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The 18th International Symposium on Geodynamics and Earth Tides 2016 covered phenomena that
generate temporal variations in geodetic and geophysical observations. In calculating the stress field for
Earth tides, the observed geodetic response is used for defining the Earth's rheology, the Earth internal
structure, Earth rotation parameters, and the functioning of the sophisticated instrumentation mounted
on Earth and satellites. The instrumentation capable of observing Earth tides, measures changes

generated by lithospheric plate movements, as the earthquake cycle and volcanism. Hydrology, tem-
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perature, and pressure, either of natural or anthropogenic origin, affect the high precision observations,

and therefore must be included in this study-realm.
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1. Introduction

In the week of 5—9 June 2016, the 18th International Geo-
dynamics and Earth Tides Symposium “Intelligent Earth system
sensing, scientific enquiry and discovery” was held at the Univer-
sity of Trieste, in Trieste, Italy, with over 106 presentations. Here a
review of the topics discussed at the Symposium is given, with the
aim of documenting the rich spectrum of international research
activities on these interdisciplinary subjects.

The meeting was the first in which the word GEODYNAMICS was
added to the classical Earth Tide Symposia, held since 1957. The
Symposia were connected to the ICET (International Centre of Earth
Tides), which was first housed at the Royal Observatory of Belgium
at Brussels, and then was moved to the University of French Poly-
nesia, Tahiti [1] (page 767). The topics of the Earth Tides Symposia
have been increasingly linked to geodynamics, leading to the
transformation of the IAG (International Association of Geodesy)
Scientific Service ICET [2] to the IGETS (International Geodynamics
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and Earth Tides Service) [3], with its Central Bureau hosted at EOST
in Strasburg (Ecole et Observatoire des Sciences de la Terre, Uni-
versity Strasbourg, France) and the database held at GFZ (Deutsches
GeoForschungsZentrum) Potsdam [4]. The transformation reflects
the instrumental innovations and broadened applications of
terrestrial and spaceborne geodetic monitoring, instruments that
are sensitive to Earth tides. Together with ICET, the GGP (Global
Geodynamics Project) which is responsible for supporting research
activities using the data from the worldwide network of super-
conducting gravimeters, was also merged into IGETS.

The 2016 Symposium addressed a wide range of scientific
problems in geodynamics research and chose the theme of
“Interactions of geophysical fluids with Earth tides phenomena and
observations” as a specific focus. The themes were enveloped in the
seven sessions of the Symposium. Here a review on the topics
discussed at the Symposium is given, which demonstrates the
broad spectrum of applications of terrestrial and space geodetic
observations of Earth geometry, crustal deformation, Earth global
shape parameters, Earth rotation parameters, the gravity field and
the temporal changes of these effects.

2. Review of the topics presented at the symposium
2.1. Tides and non-tidal loading

The opening session on tides and tidal loading discussed the
tidal signals observed in a number of stations with laser

1674-9847/© 2018 Institute of Seismology, China Earthquake Administration, etc. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:berg@units.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geog.2018.03.003&domain=pdf
www.sciencedirect.com/science/journal/16749847
www.keaipublishing.com/en/journals/geodesy-and-geodynamics/
www.keaipublishing.com/en/journals/geodesy-and-geodynamics/
https://doi.org/10.1016/j.geog.2018.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.geog.2018.03.003
https://doi.org/10.1016/j.geog.2018.03.003

188 C. Braitenberg / Geodesy and Geodynamics 9 (2018) 187—196

extensometers, water tube tiltmeters, ocean bottom and land
spring gravimeters and SG (superconducting gravimeters). The fact
that the tidal deformation and gravity signal can be calculated and
has well defined spectral frequencies, makes the tidal signal a
powerful tool to test instrument performance, recover local rheo-
logical crustal properties, and test the ocean tidal models through
the observed loading tides. Table 1 lists the tilt and extensometric
stations mentioned in the text. The location of the stations from
Table 1 are displayed in Fig. 1, which shows also the network of the
SGs (personal communication S. Rosat).

The Earth elastic response to tides, loads and stresses is
expressed by the corresponding Love-Shida numbers. Varga et al.
[30] presented the theory to calculate relations between these
numbers with an integral approach. The authors analyzed the tidal
stresses from Earth surface to the core-mantle boundary with the
aim to determine the triggering effect of tides on earthquakes [31].

The SGs have lower noise levels than the quietest seismometer
station for frequencies below 1 mHz and above 6 mHz, as was
shown by comparing the noise spectra to the “low noise seismologic
model” [32]. The SG is, therefore, an ideal instrument in searching
for low frequency gravity signals as the Slichter modes [33]. The SGs
being relative instruments, their amplitude factor, phase delay and
long-term drift must be determined. It was found that the theo-
retical and observed amplitude ratios at tidal spectral frequencies
are stable and independent of local effects, and are precise enough
to verify the stability of the SG scale factor. The instrumental drift of
the SGs is determined by absolute gravimeters in order to extract
long term gravity changes [34—36]. Crossley and Murphy [37] and
Woziontek et al. [38] found evidence of the hydrological signal in SG
decades-long time series in the order of +100 x 10~° m/s? in case of
the Apache Point observatory (elevation 2788 m, Sunspot, New
Mexico, USA), with trends of 4 x 108 m/s?/year [37] after having
corrected for a global hydrologic mass model. The Apache Point
Observatory station serves a lunar laser ranging telescope site and it
is necessary to determine the regional rheological properties of the

Table 1
Extensometer and tiltmeter stations discussed at the Symposium.

crust, in order to determine predicted surface movements at high
precision using SG and GPS. At station Medicina (Italy), an extensive
tidal analysis was performed after removing long term gravity ef-
fects due to crustal deformation obtained from GNSS time series.
Independent parameter sets for the degree 3 tidal potential and the
18.6 years tidal constituent of the Moon were considered (Wziontek
et al. [38]). The tiltmeter stations of St. Croix and Rustrel, France
record similar signals correlated to water springs, and the karstic
environment in which they are set, and have hydrologic signals with
amplitudes of several hundred 1072 rad in St. Croix and in Rustrel
[7,39].

The Argentinian-German Geodetic Observatory, housing an
absolute gravimeter and an SG next to GNSS, VLBI and SLR stations,
senses the influence of the Rio de la Plata (river and estuary formed
by the confluence of the Uruguay and the Parand rivers, at the
border between Argentina and Uruguay). The effect of storm surges
on the SG was successfully modeled [40]. The non-tidal component
constitutes 88% of the signal, 12% being the tidal amplitude
contribution. After correcting for the storm surge, a hydrologic
signal correlated to rainfall emerged.

The ocean loading tides were calculated with different
approaches, as the ocean tide loading calculation service of Georg
Scherneck (http://holt.oso.chalmers.se/loading) used e.g. in the
Lohja station, Finland, or the convolution of the ocean tide models
with the ocean loading Green functions [41] used e.g. in the Can-
franc, Spain station. Amoruso and Crescentini [5] could identify the
presence of nonlinear and minor ocean tides from the localized
mismatch of the observed and modeled tidal signals in the
underground laser extensometers of Canfranc, more than 120 km
from the Bay of Biscay. The signals were quantitatively compared
with computations using TPXO8 (MN4, M4, and MS4) and FES2012
(M3, N4, MN4, M4, MS4, and M6) global ocean tide models.

The ocean loading tides were also theoretically considered on
GPS stations to find anelastic effects in terms of the Q-value of the
crust, which was interpreted as due to interstitial fluid flow in

Station name Instrumentation

Year of installation ~ Abstracts and reference

Canfranc, Spain
St. Croix, Vosges mountains, France

Laser extensometers, 70 m length
Long base water tube tiltmeter, 100 m length 2004 [7,8]

2011 [5.6]

BFO, Schiltach, Germany Horsfall watertube tiltmeter, 110m length; Invar wire strainmeters [7,9-11]
10 m length
LSBB, Rustrel, France Long base water tube tiltmeter 2012 [7]
Tytyri mine,Lohja, Finland Long base interferometric water level tiltmeter (code NSiWT), 50.4 2008 [12,13]
m length
Metsdhovi, Finland Research borehole for vertical tilt meters, 2 Superconducting 1985 [14,15]
gravimeters collocated with FG5X absolute gravimeter and
hydrological monitoring
Conrad observatory, Austria Interferometric water level tilt meter, 5.5 m length (code W_iWT); 2014 [16]
Lippmann 2D tiltmeter
California and Nevada 11 long base interferometric extensometers, 380 m to 730 m length Starting 1976 [17]
Ksiaz-Warsaw, Poland Water tube tiltmeter, quartz tiltmeter, extensometer, 60 m to 94 m [18]
length
Grotta Gigante, Italy Horizontal pendulums, 95 m top and bottom height difference, Starting 1960 [19]
colocated Marussi tiltmeter, 0.7 m horizontal baseline.
Grotta Genziana, Italy Marussi tiltmeter, 0.7 m horizontal baseline. Starting 2007 [20]
Baksan Observatory, Elbrus volcano, Baksan Laser interferometric strainmeter, 75 m length [21]
northern Caucasus
Geodynamic Observatory Moxa, Germany Quartz-tube and laser strainmeter (3 directions), up to 38 m length, 1964 [22,23]
Askania borehole tiltmeters, up to 100m deep. Research borehole 1997
(20 m and 100 m deep) for injection pumping, superconducting 2012
gravimeter. 1999
Sopronbanfalva Geodynamic Observatory, Quartz-tube extensometer, 22 m length 1990 [24,25]
Sopron, Hungary
Matydshegy Gravity and Geodynamic Two quartz-tube extensometers E1 (21.3 m length) and E2 (13.8 m 1980 [26]
Observatory (Budapest, Hungary) length)
Pécs station in uranium mine (Pécs, Hungary)  Quartz-tube extensometer, 20.5 m length 1990—-1999 [24,27]
Vyhne Tidal Station (Vyhne, Slovakia) Quartz-tube extensometer, 20.5 m length 1980 [28,29]
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Fig. 1. Location of Tilt and Strain meter stations (Circles) mentioned in the text and location of the Superconducting gravimeters (diamonds) of the Global Geodynamics Project. The
two circles in the GGP-world map are the two extensometer stations of California and Nevada mentioned in the text, respectively.

cracks [42]. Boy et al. [43] successfully implemented atmospheric,
non-tidal oceanic and hydrological loading in the GAMIT station-
processing software. They found that for globally distributed GPS
stations a large part of the variability cannot be explained by the
loading effects, and that the continental global hydrology model
GLDAS [44] has missing components.

Earth tide spring gravimeters are easily installed and do not
require particular laboratory equipment as does the super-
conducting gravimeter. Zahran et al. [45] reported an experiment of
two continuously measuring Earth tide gravimeters installed close
to the Nasser Lake, with the aim to distinguish subsurface water
movements and possible relations to the seismicity. It seems that
seismicity is increased following the periodic water level change of
the lake. First results showed that the gravity signal must be
corrected for the vertical movements and the lake mass changes,
before conclusions on the subsurface mass changes can be made.

Between 2009 and 2016 many efforts were made to upgrade the
obsolete gravimetric instrumentation (based on Lacoste Romberg
(LCR) G type gravity meters) of Hungary with the aim to determine
the location-dependence of the bulk tidal effect in the Pannonian
basin at diurnal and semi-diurnal bands. 5 spring type (4 LCR G and
1 Scintrex CG-5) and 1 cryogenic (SG025 of Conrad Observatorium,
Austria) gravimeters were used at 5 locations to record 3—12 month
long time series in a mainly co-located setup. Although many of the
possible instrumental problems [46,47] and environmental (espe-
cially the microseismic noise) effects were considered carefully [48]

and even the moving mass calibration method [49] was applied to
provide accurate scale factors, direct comparison of tidal amplitude
factors was not considered to be feasible. Therefore rather the tidal
amplitude ratios 01/M2 were examined. The results consisted in a
weak (0.2%) increase of the ratio from west to east, in agreement
with the theoretical considerations [47].

A sea floor gravimetric recording above the Troll A gas reser-
voir in the North Sea off-shore Norway was analyzed together
with an ocean bottom pressure sensor. The signals were pre-
dicted with solid tides, the FES2014v ocean model, and a dynamic
model of sea level response to atmospheric pressure and wind
forcing [50].

Repeated gravity measurements over a geodetic network
centered on the Vrancea seismic area in Romania found a relative
gravity decrease of —0.06 mGal in 20 years (—3 microGal/yr)
centered on the seismic area with respect to the stable surrounding
reference points. The result is interpreted as due to mass decrease
at lower crustal levels connected to the subduction of the Vrancea
[51]. The size of the gravity change is comparable in amplitude to
that found in Tibet, at Lhasa station, where repeated absolute
gravity measurements have been made for several years, and
gravity is also measured continuously using an SG. The time series
of the SG at Lhasa has been controlled with an absolute gravimeter,
and shows that Lhasa gravity is decreasing by a rate of 1.87
microGal/yr, with a GPS recorded uplift of 0.8 mm/yr, resulting in a
gravity uplift ratio of —23.375 microGal/cm [52].
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Earth tidal measurements by quartz tube extensometers of the
same type were performed at several observatories (Budapest,
Pécs, Sopronbanfalva in Hungary and Vyhne in Slovakia). The effect
of the Free Core Nutation (FCN) on the P1, K1, W1 and @1 tidal
waves were studied on the basis of tidal results obtained in the four
observatories. The effectiveness of the correction of tidal data for
temperature, barometric pressure and ocean tide load was also
investigated [24]. One effect of the FCN is to reduce the ratio of the
P1 to K1 to 0.96 of the tidal potential. Agnew [53] reported this
effect can be detected in the harmonic constants for ocean tides and
could have been detected already in from observations related to
the interval 1930 to 1980.

Tidal analysis of the extensometric data in the Vyhne Tidal
Station between 2005 and 2015 revealed that the measured tidal
amplitudes are close to the theoretical values. The effect of the local
conditions, such as structure of the observatory, cavity effect,
topography and geologic features of the surrounding rocks, was
investigated in detail and these effects were taken into consideration
during the interpretation of the results of the data analysis [29].

The strongest Earth tide spectral component M2 was analyzed
in time in the aquifer of the Moscow area [54] in terms of its phase
shift. Analysis must be restricted to quiet periods, and time win-
dows affected by aquifer inflow fluctuations and other natural and
anthropogenic level influences must be excluded from the analysis.
The goal of the study is to use the phase shifts of M2 to infer aquifer
permeability changes.

Radon concentrations have been ascribed to strain variations.
Mentes [55] used Earth tides measurements to test the following
hypothesis: all strain components have lunar tidal frequencies, so if
strain variations induce Radon variations, these frequencies must
be found in its amplitude spectrum. The presence of only solar
frequencies in the Radon, showed that the Radon does only depend
on temperature and pressure changes, but not on the strain
changes, or at least in a negligible proportion.

Nowadays it is widely acknowledged, that geodetic records of
geophysical processes frequently exhibit temporal correlation,
which should not be ignored when parameters of interest (e.g.,
seasonal signals or trend) are to be determined. The time-correlated
noise signatures in gravity records were investigated with ARMA
(autoregressive-moving-average), PL (power-law), and GGM
(Generalized Gauss-Markov) model. The obtained optimal stochastic
model could be finally be used to infer realistic uncertainties on the
long-term drift for instance [56].

2.2. Geodynamics and the earthquake cycle

The correct functioning of the geodetic instrumentation is
guaranteed when the Earth tides signal is well observed, and
transient signals can then be looked for in the time series. These
include the deformation of the earthquake preparation phase, the
coseismic, and the postseismic relaxation, the long term tectonic
deformation, and the eigenvibrations (normal modes) of the Earth,
or equivalently its free oscillations. Instruments useful in this
context are tiltmeters, extensometers, broad-band seismometers,
gravity meters, and GNSS receivers.

2.2.1. Observations of signals generated by an earthquake

Free oscillations were analyzed for broadband seismometers,
extensometers and tiltmeters (BFO observatory, [24]) and different
SGs [57] determining well definable activation of the Earth's free
oscillations for important earthquakes as the Sumatra-Andaman
2004, the 2011 Tohoku-Oki and the Chile 2010. Ziirn [9] compared
synthetic signals with observed modes and found that including the
local elastic effects (quantified using tides observed by the same
instruments) in the synthetics helps to reduce the misfits

significantly. These local effects could be responsible for the
commonly observed discrepancies between recorded horizontal
seismograms and corresponding theoretical ones. Zhang [58]
inverted the focal mechanism and moment magnitude from an
inversion of the free oscillation spectra of worldwide SGs using the
free-share MINEOS software package (https://geodynamics.org/cig/
software/mineos/) for calculating the free oscillation eigenfunctions.

Long-term extensometers in California and Nevada have given up
to 40 years continuous measurements, over a broad spectrum of
frequencies, from quasi-static to seconds. Strain rates are consistently
higher near the fault (0.5 microstrain/yr), and decrease with
increasing distance, and match strain rates recovered from GPS net-
works. At sub-daily periods the noise-level of the strainmeters is
about 10 000 times lower than the GPS derived strain rate. The
instruments located near major faults have observed a number of
episodes of rapid strain change over periods from minutes to weeks;
in many cases these appear to reflect shallow creep on the fault
nearby, but there are also slow-slip episodes on the San Jacinto fault at
seismogenic depths: these appear to be triggered by moderate local
earthquakes and larger regional ones. In almost 200 instrument-years
of data no anomalous strains have been seen before earthquakes [17].

Spectral analysis was applied to investigate the effects of earth-
quakes and seismic oscillations on crustal deformation recordings of
significant (M > 7) earthquakes observed by two quartz-tube exten-
someters and a Earth tidal monitoring gravimeter operating in the
Matyashegy Gravity and Geodynamical Observatory, Hungary. These
data were compared with a three component STS-2 seismometer
operating in the Kovesligethy Radd Seismological Observatory in
Budapest, Hungary [59]. Based on the FFT (Fast Fourier Transform) and
cross power spectral densities it was concluded that there were many
similarities between the spectral components of recorded teleseismic
waves and seismic noise for the different types of observations. In the
case of the extensometer and the radial component of STS-2, distur-
bances occurred in the same frequency range for all the investigated
earthquakes, and highest amplitudes of FFT spectra (in the frequency
range of 30—80 mHz) were mainly at the same frequencies, probably
due to the free oscillation of the Earth. The highest cross power
spectral densities due to seismic disturbances were obtained typically
in the frequency band 0.05—200 mHz (or period range 5 s—6 h).

Postseismic deformation has been modeled for the TIGA GNSS
network (GPS Tide Gauge Benchmark Monitoring - Working Group),
estimating vertical and horizontal velocities for the GNSS stations
for which post-seismic deformation was recorded. Besides the linear
velocity, the post-seismic term was added in form of logarithmic
and exponential functions models in order to describe the post-
seismic decay as a part of the entire time series. A pronounced
post-seismic signal was observed for the Tohoku Mw9.0 undersea
megathrust earthquake of March 11, 2011 off the coast of Japan, the
Chile Mw8.8 event of Feb.27,2010, and Peru Mw8.4 event of June
23.2010, the postseismic signal lasting from 6 to 10 years [60].

The coseismic displacements of the Gorkha, Nepal Mw7.8 event of
April 25, 2015 were seen to be 1.7 m and a few mm over the fault and
at 150 km distance from the fault, respectively. The average strain rate
over 5 years compared to the coseismic strain release found an esti-
mated 235 yr interval to store the released seismic energy [61].

Transients in GNSS time series observed in islands behind the
Ryukyu Arc, between the Arc and the Okinawa subduction trough
(Japan) are interpreted as SSE (slow slip events) on thrust faults,
since their onset is not associated with an earthquake. The SSEs are
found to repeat at biannual period, and are modeled with a fault
moving aseismically with an average moment magnitude of Mw6.6
[62]. Another large slow slip fault extending over a length of 250 km
was modeled behind the Izu-Bonin Arc [63], which generates
transient eastward movements of the islands. The movement can
also be interpreted as an early stage back-arc rifting commencing
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behind the northernmost part of the Izu-Bonin Arc. The transients
found in GNSS data at the Bonin Islands have been confirmed to be
repeating SSEs by an independent geodetic network of VLBI (Very
Long Baseline Interferometry) [64]. The transients are described
with a logarithmic or exponential function with a similar function
as the post seismic deformation, but with much shorter time
constant, since the transient lasts only a few weeks or months.

2.2.2. Observation of long term deformation and correction
measures for atmospheric effects

An innovative approach to determine the long period signal and
the periodicities in ITRF2014 coordinate time series from VLBI, GPS,
and DORIS was done by modeling the time series as discrete-time
Markov processes. This approach is particularly well suited in case
of nonlinearities in the time series [65]. Seasonal periodicities were
analyzed for globally distributed GPS stations using the database of
time series published by the Nevada Geodetic Laboratory, with the
aim of explaining the seasonal components from atmospheric
(surface pressure from ERA model), hydrologic (MERRA land model)
and ocean non-tidal (ECCO2 ocean bottom pressure model) load-
ings. Singular Spectrum Analysis [66,67] was applied to determine
mutually orthogonal principal components in all the considered
time-series. It was found that the Up component of the GPS signal
has the greatest correlation to the superposition of annual and semi-
annual atmospheric, hydrologic and non-ocean loading, with low
correlation for the horizontal GPS components [68,69]. Glacial
[sostatic Adjustment is a feature of geodynamics that affects all
deformation measurements mentioned above. Steffen et al. [70]
calculated stress changes in the deglaciation phase after the last
glaciation, and found that glacially induced faults are not limited to
Scandinavia, but reach as far south as northern Central Europe [71].

The ongoing uplift in mountain ranges is observed at many
orogens using GPS. Braitenberg et al. [ 19] found that this movement
generates a gravity change rate above the noise level of GRACE.
They concluded that over the Tibetan plateau the positive residual
gravity rate seen from GRACE after correcting for hydrology and
glaciers, is compatible with a topographic uplift not mass-balanced
by crustal thickening. The crustal thickness has reached the
maximum sustainable thickness and reacts with lower crust hori-
zontal mass flow instead of thickening [72].

Seismological and geodetic monitoring was shown to be rele-
vant in geotechnical monitoring of abandoned potash mines 700 m
below surface in Germany, that pose hazard due to seismicity, CHy4
gas escape, presence of tectonic faults and roof collapse due to
overburden pressure. Successful measures to mitigate the hazard of
the abandoned mines are flooding or backfilling of material, and the
monitoring demonstrates the decrease of surface subsidence and
local seismicity ([73], www.k-utec.de).

Global analysis of the geometry at plate boundaries suggests a
westerly polarized flow of lithospheric plates with respect to the
underlying mantle. This movement determines asymmetry along
subduction arcs, orogens, and rift zones [74,75]. The variations in
viscosity at the base of the lithosphere control variations in plate
velocity, and are sufficiently low to maintain decoupling of the
lithosphere from the underlying mantle [76]. Consequently the
solid Earth tide affects the geodynamics and the seismic activity.
The horizontal component is westerly polarized due to the
misalignment of the Earth's bulge, which may translate in shear
stress on the lithosphere and loading of faults [75].

2.3. Variations in Earth rotation
The long term signal of the ring laser gyroscope installed at the

geodetic station Wettzell, Germany is to monitor high frequency
variations in polar motion and UT1, with special emphasis on non-

harmonic geophysical signals [77]. The presentation of Tercjak et al.
[78] aimed at modeling the effect of tilt and horizontal displace-
ments induced by Earth and loading tides, non-tidal atmospheric
and hydrology loading effects on the ring laser.

LOD (Length of day), and the pole coordinates were investigated
by Nastula et al. [79] using GPS and GLONASS observations. The
purpose of the study is to investigate the potential of GNSS obser-
vations, and in particular those from Galileo for determination of
Earth Rotation Parameters at short, down to sub daily, periods.

A high-frequency model of variations in Earth rotation was
developed by Hagedoorn et al. [80] based on a new empirical ocean
tide model, which should bear an improvement with respect to the
IERS 2010 model based on Ray et al. [81]. The ocean tidal angular
momenta were calculated and the related short-period variations
in Earth rotation were estimated. The cause of the perturbation of
LOD (length of day) at the principal diurnal frequency of the solar
S1 tide was investigated by [82]. The S1 perturbation observed by
VLBI is largely explained by oceanic and atmospheric excitation.
The study suggests that variations in the excitation are to be
expected by the El Nino Southern Oscillation, which is equivalent in
strength to a strong climate perturbation.

Predicting variations in Earth Orientation Parameters is neces-
sary for interplanetary spaceflight missions. The prediction is the
sum of a stochastic behavior and a deterministic part, as the tides of
the solid Earth and ocean. Gross [83] evaluated the recent tidal
models to predict Earth Orientation Parameters in combination
with a Kalman filter.

2.4. Tides in space geodetic observations

The presentation open to the public held by H. Schuh [84]
illustrated the important role of modern geodesy in the definition
and realization of precise and stable geodetic reference frames,
required for monitoring changes on the Earth such as plate tec-
tonics or global sea level rise. An overview of the various natural
hazards and global change phenomena that can be observed by
geodetic techniques was given. Depending on the spatial scale,
various types of measurements were illustrated, from space
geodetic techniques such as GNSS (Global Navigation Satellite
Systems), SLR (Satellite Laser Ranging), VLBI (Very Long Baseline
Interferometry), and DORIS (Doppler Orbitography and Radio-
positioning Integrated by Satellite), via dedicated gravity satellite
missions and regional observations such as airborne gravimetry, to
local measurements by geodetic surveying instruments. All these
techniques and the underlying models are combined in GGOS, the
Global Geodetic Observing System of the IAG, and the concept of
this integrative enterprise was described. Case studies were pre-
sented that documented the essential role of precise geodetic data,
accurate analysis methods, and realistic mathematical and physical
models. Examples were the major earthquakes of recent years
(Tohoku-Oki 2011, Chile 2014), the volcanic eruption of Eyjafjal-
lajokull on Iceland (2010) and the manifestations of climate change,
as sea level and sea temperature change and atmospheric currents.

A second public presentation was held by J. Freymueller [85] on
the identification of large amplitude surface loading signals and
large tectonic signals of Southern Alaska. As in the presentation by
Heki et al. [86] Slow Slip Events (SSE) were identified in GPS dis-
placements on top of the subduction of the Alaska-Aleutian meg-
athrust. These signals have been separated from secular surface
mass variations caused by the melting of glacier ice and from sea-
sonal surface mass variations which are caused by snow accumu-
lation and melt. They found that to first order, much of the seasonal
deformation can be removed using surface load models based on
GRACE observations of gravity change, although there can be dif-
ferences depending on whether seasonal average or time series
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mass loading deformation is removed. In addition, in some places
the GRACE signal is smoothed over too large an area to provide a
fully accurate correction for GPS position time series.

The long-wavelength mass change within the Earth system, in
particular, the Earth's dynamical oblateness characterized by the
second degree gravitational zonal geopotential spherical harmonic
]2, can be recovered by SLR. The time series of ]2 is available over a
40 years period (Cheng and Ries [87,88]). The presentation of Cheng
[89] focused on the amplitude and phase and nature of the 18.6-yr
variation, which is a wavelength belonging to the tide variations in
the solid Earth and ocean. The study showed that effects of mantle
inelasticity must be considered when modeling the J2 response to
this tidal component.

EOP parameters derived from VLBI and global GNSS have an
improved agreement after treating the VLBI data with a Kalman
filter, respect to traditional methods. The new method in analyzing
the data, opens new prospects for high frequency signal in-
vestigations in EOP by VLBI (Karbon et al. [90]).

2.5. Volcano geodesy

The monitoring of volcanoes aims at catching premonitory
signals of an eruption and recording the time evolution of a volcano
to detect any changes that could indicate an inflation of the edifice
and upward mass movement in the volcano conduit. The moni-
toring includes any type of geodetic measurement of the shape and
the continuous gravity measurement.

The Canary Islands are volcanic islands off shore West Africa; the
active seismicity demonstrates the subsurface volcanic mass move-
ments. Fernandez et al. [91], adopted Differential Synthetic Aperture
Radar images from satellites combined with GNSS monitoring for
recording active deformation of several of the Canary Islands. They
found that C-band SAR data from ERS/ENVISAT satellites gave good
agreement with GNSS vertical and horizontal movement rates.

The highest point in Europe is on the Elbrus volcano in the
Caucasian Mountains, a dormant volcano with historical eruptions in
Holocene. Here Milyukov et al. [21], measure strain rate through a
laser strain-meter, and interpreted resonant frequencies as due to a
resonance of the underlying magma chamber. The resonances are
observed at the passage of seismic waves generated at near earth-
quakes (distance up to 500 km) as amplifications at well-defined
frequencies. A seismic sounding experiment was accomplished from
the center of the volcano outwards along its slope, revealing that a
magma chamber is present, and is discernible through a measurable
decrease of seismic wave velocities, down to the base of the crust.

The Campi Flegrei caldera is close to the city of Naples (Italy),
and has alternating episodes of uplift and subsidence going back to
historical times. The last eruption dates to 1538, followed by a
general subsidence for 400 years, followed by several uplift
episodes superposed on the continuing subsidence. The area of
Campi Flegerei has been monitored since 1905 first by a leveling
line, then extended successively by an increase of leveling reference
points, distance and angular measurements, tiltmeters, and
continuous GNSS. The interpretation of the source generating the
vertical movement is an important discussion point. Crescentini
and Amoruso [92] propose a pressurized finite thin triaxial ellipsoid
embedded in a layered medium at about 4 km to model the
regional deformation. Residual smaller scale deformation not
accounted for by this source is explained by a small (point) pres-
surized oblate spheroid about 2 km below the surface and laterally
displaced with respect to the deeper source. The location and ge-
ometry of the two sources are constant in time, with the exception
of volume changes (potency); potency time histories are somewhat
similar but not identical. Most recent GNSS and SAR data confirm
this model, initially proposed by Amoruso et al. [93,94].

2.6. Natural and anthropogenic subsurface fluid effects

Geodetic measurements are influenced by the hydrosphere: we
must distinguish the mass change, sensed directly by the gravity
field and observation of Earth deformation, originated by elastic
yielding to the load change. Further the subsurface hydrology
induces deformation through pore pressure changes in a porous
media or leads to pressure changes in the aquifer due to the
hydraulic head. This effect is particularly strong in karstic environs,
where the flow is restricted to channel conduits in which pressure
builds up to several atmospheres after rainfall. These hydrologic
flows can be natural or man-made, according to the source of the
water masses. An important issue is whether the pressure changes
induced by the hydrology are responsible for induced seismicity, be
it natural or man-made. The geodetic measurements that sense the
hydrologic effects include observations of gravity and deformation.

Absolute gravity measurements made 10 m below the surface
compared to continuous surface gravity measurements made with
a spring gravimeter in Riga (Latvia) demonstrated a seasonal
gravity change differences of up to 16 microgal (peak to peak) that
is ascribed to soil moisture changes, with an excellent correlation to
the water-table yearly variations of 0.5 m (peak to peak), Makinen
et al. [95]. Two SGs were set side by side at 3 m distance at
Metsahovi station (Finland), and differences up to 20 microGals
were found, not ascribable to instrumental errors. The differences
are due to transient hydrological movement after heavy precipi-
tation (Virtanen and Raja-Halli [14]).

The SGs are the ideal stationary instruments for monitoring
hydrologic mass changes due to their high sensitivity and low drift
rate. In northern Benin (West-Africa, Djougou) Calvo et al. [36]
illustrated six years of SG observations and the correlation to
water table depth and precipitation. They find that the atmospheric
tidal S1 and S2 pressure signal is strong in this subtropical region.

A network of repeated microgravity measurements combined
with a continuous reference gravity station, controlled by regular
co-located absolute gravity measurements is the strategy planned
by Hinderer et al. [96] to monitor gravity changes associated to
geothermal activity. The experimental sites are associated with two
geothermal reservoirs in northern Alsace, where geothermal en-
ergy is used either for industrial purposes or for producing elec-
tricity. The modeling of gravity and surface changes is done taking
into account both attraction and elastic deformation effects.

Over-exploitation of an aquifer leads to loss of the aquifer
storage due to compaction and land subsidence. Abajo et al. [97]
analyzed the Lorca area in Spain, which has the Europe-wide
highest aquifer-related subsidence (>10 cm/yr) [98], by differen-
tial radar interferometry. Apart from the subsidence, the subsurface
stress field is altered close to an active seismogenic source, which
poses the question whether the prolonged water extraction has
altered the seismic hazard.

The hydrologic signal in two separated karst systems 110 km
apart was analyzed through tilt and GNSS by Braitenberg et al. [99]
and Grillo et al. [20]. The 50 years long observations of the ultra
broad band Marussi horizontal pendulums Braitenberg et al. [100]
showed that the tilt signal is proportional to the integrated volume
of the water flow entering the Karst plateau (Tenze et al. [101]), and
flowing in conduits at a couple of 100 m below the topographic
surface. The hydrologic signal is prominent in tilt, and should
produce also a signal in the continuous GNSS due to the expected
displacement induced by pressure in the karstic flow conduits. The
research shows that the well identified hydrologic deformations in
tilt can be useful as a guide for distinguishing analogous signals in
the GNSS, which are less evident, because the signal to noise ratio
on GNSS is order of magnitudes smaller than the one of the un-
derground tilt signal. The local hydrologic displacement above
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Grotta Gigante recorded by GNSS is up to 8 mm, affecting both
horizontal and vertical components, with an upward movement
during a flood. The tilt signal is up to 0.6 prad, with consistent tilt
and displacement directions. In the Genziana station, Italy, (the
Cansiglio karstic plateau to the north-west of the Trieste Karst), the
hydrologic signal has ten-fold amplitude, and correlates very well
with the local karstic springs [20]. The 50 year long observations
show a long term NE-ward tilting of 0.1 nrad/day, with 31 year
period modulation, confirming the wavelength identified a decade
ago (Braitenberg et al. [102]).

The intrinsic variability of the long-term tilting, which includes
the solar yearly period, poses a restriction on the minimum time
window size useful to determine the long-term linear tilting rate.
Increasing successively the analysis window for the linear regres-
sion of the tilt rate from 5 years to 50 years, the rate varies over a
range of 0.3 nrad/day and remains stable at the value of 0.1 nrad/
day for time windows between 30 and 50 years long. The result
shows that a deformation rate calculated over 5—30 years does not
represent the long-term stable trend, but is an instantaneous
deformation rate. At least 30 years of observation are necessary to
determine the long term deformation rate due to the yearly and
hydrologic signals. It can be assumed that for GNSS observations
similar time windows are necessary before the stable movement
rate can be determined, in particular in stations affected by an
observable yearly movement.

Using a network of GNSS stations that extends in NE-Italy over a
length of 150 km and comprises the above mentioned two karstic
areas, the time series were analyzed in terms of their trend and
frequency content. An apparent transient signal of about 2-year
period was identified, which was ascribed to a porosity wave,
originated by fluid mobilization due to tectonic processes in the area
(Rossi et al. [103]). The results were further analyzed in terms of
porosity and pore-pressure at depth successively (Rossi et al. [104]).

In an effort to correct GNSS observations for hydrologic effects Boy
[105], was concerned with the GLDAS (Global Land Data Assimilation
System) soil moisture model lacking groundwater and surface water
components. Surface water storage was derived from river water
elevation estimates, which was used as proxy for runoff outputs from
a hydrologic model. The river water height was inferred from the river
width, which can be derived from MODIS (Moderate Resolution Im-
aging Spectroradiometer) remote sensing images. The entire conti-
nental water storage, sum of soil-moisture, snow and modeled surface
water, is found to better explain GNSS surface displacements and is in
better agreement with GRACE, compared to the GLDAS model.

The Geodynamic Observatory Moxa in Thuringia, Germany
houses strain and tilt meters, gravimeters installed starting from
1990, and is fully equipped with environmental monitoring sta-
tions, with time series over 15 year long. These include snow, soil
moisture and water table observations. The correlation between
induced deformation and environmental parameters was found in
many cases. The order of magnitude of a transient strain after
strong rain fall is 300 nstrain on the strainmeter, with 40 mm
groundwater transient rise, and very similar time evolution among
the two quantities (Jahr [22]). The interpretation of the SG of Moxa
requires detailed modeling of the soil moisture, hydrology, snow
cover, integrated in a high resolution digital terrain model of the
building, the soil above its roof and the terrain (Weise and Jahr
[23]). The correction of the SG time series with the above param-
eters improves correlation to GRACE. The study demonstrates that
GRACE cannot be used to correct the geodetic observations for
hydrologic effects, since the local influence can be preponderant.
Further the GRACE signal is a low pass filtered version of the
existing gravity changes, with a cut off filter wavelength of at least
330 km (assuming N = 120 as the maximum observed degree in the
spherical harmonic expansion).

2.7. Instruments and software developments

Innovations in instrumentation and software are important for
the researchers working on the data as well as for the innovation of
existing laboratories. The presentations ranged from gravity meter
developments including atom interferometric gravimeter, the
efforts in China to build a new GOCE-type satellite, to the inter-
ferometric fluid level tiltmeter, to software innovations in acquiring
and analyzing geodetic data.

A modern version of the interferometric Michelson-Gale (M-G)
type water level tilt meter (named NSiWT, 50.4 m length) has been
developed and built at the Finnish Geodetic Institute (FGI) in
2000—2007. The tiltmeter has been recording continuously in
Lohja2 geodynamic station (Tytyri mine), Lohja, Finland since 2008
(Ruotsalainen [106]). The Fizeau-Kukkamaki type level in-
terferometers guarantee stable internal scale [12,13]. Thermal
expansion and eigenfrequency of the instrument have been
modelled for suitable physical conditions at the recording site by
(Ruotsalainen [107]). Primary research goal is to validate ocean tide
loading models from the Baltic Sea and atmospheric tilt loading
models through NSiWT tilt observations for high precision geodesy
and Earth modeling. Recently a new M-G type one end prototype
tilt meter with 5.5 m length, was built at the FGI in cooperation
with the Geodetic and Geophysical Institute (GGI), Hungarian
Academy of Sciences (HAS), Sopron, Hungary (owner of the in-
strument). The M-G type prototype tilt meter (named W_iWT) was
installed 2014 in cooperation with GGI in the Conrad geophysical
observatory, which is operated by the Central Institute for Meteo-
rology and Geodynamics, Austria (Ruotsalainen et al. [16,108]). First
results from comparison with a parallel recording Lippman type 2D
tilt meter of the GGI (HAS) are promising (Ruotsalainen et al. [ 108]).
Effects of water extraction from wells were observed on a laser
strainmeter in Moscow, where weekly cycles were observed
reflecting water consumption habits of the population (Volkov et al.
[109]). Atmospheric pressure systems as those that arise with
tropical cyclones were analyzed in terms of deformations in
strainmeters and tiltmeters. The possible effect of the loading on
microsesimicity was also analyzed (Volkov et al. [110]).

The Geodynamic Observatory Moxa has continuous tilt, exten-
sometric and gravity monitoring instrumentation. The unequivocal
effect of a pressure wave induced by injection or extraction during a
drilling experiment into a borehole placed not far from the obser-
vatory was discussed by Jahr [22]| showing the correlated signals
found in the strain instruments compared to the groundwater
changes. The compressional wave induced a transient compression
on strain, and uplift of the soil above the borehole, with consequent
tilting of the surface away from the borehole. Both the signals were
well seen on the tilt and strainmeters, with reverse effects observed
when water was extracted in the borehole.

The automated Burris gravimeter was discussed and its proper-
ties in terms of resolution, repeatability, and drift rate (Jentzsch et al.
[111]) was analyzed. The resolution in continuous reading mode is
0.0001 mGal, with a worldwide measuring range of 7000 mGal, and
drift is approximatly 1 mGal/month for a new instrument, lowering
to less than 0.3mGal/month for a mature system. Earth tides and
free oscillations generated by a major earthquake were shown to be
reliably measured. A new control software installed on a portable PC
integrates the gravimeter control and data acquisition with data
from a pressure gauge and a GPS sensor. A further improvement
concerns the feedback control-system of the gravimeter, which re-
sults in an overall better instrumental performance in terms of ac-
curacy. The new software is also capable of making the tidal and
drift corrections and importing the terrain gravity effect for the
observation stations (Schulz et al. [112]). A few studies were con-
cerned with the calibration of superconducting gravimeters through
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common location of instruments as vertical seismometers (Luo and
Xu [113]), absolute gravity meters (Crossley et al. [114]), and the
critical review of the step response method for the empirical
determination of the transfer function by relative comparison of
collocated superconducting gravimeters (Wziontek [115]). Signifi-
cant discrepancies were found which could not be confirmed by
cross-correlation of the regular signal, demonstrating that the
applied method may disturb the system, depending on the initiali-
zation of the sensor. The topics are technical and concern the
detailed construction of the SGs, the properties of the internal filter,
the feedback system and their frequency transfer function.

A useful software for the treatment of time series observations
from a geodetic instrument is the PreAnalyseExtended, a graphical
user software useful for the data screening, management and analysis
of general data acquired from geophysical instrumentation by Geba-
uer [116]. Tools include interpolation of data-gaps, data steps and
spike handling, data calibration, filtering, detrending and geophysical
modeling as tidal modeling and Sagnac-frequency modeling for the
ring-laser. Tools for data management, including log book and visu-
alization, are included. The software is platform-independent and can
be enriched with user-written data-analysis modules.

An innovative service for continuous geodetic monitoring
consists in installing single-frequency GNSS receivers, which are
analyzed with the free and open software goGPS, and providing a
dedicated monitoring unit (Geoguard). The goGPS implements an
extended Kalman filter, with GNSS code and phase observations as
input (Caldera et al. [117]). The displacements are retrieved at mm-
level (Sampietro et al. [118]).

3. Conclusions

The International Symposium on Geodynamics and Earth Tides
is an interdisciplinary gathering of researchers discussing on all
aspects that affect high precision geodetic monitoring. The one-
session structure allows maximum discussion, and a relatively
large audience of over 100 international specialists. The scientific
innovations are distributed between instrumentation, the experi-
mental proof of theoretically predicted signals, and methodological
innovations. The studied phenomena are all dynamic, which
requires continuous monitoring of the particular signals and the
time-lapse study of the observed time-series. Many of the investi-
gated topics are relevant to the well-being of modern society, that is
vulnerable to hazards posed by earthquakes, volcanism, subsidence
or inflation, Earth rotation changes, climatic changes and by
hazards due to mining, induced seismicity, land-slides. The 18th
International Symposium on Geodynamics and Earth Tides
demonstrated the general relevance of these topics and the
importance to increment the diffusion and awareness of the
globally distributed monitoring stations.

Useful links

IGETS terms of reference: http://igets.u-strasbg.fr/Documents/
IGETS_ToR.pdf.

IGETS, 2017: http://igets.u-strasbg.fr/index.php.

IGETS database, 2017: http://isdc.gfz-potsdam.de/igets-data-
base/.

BIM Earth Tides Bulletin: http://www.bim-icet.org/.

GNSS cost-effective monitoring: http://www.gogps-project.org/,
http://[www.geoguard.eu/.

Ocean loading [41]: https://igppweb.ucsd.edu/~agnew/Spotl/
spotlmain.html.

TIGA-GNSS network: http://adsc.gfz-potsdam.de/tiga/.

Wettzell Observatory, Germany: https://www.bkg.bund.de/EN/
Home/home.html.
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