria mononuclear cells and is markedly increased in IBD patients and also in macrophages, 

adipocytes, fibroblasts and T cells 30–32. TNF-α induces different pro-inflammatory effects in 

colitis, binding to its receptors TNFR1 and 2 and activating the transcription factor nuclear 

factor-κB (NF-κB); as a consequence, angiogenesis, production of metalloproteinases by 
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myofibroblasts, activation of macrophages and effector T cells are induced 33–35. Treatment of 

IBDs with antibodies that neutralize both soluble and membrane-bound TNF-α (infliximab and 

adalimumab) is highly effective, improving mucosa healing: indeed, anti TNF-α monoclonal 

antibodies are well established therapies in IBDs 36. Moreover, other studies have been 

conducted on the use of new recombinant antibodies able to neutralize pro-inflammatory 

cytokines or on the administration of recombinant anti-inflammatory cytokines. Indeed, other 

cytokines in addition to the TNF-α have a fundamental role in controlling mucosal inflammation 

in IBD 19 (Figure 2). 

               

 
Figure 2: Cytokines in the pathogenesis of IBDs 19.  

 

1.2.1 Tristetraprolin and cytokines regulation 

Cytokines, chemokines and other proteins involved in the inflammatory response are encoded 

by relatively short-lived messenger RNA (mRNA). These transcripts usually contain cis-acting 

elements in the 3-untraslated region (3’UTR) rich in adenosine and uridine rich elements 

(AREs) that contribute to the regulation of mRNA, directing the rapid degradation of the 

transcript or its stability 37. These effects on post-transcriptional fate of mRNA depend on the 

interaction with trans-acting RNA binding proteins that recognize the sequence UUAUUUAUU 

in the 3’UTR 38. Several ARE-binding proteins have been described, but only for a few of them 

a clear evidence of a role in the mRNA stability has been demonstrated, among them a protein 

belonging to the TPA-inducible sequence 11 (TIS11) family called tristetraprolin (TTP) has 
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been largely studied 39. TTP is a member of a family of zinc finger proteins of the unusual Cys-

Cys-Cys-His (CCCH) class (Figure 3).  

 
Figure 3: A schematic diagram of three critical domains of TTP: The N terminal nuclear export sequence (NES), the central tandem CCCH 

zinc finger domain, the C terminal NOT1-binding domain (NOT1 BD), the key cysteines in each finger and the conserved sequences of the 

Zinc finger domain 40. 

 

The protein, also known as 12-O-tetradecanoyl phorbol 13 acetate-inducible sequence 11a, 

G0/G1 switch gene 24, nuclear protein 475, is encoded by the zinc finger protein of 36 kDa 

(Zfp-36) in mouse cells and ZFP36 in human cells, which map to chromosomes 7 and 19q13.1, 

respectively 41. TTP is widely distributed in the spleen, lymph nodes and thymus 42. First studies 

demonstrated the role of TTP in both quiescent and serum-stimulated fibroblast; in subsequent 

researches a rapid translocation from the nucleus to the cytoplasm upon specific stimulations is 

observed 43,44. Afterwards, more in-depth studies have demonstrated an exclusively high 

expression of TTP in the cytosolic compartment of human macrophage cell lines and in primary 

mouse macrophages 45. Studies in TTP-deficient mice have suggested, for the first time, a link 

with cytokine TNF-a, indeed these animals appeared normal at birth but rapidly showed a severe 

syndrome of growth retardation, cachexia, arthritis, inflammation, autoimmunity, together with 

an over-expression of TNF-a in macrophages 46. Since this behaviour suggests a role in 

controlling the TNF-a expression, the ability of TTP to destabilize mRNA through the ARE 

sequence found in 3’UTR of TNF-a was investigated. Indeed, a direct binding between the TTP 

zinc finger domain and ARE sequence on TNF-a was observed to which a series of steps follow 

that start from the remove of the poly(A) tail to the subsequent mRNA degradation 47. Zinc 

finger proteins are able to recruit several proteins or protein complexes that participate to mRNA 

regulation 48. These include: deadenylases, that shorten the 3’-poly(A) tail; decapping enzymes, 

that remove the 7-methylguanylate cap from 5’-end of mRNA; and exonucleases, that enhance 

the mRNA degradation from either the 5’ or 3’end 49. Therefore, the binding of TTP to AREs 
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on the 3’UTR of mRNA targets recruits the Ccr4/Caf1/Not1 deadenylases complex that shortens 

the poly(A) tail (Figure 4).  

 

                                                              

 
Figure 4: Model of the TTP mechanism of action. Tristetraprolin (TTP) binds to AU-rich elements (ARE) sequence of its target mRNAs and 

interacts with both polyA-binding protein (PABP) and NOT1, which can bring its associated deadenylases the chromatin assembly factor-1 

(CAF1) and C-C chemokine receptor type 4 (CCR4) into proximity, resulting in the destabilization and decreased translation of the mRNA 40. 

 

When the poly(A) tail becomes too short, the decappining enzymes and exonucleases guide a 

rapid degradation of mRNA transcripts. The poly(A) tail not only protects mRNA from 

degradation, but also promotes mRNA translation through the interaction between poly(A)-

binding proteins and 5’-cap-binding proteins 50. A number of papers describe different TTP 

targets among which many are cytokines involved in inflammatory response such as TNF-a, 

IL-1β, IL-2, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF) and many 

others 51. 

 

1.2.2 Role of phosphorylation in TTP activity 

 

The TTP protein is subject to extensive post-translational modifications, particularly 

phosphorylation. After a pro-inflammatory stimulus, the p38 mitogen-activated protein kinase 

(MAPK p38) plays a central role in the expression of different mediators of inflammatory 

response. The kinase operates through the downstream kinase MAPK-activated protein kinase 

2 (MK2). TTP is phosphorylated by this pathway at mouse serines (Ser)-52 and Ser-178 (Ser-

60 and Ser-186 in human), abrogating its destabilizing activity on mRNA transcripts and, as a 

consequence, a more pro-inflammatory cytokines expression is evident 52–54. Furthermore, in 

primary macrophages and in a murine macrophages cell line (RAW264.7) the addition of 
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MAPK p38 inhibitor leads to a rapid degradation of TTP through the proteasome complex, 

demonstrating that phosphorylation is also necessary to protect TTP from its-self destruction 55. 

This effect could be explained by the interaction of TTP with 14-3-3 proteins, a family of 

dimeric proteins that modulate the localization and function of the many phosphoproteins with 

which they interact. 14-3-3 not only changes the structure of TTP in a more stable one, but also 

inhibits the recruitment of Ccr4/Caf1/Not1 complex, improving protein translation 56,57 (Figure 

5).  

	
  

                 
Figure 5: Role of phosphorylation in TTP activity. Unphosphorylated tristeraprolin (TTP) binds to the AU-rich elements (ARE), promoting 

degradation of the mRNAs. p38 mitogen-activated protein kinase (p38), trough MAPK-activated protein kinase 2 (MK2), phosphorylates TTP 

at two serine residues, allowing the interaction with 14-3-3 adaptor proteins and stabilizing its target mRNAs and protecting itself from 

proteasome activity 58. 

 

These data open new perspectives on the control of inflammatory conditions. Indeed, a strong 

TTP protein expression has been demonstrated in inflamed synovium of rheumatoid arthritis 

(RA) patients. The protein was co-localized with the active MK2 in the cytoplasm of RA 

synovial macrophages, corroborating the hypothesis that inactive/phosphorylated TTP can be 

involved in a prolonged inflammation 59. Moreover, the link between the MAPK cascade and 

TTP activity was also demonstrated in primary cells obtained from asthmatic patients, indeed 

an over expression of phosphorylated TTP was observed concurrently with MAPK p38 peak 

levels of activation 60. These findings highlighted a role of TTP in orchestrating the response to 

pro-inflammatory stimuli even if a lot remain unknown about its regulation. 

1.3  Therapeutic approaches in pediatric IBD 

The main purpose in the pharmacological treatment of pediatric IBDs is to induce and maintain 

clinical remission and minimize adverse effects as much as possible. In the last decades a 

number of drugs have been used for the treatment of IBDs 61. The choice of the appropriate 
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treatment for the IBD patient may be done using a “top-down” or a “step-up” approach. The 

step-up therapy starts with locally active agents, including aminosalicylates and antibiotics, 

followed by prednisone or budesonide and then escalates to immunomodulators, biologics (anti-

TNF agents), or surgical intervention if the disease worsens. The top-down therapy, used 

principally in patients with a moderate to severe disease, initiates with biologics to ensure a 

rapid induction of the mucosal healing and then downgraded to other drugs 62,63 (Figure 6). The 

therapy depends on the disease location and severity. The treatment could induce the clinical 

remission or maintain the remission. The induction therapy includes the exclusive enteral 

nutrition, corticosteroids, antibiotics, 5-aminosalicylates, only for mild to moderate cases, and 

biologics; the maintenance therapy, instead, comprises the 5-aminosalicylates, 

immunomodulators (thiopurines and methotrexate) and biologics, used in patients that not 

respond to other treatments or when the step-up approach failed 6,61.  

The principal goal of ongoing studies is to identify clinical markers that can help to provide a 

personalized therapy for pediatric IBD patients that could improve the mucosal healing and 

reduce the side effects observed after prolonged therapy.  

 

 

                                    
 Figure 6: Step-up versus top-down treatment approach for IBD 

  

1.3.1 Personalized therapy in IBD 

The principal aim in IBDs treatment is to face the great inter-individual variability in 

pharmacological response. The study and the discovery of new biomarkers related to the disease 

could be useful in developing new strategies for future drug targeting.  

BIOLOGICAL THERAPY OR 
SURGERY

IMMUNOMODULATORS

CORTICOSTEROIDS

ANTIBIOTICS

AMINOSALICYLATES

ST
EP

-U
P 

TH
ER

AP
Y

TOP-DOW
N THERAPY



	
   - 14 - 

On this panorama pharmacogenetics and pharmacogenomics studies have a primary role in 

discovering new markers for drug response. Pharmacogenetics analyze associations between 

patients’ response and variants located on genes involved for instance in the metabolism of the 

drugs 64,65. 

To date, different genetic variations have been associated with the pharmacological response in 

IBD for almost all classes of drugs, but only few of them are approved in clinical practice 66. In 

particular, genetic test for thiopurine-S-methyltransferase (TPMT) is a normal procedure in 

many centres before starting thiopurines treatment. TPMT is responsible for the metabolism of 

drugs such as thiopurines (6-mercaptopurine and 6-thioguanine) and azathioprine, determining 

their pharmacological efficacy and toxicity 67,68. Variations on patients genome are associated 

with a different enzymatic activity 66. In fact, population studies have shown a trimodal 

distribution of TPMT enzymatic activity: 0.3% of the Caucasian population has a low-to-absent 

activity, around 10% an intermediate activity and 90% a normal-to-high enzyme activity 69. 

Patients with low-to-absent activity produce high thioguanine nucleotide levels leading to an 

increased risk of developing bone marrow toxicity; in this case low doses of thiopurines are 

prescribed 70. Many other genetic variations, such as that of glutathione-S-transferase and 

inosine-triphosphate-pyrophosphatase genes, are also involved in the thiopurines metabolism 

but their importance in the clinical practice remains controversial 66. 

The introduction of anti-TNF therapy has improved the outcome of patients with IBD. Despite 

this, almost one third of the patients fail to respond to the treatment 71. Different 

pharmacogenetics studies have been conducted to investigate variations that could interfere with 

anti-TNF therapy: in particular genes involved on the TNF-α pathway and drugs response, such 

as the TNF receptor superfamily 1A and 1B, TNF-α-induced protein 3 gene, interleukin-23, 

nucleotide-binding oligomerization domain-containing protein 2 and others have been studied. 

Nevertheless, studies on these variants have not demonstrated a sufficient sensitivity or 

specificity to be introduced in daily clinical management 66. The personalized medicine for the 

treatment of IBD still need further investigation that could be improved with a genome-wide 

association and a deepen pharmacogenomics approach. 

1.4  Glucocorticoids in the treatment of IBD 

Few many studies report the use of corticosteroids in pediatric IBD and for this reason most of 

the clinical strategies in children are extrapolated from the experience in adults. In children, 

glucocorticoids (GCs) are prescribed for inducing remission with moderate to severe disease 

when the exclusive enteral nutrition is not possible. In addition, in children with mild to 

moderate ileo-cecal CD, budesonide or systemic corticosteroids are used to induce remission 12. 
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However during GC treatment there is a high risk for adverse effects principally related to the 

dose and the length of treatment 72 and no biomarkers are still available to predict the response 

to corticosteroids and reduce the risk of developing adverse events 73,74. 

1.4.1 GCs: synthesis and release 

Natural GCs are cholesterol-derived hormones generated through an enzymatic process termed 

steroidogenesis 75. Cortisol is the biologically active GC in humans and is secreted by the adrenal 

gland and activated by the hypothalamic-pituitary-adrenal axis after a stressor stimulus, 

cytokine and endocrine signals 76. The hypothalamus leads to the secretion of the corticotropin-

releasing hormone, responsible, in the anterior pituitary, of the adrenocorticotropic hormone 

(ACTH) release 77 (Figure 7A). In turn, ACTH induces the synthesis and secretion of cortisol 

from the cortex of the adrenal glands into the bloodstream, resulting in a systemic effect 78. 

Endogenous GCs regulate different biological functions that involve the development, growth, 

metabolism, behaviour and apoptosis 79. Due to their multiplicity of roles, synthetic GCs are 

largely used in inflammatory, autoimmune and proliferative diseases 80 (Figure 7B). 

 

 
Figure 7: A. Schematic representation of the synthesis of cortisol by the hypothalamic–pituitary–adrenal (HPA) axis. Corticotropin-releasing 

hormone (CRH); adrenocorticotropic hormone (ACTH); 11b-hydroxysteroid dehydrogenase type 1 (11β-HSD1); 11b-hydroxysteroid 

dehydrogenase type 2 (11β-HSD2). B. Role of glucocorticoids in major organ systems (black text), beneficial roles of glucocorticoids in the 

clinic (green text), and adverse outcomes in patients with elevated glucocorticoid levels (blue text) 81. 

 

Synthetic GCs, such as the commonly prescribed prednisone, dexamethasone (DEX), 

methylprednisolone (MP) and budesonide chemically differ from natural GCs to improve their 

activity. Indeed, the 11β-hydroxysteroid dehydrogenases (11β-HSDs) is involved in 

transformation active hydroxy- to inactive oxo- of cortisol but not of synthetic GCs 81. Other 
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chemical modifications have potentiated the anti-inflammatory activity, like the double bond 

between the carbon atoms 1 and 2 of prednisolone or the methyl group added in position 6α of 

the methylprednisolone. DEX and betamethasone derive from modifications of the prednisolone 

structure with a fluorine atom in position 9α and a methyl group on carbon 16 82, resulting in a 

25-fold increase of the anti-inflammatory potency in comparison to cortisol, and a longer 

plasmatic and biological half-life 78.  

1.4.2 GCs mechanism of action 

The classic genomic pathway of GCs mechanism of action starts with the entering of GCs into 

the cell through passive diffusion, facilitated by their relatively small size and lipophilic nature 

and, once in the cytoplasm, bind the glucocorticoid receptor (GR) a ligand-inducible 

transcription factor, member of the nuclear receptor superfamily. In the inactivated form the GR 

resides in the cytoplasm in a multimeric complex that, thanks to the binding with different 

chaperones like the heat-shock proteins (Hsp) 90 and Hsp 70, immunophilins and others, is able 

to maintain the right folding for GCs recognition, preventing also its degradation 83. When the 

GCs enter in the cytoplasm they can bind to the GR which, through conformational changes, 

dissociates from chaperones and becomes active. The complex GC-GR enters into the nucleus 

where it interacts with specific DNA sequences, the so called GC-responsive elements (GREs), 

regulating the transcription of GC target genes 84 (Figure 8). The GR is composed of three major 

domains: a N-terminal transactivation domain (NTD), a central DNA-binding domain (DBD), 

and a C-terminal ligand binding domain (LBD). LBD consists of 11 α-helices and 4 β-strands 

that fold into a three-layer helical domain that forms a cavity housing the GC molecule. The 

DBD is responsible of the recognition and binding with GRE regions and of the recruitment of 

another GR protein for dimerization that enhances the transcriptional activity of the receptor 85. 

Among GCs target genes there are most encoding for anti-inflammatory proteins, including 

lipocortin-1, IL-10, IL-1 receptor antagonist (IL-1RA) and neutral endopeptidase 86. GCs 

mechanism of action could have also a negative effect on gene target transcription. Different 

studies demonstrated the presence of a negative glucocorticoid-responsive element (nGRE), that 

differs from the positive GREs for few nucleotides, that mediates glucocorticoid-dependent 

repression of target genes by recruiting corepressors (nuclear receptor corepressor 1 and 

silencing mediator of retinoid and thyroid hormone receptor) and histone deacetlyases (Figure 

8). GCs exert most of the anti-inflammatory activity through protein-protein interactions, with 

DNA-bound transcription factors, such as the Jun subunit of the activator protein-1 and the p65 

subunit of NF-kB, interfering with their activity (Figure 8). Additionally, GR can interact with 
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members of the signal transducer and activator of transcription (STAT) family, to enhance 

transcription of certain target genes (Figure 8) 87,86.  

               

 
 
Figure 8: GCs mechanism of action by the binding with cytoplasmic GR that undergoes a conformation change, dissociates from multi-protein 

complex (heat-shock proteins (Hsp) 90 and Hsp 70), and translocates into the nucleus, where it regulates gene expression. GR activates or 

represses transcription of target genes by direct GC-responsive elements (GRE) binding, by tethering itself to other transcription factors apart 

from DNA binding, or in a composite manner by both direct GRE binding and interactions with transcription factors bound to neighboring sites. 

NPC = Nuclear pore complex; HDAC= histone deacetlyases; NCOR1= nuclear receptor corepressor 1; SMRT1= silencing mediator of retinoid 

and thyroid hormone receptor; STAT= signal transducer and activator of transcription; nGRE = negative GRE; AP1= activator protein-1; RE = 

response element 87.  
 

1.4.3 GCs therapy in IBD and pharmacogenetics 

The first clinical use of GCs dates on the late 1940s, when the Nobel Prize Philip Hench used 

cortisone to treat symptoms of rheumatoid arthritis 88. Since then GCs have revolutionized the 
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field of medicine, indeed, they are being prescribed for chronic inflammatory conditions and for 

their autoimmune and anti-proliferative activity 89. GCs are largely used in IBD for inducing 

remission in patients with moderate to severe disease, but a great inter-individual variability 

have been observed both in adults and in children. Indeed, up to 90% of pediatric patients have 

a rapid improvement of symptoms after GCs treatment, however, after 1 year only the 55% of 

these patients are still in remission (steroid-responsive), almost the 40% have an increase in 

disease activity when the dose is reduced (steroid-dependent) and 10% of pediatric patients do 

not respond to GC therapy (steroid-resistant) 90,91. A number of severe side effects are evident, 

in particular in steroid dependent patient, who need prolonged treatment with these drugs, such 

as Cushing syndrome, psychologic disturbance, osteoporosis, metabolic disease, increased risk 

of cardiovascular disease and others. In the literature, different SNPs on genes involved in the 

GCs response were studied among which the glucocorticoid receptor gene nuclear receptor 

subfamily 3, group C, member 1 (NR3C1), the ATP-binding cassette subfamily B (ABCB1) 

encoding the P-glycoprotein, the co-chaperone FKB51 encoding by the FKB51 gene, the TNF 

and the gene for the multiprotein complex NACHT leucine-rich-repeat protein 1 (NALP1) 92. In 

particular, one of the most studied polymorphism, the BclI on NR3C1 gene, has been related to 

an increased response to GCs in a cohort of pediatric patients with IBD treated with prednisone 

1-2 mg/kg/day for 2–4 weeks, suggesting that patients with this mutation are less likely to need 

additional courses of steroid treatment 93. Despite these knowledges, the mechanism behind the 

GC resistance is still not clear. The study of GR regulation in terms of protein-protein, DNA-

protein and RNA-protein (such as microRNA and long non-coding RNA) interactions could be 

of particular interest 85. 

1.5  Non-coding RNAs 

1.5.1 Definition and biogenesis of ncRNA 

In the past two decades new technologies such as next generation sequences have revealed that 

most of the genome is transcribed into RNAs even if only 2% codes for proteins; the remaining 

is called non-coding RNA (ncRNA) 94. NcRNAs can be divided in two classes, the first one 

ranges from few to 200 nt is called small non-coding RNAs and the other one, longer than 200 

nt to several kilobases, is called long non-coding RNA (lncRNA). Among the small ncRNA, the 

microRNAs (miRNAs) are the most known and studied group 95. miRNAs are expressed 

endogenously and during biogenesis they pass a multistep process that includes: transcription, 

nuclear maturation, export and cytoplasmic processing. Most miRNAs are transcribed as 

polycistrons by the RNA polymerase II (Pol II) 96. Primary miRNAs (pri-miRNA) exhibit 
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modifications similar to that observed in mRNA, like the 5’ capping and the 3’ polyadenylation 
97. The pri-miRNAs are recognized and cleaved by the enzyme RNAse III endonuclease Drosha 

forming an hairpin precursor of 60 nucleotides (pre-miRNA) 98, the exportin-5 and RAN-GTP 

mediate the transfer of pre-miRNAs from the nucleus to the cytoplasm 99. The RNase III 

endonuclease Dicer then cleaves the precursor, releasing an RNA duplex of 22 nucleotides. The 

mature miRNAs are obtained through the combined action of Argonaute proteins associated to 

the miRNA-induced silencing complex (miRISC) action 100 (Figure 9). The class of lncRNAs is 

of emerging interest among the non-coding transcriptome. Regarding the biogenesis they are 

quite similar to protein synthesis 101, in fact for example a large proportion on lncRNAs is 

capped and polyadenylated 102. Even if they are present in lower amounts respect the other 

classes, their expression is more restricted to specific cell types 103. 

 

                                         
Figure 9: Biogenesis and function of miRNAs. miRNAs are transcribed as longer precursors or are derived from introns, and mature via 

endonucleolytic processing. Mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) and regulate target transcript 

expression by degradation or translational repression. miRNAs can be secreted into the extracellular space, stabilized in vesicles or protein 

binding complexes. DGCR8= DiGeorge syndrome chromosomal region 8; RanGTP= Ras-related nuclear protein-GTP; TRBP= TAR RNA 

binding protein; Ago= Argonaute protein 101. 

 

The biogenesis occurs in the nucleus and, like miRNAs, are transcribed by the Pol II. lncRNA 
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can be found in different compartments of the cell, indeed, after biogenesis and processing, 

several lncRNA are released in the cytoplasm but most of them are retained in the nucleus and 

are recruited to the chromatin 104. It is currently unknown the lncRNA functions and how 

lncRNA primary sequences translate into lncRNA secondary-structure motifs, so deciphering 

the functional roles of the lncRNA language is more difficult than with the miRNA language 85. 

The most important features of lncRNAs is their stable form that determines their function, in 

fact they act as regulators of the translation, transcription, mRNA processing and also at post-

transcriptional level 101 (Figure 10).  

 

                                            

Figure 10: Biogenesis and function of lncRNAs. lncRNAs control the expression of genes in the nucleus by interacting with DNA, chromatin 

modifying complexes, and/or various transcriptional regulators. Cytoplasmic lncRNAs act as sponges for other transcripts or proteins or regulate 

mRNA degradation and translation 101. 

 

1.5.2 ncRNAs in diseases 

To date, few ncRNAs are used in clinical practice to predict drug response, but several in vitro 

studies have identified ncRNAs as biomarkers in cancer, cardiovascular diseases, autoimmune 

diseases, neurological disorders and infectious diseases 105,106. The most important lncRNA used 
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in diagnostic is the prostate cancer 3 (PCA3) which is highly overexpressed in prostate cancer 
107. Of interest is also the lncRNA HOX transcript antisense RNA (HOTAIR) which is highly 

expressed in colorectal cancer tissues compared with adjacent uninvolved tissues 108 and it is 

also associated with prognosis and metastasis in breast cancer 109, hepatocellular carcinoma 110 

and gastrointestinal stromal tumors 111. The metastasis-associated lung adenocarcinoma 

transcript 1 ( MALAT1) not only is related to the onset of metastasis in non-small cell lung 

cancer (NSCLC) 112 and colorectal cancer 113 but is also considered a predictor of response to 

chemotherapy; indeed it is highly expressed in patients with osteosarcoma who had a poor 

response to COSS-96 polychemotherapy (doxorubicin, methotrexate, cisplatin and ifosfamid) 
114. miR-21 has been also related to chemoresistance in pancreatic cancer cells 115, glioblastoma 

multiforme 116, bladder cancer cells 117 and head and neck squamous cell carcinoma cells 118. In 

breast cancer, miR-210 is related to sensitivity to trastuzumab 119 whereas miR-125b is 

predictive of chemoresistance 120. miRNAs are also involved in autoimmune disease like 

systemic lupus erythematosus (SLE) (e.g. miR-21, miR-125a, miR-146a and miR-148a), 

rheumatoid arthritis (e.g., miR-124a, miR-146a and miR-155) and multiple sclerosis (e.g., miR-

17-5p, miR-20a, miR- 34a, miR-155 and miR-326) 121. Regarding IBD, experiments on serum 

from pediatric patients, analysed before and after treatment with prednisone from 3 to 18 weeks, 

showed a significant downregulation of miR-146a, miR-320a and miR-486 in response to the 

GC treatment. A higher expression of miR-146a has been demonstrated in inflamed mucosa of 

IBD pediatric patients in comparison to the normal mucosa122. 

1.6  The lncRNA growth-arrest specific 5 

1.6.1 Gene structure and regulation 

Almost 30 years ago Schneider et al. constructed a cDNA library enriched for RNA sequences 

preferentially expressed in growth-arrested cells and among the genes taken in consideration the 

gene of the growth-arrest specific 5 (GAS5) was characterized for the first time 123.  

GAS5 is localized at 1q25.1 chromosome and comprises 650 base pairs, 12 exons and 11 introns. 

The gene encodes for small nucleolar RNAs (snoRNAs), and PIWI-interacting RNAs (piRNAs) 

as well as for the lncRNA 124. Exons contain only a short open reading frame (ORF) that not 

encode a functional protein. GAS5 could exist in two mature lncRNAs trough the splicing of 

exon 7 forming GAS5a and GAS5b. Furthermore, GAS5 encodes within its introns ten box C/D 

snoRNAs involved in the 2’-O-methylation of rRNA 125,126. Even if the importance of snoRNAs 

is not completely clear, recently it was demonstrated that the U44 snoRNA is able to modify the 

18S rRNA whereas all the other snoRNAs direct the modification of 28S rRNA. Among these 
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snoRNAs the U44, U74 and U78 could be processed by the endonuclease Dicer and silencing 

mRNA molecules. These kind of snoRNAs are termed sno-miRNAs 127. GAS5 is transcribed as 

5’-terminal oligopyrimidine (5’-TOP) RNA, a class of transcripts that generally encode 

ribosomal proteins and other molecules involved in protein synthesis, but in GAS5 it serves to 

control transcript levels, conferring stability to the lncRNA 126,128. 5’-TOP transcripts are subject 

to growth-dependent translational control which explains the accumulation of GAS5 mRNA in 

growth-arrested cells 125. The 5’-TOP and the 12th exon on the 3’ unsure the activity of the 

transcript, for this reason both splicing products (GAS5a and GAS5b) are functional 129, even if 

the GAS5b variant appears to be the predominant transcript in most cell lines 126 (Figure 11). 

Of emerging importance is the presence, in the 3’ terminal, of a partial overlap of 40 nucleotides 

of another non-protein coding gene, the GAS5-antisense-1 (GAS5-AS1), which is encoded on 

the opposite strand and arranged tail-to-tail with GAS5 126. To date its function is still unknown 

but, in a work by Wu et al., a downregulation of GAS5-AS1 in NSCLC tumors when compared 

to adjacent normal lung tissues was described; these findings indicate that GAS5-AS1 may 

function as a tumor suppressor 130. Because of the small ORF, GAS5 may be under the control 

of the nonsense-mediated decay (NMD) that is considered a RNA quality control system to 

eliminate aberrant transcripts or regulate abundance of the same transcript. Indeed, in growing 

cells, the active translation of GAS5 through its 5’-TOP leads to a rapid degradation by the 

NMD; on the contrary, in growing arrest, due for example for serum starvation, a decrease of 

NMD activity was observed with an accumulation of the GAS5 transcripts. Experiments of 

NMD modification demonstrated that this pathway is fundamental for the physiologic regulation 

of GAS5 and then for the normal cell growth 128,131. GAS5 regulation plays a role also in 

apoptosis and in the control of the cell cycle. In T-cells in which a specific plasmid was used to 

overexpress the lncRNA, an increase in apoptosis and a deceleration of the cell cycle was 

observed; opposite results were showed when GAS5 was silenced, indicating that this lncRNA 

is necessary for normal growth arrest in T-cells, opening new frontiers in the study of GAS5 in 

different diseases 132. 
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Figure 11:  Human GAS5 gene. In white boxes the 12 exons and in black boxes 10 snoRNAs. On the bottom the two spliced isoforms Gas5a 

and Gas5b with alternative use of exon 7a and b 129. 

1.6.2 Role of GAS5 in diseases 

In recent years, progresses have been made in understanding the molecular mechanism of GAS5 

in different diseases including cancer and autoimmune diseases. Further studies have revealed 

a crucial role of low GAS5 expression related to a poor patients survival in breast 133, 

hepatocellular 134, gastric 135, colorectal 136 and cervical cancers 137.  

An interesting result was observed in patients with diffuse large B-cell lymphoma; in these 

patients, a translocation of GAS5 t(1;3)(q25;q27) has been described and a fusion transcript is 

created between GAS5 5’-TOP to exon 3 and the ORF of BCL6. This chimeric sequence is not 

recognized by the NMD and for this reason an aberrant transcript is produced 138. In addition, 

Chen and collaborators demonstrated a role of GAS5 in mediating melanoma metastasis trough 

the regulation of MMP-2 and MMP-9 both in vitro that in vivo, but the mechanism behind the 

MMPs regulation by the lncRNA is still unknown 139. 

As regard the role of GAS5 in autoimmune diseases, preliminary results in murine model system 

revealed a link between GAS5 and disease susceptibility to SLE 140 in addition, in this patients 

and in rheumatoid arthritis (RA) patients reduced levels of GAS5 in CD4 T-cells and B-cells 141 

were also observed. Mayama et al. have analyzed the expression of GAS5 in different 

autoimmune, inflammatory, and infectious diseases: altered GAS5 levels were observed in 

patients with sarcoidosis, tuberculosis, HIV1 or severe N1H1 influenza virus infection, or 

bacterial sepsis, suggesting that GAS5 appears to be under the regulation of the immune system 
141. An important feature of GAS5 was discovered in 2010, Kino and collaborators have 

described GAS5 as repressor of the GR, influencing the GCs activity as observed also in healthy 

donors’ peripheral blood mononuclear cells (PBMCs) and in IBD pediatric patients 129,142,143.  
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1.6.3 Role of GAS5 in GC activity 

In 2010 Kino and collaborators described the interaction of GAS5 with the GR. In particular, a 

decoy RNA “GRE” on ncRNA sequence is responsible of the interaction between GAS5 and 

the DBD of the ligand-activated GR 129. The sequence involved in the GR modulation is 

comprised between nucleotide 400 and 598; this portion contains 6 hairpin structures. 

UNAFold, a software that simulate folding, hybridization, and melting pathways for one or two 

single-stranded nucleic acid sequences 144, revealed that, on hairpin 5, two sequences form the 

so called “GRE-mimics” to create a binding site similar to GRE sequences on GC responsive 

genes. GRE-mimic sequences include nucleotides 539-544 (GRE-1) and 553-559 (GRE-2) that, 

thanks to RNA specific Wobble base paring between a U and a G, complement each other 

forming the complete hairpin structure. The binding with the GR occurs with hydrogen bond 

between the G540 in 5’ strand and C554 in 3’ strand, in GAS5 sequence, and between the K442 

and R447 of the DBD 85,129. GR does not discriminate between G-U and G-C pairs as 

demonstrated by mutagenesis experiments 145 (Figure 12). 

 

     
Figure 12:  2-dimensional structure of GAS5 hairpins, hairpin #5 contains two “GRE” sequences at nucleotides 539–544 (“GRE-1”) and 553–

559 (“GRE-2”) which form a double-stranded hairpin structure responsible of the binding with the DBD of GR, as illustrated in the 3-

dimensional structure 129. 

 
Indeed, this interaction was demonstrated with a yeast two-hybrid assay, that identifies all the 

protein-protein and ligand-protein interactions, on Jurkat cell line. GR DBD was used as bait 

and different clones were screened, but only 2 independent clones that contained the GAS5 

sequence gave a positive signal, demonstrating that the lncRNA interacts with the GR DBD. To 

confirm the direct binding, Kino et al. performed an RNA and protein coimmunoprecipitation 
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assay in HeLa cell line, which endogenously expresses both molecules. HeLa cells were also 

treated with DEX at a concentration of 10-6 M to observe if steroid treatment could influence 

the GAS5 GR interaction. Results have confirmed the binding between GAS5 and GR and an 

increase of this interaction after treatment with DEX. This interaction is physiologically relevant 

since the concentration of DEX used was more than 10-times lower than the physiologic levels 

of circulating cortisol. Furthermore, it was also demonstrated that GAS5 binding occurs in a 

DBD-dependent way, in fact, no interaction was observed when a GR chimera replaced the 

normal DBD sequence. GAS5 was localized both in the cytoplasm and in the nucleus and in situ 

hybridization experiments showed a more prominent presence in the former compartment 146. 

After DEX treatment, a higher fraction of GAS5 was observed in the nucleus than in the 

cytoplasm indicating that GAS5 interacts with GR DBD in the cytoplasm and migrate together 

in the nucleus, this finding was established in HeLa cells with a plasmid containing a GRE-1 

mutant sequence that instead failed to translocate 129. At this stage GAS5 exerts its role in 

inhibiting the binding of GR to specific GREs and a decreased expression of GC target genes, 

such as leucine zipper protein, serum/glucocorticoid regulated kinase 1, phosphoenolpyruvate 

carboxykinase, glucose 6 phosphatase and above all the cellular inhibitor apoptosis 2 genes, is 

observed as demonstrated by Kino et al. 129. These data confirm the role of GAS5 in controlling 

GC activity through the GR binding. In previous studies in our laboratory, the role of GAS5 was 

investigated in the pharmacological response after GCs treatment. Indeed, a study was 

conducted on PBMCs obtained from healthy donors, in vitro treated with different 

concentrations of MP. On the basis of the antiproliferative effects of steroids the population was 

divided in good and poor responders and higher levels of GAS5 were recorded in the latter group 

compared with the good responders. These results suggest that GAS5 could interfere with the 

activated GR-DBD in the binding to the GRE sequences of GC gene targets, opening new 

frontiers in the study of GC resistance 142,147 (Figure 13). 

                                    
Figure 13:  Potential role of GAS5 in GCs response 142.  
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IBD, including CD and UC, is an uncontrolled and multifactorial disorder characterized by 

chronic, relapsing or progressive inflammatory condition that may involve the entire or only 

part of the gastrointestinal tract 9. The incidence of IBDs is increasing, in particular in the 

pediatric population where the potential negative effects are even more prominent 6. The onset 

of the disease is a combination of genetics, environmental factors, gut microbiota and immune 

response. To date different pharmacological strategies are used in IBDs treatment with the 

purpose of inducing and maintain clinical remission, achieve normal growth and minimize 

adverse effects 61. GCs are largely used in inflammatory, autoimmune and proliferative diseases 

and in IBD are prescribed to induce remission in patients with moderate-to-severe disease. 

Despite the multiple use in different pathologies, the therapeutic benefits of these agents are 

often narrowed by inter-individual variability; some patients are resistant to GCs, and do not 

respond to therapy, other are dependent and require high doses of GCs. This group of patients 

risks a series of side effects including Cushing syndrome, psychologic disturbance, 

osteoporosis, metabolic disease and increased risk of cardiovascular disease and others 84. 

Therefore, due to the currently limited comprehension of a such a complicated disease the 

optimal treatment is far from being achieved and so it is necessary to identify biomarkers 

predictive of the pharmacological response. Researches on ncRNAs as regulators of gene 

expression could open new perspectives in the study of IBD and response to drugs. Recent 

papers described the role of the lncRNA GAS5 as a repressor of GR activity. This lncRNA 

presents an hairpin structure that mimics the GRE sequences of GC gene targets, competing 

with activated GR for the binding on DNA sequences 129. In our laboratory, PBMCs obtained 

from healthy donors treated with different concentration of MP were divided in two groups, 

good and poor responders, based on in vitro pharmacological response. In poor responders, 

higher levels of GAS5 were evident in comparison with good responders, suggesting that this 

lncRNA could be involved in GC resistance 142. Since GAS5 seems to be promising in the study 

of GCs resistance, the first part of my thesis work aimed to study in deep GAS5 activity and 

mechanism of action on IBD patients. The main purposes were to: 

 

o   Identify a cellular model to study in vitro the role of GAS5 in the GC pathway. Different 

immortalized cell lines were analyzed after GC treatment, using a proliferation assay were 

selected sensitive and resistant cell lines to GCs. The chosen cell lines were used to study 

GAS5 molecular functions by modulating its expression. 	
  

o   Evaluate GAS5 expression in PBMCs of pediatric IBD patients enrolled at the diagnosis and 

after GCs administration for 4 weeks. Pediatric patients were divided in poor and good 

responders by standard clinical index of CD and UC diseases. These data could be useful to 
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confirm the proposed activity of GAS5 in GCs resistance. 

Recently, Chen et al. demonstrated that the lncRNA GAS5 controls the metastasis phenotype 

via downregulation of MMP-2 and -9 139. MMP-9 and MMP-2 also participate actively in the 

inflammatory and remodelling processes of IBD and a significantly increase of their expression 

was observed in inflamed tissues of patients; however no data are published about the role of 

GAS5 as regulator of MMP-9 and MMP-2. The principal goal was to: 

 

o   Study the role of GAS5 as a negative regulator of MMP-2 and -9, whose activity has been 

implicated in the pathogenesis of IBD 16,17. Through a gene expression analysis the 

expression of GAS5 and two gelatinases MMP-2 and MMP-9	
  was evaluated in tissue samples 

obtained from colon mucosa of pediatric patients with IBD. These studies could provide new 

perspectives for lncRNA-directed diagnostics and drug targets. 

 

Twenty years ago, the first description of TTP knockout mouse underlined the importance of 

this protein in reducing systemic inflammation 54. The role of TTP in controlling cytokines 

involved in the inflammatory response not only was studied in different strains of mice but its 

activity was investigated in different diseases such as cardiovascular disease, asthmatic 

inflammation and RA. In the synovia of RA patients, the role of phosphorylation in modulating 

TTP activity, enhancing pro-inflammatory cytokines expression, was described 59. Recent 

studies associated the activity of phosphorylated TTP to the protein complex 14-3-3 that protects 

TTP and prevents the degradation of the transcript target stabilizing pro-inflammatory cytokine 

mRNAs 57. Since there are no evidences in the literature of the role of TTP in IBD patients’ 

tissues and cells, the aim of this project is to determine whether the amount of phosphorylated 

protein, therefore the inactivated form, is differently expressed in inflamed and non-inflamed 

IBD’s samples. 

To fulfil this aim, the second part of my thesis project has been carried out as follows: 

 

o   Quantification of TTP in pediatric IBD patients’ macrophages and colon tissues. Since TTP 

is very stable protein in macrophages, protein expression was evaluated in macrophages 

differentiated from PBMCs of IBD patients and healthy donors. Colon tissues analysis was 

performed comparing inflamed tissues versus non-inflamed ones.  

o   Study of the role of phosphorylation in the activity of TTP. Based on the assumption that 

phosphorylated and inactivated TTP forms a complex with 14-3-3 proteins, a co-

immunoprecipitation assay was performed on protein lysates from macrophages and colon 
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tissues to demonstrate not only the protein-protein binding complex but also indirectly the 

phosphorylation of the protein.  

The results obtained in this thesis could clarify some mechanisms of such complicated disease, 

and developing new strategies for a future target therapy. 
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3.MATERIALS AND METHODS 
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3.1  Cell lines 

The HeLa human cervical carcinoma (ATCC, CCL-2) and RAW264.7 murine macrophages 

(ATCC, TIB-71) cell lines were grown in Dulbecco’s modified Eagle’s medium (DMEM, 

EuroClone®); LoVo colorectal cancer (ATCC, CCL-229) and THP-1 human monocyte (ATCC, 

TIB-202) cell lines were grown in Roswell Park Memorial Institute (RPMI) 1640 medium 

(Sigma-Aldrich). Both media were supplemented with 10% (v/v) fetal calf serum, 1% (v/v) L-

glutamine 200 mM, 1% (v/v) penicillin 10,000 UI/mL and streptomycin 10 mg/mL, all 

purchased by Sigma-Aldrich. Cell cultures were maintained according to standard procedures 

in a humidified incubator at 37 °C with 5% CO2, and cell passage was performed once a week.  

3.2  Macrophages differentiation from THP-1 monocyte cell line 

To differentiate macrophages from the immortalized cell line THP-1, 0.5X106 cells were seeded 

in a six-well plate. Phorbol 12-myristate 13-acetate (PMA, Thermo Fisher), at 5 ng/mL was 

added to stimulate the differentiation in macrophages. Cells were maintained in the humidified 

incubator at 37 °C for 48 hours. At the end of this period cells were treated with bacterial 

lipopolysaccharide (LPS, Thermo Fisher) at a concentration of 1 µg/mL, as pro-inflammatory 

stimulus, for 3 hours. Plates were directly treated with 1 ml in TRIzol® reagent (Thermo Fisher) 

for RNA isolation and stored at -80°C for further analysis. 

3.3  Clinical samples 

Nineteen IBD pediatric patients (mean age at enrolment 12.9 years, 16 UC and 3 CD, 9 males 

and 10 females) were enrolled at the Pediatric Clinic of IRCCS Burlo Garofolo in Trieste and 

treated with prednisone 1–2 mg/kg/day for 30 days according to standard clinical protocol. 

PBMCs were obtained from these patients at diagnosis (T0) and after 4 weeks of steroid 

treatment (T4). In addition, PBMCs from four IBDs pediatric patients (mean age at enrolment 

14.68 years, 3 males and 1 females) were treated with GM-CSF (50 ng/ml, Millipore) for 1 week 

to differentiate in macrophages.  

Clinical activity, inclusive of clinical and inflammatory markers evaluation, was assessed by 

‘Pediatric Crohn’s Disease Activity Index’ (PCDAI) for patients with CD, and by ‘Pediatric 

Ulcerative Colitis Activity Index’ (PUCAI) for patients with UC: clinical remission was defined 

as PCDAI < 10 or PUCAI < 10, while clinical improvement was defined as a reduction of at 

least 15 points from baseline score for PCDAI and of at least 20 points from baseline for PUCAI. 

Patients were classified based on their clinical response into three groups: steroid-resistant (SR), 

patients who have active disease despite treatment with prednisone 2 mg/kg/day (max 50 



	
   - 32 - 

mg/day) for 4 weeks; steroid-sensitive (SS) patients who did not relapse when therapy was 

discontinued after tapering and did not need GCs for at least 1 year, and steroid-dependent (SD) 

patients, who experienced disease relapse during steroid tapering or within 3 months after the 

steroid was stopped. 

Thirty-four IBD pediatric patients (mean age at enrolment 12.6 years, 16 UC and 18 CD, 18 

males and 16 females) were enrolled at diagnosis at the Gastroenterology department of 

Pediatric Clinic of IRCCS Burlo Garofolo in Trieste. For each patient, during a colonoscopy, 

two biopsies (inflamed and non-inflamed) were collected. TRIzol® reagent was used for RNA 

isolation. Additionally, protein analysis was also performed on four biopsies (mean age at 

enrolment 13.8 years, 2 UC and 2 CD, 3 males and 1 females). For each patient, the inflamed 

and non-inflamed biopsies were immediately frozen on dry ice.  

Both endoscopic and histologic evaluations were performed for all patients enrolled in the study. 

During each colonoscopy inflamed and non-inflamed segments was taken. Samples were fixed 

in 10% neutral formalin and stained with haematoxylin and eosin. The preparation of the 

histologic specimen was standardized using a kit for the orientation of the gastrointestinal 

biopsies (Bio-Optica®). The non-inflamed biopsies show a visible vascular design, absence of 

hyperemia, lack of mastitis or ulcers, while inflamed biopsies show a discontinuous or a 

completely loss of vascular pattern, hyperemia and deep ulcerations. The histologic 

inflammatory score was described in the table below with a score range from 0 (absence of 

inflammatory activity) to 5 (maximal inflammatory activity) (Table 1): 

HISTOLOGIC FINDINGS CRITERIA SCORE 

Crypt abscess  
Present 
Absent 

 

 
1 
0 

Erosions and ulcerations  
Present 
Absent 

 

 
1 
0 

Active inflammation   
Severe 
Moderate 
Mild         
Normal 

l 

 
3 
2 
1 
0 

 

Table 1: Histologic inflammatory score for IBDs. Active inflammation was considered in term of neutrophils with or without eosinophils 

aggressive toward the glandular structures (i.e. in phase of penetration into the glandular structure) 148. 

 

PBMCs samples from four blood donors were collected from the Transfusion Center, Azienda 

Ospedaliera Universitaria, Trieste. Blood was obtained by venipuncture between 08.00 a.m. and 
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10.00 a.m. to minimize the variability due to circadian rhythm, and immediately processed. All 

donors signed an individual review-board-approved consent for blood sampling and use for 

research purposes. Blood samples were delivered to the University of Trieste with no 

individually identifiable information. PBMCs, isolated from blood samples, were treated with 

GM-CSF (50 ng/ml, Life Technologies) for 1 week to differentiate into macrophages.   

3.4  Ethical considerations 

Local ethical committee approval for the study (Protocol 2198) was provided: all patients 

participated in this study in accordance with the principles outlined in the Declaration of 

Helsinki, and the parents of all the participating children gave written informed consent before 

the study began. The inclusion criteria: pediatric patients with a diagnosis of CD or UC. The 

exclusions criteria: a) patients already treated with immunosuppressive drugs at the diagnosis; 

b) disease requiring immediate surgical intervention; c) severe ulcerative colitis or toxic 

megacolon; d) any of the following conditions: active infection, stool culture positive for enteric 

pathogens, tumors, HIV, transplanted organ or non-controlled disease of the kidney, liver, 

endocrine system, heart, blood, nervous system or brain. 

3.5   In vitro viability assays	
  

The effect of MP (Sigma-Aldrich) on the proliferation of HeLa and LoVo cells was determined 

by labelling metabolically active cells with [methyl-3H] thymidine (Perkin Elmer). This assay 

utilizes the radioactive nucleoside which is incorporated into new strands of chromosomal DNA 

during mitotic cell division. A scintillation beta-counter (1450 Microbeta Trilux, Perkin Elmer) 

is used to measure the radioactivity in DNA recovered from the cells in order to determine the 

extent of cell division. Cells were seeded into a 96-well plate in the presence of MP (range from 

0.019 ng/mL to 20 µg/mL) (Table 2).  

 

 

 

 

 

 

 

 

 



	
   - 34 - 

METHYLPREDNISOLONE 

 

Concentration 1 

 

20 µg/ml 

 

Concentration 2 

 

250 ng/ml 

 

Concentration 3 

 

10 ng/ml 

 

Concentration 4 

 

0,3125 ng/ml 

 

Concentration 5 

 

0,019 ng/ml 

 

Table 2: Methylprednisolone concentrations used. 

After 50 hours of incubation, cells were pulsed with [methyl-3H] thymidine (2.5 µCi/mL) and 

the incubation was continued for an additional 22 hours. After this time cells were transferred 

in a 96-well filter plate (MultiScreenHTS FB 1.0/0.6 µm) to capture the radioactive labeled 

DNA. Then the radioactivity of the samples was determined by the beta counter after adding the 

liquid scintillation cocktail (Optiphase, “Super Mix”, Perkin Elmer). Raw counts per minute 

(cpm) data were converted and normalized to per cent of maximal proliferation for each 

experimental condition (cpm MP/cpm control*100). 

Propidium iodide (PI, Sigma-Aldrich) was used to evaluate the integrity of the cell membrane 

and assess cell viability. After incubation, cells were washed with PBS and then 10 µL of 0.1 

mg/mL PI were added to each sample and incubated for 10 minutes at room temperature. The 

fluorescence intensity was read by a FluoroCount Micro-plate Fluorometer (Packard) at an 

excitation length of 530 nm and emission length of 590 nm. 

3.6  Total RNA isolation 

Total RNA was extracted using TRIzol® reagent (Thermo Scientific) from HeLa and Lovo cell 

lines and from PBMCs and colon biopsies of IBD pediatric patients. All the samples were 

incubated with TRIzol® for 5 minutes at room temperature to permit complete dissociation of 

the nucleoprotein complex. 200 µL of chloroform (Sigma-Aldrich) were added and after 3 

minutes of incubation at room temperature a centrifugation at 12,000 × g for 15 minutes at 4°C 

permits the separation in a lower red phenol-chloroform phase, an interphase and a colorless 

upper aqueous phase. RNA remains exclusively in the aqueous phase that is transferred into a 

new tube to proceed with the RNA isolation procedure. After precipitation with 500 µL of 100% 

isopropanol (Sigma-Aldrich) and a wash step with 1 mL of 75% ethanol (Sigma-Aldrich), RNA 

pellet was resuspended in RNase-free water (Gibco-Life Technologies) and incubated in a water 



	
   - 35 - 

bath at 55–60 °C for 15 minutes. Then, the RNA concentration and purity were calculated by 

Nano Drop instrument (NanoDrop 2000, EuroClone®).  

3.7  Quantitative real-time PCR 

mRNA expression levels of different genes studied were evaluated by real-time RT-PCR 

TaqMan® analysis using the CFX96 real-time system-C1000 Thermal Cycler (Bio-Rad 

Laboratories). The reverse transcription reaction was carried out with the High Capacity RNA-

to-cDNA Kit (Applied Biosystem) using up to 2 µg of total RNA per 20 µL of reaction 

containing 10 µL of 2x RT Buffer, 1 µL of 20x RT Enzyme Mix. Then real-time PCR was 

performed in triplicate using the TaqMan® Gene Expression Assay (Applied Biosystem). Real-

time PCR technique could be divided in three steps:  

1) At the start of real-time PCR, the temperature is raised to denature the double-stranded cDNA. 

During this step, the signal from the fluorescent dye on the 5' end of the TaqMan® probe is 

quenched by the non-fluorescent quencher (NFQ) on the 3' end. 

2) In the next step, the reaction temperature is lowered to allow the primers and probe to anneal 

to their specific target sequences. 

3) DNA polymerase synthesizes new strands using the unlabeled primers and the template. 

When the polymerase reaches a TaqMan® probe, its endogenous 5' nuclease activity cleaves 

the probe, separating the dye from the quencher. 

With each cycle of PCR, more dye molecules are released, resulting in an increase in 

fluorescence intensity proportional to the amount of amplicon synthesized. We used the 6-

carboxyfluorescein (FAM) as fluorescent dye on 5’ end. 

Probes used are summarized in Table 3: 

PROBE CODE COMPANY 
18S Hs99999901_s1 Thermo Fisher 
RPLP0 Hs99999902_m1 Thermo Fisher 
GAS5 Hs03464472_m1 Thermo Fisher 
GAS5-AS1 Hs04232243_s1 Thermo Fisher 
MMP-9 Hs00957562_m1 Thermo Fisher 
MMP-2 Hs01548727_m1 Thermo Fisher 
Zfp36 Hs00185658_m1 Thermo Fisher 

 
Table 3: TaqMan® probes used in real time PCR 

To normalize the expression levels of gene targets it is necessary to use an endogenous control 

gene, the housekeeping gene. For the immortalized and primary cell lines the ribosomal RNA 

18s was used, while for biopsies the RPLP0 that codified for a ribosomal protein of 60S subunit, 
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was employed. For each sample a mix was prepared with 2 µL of cDNA, 5 µL of 2X TaqMan® 

Universal Master Mix II, no UNG, 0,5 µL of 20X TaqMan® Gene Expression Assay and 2.5 

µL of H2O RNasi Free. 

The expression levels of the selected transcripts were determined using the Livak method for 

relative expression (RE) and relative expression of DCt 149. The results are provided as the mean 

and standard error (SE) of three replicates.  

3.8  RNA interference 

Depletion of endogenous GAS5 was performed by RNA interference (RNAi) using HiPerFect 

Transfection Reagent (Qiagen) and a small interfering RNA (siRNA), specific for GAS5 (target 

sequence 5’-AACAAGCAAGCATGCAGCTTA-3’, Qiagen). Shortly before transfection, 

7X105 cells were seeded in six-well plates in 1.4 mL of complete medium. A total of 3 µL of 

siRNA GAS5 at 40 µM was diluted in 100 µL of Opti-MEM (Life Technologies), and 5 µL of 

HiPerFect Transfection Reagent (Qiagen) were added to the diluted siRNA. After 10 minutes 

of incubation, the complexes were added drop-wise onto the cells. After 24 hours, the same 

procedure was performed, with the exception that the cells were detached from the six-well 

plates and reseeded shortly before transfection. Three siRNA transfections were performed for 

each experiment. The siRNA against the firefly luciferase gene was used as control (Dharmacon 

Non-Targeting siRNA #2). The analysis of specific silencing of GAS5 expression was carried 

out after 48 hours from the reseeding, using real time PCR transfection efficiencies (after 48 

hours) were 70–80%. 

3.9  Subcellular distribution of lncRNAs 

The experiment was conducted on HeLa and LoVo cell lines treated with MP at the final 

concentration of 250 ng/mL. Cells were seeded (density of 1.5 X105 cells for HeLa and 3.0X105 

cells for LoVo) and incubated for 72 hours at 37 °C and 5% of CO2. After this time, cytoplasmic 

and nuclear fractions were obtained by the following protocol. Cells were washed with cold 

PBS and resuspended in hypotonic buffer A: 20 mM Tris-HCl [pH 7.5], 10 mM NaCl, 3 mM 

MgCl2, 10% glycerol and the protease inhibitors cocktail (Roche). After 1 minute, NP-40 was 

added at 0.1% v/v final concentration for 5 minutes, and the cytoplasmic fraction was collected 

by centrifugation at 150,000 × g for 5 minutes at 4 °C. The pellet was washed with buffer A, 

and the nuclei were collected by centrifugation. The cytoplasmic fraction and nuclei were 

subjected to RNA extraction using TRIzol® according to the manufacturer’s protocol (Thermo 

scientific). To verify optimal fractionation, Western blot of cytoplasmic (tubulin) and nuclear 
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(PARP1) proteins was performed. The abundance and the correct migration of the GR into the 

nucleus after treatment with GC was also evaluated by Western blot. 

3.10  Protein isolation 

Depending by the starting sample, two different methods were used for the isolation of proteins:  

1) HeLa and LoVo cell lines: after being cultured as reported above, cells were collected and 

washed with cold PBS. To lyse the membrane 100 µL of a lysis buffer composed of Tris-

HCl 10 mM pH 7.4, EDTA 100 mM, NaCl 100 mM, SDS 0.1%, protease inhibitor cocktail 

1% was used, followed by sonication for 30 seconds and centrifugation at 10,000 x g for 10 

minutes. The supernatant contains the whole protein lysate.   

2) Patients’ colon frozen biopsies and macrophages differentiated from blood from IBD patients 

and healthy donors: a co-immunoprecipitation kit (Abcam) protocol was used. Macrophages 

were washed with cold PBS and later non-denaturating lysis buffer, complete of protease 

inhibitor cocktail and inhibitor tablets for phosphatase (PhosSTOP™, Sigma-Aldrich), was 

added in a volume dependent from the size of the plate used for seeding cells (100-200 

µL/well for 24-well plate, 250- 400 µL/well for 6-well plate, 250-500 µL for 100 x 60 mm 

dish or 500-1000 µL for 100 x 100 mm dish). Cells were scraped and transferred into a chilled 

microcentrifuge tube. The cell extract was mixed in the rotary mixer for 30 minutes at 4 °C 

and then centrifuged at 10,000 x g for 10 minutes at 4 °C. The supernatant consists of the 

protein lysate. Frozen biopsies were immediately grinded into a fine powder using a mortar 

and pestle in dry ice. The grounded tissue was transferred in a pre-weighed chilled tube and 

weighed again. 300 µL of non-denaturating lysis buffer with protease inhibitor cocktail and 

PhosSTOP™ were added per 5 mg of tissue powder and mixed on a rocker at 4 °C for an 

hour. The lysate was further cleaned by a 25-gauge needle and centrifuged at 10,000 x g for 

5 minutes at 4 °C to remove cell debris. The supernatant was transferred in a fresh tube.  

3.11  Co-immunoprecipitation 

Co-immunoprecipitation assay was performed on protein lysate from inflamed and non-

inflamed frozen biopsies, on proteins obtained from human macrophages differentiated from 

PBMCs of IBD pediatric patients and healthy donors and on RAW264.7 mice macrophages cell 

line. Human and mice macrophages were treated with bacterial lipopolysaccharide (LPS) 10 

ng/mL for four and two hours, respectively. Immunoprecipitation (IP) is a technique used to 

enrich a specific protein from a heterogeneous cell or tissue extract using a target specific 

antibody. Co-immunoprecipitation (Co-IP) is the pull down of intact protein complexes. IP and 

co-IP are valuable and widely used techniques to identify protein-protein interactions and novel 
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members of protein complexes. TTP antibody (1:1000) was mixed with the protein lysates, 

volume was make up to 500 µL with the non-denaturating lysis buffer with protease inhibitor 

cocktail and PhosSTOP™ and the solution was maintained in the rocker for 4 hours at 4 °C. In 

the meantime, protein A/G Sepharose® beads (40 µL/reaction) were washed twice with 1 mL 

of wash buffer (supplied by the kit), centrifuging at 2,000 x g for 2 minutes and aspirating the 

supernatant in between washes. After antibody binding to protein lysate, 40 µL of Protein A/G 

Sepharose® beads were added and incubated for an hour at 4 °C. Three steps of washes with 

wash buffer interspersed by low speed centrifugation at 4 °C precede the elution of the complex 

with the 2X SDS-PAGE loading buffer. At this step samples are ready for Western blot detection 

of the TTP immunopreciptate protein and the TTP-14-3-3 co-immunoprecipitate protein 

complex. 

3.12  Western blot 

The protein concentration of each sample was determined using the Pierce BCA Protein Assay 

(ThermoFisher) to allow an equal loading of total proteins. Samples were then run in a PAGErTM 

Mini-gel Chamber (Lonza) using 10% acrylamide gels with a Tris-Glycine buffer and 

subsequently semi-dry blotted for 2 hours with 50 mA current on PVDF membrane. After 

blocking for 1 hour with 5% not-fat milk in Tween/Tris buffered salt solution (T-TBS), 

membranes were incubated overnight at 4 °C with primary antibodies (Table 4). Membranes 

were then washed in T-TBS and incubated for 1 hour at 37 °C with secondary antibodies (Table 

4). Chemiluminescence was developed using LiteAblot® TURBO (EuroClone®) and exposed 

on Kodak Biomax film. Protein expression was quantified on Western blot images using the 

ImageJ software and are reported in percentage with respect to loading control proteins.  
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ANTIBODY HOST FINAL DILUTION COMPANY 

PARP1 loading control Rabbit  1:10000 Abcam  

Tubulin loading control Mouse  1:1000 Abcam  

Actin loading control Rabbit  1:20000 Millipore 

Glucocorticoid receptor Rabbit  1:300 Thermo Fisher 

Tristetraprolin Rabbit  1:1000 Millipore 

14-3-3 Rabbit  1:1000 Abcam 

Metalloproteinase 9 Rabbit  1:1000 Sigma-Aldrich 

Anti-rabbit secondary 

antibody 

Goat 1:50000 Millipore 

Anti-mouse secondary 

antibody 

Horse 1:40000 Cell Signaling 

 

Table 4: Primary and secondary antibodies used for Western blot. 

3.13  ELISA 

Supernatants were collected from human macrophages (IBD patients and healthy donors) and 

from RAW264.7 murine macrophages cells after treatment with LPS (10 ng/mL) for four and 

two hours, respectively. Each sample (20 µl) was analyzed by magnetic beads suspension array 

using for human macrophages sample the Bio-Plex Pro Human Cytokine 17-plex panels (Bio-

Rad Laboratories). The panel measures IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-

12(p70), IL-13, IL-17, granulocyte colony-stimulating factor (G-CSF), GM-CSF, IFN-γ, 

monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 1 β (MIP-1β), 

TNF-α. Analysis for mice macrophages supernatant was performed using the Bio-Plex Pro 

Mouse Cytokine 23-plex panels. The panel measures IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, 

IL-9, IL-10, IL-12(p40), IL-12(p70), IL-13, IL-17, eotaxin, G-CSF, GM-CSF, IFN-γ, 

keratinocyte chemoattractant (KC), MCP-1, MIP-1α, MIP-1β, regulated on activation normal T 

cell expressed and secreted (RANTES) and TNF-α. Samples were run on a Bio-Plex 200 System 

(Bio-Rad Laboratories, Hercules, CA, USA), and the results were calculated using Bio-Plex 

Manager 6.0 software (Bio-Rad Laboratories).  

3.14   Statistical analyses 

Statistical analyses were performed using GraphPad Prism version 4.00. Two-way ANOVA 

with Bonferroni post-test and t-test were used for the analysis of inhibition of proliferation, gene 

expression and protein expression. The nonparametric Kruskal–Wallis test with Dunn’s multiple 

comparison test was used for the analysis of gene expression in SS, SD and SR patients. 

Wilcoxon signed rank test (paired test) was used for gene expression analysis in colon biopsies 
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of IBD patients. One-way ANOVA with Dunn’s multiple comparison test was used in THP-1 

experiments; p-values <0.05 were considered statistically significant. 
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4.RESULTS AND DISCUSSION PART I 
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4.1  Sensitivity to GCs in immortalized cell lines 

4.1.1 Evaluation of response to GCs 

In our previous work, for the first time a likely mechanism of GCs resistance, that involves GR 

and GAS5, was described. By the [methyl-3H] thymidine assay PBMCs, isolated from healthy 

donors, were divided in good and poor responders, evaluating the inhibition of proliferation 

achievable at 250 ng/ml of MP (I250ng/ml). This concentration was chosen as it inhibits cell 

proliferation without compromising cellular characteristics for subsequent analysis. A different 

GAS5 gene expression was observed after MP treatment: downregulation in good responders 

and upregulation in poor responders. Our hypothesis is that GAS5 could hamper the binding of 

the activated receptor trough the GRE-like sequences, preventing transcriptional activity 142,147. 

To better understand the molecular basis of the key role played by GAS5 in modulating GC 

response, two different human immortalized epithelial cell lines, which endogenously express 

the GR and the lncRNA GAS5, were chosen to evaluate the correlation between GAS5 

expression and GR activity 142. HeLa and LoVo cell lines were treated for 72 hours with different 

concentrations of MP (Table 2) and the inhibition of cell proliferation was evaluated by the 

[methyl-3H] thymidine viability assay. In detail, a prominent inhibition of proliferation in HeLa 

cell line was recorded (I 250ng/mL=73%), on the contrary in the LoVo cell line only a moderate 

inhibition was observed (I 250ng/mL=16%) (Figure 14). 

                               

Figure 14: Effect of MP on HeLa and LoVo cells. Cells were exposed for 72 hours to MP at different concentrations, and cell proliferation 

was evaluated by the [methyl-3H] thymidine incorporation assay. Two-way ANOVA (p < 0.0001) and Bonferroni post-test **p-value<0.001. 

The data are reported as means ± SE of three independent experiments performed in triplicate. 
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These data demonstrated that LoVo cells can be considered a GC-resistant cell line, while HeLa 

cells a GC-sensitive cell line. 

4.1.2 Evaluation of GCs treatment in cell membranes 

To analyse the mechanism underlying the reduction of cell proliferation, observed during the 

treatment (Figure 14), we performed an experiment to evaluate if MP induces cellular membrane 

damage using the PI dye. Viable cells with intact membranes exclude PI, whereas the 

membranes of dead and damaged cells are permeable to PI (necrotic and late apoptotic cells). 

HeLa and LoVo cell lines treated and untreated with MP were used. After incubation for 72 

hours, 0.1 mg/mL of PI were added to the cells suspension and fluorescence was recorded. No 

differences in PI signal was observed between the treated and untreated samples, indicating that 

even high concentrations of MP did not affect cellular membrane integrity (data not shown). 

Moreover, this result excluded that the increase of GAS5, observed in LoVo cells, was related 

to the apoptotic state as observed in previous papers 132,133. 

4.2  Gene expression analysis  

4.2.1 GAS5 gene expression analysis in HeLa and LoVo cell lines 

The role of GAS5 in the different sensitivity to GCs in HeLa and LoVo cells was assessed. Real 

time PCR technology was used to quantify gene expression of the lncRNA GAS5 both in 

untreated cells and cells treated with 10 and 250 ng/mL of MP. These concentrations were 

chosen on the basis of the results obtained from the sensitivity assay (Figure 14). In untreated 

HeLa and LoVo cells, basal expression levels of GAS5 did not shown significant differences. 

After treatment for 72 hours with MP significant differences were observed both in HeLa and 

LoVo cell lines. In HeLa GC-sensitive cells, a downregulation of GAS5 in comparison to 

untreated samples was evident (2-DCt 
Untreated = 0.000190; 2-DCt 

10 ng/mL= 0.000090; 2-DCt 
250 ng/mL= 

0.00008719). On the contrary, expression analysis on LoVo GC-resistant cell line showed an 

upregulation of GAS5 in comparison to untreated samples (2-DCt 
Untreated = 0.000140; 2-DCt 

10 

ng/mL= 0.000280; 2-DCt 
250 ng/mL= 0.000220). The differences observed in the cell lines were 

statistically significant at both MP concentrations (Figure 15). 
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Figure 15: Expression profile of GAS5 during GC treatment. GAS5 releative expression (RE, values are expressed as 2 -DCt) in HeLa and 

LoVo cells before (CTRL) and after treatment with MP for 72 hours at 10 and 250 ng/mL. Two-way ANOVA (p < 0.0001) and Bonferroni 

post-test ***p-value<0.001; **p-value<0.01. The data are reported as means ± SE of three independent experiments performed in triplicate. 

 

These data revealed that in untreated HeLa and LoVo cell lines no difference in GAS5 

expression is evident, as already demonstrated in healthy donors’ PBMCs 142,147, suggesting that 

the levels of GAS5 cannot predict the response to GCs. However, after MP treatment, changes 

in GAS5 expression were observed. The lncRNA was downregulated in HeLa cells, whereas it 

was increased in LoVo cells. This pattern of GAS5 expression has been already described in 

PBMCs from good and poor responders after MP treatment 142,147. These results suggest that, 

even in the immortalized GC-resistant cell lines, higher levels of GAS5 can inhibit GCs activity, 

competing with the GRE elements for the binding with the activated GR. 

4.2.2 GAS5-AS1 gene expression analysis on HeLa and LoVo cell lines 

In a recent work a partial overlap of 40 base pair in the 3' terminal of GAS5 with another non-

protein coding gene, the GAS5-AS1 was described. This ncRNA is encoded on the opposite 

strand and arranged tail-to-tail with GAS5. Little it is known about the functions of GAS5-AS1, 

above all the impact of its transcription on GAS5 expression is unknown 126. GAS5-AS1 

expression was therefore evaluated in HeLa and LoVo cell lines. The two cell lines were treated 

with 10 ng/mL and 250 ng/mL of MP for 72 hours and real time PCR analysis was performed. 

In LoVo cells an increase of the antisense ncRNA was observed after treatment with both 

concentrations of MP (RE GAS5-AS1 250 ng/mL=2.32; RE GAS5-AS1 10 ng/mL=1.22); on the contrary, 

GAS-AS1 expression in the HeLa cell line (RE GAS5-AS1 250 ng/mL=0.37; RE GAS5-AS1 10 ng/mL=0.27) 

was significantly reduced after MP treatment (Figure 16).  

HeLa LoVo
0.0000

0.0001

0.0002

0.0003

0.0004

CTRL 10 ng/ml 250 ng/ml

**
***

***
**

G
A

S5
 R

E



	
   - 45 - 

                                          

Figure 16: Expression profile of GAS5-AS1 in HeLa and LoVo cells treated with MP (250 ng/ml and 10 ng/ml) for 72 hours. GAS5-AS1 

relative expression (RE, values are expressed as 2 -DDCt) respect to the housekeeping 18s was calculated according to the Livak method . Values 

> 1 stand for upregulation, values < 1 stand for downregulation. Two-way ANOVA p = 0.0241 and Bonferroni post-test ***p < 0.001, *p < 

0.05. The data are reported as means ± SE of three independent experiments performed in triplicate. 

 

Recent evidences show that antisense transcripts could have a role in almost all stages of gene 

expression, from transcription and translation to RNA degradation. Furthermore, antisense 

lncRNAs can regulate the expression of different molecules with various mechanism 150. The 

increased levels of GAS5-AS1 gene expression in the LoVo cell line, resistant to GCs, could 

have a role in post-transcriptional regulation of GAS5. We speculate that the GAS5-AS1 is able 

to bind GAS5 and that this interaction protects the lncRNA from the degradation physiologically 

caused by the NMD pathway, 128 determining its accumulation in the cell (Figure 17).  

                             

Figure 17: Schematic representation of the proposed GAS5-GAS5-AS1 mechanism of action. 1) in GC-resistant cell line, after treatment with 

MP, an upregulation of GAS5-AS1 was shown. GAS5-AS1 binds to 40 base pairs of GAS5 transcript. 2-3) the binding with GAS5 protects it 

from the ribosomal (RIBO) degradation guided by the NMD mechanism. 4) the accumulation of GAS5 promotes the binding with the activated 

GR in the cytoplasm. 5) Inhibition of the binding and transcription of GC responsive gene. 
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4.3   Intracellular localization of GAS5 in response to MP 

Subcellular fractionation is useful for studying the molecular role of lncRNAs 151. Since few 

information are available on the mechanism of action and regulation of GAS5, we have analysed 

the expression of this lncRNA, considering its cellular localization before and after treatment 

with GCs in the two cellular models. HeLa and LoVo cells were treated for 72 hours with 250 

ng/mL of MP and then subcellular fractionation was performed. Real time PCR results have 

shown no differences in endogenous GAS5 levels between the cytoplasm and the nucleus in 

untreated HeLa and LoVo cell lines. After treatment with MP in the HeLa cell line, GAS5 

expression was unchanged in the two compartments of the cell (RE cytoplasm = 0.87; RE nucleus = 

0.84). On the contrary, in the LoVo cell line, after MP treatment for 72 hours, a significant 

accumulation of endogenous GAS5 was observed in the cytoplasm compared to the nucleus (RE 

cytoplasm = 1.80; RE nucleus = 1.03) (Figure 18).  

                                     

Figure 18: Intracellular localization of GAS5 in response to MP.  Endogenous GAS5 relative expression (RE, values are expressed as 2 -DDCt) 

in HeLa and LoVo cytoplasmatic and nuclear compartment. GAS5 expression was calculated with respect to the housekeeping 18s gene. Cells 

were treated for 72 hours with MP (250 ng/ml). Two-way ANOVA (p=0.0300) and Bonferroni post-test * p-value<0.05. Data are reported as 

means ± SE of three independent experiments performed in triplicate. 

 

Western blot analysis was performed with protein samples of the cytoplasmic and nuclear 

compartments of both HeLa and LoVo cells. Tubulin and PARP1 control antibodies were used 

to confirm that subcellular fractionation was successful, since tubulin protein is detectable only 

in the cytoplasm while PARP1 only in the nucleus. GR protein expression was evaluated before 

and after treatment with MP at 250 ng/mL. As expected, in both cell lines GR expression was 

significantly increased in the nuclear compartment after MP treatment (Figure 19).  
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Figure 19: On the top, protein expression of GR evaluated by Western blot analysis on subcellular fractions of HeLa and LoVo cells treated 

with MP (250 ng/ml) for 72 hours. On the bottom, the percentage of GR expression evaluated in cytoplasm and nuclear compartments of HeLa 

and LoVo cells treated for 72 hours with MP in comparison with PARP1 and tubulin, respectively, GR expression was calculated as the ratio 

of treated versus untreated cells in both compartments; two-way ANOVA and Bonferroni post-test **p-value<0.01; *p- value<0.05. The data 

are reported as means ± SE of three independent experiments performed in triplicate. 

 

In a previous work, Kino and collaborators have already analysed GAS5 expression in HeLa 

cells and described an increase of GAS5 levels in the nucleus after DEX treatment 129. These 

results are in contrast with our findings, but this difference could be explained by the different 

experimental setting. In our study, MP was used, while in Kino’s paper cells were treated with 

DEX, a steroid with a higher potency and duration of action in comparison with MP 152. In 

addition, Kino and colleagues have examined the effect of the overexpression of GAS5, while 

we have considered endogenous levels.   

A different pattern was shown in LoVo cell line: after MP treatment GAS5 was increased in the 

cytoplasm. We suggest that the accumulation of GAS5 in the cytoplasm could inhibit the 

activated GR before entering in the nucleus.  

The upregulation of GAS5 in the cytoplasm does not depend from a transcriptional mechanism 
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but probably from other factors. Indeed, our results suggest that GAS5-AS1 could have a critical 

role in regulating GAS5 expression. Since we have already demonstrated an upregulation of 

GAS5-AS1 after MP treatment, the binding of the antisense with GAS5 could promote its 

accumulation in the cytoplasm of GC-resistant cells, as already described for other lncRNA in 

the same compartment 153,154. 

4.4  GAS5 silencing in HeLa and LoVo cell lines 

Studies on the modulation of GAS5 expression are useful to confirm its role in GCs mechanism 

of action. RNAi technology for gene knock down has become an important tool for gene 

function studies. Indeed, a small interfering RNA (siRNA) for GAS5 was used to silence the 

lncRNA and GCs responsiveness was observed in HeLa and LoVo cell lines. HeLa and LoVo 

cell lines were transfected with the control siRNA for luciferase (siLUCI) or with the siRNA 

for GAS5 and incubated for 72 hours with MP at three concentrations (10 ng/mL, 250 ng/mL 

and 20 µg/mL). Real time PCR was conducted on cell lines after 48 hours from siRNAs 

transfection; transfection efficiency was higher than 70-80%. Then, GCs activity was assessed 

by the [methyl-3H] thymidine viability assay to evaluate the inhibition of proliferation. After 72 

hours in both cell lines, differences in proliferation were recorded. In particular, in GC-resistant 

cell line transfected with siGAS5 an inhibition of proliferation of 30% at 250 ng/mL and of 40% 

at 20 µg/mL was observed; these results were statistically significant when compared with the 

control siLUCI (I 250ng/mL= 4% and I 20µg/mL=29%). In HeLa cell lines, results have shown a 

similar trend with significant results at 10 ng/mL and 20 µg/mL (siGAS5, I 10ng/mL= 53 % and I 

20µg/mL=82%; siLUCI, I 210ng/mL= 32% and I 20µg/mL=76%); at 250 ng/mL, HeLa cells maintained 

the same trend but the differences were not perceived probably because siLUCI and siGAS5 

transfected cells exhibit a very high sensitivity (Figure 20).  

These results confirm a key role of GAS5 in GCs resistance. More interestingly, in GC-resistant 

cell line, transfection with GAS5 siRNA was associated with an increased response to MP after 

incubation with the drug at different concentrations, confirming that GAS5 interferes with GC 

effect.  
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Figure 20: GAS5 silencing sensitizes LoVo and HeLa cells to MP treatment. Effect of MP on cell proliferation of LoVo and HeLa cells 

transfected with control (siLuci) or GAS5-selective (siGAS5) siRNA. Two-way ANOVA (LoVo p = 0.0026; HeLa p = 0.0033) and Bonferroni 

post-test ***p < 0.001, **p < 0.01, *p < 0.05. The data are reported as means ± SE of three independent experiments performed in quadruplicate. 

 

4.5  GAS5 expression in pediatric patients with IBD 

4.5.1 GAS5 gene expression analysis on PBMCs of pediatric patients with IBD 

A prospective study was conduct on a cohort of nineteen children with IBD. For each patient, 

clinical characteristics were provided at diagnosis (T0) and after 4 weeks (T4) of treatment with 

prednisone 1-2 mg/kg/day (Table 5). Patients enrolled were classified based on their clinical 

response in three groups: four were SR, eight SD and seven SS. 

 

Table 5: Clinical characteristics of the patients; T0 = diagnosis; T4 = after 4 weeks of treatment; SS = steroid-sensitive, SD = steroid-dependent, 

SR = steroid-resistant, (*) = data for only one patient. 

Age, median (IQR) 

Male (%) 

Female (%) 

13.36 (11.9–16.12) 

9 (47.4) 

10 (52.6) 

T0 T4 

SS SD SR SS SD SR 

PCDAI, score, median (IQR) - 32.5 (30 - 35) 45 (*) - 5 (5-5) 32.5 (*) 

PUCAI, score, median (IQR) 25 (10-45) 40 (35–42.5) 30 (10 - 30) 0 (0-5) 0 (0-12.5) 15 (10-70) 

Laboratory indexes 

C-reactive protein, median (IQR), mg/dL 0.12 (0.04–

0.22) 

0.35 (0.04–

1.49) 

1.17 (0.5–

2.08) 

0.04 (0.03–

0.07) 

0.07 (0.06–

0.1) 

0.42 (0.24–

0.57) 

Erythrocyte sedimentation rate, median 

(IQR), mm/hr 

22 (6-47) 50 (33–80) 55.5 

(20.25–

63.75) 

8 (5-19) 15 (8-35) 25 (10.5–42.5) 

Faecal calprotectin, median (IQR), µg/g 1643 (1333-

2380) 

1800 (160.8-

2338) 

1986 (*) 63 (40-362) 164 (105–

760.5) 

2086 (1023-

3148) 

Haemoglobin, median (IQR), g/dL 12.4 (11.2–

13.9) 

10.7 (8.7–10.8) 10.8 (9.17–

14.6) 

13.8 (12.6-

15) 

12.2 (10.8–

13.3) 

12.15 (11.4–

15.6) 
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GAS5 gene expression was evaluated by real time PCR analysis in PBMCs obtained at diagnosis 

(T0) and after 4 weeks (T4) of treatment. Results at T0 did not show relevant differences among 

the three groups. On the contrary, data obtained after 4 weeks of prednisone treatment have 

shown statistically significant differences among groups. Indeed, considering the relative 

expression of GAS5 at T4 compared to T0, an increase in GAS5 levels was observed in SR 

patients respect to SS and SD groups. Moreover, comparing GAS5 expression between SS and 

SD patients, an increase of the transcript levels was observed in the dependent group, even if 

this result is not significant. Interesting results were observed when the two groups with an 

unfavourable steroid response (SD+SR) were compared to SS patients. GAS5 expression was 

higher in SD+SR patients respect to the SS children (Log2 GAS5 RE SS = -0.878; Log2 GAS5 

RE SD = 0.679; Log2 GAS5 RE SR = 1.611) (Figure 21). 

                                      

Figure 21: GAS5 levels in pediatric patients with IBD during GC treatment. Relative expression (RE, values are expressed as 2 -DDCt) of 

GAS5 in SS, SR and SD patients after treatment with prednisone 1–2 mg/kg/day for 4 weeks (T4) with respect to the diagnosis (T0). Overall 

GAS5 expression was different among GC responder groups (Kruskal–Wallis test p = 0.033). SR patients displayed higher levels of GAS5 than 

SS patients (Dunn’s multiple comparison test p < 0.05). Moreover, analysis grouping patients with unfavourable response (SD + SR) showed 

higher GAS5 expression than in SS patients, Mann–Whitney test p = 0.016. *p < 0.05.  

 

These results describe, for the first time, a different trend in GAS5 expression in pediatric IBD 

patients treated with GCs. The experiments, already published, conducted in our laboratory on 

PBMCs from healthy donors 142,147 and data on immortalized cell lines 143 are in agreement with 

results of GAS5 gene expression on PBMCs obtained from children affected by IBDs. Indeed, 

no alterations were observed before treatment on basal GAS5 levels, but only after treatment 

with GCs a difference was evident. In fact, on the basis of GAS5 expression it is possible to 
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discriminate between good and poor responders to GCs. The results observed in pediatric 

patients have shown a higher expression of GAS5 in the group of patients with unfavourable 

response to GCs (SD+SR) compared to SS group, supporting the role of GAS5 in steroid 

ineffectiveness. In the two groups of pediatric patients, steroid-dependent and -resistant, the 

increase expression of GAS5 could interfere, through the binding with the DBD of the activated 

GR, with the transcription of GCs responsive genes, repressing its activity.  

These results are promising, however GCs mechanism of action is extremely complex and other 

factors could be involved in GCs resistance 84,85. 

4.6  Role of GAS5 in pediatric IBD mucosal biopsies and its activity in the tissue 

damage 

In IBD pediatric patients, genetic and environmental factors are responsible of the alteration in 

epithelial barrier that involves also the activity of pro-inflammatory elements released from 

macrophages, T cells and innate lymphoid cells 19. To date, GAS5 gene expression analysis in 

the mucosa of pediatric patients affected by IBDs has never been performed. For this reason, 

real time PCR methodology was applied to study GAS5 expression in inflamed and non-

inflamed mucosa of IBD patients. Thirty-four patients at diagnosis were enrolled in a 

prospective study; for each patient, during a colonoscopy, an inflamed and a non-inflamed 

biopsy was collected in TRIzol® reagent. GAS5 gene relative expression were evaluated, 

showing a statistically significant difference comparing non-inflamed to inflamed mucosa from 

the same patient. Lower GAS5 gene expression levels were observed in inflamed mucosa 

respect to non-inflamed one (Log2 GAS5 RE DCt Inflamed = -4.436; Log2 GAS5 RE DCt Non-

inflamed = -4.001) (Figure 22).  
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Figure 22: GAS5 levels in colon biopsies of IBD pediatric patients. Expression was evaluated in inflamed (INF) and non-inflamed (NON-

INF) tissues from the same patient. GAS5 expression was calculated with respect to the housekeeping RPLP0 gene. Expression reported in 

Log2 of GAS5 releative expression (RE, values are expressed as 2 -DCt). Wilcoxon signed rank test, *p < 0.05. 

Emerging data have shown that GAS5 is also involved in the regulation of important pro-

inflammatory mediators such as MMP-2 and MMP-9 139. Chen et al. have shown that the 

expression of MMP-2 and MMP-9 is inversely correlated with the levels of the lncRNA GAS5 

in melanoma cells. Overexpression of GAS5 reduced the levels of the gelatinases whereas the 

knockdown of GAS5 increased their expression. Until now, no data are published about the 

potential role of GAS5 in the regulation of MMP-2 and MMP-9 in inflamed colonic tissue of 

IBD patients 139. Different studies have demonstrated that, in IBD patients, the expression of 

MMP-9 and MMP-2 is increased in inflamed tissues in comparison with non-inflamed ones 16,17. 

In this scenario, it could be of interest to understand the involvement of MMP-2 and -9 and the 

role of GAS5 in their regulation.  

4.6.1 Role of MMP-2, MMP-9 and GAS5 in the regulation of tissue damage in colon biopsies 

of pediatric IBD 

Gene expression studies and preliminary protein expression analysis were performed to study 

the relation between gelatinases and GAS5 in colon biopsies of pediatric patients with IBD at 

diagnosis. Real time PCR results demonstrated an increased expression of both gelatinases in 

inflamed tissues (Log2 MMP-9 RE DCt Inflamed = -2.944; Log2 MMP-9 RE DCt Non-inflamed = -

5.197; Log2 MMP-2 RE DCt Inflamed = -3.039; Log2 MMP-2 RE DCt Non-inflamed = -5.352) (Figure 

23). 
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Figure 23: MMP-9 (on the top) and MMP-2 (on the bottom) levels in colon biopsies of IBD pediatric patients. Expression evaluated in inflamed 

(INF) and non-inflamed (NON-INF) tissues from the same patient. Expression was calculated with respect to the housekeeping RPLP0 gene. 

Expression reported as in Log2 of MMP-9 and MMP-2 relative expression (RE, values are expressed as 2 -DCt). Wilcoxon signed rank test, 

***p < 0.001. 

WB analysis of the MMP-9 protein was also performed. Preliminary results on protein extracted 

from inflamed and non-inflamed tissues of pediatric patients with IBD, have revealed an 
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increase in MMP-9 protein expression in inflamed tissues compared to non-inflamed ones 

(Figure 24). 

                                       
 
Figure 24: Representative image of three Western blot experiments on inflamed (INF) and non-inflamed (NON-INF) pediatric biopsies of 

patients affected by IBD. Actin (ACT) antibody used as loading control. 

In the literature, MMP-2 was associated to infiltration processes of leukocytes in inflamed 

tissue, while MMP-9 was associated to an enhanced inflammation because of the activation of 

growth factors and pro-inflammatory cytokines 155. More evidences are available about the role 

of MMP-9 in IBD, since an increase of gene and protein expression in IBD patients’ inflamed 

tissues, serum, urine and fecal samples has been reported 16,18,156–158. MMP-9 has been also 

proposed as a promising therapeutic target and a monoclonal antibody against this 

metalloproteinase is under study 159.  

Comparing these results with GAS5 expression results on colon biopsies, an inverse correlation 

was observed since GAS5 is downregulated and MMP-2 and MMP-9 are upregulated in 

inflamed tissues.  

4.7  GAS5, MMP-2 and MMP-9 gene expression in THP1 cell line 

Infiltration of inflammatory cells in the epithelial barrier of colon mucosa is one of the first step 

in the onset of IBDs. Monocyte, macrophages and T-cell enhance the production of cytokines 

that can promote chronic inflammation in the gastrointestinal tract 19. The THP-1 monocyte cell 

line was chosen to study the molecular mechanism by which GAS5 can regulate MMP-2 and 

MMP-9 expression. Experiments were conducted at different stages of differentiation, from 

monocyte to macrophages. RNA gene expression analysis was performed on control 

unstimulated cells, on cells stimulated with PMA (macrophages) or LPS, and on cells treated 

with PMA and then with LPS. Real time PCR results on GAS5 expression have shown a 

downregulation of endogenous levels in treated cells (GAS5 RE DCt ctrl= 3.13e-004; RE DCt 

ACT

MMP9



	
   - 55 - 

LPS= 1.03e-004; RE DCt PMA= 0.67e-004; RE DCt PMA+LPS= 0.48e-004) in comparison to 

controls. The decrease of GAS5 is more evident in PMA differentiated macrophages respect to 

the control (p=0.047) (Figure 25).  

                                         

 

 

 

 

 

 

Figure 25: GAS5 gene expression levels in THP-1 cells treated with PMA and LPS. Relative expression (RE, values are expressed as 2 -DCt) 

in THP-1 untreated cells (CTRL), stimulated with LPS (1 µg/mL), with PMA (5 ng/mL) and with both stimuli (PMA+LPS). Expression was 

calculated with respect to the housekeeping 18S gene. One-way ANOVA (p = 0.0471) and Dunn’s Multiple Comparison Test, *p < 0.05. The 

data are reported as means ± SE of three independent experiments performed in triplicate. 

Only a slight increase in monocytes after LPS stimulation was observed in MMP-2 expression 

levels (MMP-2 RE DCt ctrl= 0.40e-005; RE DCt LPS= 0.50e-005) while in PMA differentiated 

macrophages an increase of MMP-2 was recorded (MMP-2 RE DCt PMA= 1.86e-005). The 

upregulation of the gelatinase was not maintained after the treatment of macrophages with the 

pro-inflammatory stimulus (MMP-2 RE DCt PMA+LPS= 1.1e-005) (Figure 26). 

 

 

 

 

                                 

 

 

Figure 26: MMP-2 gene expression levels in THP-1 cells treated with PMA and LPS. Relative expression (RE, values are expressed as 2 -DCt)  

in THP-1 untreated cells (CTRL), stimulated with LPS (1 µg/mL), with PMA (5 ng/mL) and with both stimuli (PMA+LPS). Expression was 

calculated with respect to the housekeeping 18S gene. One-way ANOVA (p = 0.0135) and Dunn’s Multiple Comparison Test, ** p < 0,01. The 

data are reported as means ± SE of three independent experiments performed in triplicate. 
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MMP-9 expression levels in THP-1 monocyte stimulated with LPS have shown the same trend 

observed for MMP-2 (MMP-9 RE DCt ctrl= 0.12e-006; RE DCt LPS= 1.07e-006). However, 

differently from MMP-2, an upregulation of MMP-9 levels was evident in PMA-differentiated 

macrophages, that increased further after the stimulation with LPS (MMP-9 RE DCt PMA= 1.87e-

004; RE DCt PMA+LPS= 1.95e-004) (Figure 27). 

These are interesting results since THP-1 cell line differentiated in macrophages with 48 hours 

of PMA treatment could represent a good cellular model to better understand the mechanism by 

which GAS5 could have a role in mediating gut barrier function in IBD patients by regulating 

the effect of MMPs. These findings could improve the knowledge on IBD pathogenesis. 

 

                                  

 

 

 

 

 

Figure 27: MMP-9 gene expression levels in THP-1 cells treated with PMA and LPS. Relative expression (RE, values are expressed as 2 -DCt) 

in THP-1 untreated cells (CTRL), stimulated with LPS (1 µg/mL), with PMA (5 ng/mL) and with both stimuli (PMA+LPS). Expression was 

calculated with respect to the housekeeping 18S. One-way ANOVA (p = 0.0140) and Dunn’s Multiple Comparison Test, * p < 0,05. The data 

are reported as means ± SE of three independent experiments performed in triplicate. 
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5.RESULTS AND DISCUSSION PART II 
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5.1  TTP expression in colon tissues of IBD patients 

5.1.1 TTP gene expression analysis in the colonic mucosa of children with IBD  

TTP protein is encoded by the ZFP36 gene in human cells with a particular transcriptional 

regulation. Indeed, the TTP mRNA expression in vitro is transient since the transcript becomes 

detectable only under some condition (i.e. insulin or LPS stimulation) in certain cell types 

(fibroblast and macrophages) and only for a limited time, depending from the stimulation; 

subsequently TTP mRNA levels return to baseline 42,45. Little it is known on the regulation of 

TTP mRNA transcripts in inflammatory diseases. For this reason, real time PCR analysis was 

performed on colon tissues of IBD patients, since TTP is detectable in the large intestine 160. 

Gene expression analysis was performed on thirty-four pediatric patients enrolled at diagnosis, 

for each patient an inflamed and a non-inflamed biopsy was collected.  TTP mRNA expression 

results, comparing inflamed and non-inflamed biopsies, have shown no statistically significant 

differences (TTP DCt INF= 4.682, TTP DCt NON-INF= 4.384) (Figure 28). 

                                 
Figure 28: TTP levels in colon biopsies of IBD pediatric patients. Expression evaluated in inflamed (INF) and non-inflamed (NON-INF) 

tissues from the same patient. TTP expression was calculated with respect to the housekeeping RPLP0. Expression reported as DCt. Wilcoxon 

signed rank test, p=0.1566.  

 

Similar data were obtained by Suzuki and collaborators studies, who could not find differences 

in TTP mRNA expression in the synovium of patients with RA and control patients with 

osteoarthritis 161. Therefore TTP was analysed at the protein level, since the protein undergoes 

extensive post-translational modifications, particularly phosphorylations, that influence its 

stability and activity 160.  
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5.1.2 TTP and 14-3-3 protein expression on pediatric IBD colon mucosa  

TTP protein has been studied in different cell lines however little it is known on the behaviour 

of the protein in tissues of patients affected by pathologies were inflammation has a predominant 

role. This lack of information is in part due to the difficulty to detect TTP protein, since in most 

cells and tissues its expression is very low 162,163. The protein is detectable in spleen, thymus, 

lung, and liver, and in large intestine 160. In addition, TTP is a very unstable protein and requires 

particular attention in the isolation and detection. To set the best procedure to study TTP 

expression from protein extracted from pediatric IBD patients’ biopsies, different methods were 

tested. We chose to apply IP analysis, since this technique gave the best results, allowing to 

enrich the protein of interest in tissue extracts. The experiments were conducted on of four IBD 

pediatric patients at different phases of the diseases. For each patient, after a colonoscopy, an 

inflamed and a non-inflamed portion of the colon was collected and immediately frozen in dry 

ice. Patients were classified on the basis of the histologic inflammatory score (range from 0 to 

5) of the inflamed biopsy (Table 6).  

 

 

 

 

 

 

 

 
Table 6: Histological characteristic of inflamed colon mucosa of pediatric IBD patients; the active phase of the disease is described with a 

discontinuous or a complete loss of vascular pattern, hyperemia and deep ulcerations. In the remission phase an improvement of the vascular 

pattern was observed. 

 

After IP of TTP a Western blot analysis was performed to quantify the protein expression in the 

tissues. Results of TTP protein levels have shown an increased expression in inflamed mucosa 

respect the non-inflamed (fold induction inf/non-inf = 2.67), and these results are statistically 

significant (Figure 29). 

 

 

Age, median (IQR)  

Male (%) 

Female (%) 

13.93 (12.49 – 15.12) 

3 (75) 

1 (25) 

 

Patients SCORE DISEASE DISEASE 

PHASE 

Patient 1 3 CD  active phase 

Patient 2 4 CD active phase 

Patient 3 1 UC remission 

phase 

Patient 4 4 UC diagnosis 
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Figure 29: A. TTP expression in colon mucosa of pediatric IBD patients. IP for TTP on inflamed and non-inflamed frozen colon IBD tissues. 

Expression was calculated with respect to Actin (ACT), used as load control. Parametric T-test: * p < 0,05. B. Representative image of Western 

blot experiments for TTP protein on inflamed (INF) and non-inflamed (NON-INF) biopsies of pediatric patients affected by IBD.  

Phosphorylations could be the cause of the higher expression of TTP in inflamed tissues, since 

it was demonstrated that after phosphorylation of two serine residues (Ser-60 and Ser-186) the 

recruitment of the deadenylation complex is impaired and TTP is stabilized. This alteration of 

TTP expression and activity was related to the role of a protein complex, the 14-3-3, that 

recognizes and controls phosphorylated proteins 57. For this reason, the Co-IP assay, with an 

antibody for 14-3-3, was performed on protein lysates of colon biopsies immunoprecipitated for 

TTP, since this technique permits the recognition of protein-protein complexes. Western blot 

analysis was used to quantify 14-3-3 protein expression in inflamed and non-inflamed colon 

mucosa of IBD patients. Results have shown the same trend observed in TTP expression, 

confirming the interaction of the 14-3-3 with the zinc finger protein, but the data are not 

statistically significant because of the great variability observed in the non-inflamed tissues 

(Figure 30). 
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Figure 30: A. 14-3-3 expression in colon mucosa of pediatric IBD patients.  Co-IP for 14-3-3 on inflamed and non-inflamed frozen colon IBD 

tissues. Expression was calculated with respect to Actin (ACT), used as load control. Parametric T-test: p=0.189. B. Representative image of 

Western blot experiments for 14-3-3 protein on inflamed (INF) and non-inflamed (NON-INF) biopsies of pediatric patients affected by IBD. 

Only few studies analysed the role of TTP directly in the site of inflammation 59,164,165, and this 

is the first time that TTP expression was evaluated in patients affected by IBDs. The results 

described in inflamed and non-inflamed colon mucosa are in agreement with what was observed 

by other authors, indeed, TTP is significantly increased in inflamed samples respect the non-

inflamed ones. Ross and collaborators demonstrated an increased TTP expression in synovial 

tissue of patients with RA compared with non-inflamed controls using an immunostaining 

approach. Furthermore the authors demonstrated a higher TTP signal in CD68+ macrophages 

of patients synovia and the co-localization of TTP with activated MK2 in the cytoplasm of 

macrophages, confirming a role of phosphorylation in the highest expression of TTP in inflamed 

tissues 59. Also in our work we have demonstrated, in an indirectly, way the importance of 

phosphorylation in TTP activity. Indeed, the analysis of protein-protein interaction with the Co-

IP assay was performed to demonstrate the formation of the TTP-14-3-3 complex, that occurs 

only if TTP is phosphorylated. We have shown the same trend of expression between TTP and 

14-3-3 but, due to the small number of samples and the great variability observed, in particular 

in non-inflamed tissues, our results are not statistically significant. 
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5.2  TTP expression in mice and human macrophages 

5.2.1 TTP and 14-3-3 expression in the RAW264.7 cell line 

The RAW264.7 macrophages cell line produce much more TTP than the other cell types tested 
160. Experiments conducted on this cell line have shown that, after LPS stimulation, TTP was 

detectable on Western blot, but barely visible in the unstimulated cells 166. Experimental studies 

showed that in LPS-stimulated RAW264.7 cells, TTP protein accumulated and reached steady-

state levels after 120 minutes of stimulation 160. For this project, we used this cell line as a model 

for studying TTP expression in macrophages. In further experiments on human macrophages 

differentiated from IBD patients, IP and Co-IP were performed because of the low amount of 

protein available; for this reason, also on RAW264.7 cells the same approaches were used. 

Indeed, after LPS stimulation for 2 hours, the protein lysate from RAW264.7 cells was obtained 

and IP with the antibody for TTP was performed. Western blot results showed an increase of 

the protein expression after LPS stimulation as observed in Figure 30 (fold induction LPS 4h/uns= 

30.22). Co-IP results with the 14-3-3 antibody showed the same trend of expression observed 

for TTP protein (fold induction LPS 4h/uns= 5.53; Figure 31).  

 

                                                 

Figure 31: Representative image of three Western blot experiments. Western blot was performed on IP for TTP and Co-IP for 14-3-3 on 

RAW264.7 cells unstimulated (UNS) and 4 hours of LPS stimulation. Actin (ACT) used as load control. 

 

These results have confirmed what it is already known in the literature: in RAW264.7 cells after 

LPS stimulation (10 ng/mL) a high expression of TTP was detectable and the pro-inflammatory 

stimulus promote the phosphorylation of the TTP protein that, in this conformation, it is 

protected by the 14-3-3 protein complex 57,160.  
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TTP mRNA targets are mostly pro-inflammatory cytokines such as TNF-a, IL-1β, IL-2 and IL-

6 51. To evaluate if the high expression of TTP was linked to a variation in protein activity, 

cytokines expression was assessed through the Mouse Cytokine 23-plex panels. Only levels of 

cytokines mentioned above are reported in the present thesis. The values were expressed as pg 

of cytokines for µg of total protein. Results showed an increase of expression levels in all 

cytokines, particularly evident in TNF-a and IL-6 (TNF-a uns= 0.0695 pg/µg, TNF-a LPS 4h= 

2.125 pg/µg; IL-6 uns=0.0065 pg/µg, IL-6 LPS 4h=94.77 pg/µg), while IL-1β and IL-2 are at the 

limit of significance (IL-1β uns= 0.4060 pg/µg, IL-1β LPS 4h= 0.5965 pg/µg; IL-2 uns=0.0245 

pg/µg, IL-2 LPS 4h=0.0325 pg/µg; Figure 32). 

This analysis has shown an increase expression of pro-inflammatory cytokines after LPS 

stimulation in RAW264.7 cells. These data have confirmed the role of the phosphorylated 

inactive TTP in stabilizing the mRNA transcripts through the binding with the ARE sequence 

on TNF-a, IL-1β, IL-2 and IL-6 cytokines enhancing their expression after a pro-inflammatory 

stimulus 46,167,168. 

           

            

Figure 32: Mouse Cytokine 23-plex panels analysis. Supernatant of RAW264.7 cells unstimulated (uns) or stimulated with LPS (10 ng/mL) 

for 4 hours. Most common pro-inflammatory cytokines related to TTP activity were considered (TNF-a, IL-1β, IL-2 and IL-6). Values were 

expressed in pg of cytokines on µg of total protein. Parametric t-test TNF-a p= 0.0056; Parametric t-test IL-6 p= 0.0108; Parametric t-test IL-

1β p= 0.0609; Parametric t-test IL-2 p= 0.0637. The data are reported as means ± SE of two independent experiments performed in duplicate. 

 

Uns LPS 4h
0.00

0.04

0.08
1.5

2.0

2.5

pg
/µ

g 
of

 p
ro

te
in

TNF-α

**

IL-6

Uns LPS 4h
0.000

0.004

0.008
80

100

120

pg
/µ

g 
of

 p
ro

te
in

*

IL-1β

Uns LPS 4h
0.0

0.2

0.4

0.6

0.8

pg
/µ

g 
of

 p
ro

te
in

IL-2

Uns LPS 4h
0.00

0.01

0.02

0.03

0.04

pg
/µ

g 
of

 p
ro

te
in



	
   - 64 - 

5.2.2 TTP and 14-3-3 expression in human macrophages 

TTP is a stable cytoplasmic protein, once induced by pro-inflammatory stimuli, in macrophages 

and in fibroblast 160. Most of the studies were conducted on immortalized or primary mouse 

macrophages and little it is known about the TTP expression in human macrophages and above 

all in macrophages differentiated from patients affected by inflammatory diseases 51. In this 

work macrophages were differentiated from PBMCs of four IBDs pediatric patients with active 

disease and from PBMCs of four healthy donors used as control. Differentiation of macrophages 

from blood of pediatric IBDs patients was difficult because of the poor initial cells number and 

above all for their disease status. For this reason, IP assay was necessary to detect TTP 

expression. Western blot results have shown a different trend of TTP expression between 

macrophages of IBDs patients and healthy donors. The zinc finger protein, as expected, in 

healthy donors is upregulated after LPS treatment for 2 hours (HD uns (TTP/ACT)= 0.27; HD 2h LPS 

(TTP/ACT)=0.63); on the contrary TTP expression in IBDs patients was higher in unstimulated 

macrophages compared to macrophages stimulated with LPS (IBD uns (TTP/ACT)= 1.3; IBD 2h LPS 

(TTP/ACT)=0.71). Interestingly, expression pattern of TTP was significantly different in 

unstimulated macrophages between IBDs patients and healthy donors (Figure 33).  
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Figure 33: A. TTP expression of IBD and healthy donors (HD) macrophages. IP for TTP on unstimulated (uns) and LPS (2h LPS) treated 

macrophages differentiated from IBD patients and HD. Expression was calculated respect the Actin (ACT), used as load control. Two-way 

Anova: p=0.015; Bonferroni post-test: **p<0.01. B. Representative image of Western blot experiments for TTP protein. 

 

Co-IP with an antibody against 14-3-3 protein was performed to demonstrate if the differences 

observed in unstimulated macrophages are correlated to the phosphorylation state of TTP and 

hence to an increased stability. Western blot results of 14-3-3 protein have shown the same trend 

of TTP expression with significant differences between unstimulated macrophages (HD uns (14-3-

3/ACT)= 0.42; IBD uns (14-3-3/ACT)= 1.3) and between IBD unstimulated and LPS stimulated 

macrophages (IBD uns (14-3-3/ACT)= 1.3; IBD 2h LPS (14-3-3/ACT)= 0.59; Figure 34). 
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Figure 34: 14-3-3 expression of IBD and healthy donors (HD) macrophages. Co-IP for 14-3-3 on unstimulated (uns) and LPS treated 

macrophages differentiated from IBD patients and HD. Expression was calculated respect the Actin (ACT), used as load control. Two-way 

Anova: p=0.0022; Bonferroni post-test: *p<0.05. B. Representative image of Western blot experiments for 14-3-3 protein. 

 

Results of TTP expression in macrophages derived from healthy donors confirm data already 

reported in literature 169, indeed an increase of TTP expression after LPS stimulation was 

observed even if at the limit of significance (p=0.0595). However, interesting results were 

described in macrophages differentiated from IBDs patients: in fact, in immunoprecipitate 

macrophages higher levels of the zinc finger protein were observed in unstimulated samples 

compared to macrophages treated with LPS. These data are not statistically significant because 

of the variability observed among samples and the poor number of patients. In addition, 

comparing unstimulated macrophages from IBDs patients and healthy donors an increase of 

TTP expression was evident in favour of IBDs patients. Hence, levels of TTP protein in IBD 

patients would be indicative of active inflammation, though these data must be confirmed in a 

larger patients’ cohort.  

Western blot analysis on 14-3-3 protein expression has shown the same trend of TTP expression 

confirming indirectly the involvement of phosphorylation in the activity and expression of TTP.  

 

Macrophages derived from IBDs patients have shown a decrease of TTP expression after LPS 

stimulation. In the literature, a downregulation of TTP expression has been demonstrated after 

a prolonged exposure to pro-inflammatory stimuli, but the exact switching between the activated 

and inactivated state of protein is still unknown 170. On the basis of the results obtained in this 

work we can hypothesize that the stimulation with LPS in IBD samples could cause a decrease 

of TTP activity and an increase of its degradation through the proteasome activity. Further 

studies are needed to clarify this mechanism of action on TTP stabilization. 

 

To confirm the role of TTP in controlling the stability of pro-inflammatory cytokines, the Bio-
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Plex Pro Human Cytokine 17-plex panels was performed to quantify cytokines expression on 

supernatant of human macrophages differentiated from IBDs patients and healthy donors. Due 

to the great variability and small number of patients, no significant differences could be 

observed between unstimulated and LPS stimulated IBD macrophages (Figure 35A). In healthy 

donors, instead, statistically significant differences were observed only for TNF-a (p= 0.0084) 

and IL-1β (p= 0.0062) (Figure 35B).  

 

Figure 35: Bio-Plex Pro Human Cytokine 17-plex panels. A. Supernatant of macrophages differentiated from PBMCs of IBDs patients 

unstimulated (uns) or stimulated with LPS (10 ng/mL) for 2 hours. Most common pro-inflammatory cytokines related to TTP activity were 

considered (TNF-a, IL-1β, IL-2 and IL-6). Values were expressed in pg of cytokines on µg of total protein. Parametric t-test TNF-a p= 0.2195; 

Parametric t-test IL-6 p= 0.4242; Parametric t-test IL-1β p= 0.0915; Parametric t-test IL-2 p= 0.1693. B. Supernatant of macrophages 

differentiated from PBMCs of healthy donors unstimulated (uns) or stimulated with LPS (10 ng/mL) for 2 hours. Values were expressed in pg 

of cytokines on µg of total protein. Parametric t-test TNF-a p= 0.0084; Parametric t-test IL-6 p= 0.1148; Parametric t-test IL-1β p= 0.0062; 

Parametric t-test IL-2 p= 0.0664. The data are reported as means ± SE of two independent experiments performed in duplicate. 

 

The cytokines expression results of unstimulated macrophages differentiated from IBDs patients 

in comparison to healthy controls did not show any significant difference. These results do not 

support the hypothesis of a role of phosphorylated TTP in controlling pro-inflammatory 

cytokines expression. The evaluation of cytokines expression in differentiated macrophages 

does not represent a useful tool to study the involvement of TTP protein in IBD pathogenesis. 
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6.CONCLUSION 
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IBD is a multifactorial disorder that is under the control of a series of interactions among 

genetics, environmental factors, gut microbiota and immune response. The chronic, relapsing 

or progressive inflammatory conditions can involve the entire gastrointestinal tract 9. To date, a 

curative pharmacological therapy for IBD does not exist and the therapeutic approach is mainly 

aimed at the treatment and control of inflammation. Despite the introduction of novel biological 

therapies, GCs remain widely used for inducing remission in IBD, in particular for UC. Given 

the high incidence of suboptimal response, associated with a significant number of side effects, 

particularly severe in children, the identification of patients that are most likely to respond 

poorly to GCs is extremely important. The mechanisms of this variability are scarcely 

understood and there is presently no means to predict the response in advance. In this context, 

the role of the lncRNA GAS5 and the possible correlation between its expression and variability 

in GC response was the topic of the first part of my thesis. 

The expression of GAS5, a molecule able to interact directly with the GR and impair its 

transcriptional activity, was evaluated both in immortalized cell lines treated with GCs and in 

PBMCs of patients before and after the administration for 4 weeks of GCs. Our results 

demonstrate that GAS5 is differently expressed in sensitive and resistant immortalized cells and 

positively correlates with drug resistance. Interestingly, the same profile was observed in 

PBMCs of IBDs pediatric patients in which an upregulation of GAS5 in subjects with 

unfavourable steroid response was demonstrated.  

In conclusion, this part of the study provides molecular and clinical evidences that GAS5 should 

be considered a novel pharmacogenomic biomarker useful for the personalization of GC therapy 

in paediatric IBD. If these preliminary data will be confirmed in a larger cohort of patients, the 

development of an assay based on GAS5 screening in patients’ PBMCs obtained at diagnosis 

and treated with GCs in vitro could be proposed to predict clinical response, helping clinicians 

in the adjustment of the current protocols. Moreover, inhibition of GAS5 by a specific molecule 

could be considered as a strategy to restore GC response. 

Emerging data have shown that GAS5 is also involved in the regulation of important mediators 

of tissue injury, such as MMP-2 and MMP-9, and in the process of epithelial-mesenchymal 

transition, factors implicated in the pathogenesis of IBD16, but there are no data about the role 

of GAS5 in mediating tissue damage and maintaining gut barrier function in IBD patients. 

Experiments conducted on inflamed and non-inflamed colon tissues obtained from IBD patients 

have demonstrated that GAS5 expression was significantly decreased in inflamed mucosa of 

patients compared to non-inflamed sites and increased levels of MMPs gene and protein 

expression were observed in inflamed tissues as expected. Moreover, the in vitro experiments 

demonstrated that THP-1 cell line differentiated in macrophages could represent a good cellular 
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model to better understand the mechanism by which GAS5 could have a role in mediating gut 

barrier function by regulating the effect of MMPs. 

These preliminary results provide new information about the functional role of GAS5 in the 

regulation of MMP-2 and MMP-9 in IBD patients even though further investigations are needed 

on a large group of IBDs patients. In order to confirm the molecular mechanism by which GAS5 

regulates MMPs levels in IBD patients, RNA interference and over-expression experiments to 

modulate GAS5 levels and to examine its effect on the expression of MMP2 and MMP-9 in 

terms of transcription and activity of the proteins should be examined. 

 

In inflamed and non-inflamed colon mucosa of IBDs patients the expression of TTP, a zinc 

finger protein able to interact and inhibit pro-inflammatory cytokines through the binding with 

ARE on mRNA sequences, was studied in the second part of my thesis. In addition, considering 

that phosphorylation inactivates protein activity impairing TTP ability in pro-inflammatory 

cytokines degradation, the role of 14-3-3 complex protein was also evaluated. Indeed the 14-3-

3 complex recognizes and binds TTP only when phosphorylated. Results have shown a higher 

expression of the TTP and 14-3-3 proteins in the site of inflammation, demonstrating the 

involvement of TTP and its phosphorylation in inflamed colon biopsies. In macrophages 

differentiated from IBDs patients a greater endogenous expression of TTP and 14-3-3 was 

highlighted, demonstrating that inflammation is closely related to high levels of phosphorylated 

protein expression. These preliminary results, if confirmed with further experiments, could open 

new perspectives in the study of IBDs and in the investigation of new target therapies based on 

the modulation of TTP phosphorylation by phosphatases, such as the serine/ threonine 

phosphatase protein phosphatase 2A 59,171. 
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