An Effective and Efficient Algorithm for Supporting
the Generation of Synthetic Memory Reference
Traces via Hierarchical Hidden/Non-Hidden Markov
Models

Abstract—Trace-driven simulation is a popular technique use-
ful in many applications, as for example analysis of mem-
ory hierarchies or internet subsystems, and to evaluate the
performance of computer systems. Normally, traces should be
gathered from really working systems. However, real traces
require enormous memory space and time. An alternative is
to generate Synthetic traces using suitable algorithms. In this
paper we describe an algorithm for the synthetic generation of
memory references which behave as those generated by given
running programs. OQur approach is based on a novel Machine
Learning algorithm we called Hierarchical Hidden/non Hidden
Markov Model (HHnHMM). Short chunks of memory references
from a running program are classified as Sequential, Periodic,
Random, Jump or Other. Such execution classes are used to train
an HHnHMM for that program. Trained HHnHMM are used as
stochastic generators of memory reference addresses. In this way
we can generate in real time memory reference streams of any
length, wich mimic the behaviour of given programs without the
need to store anything. It is worth noting that our approach can
be extended to other applications, for example network or data
storage systems. In this paper we address only the generation
of synthetic memory references generated by instruction fetches.
Experimental results and a case study conclude this paper.

Keywords:

Trace-driven simulation, ergodic HMM, memory references,
execution classes, synthetic memory references, spectral anal-
ysis.

I. INTRODUCTION

One of the problems with trace driven simulation is that
trace collection and storage are time and space consuming
procedures. To collect a trace, hardware or software monitors
are used. The amount of data to be saved is of the order of
hundreds or thousands of megabytes for some minutes the
program executions. This is necessary to produce reliable re-
sults [29]. Due to the large amount of data to be processed the
computer time is also very long. Several techniques have been
proposed to reduce the cache simulation time: trace stripping,
trace sampling, simulation of several cache configurations in
one pass of the trace [50] and parallel simulation [27] [42]
[3]. Synthetic traces have been proposed as an alternative to
secondary-storage based traces since they are faster and do not
demand disk space. They are also attractive since an they could
be controlled by a reduced set of parameters which regulate the

workload behavior. The problem of Synthetic traces is that it
is difficult to exactly mimic the real behavior of the addressed
program, thus limiting the use of the traces to early evaluation
stages. Many studies, for example [18] [51], have highlighted
the difficulty to exactly describe original characteristics of the
memory references, such as locality, with analytic models.

In this paper we use a machine learning approach for
describing collected traces. In particular, a specific type of
Markov Model (MM), the Hierarchical Hidden/non Hidden
HHnMM, where each state of MM is linked to an HMM for
producing sequences of labels, not just labels as in standard
HMM, has been worked out. This approach is attractive
because on one side the behaviour of the execution is learned
by the model to ensure by machine learning that the artificial
sequence will mimic the behaviour of the original execution
and on the other side, making use of the generation charac-
teristic of the Ergodic Hidden Markov Models, sequences of
any lengths can be generated. The machine learning framework
requires that a suitable feature representation of the executions
is provided, as we will describe shortly. Our approach consists
of a learning phase, where a real trace is analyzed with the
aim to derive the features for training the HHnMM, and a
generation phase, where a synthetic trace is generated from
HHnMM.

The rest of this paper is organized as follows. In Section II
we report some previous research in synthetic trace generation
area. In Section III our approach for the generation of synthetic
traces is highlighted and in Section IV the reference patterns
generated by instructions in execution are discussed. Section
V deals with our Hierarchical Hidden/non Hidden Markov
Models while Section VI we describe how the synthetic traces
are generated. In Section VII some experimental results are
reported and in Section VIII a case study is described. Finally,
Section IX contains some final remarks.

II. RELATED WORK

Noonnburg and Shen presented in [45] a framework which
models the execution of a program on a particular architecture
with a Markov chain. Moreover, Noonburg and Shen don’t
model memory dependencies and assume only one depen-
dency per instruction. Carl and Smith [9] propose a hybrid
approach, where a synthetic instruction trace was generated

based on execution statistics and fed into a trace-driven
simulator. In [17], Eeckhout ef al. present an algorithm which
is a continuation of the work initiated by Carl and Smith
by suggesting several improvements: incorporating memory
dependencies, using more detailed statistical profiles and
guaranteeing syntactical correctness of the synthetic traces.
In particular they estimate instruction mixes, branches and
dependencies to build a detailed profile. As a result, the
performance prediction reported in this paper are far more
accurate than those reported in [9].

One of the earliest authors that proposed the generation of
memory references using stochastic approaches was Denning
et al. [15]. They exploited the Independent Reference Model
(IRM), proposed the previous years by the same authors, based
on the assumption that memory references are independent
random variables with stationary probabilities. However, IRM
fails to capture the locality of memory references as it ap-
pears in a real trace. Thiebaut et al. [51] describe stochastic
approaches for generating synthetic address traces that produce
good replication of the locality of reference presented in real
programs. They introduce locality in memory references by
modeling the probability distribution of the jumps between
consecutive memory references and by using such probability
distribution to generate new memory references. Their algo-
rithm uses the working-set size and locality of reference. Since
the working-set changes during the execution of a program,
this value is adaptively estimated.

Agarwal et al. describe in [30] an algorithm based on a two-
state Markov chain. The first state produces sequential memory
references and the second state generates random references.
State transition is driven by data extracted from the real trace.
However, the authors show that also their algorithm does not
capture sufficient temporal locality.

Sorenson et al. [49] highlight the need to capture both
spatial and temporal localities from a real trace. They analyze
various known ways to visualize the locality in real traces
and use them to evaluates some existing synthetic trace
models. The authors study the Least Recently Used Stack
Model (LRUSM) and other models but report poor cache
performance.

Berg et al. [4] use the reuse distance to capture trace locality
and applies the distribution to a probabilistic cache model
to estimate the miss ratio of fully-associative caches. The
reuse distance is the number of intervening memory references
between identical references. However, the assumption that the
larger the reuse distance, the higher the probability of a cache
line removal is not necessarily true, at least for synthetic trace
generation. The intermediate accesses could all be to the same
memory location and a large reuse distance would not reflect
this pattern.

Mattson et al. in [41] study the locality in terms of LRUSM,
which is a natural representation of least recently used be-
haviour. LEUSM is based on the stack distance, which is
the number of unique intervening memory references between
identical references and is a very effective measure of temporal
locality.

Grimsrud analyse in [21] the efficiency of the stack dis-
tance model in preserving temporal locality using his locality
surfaces.

In [5] Brehob et al. use the stack distance model to
implement a probabilistic cache model to evaluate miss ratio.

However, the works described in [41], [21], [S] do not anal-
yse the efficacy of the LRUSM in the generation of synthetic
traces for trace-driven simulation of cache memory. In this
paper, we implement an algorithm adapted from the LRUSM
and use it to characterise the spatio-temporal characteristics of
application workloads. The profile data is passed to a Markov
stochastic model which generates memory references through
a dynamically ordered FIFO scheduler driven by a pseudo-
random number generator.

III. METHODOLOGY OVERVIEW

For performance analysis of the memory subsystem of a
new computer system, we may generate a long sequence of
memory references from some given testing application. Gen-
erally this require to store the long sequences on a disk, which
may occupy many gigabytes of disk space. This may lead
to disk space unavailability or data transfer delay problems.
The alternative approach is to artificially generate a sequence
of memory references similar to that required by the same
given software application. In Figure 1, we summarize the
trace analysis algorithm described in this paper.

Trace Analysis

execution Division in frames Estimation of
- Memprt;{ Reference | and classification in —= values associated to|
acquisTtion execution classes the execution class

Estimation of
execution classes
Markov Model

Estimation of
values HMM

Fig. 1: Trace analysis algorithm

First of all we must reduce the memory references produced
by an application to a simpler representation. Thus, we divide
the memory references sequence in frames, and each frame
is classified as belonging to some execution classes, for
example Sequential or Periodic. The execution classes are
easily estimated from the reference traces. The sequence of
memory references is thus transformed into a sequence of
execution classes, which is a sequence with very few labels.
This sequence is modeled with an Ergodic Markov Model,
which is the Non Hidden part of the model. To each state
of this MM, an Ergodic Hidden Markov Model is linked,
for modeling the sequence of values associated with each
execution class. For example the Periodic execution class
is associated to the value of Period, or Loop width, which
may change for each periodic frame. Once the non Hidden
and the Hidden Markov Models are trained, artificial memory
reference sequences can be generated by using the generation
characteristic of the Markov Models. Namely, starting from an
initial node of the MM which describe the execution classes,

we generate a sequence of values associated to the execution
class by visiting the associated HMM. The generation of
synthetic memory references is summarized in 2.

Trace Generation

Set an initial node of
execution classes MM

Get the link to the
associated values
Hidden MM

Synthetic Trace
of Memory References

Generate a
sequence of values

State transition of
execution classes
Markov Model

Fig. 2: Synthetic trace generation algorithm

For example one may want to generate the memory ref-
erences generated by the C compiler, gcc. The key of our
algorithm is that the compiler produces somehow different
memory references when used to compile different C sources.
The different memory references sequence anyway should
contain a common structure because the same compiler gcc
is used.

IV. DESCRIBING EXECUTIONS FROM MEMORY
REFERENCES

In this Section, we deal with the identification of the
type of execution starting from the sequence of the mem-
ory reference patterns captured from the running programs.
Memory reference patterns have been studied in the past by
many authors with the goal to improve program execution
on high performance computers or to improve memory per-
formance. in [6] Brewer et al. developed software tools to
assist in formulating correct algorithms for high-performance
computers and to aid as much as possible the process of
translating an algorithm into an efficient implementation on a
specific machine. Tools to understand memory access patterns
of memory operations performed by running programs are
described also by Choudhury et al. in [13]. Such studies are
directed towards the optimization of data intensive programs
such as those found in scientific computing.

Other works, for example [22], [32], [37] and [43], have the
goal to improve memory performance, since memory systems
are still the major performance and power bottleneck in com-
puting systems. In particular, Harrison ef al. describe in [22]
the application of a simple classification of memory access
patterns they developed earlier to data prefetch mechanism
for pointer intensive and numerical applications. Lee et al.
exploit the regular access patterns of multimedia applications
to build hardware prefetching technique that is assisted by
static analysis of data access pattern with stream caches.

Several papers by Jongmoo Choi et al., namely [10], [11],
[33], [36], [12], analyze streams of disk block requests. Jong-
moo Choi et al. describe algorithms for detecting block refer-
ence patterns of applications and applies different replacement
policies to different applications depending on the detected
reference pattern. The block reference patterns are classified as
Sequential, Looping, Temporally clustered and Probabilistic.

We remark that while the works reported above in this
Section studied the way data is read or written into memory, in

this paper we are interested to know how the instructions are
fetched in memory during execution. Data memory reference
patterns are important for memory or computation perfor-
mance reasons. For us, instruction memory reference patterns
are important for the generation of synthetic memory reference
traces.

A. Instruction Memory Reference Patterns

Memory reference patterns generated by instructions have
been studied in the past by several researcher, for example
by Abraham and Rau [1], who studied the profiling of load
instructions using the Spec89 benchmarks. Their goal was to
construct more effective instruction scheduling algorithms, and
to improve compile-time cache management. Austin et al [2]
profiled load instructions while developing software support
for their fast address calculation mechanism. They reported
aggregate results from their experiments, not individual in-
struction profiles.

We recall that our approach for generating artificial traces of
memory reference consist in the analysis of the real memory
reference patterns generated by an application, and in building
a stochastic model of the memory reference patterns. For this
purpose the memory reference sequence must be described ap-
propriately. Therefore we divide the original sequence in short
frames, and we detect the type of the underlying execution. It
is worth observing that the detection of loops, and the measure
of the related period, highly dependson the frame size, because
if the frame size is shorter than the period, it is impossible to
detect that the address stream is periodic. However, in this
case we still can capture the locality of the original memory
reference sequence during the generation of synthetic memory
references phase, as we will describe shortly.

Clearly, the first type of execution one can think about is
Sequential. Thus we first use a sequentiality testy, described
shortly. If the frame is not sequential, we apply a periocity
test to see if the sequence is Periodic, which means that
the instructions which generate the memory addresses is of
type looping. For example, consider the following matrix
multiplication code, which is of course made of nested loops.

// Multiplying matrices a (4x3) by b (3x4)
// storing result in ’'result’ matrix
for (i=0; i<4; ++1)
for (3=0; Jj<4; ++3)
for (k=0; k<3; ++k)

result[i] [jl+=ali] [k]Ixb[k]I[J];

Fig. 3: Matrix multiplication example

The instructions of this example make memory accesses that
we capture with the PIN binary instrumentation framework
[40]. To this purpose we use the itrace Pintool, that prints the
address of every instruction that is executed. In Figure 4 we
show a part of the memory reference pattern generated by the
matrix multiplication code.

We see a first burst of periodic addresses, from virtual time
100 to virtual time 350 approximately. This is the code which

Memory Reference Pattern of Matrix Multiplication Example

x
4.1981 T T T T T T T T T

4106

4.1950

4.1958

Addresses [Bytes]

41957

41958 =

4.1955 L 1 1 L L L 1 1 L
0 100 200 300 400 500 600 700 800 200 1000

Virtual Time

Fig. 4: Memory references generated by the matrix multipli-
cation example

resets the (4a4) result matrix. The actual matrix multiplication
starts from virtual time 375 approximately.

The second example we discuss in this paper is related to
indirect addressing used to access numeric vector. In the code
included below, c[] is a sparse array and d[] is its index array.
This example is taken from [22], page 8.

//access to sparse array
//cl]l=sparse array. d[]=index array
i=head;
x=c[1i];
while (i) {
x += c[d[i]];
dfli];

i =

Fig. 5: Indirect address access example

In Figure 6 we show a part of the memory reference
pattern generated by the numeric vector accessed with indirect
addressing code. The pattern shows a periodic behaviour, due
to the while instruction. The access parts are only variable
accesses.

Another aspect of this example we want to highlight is the
following. We performed the generation of the index array in
two ways, a deterministic and a random one. The deterministic
generation code produces the memory references shown in
Figure 6 while the memory references produced by random
generation are shown in Figure 7.

The difference among the two patterns is that in the random
case we note that the addresses change abrutly at several
virtual time instants. This is due to the calls to the subroutine
rnd, which is a routine running at the user level. The amount
of address change would have been much greater if a system
call like an I/O routine had been made. Therefore, the third

. Indirect Addressing
4.1963 T T T T T

4.1962

41962

4.1961

Addresses

4196

4196h

41959 1 L L L L L
0 1000 2000 3000 4000 5000 6000 7000

Virtual Time

Fig. 6: Memory references of the indirect access example via
deterministic generation

o Index Generation without RND 10 Index Generation with RND

Addresses [bytes]
s [bytes]

Address:

Fig. 7: Memory references of the indirect access example via
random generation

type of instruction is Jump. It is detected when the value of
the addresses change greatly during a frame, which can be
detected using a threshold. A Jump can be due to a branch in
the code, or to a subroutine call or return.

The fourth type of instruction sequence is Random. It can be
detected using a test for randomness. If no test gives a reliable
output, then the frame is established to come from a sequence
of instructions called Other, which is the fifth execution type.

B. Automatic Classification of Memory Reference Patterns

In this Section we describe the algorithms we used for the

four tests.

1) Sequential Pattern. We classify the frame execution as
Sequential as explained in the following. The values x;
of the memory reference addresses in a frame of length
N are represented by the array F'rame reported in (1).

Frame = [T, Tis1, Tiyo, ., Tign—1, Tign| (1)

The differences between adjacent memory address ref-
erence values are represented by the array A reported

Address References [KBytes]

in (2).

A= [(@ip1 — i), (Tive = Tig1)s o, (Tip N — Tign-1)]

2
If all the values contained in the array A are positive,
then F'rame is monotonic ascendent and it is classi-
fied as Sequential. Note that in this way a sequential
frame can contain also ascending jumps. We assume
that the monotonic test is performed by a software
routine whose input argument is F'rame. Our routine is
called Sequential(Frame), and has a boolean output,
namely true if the frame is sequential, false other-
wise. The Slope value of sequential frames is easily
found as the inclination angle of sequential patterns.
Slope sequences are then used to incrementally train
the Hidden Markov Model HmmS using a routine
HmmS = Inc_Train(HmmS, Slope).

2) Periodic Pattern. The frame periodicity, and hence its

26.

N

26.6|

26.5'

period, is determined with standard spectral techniques
used in signal processing for looking for signal har-
monicity [38]. More precisely, given a frame of memory
reference addresses as reported in (1), we weight its
values with an Hamming Window [46], and we compute
a Fast Fourier Transform [14] on it. The periodicity is
detected by finding the relevant peaks in the spectrum
amplitude and by looking for an harmonic structure of
the peaks. For example, in Figure 8 we show a frame
of size equal to 100 virtual ticks, taken from a memory
reference sequence, with a clear periodic pattern. In the
right pattern of Figure 8 we show the spectral amplitude
of the windowed frame. In this case, the harmonicity can
be easily detected. The first harmonic is the fundamental
frequency of the frame is called fj.

Periodic Execution Class Frame Periodic Frame Spectrum
T

87,9

T T T

e

Spectrum amplitude [dB]

\\/N e

t \ t T i i i i
0,03 006 009 012 015 0,18 021 024

[
0 10 20 30 40 50 60 70 80 90 100
Frequency [Hz]

Virtual Time Ticks

Fig. 8: Spectral analysys of a periodic frame.

Since the harmonic structure shows a fundamental fre-
quency equal to fy = 0.03 Hz, the period of the
periodic pattern is evaluated as 1/fy = 33,3. In our
case the frame periodicity is computed by a software
routine we call Bounce(Frame). Also this routine
has a Boolean output, namely true if the frame is
periodic and false otherwise. The value of the period is
estimated by the routine called FindPeriod(Frame).
The values of periods are used to incrementally train the
Hidden Markov Model HmmP as follows HmmP =
Inc_Train(HmmP, Period) .

3) Random Pattern. Many tests have been devised to verify

the hypothesis of randomness of a series of observations,
i.e. the hypothesis that NV independent random variables
have the same continuous distribution function [34].
Our randomness test belongs the class of quick tests
of the randomness of a time-series based on the sign
test and variants [8]. This class of tests considers a
series of N memory reference observations as that
reported in (1) and the difference array reported in (2).
If the observations are in random order, the expected
number of plus or minus signs in (2) is (N —1)/2. The
variance of (2) is (N +1)/12 and the distribution rapidly
approaches normality as [V increases. We then compute
mean and variance of the sequence shown in (2) and
we infer the frame randomness based on the similarity
of the computed mean and variance with the expected
ones. More precisely, we estimate the frame randomness
with the routine called Random(Frame).

Once the randomness of a frame is established, its
statistical distribution should be estimated for synthetic
generation purposes. The discrete statistical distributions
of the random variables z;of the i-th frame are estimated
by computing the Histograms of the frame itself. In
a first step the original trace is analyzed until enough
random frames are collected. For each random frame,
its Histogram is computed. These Histograms divide
the minimum — maximum range of the frame values
in sixteen Bins, whose size is clearly (max —min)/16.
Each Bin contains the number of values occurring in
each interval divided by the frame size, say NN, in order
that the cumulative sum of Histogram is one. Complete
information about the ¢-th random frame is contained in
the Stat(i) array reported in (3), which concatenates the
Histogram values with the max and min values of the
frame. In (3), hy(7) is the k-th Histogram value out of
sixteen, i is the random frame index and max (i), min(i)
are the maximum and minimum of the ¢-th random
frame.

Stat(i) = [h1(i), ha(i), ..., hie(i), max(i), min(i)]

3)
All the obtained Stat(i) arrays are combined in a
Codebook structure using standard clustering tech-
niques [20]. In this way, all the random frames in
the trace can be represented. We use a routine called
CodeBook = CB(H, max,min) for that purpose.
Vector quantization of Stat(i) means that each ran-
dom frame is represented by an the index that cor-
responds to a minimum Euclidean distance between
Stat(i) in the trace and the Codeword correspond-
ing to the index. We code Random frames by the
routine Code = VQ(CodeBook, H,max, min). The
code sequence is used to incrementally train the Hidden
Markov Model HmmAR with the routine HmmR =
Inc_Train(HmmR, Code).

4) Jump Pattern. The determination of Jump patterns is
straightforward. The difference between the values of
the last and the beginning memory reference addresses
of the frame is computed. If the difference is greater
than a pre-established threshold the frame is classified
as Jump. The Jump values are used to incrementally
train the Hidden Markov Model HmmJ. We decide
if the frame contains a jump or not with the routine
Bounce(Frame)). The jump value is used to incre-
mentally train the Hidden Markov Model HmmJ with
a routine HmmJ = Inc_Train(HmmJ, Code)..

The algorithm for Automatic Classification of Memory
Reference Patterns is described in the pseudo-code reported
in Algorithm 1. In Algorithm 1 we assume that the memory
reference stream is divided in short frames with a length
ranging from 20 to 100 virtual time ticks typically. We find
the right length empirically during an initial analysis of part
of the original trace. The initial analysis is also needed for
building the CODEBOOK. The symbols act_state, pre_state
are the actual and previous states of the first level Markov
Model with five states, namely S, P, R, J and O. The sym-
bols Hmm.S, HmmP, HmmR, HmmJ, HmmQO are the five
Hidden Markov Models which represent the Slopes sequences
for Sequential, the Period sequences for Periodic, the
Codeword sequences for Random frames, Jump sequences
of Bounced frames and Other frames sequences of execution
classes respectively.

V. HIDDEN/NON HIDDEN MARKOV MODELS (HNHMM)
A. Modeling Memory References by HnHMM

A memory reference sequence generated by an application
is divided in frames and the execution in each frame is
classified as Sequential, Periodic, Random, Jump or Other.
Each classified execution is accompanied by a sequence of
number. For example each sequential frame is accompanied
by its slope, each periodic frame by its period, each random
frame by its histogram, it Jump frame by the value of the
jumps and if he frame is classified as Other, by the frame
itself. The situation is represented for example in Figure 9. In
this example, we have a sequence of three sequential frames
whose slopes are 4,5,4 followed by five periodic frames
whose periods are 8,8, 8,9, 8.

To model such complex signal we use a particular form of
Markov Models, the Hierarchical Markov Models.

B. HnHMM Topology

Hierarchical Hidden/Non Hdden Markov Models
(HHnHMM) are multi-level stochastic models devoted
to generation of stochastic processes. Like Hierarchical
Hidden Markov Models [35], [52], [7], [19], [48], HHnHMM
emits sequences rather than a single symbol. As shown in
Figure 10, HHnHMM are formed by a first level by a Markov
Model, where the state sequence is observable, connected to
several HMM where the states are not observable (Hidden) at
a second level.

Algorithm 1 FrameClassification Algorithm

Input: Frame, pr_state, N,
Output: HmmS, HmmP, HmmR, HmmJ,
HmmO, pre_state;
if Sequential(Frame) then

act_state = P;

Slope = (Frame[N] — Frame[l])/N;

HmmS = Inc_Train(HmmS, Slope);
else if Periodic(Frame) then

act_state = S;

Period = FindPeriod(Frame);

HmmP = Inc_Train(HmmP, Period);
else if Random(Frame) then

act_state = R;

H = Histogram(Frame);

CodeBook = CB(H, mazx, min);

Code = VQ(CodeBook, H,max, min);

HmmR = Inc_Train(HmmR, Code);
else if Bounce(Frame) then

act_state = J,

Jump = x4 N — T4

HmmdJ = Inc_Train(HmmJ, Jump);

else

act_state = O;

HmmO = Inc_Train(HmmO, Frame);
end if

MM = Inc_Train(M M, act_state, pre_state);
prestate = actstate;

return HmmS, HmmP, HmmR, Hmm.J,
HmmO, M M, pre_state;

SSSPPPPP

45488898

W_JW—’

sequential periodic

Fig. 9: Example of the memory reference sequence after frame
division and classification

Execution Classes MM
Level 1

HmmS HmmP HmmR HmmJ HmmO

Level 2

Fig. 10: The two levels of Hierarchical Hidden Markov Model

In Figure 11, finally, we report an extended topology of our
HHnHMM. Each state of the MM points to a HMM. In this
figure the hidden / observale structure is shown.

Fig. 11: Hierarchical Hidden Markov Model topology

C. Learning HHnHMM Parameters

First of all we give a formal description of our HHnHMM.
Let 31, 35 be finite alphabets. In this paper we assume »; =
{S,P,R,J,0} and X5 € N. Let us denote X5 the set of
all the possible finite strings over 5. We call Observation
sequence O, a finite string of the type O = y17y2 - - - yr where
the elements -y; are pairs as shown in (4).

In the pairs shown in (4), o« € ¥y and 8 € X35. For
example, from Figure 9, O = (.5, 454)(P, 8898) and so forth.
A state of HHnHMM is denoted by ¢¢ where i is the state
number and d is the level. In our case d € {1,2} and
i€ {1,2, -+ ,maZstate} Where maxsiqte is the maximum
number of states among the two levels. The first level M1>/[
is of course governed by a transition matrix A" = [af;]
with d = 1. Bach element of the matrix A?" is the transition
probability to go from state 7 to state j, or af; = Prob(qf|q;’)
with d = 1. At the second level there are some pretty standard
HMM, each with its own transition matrix Azd = agj with
d = 2. In each element of Azd, with d = 2, the index £k,
k=1,2,---,|31|, is the number of HMM, being |¥;| the
size of the set X;. Moreover, qd with dk: 2, is the generic

state of the second level HMM and a?j = Prob(qgk|qfk)
with d = 2, is the transition probability between states ¢ and
7 in the k-th second level HMM.

The first level Markov Model has associated transition
probabilities for going from the first to the second levels. As
a matter of fact, these probabilities are the initial probability
distribution of the second level HMM. In other words, there

is an initial probability distribution matrix 7% whose elements
are

2) 1
W?j = PTOb{qj lg; } (5)

where ¢ is a state number of the first level MM and j is a state
number of the second level HMM.

The training of the first level MM is performed in this way:
in a matrix of size |X1| x |X;], we accumulate the number of
transitions of each state to another state of the same level. In
this way we measure the numbet of transitions of the state, say,
’S’, to itself and to all the other states of the first level. The
same holds for all the other states. All the matrix elements, at
the end, are divided by the total number of transitions.

The second level Hmm are Ergodic, with a termination
state, which is a state that is accessed when the input training
Observation terminates. It is relatyed therefore to the length
of the observation sequences. When the termination state is
reached, then the second level HMM returns back to the first
level state from which it started. The training of the second
level HMM is performed using pretty standard approaches,
which have the goal to estimate the HMM parameters in order
to maximize Prob(O|\), where A represents the HHnHMM
parameters in short. Prob(O|\) is the likelihood that the
model A generates the observation sequence, as summarized
hereafter.

The parameters are obtained through the EM approach; it
is worth noting that the re-estimation formulas depend on the
type of HMM, i.e. discrete or continuous. Let us denote by
&:(1, 7) the probability of being in state ¢ at time ¢ and in state
7 at time t+ 1, given the model and the observation sequence,
and by ;(¢) the probability of being in state at time ¢ given
the entire observation sequence and the model. Then, it can be
shown [47] that for discrete HMM, the transition probabilities
and the emission probabilities can be computed as reported in
6.

T = ’Yo(i)
1,] T T -
Zt:l 'Vt—l(Z) (6)
bik) = 2t<0i=u 1)

Yo ve(d)

where vy, is the observed symbol occurring in state i, in our
case the elements « described above.

In continuous HMMs, each state is not characterized by a
discrete probability distribution but by a continuous probability
density function, which is usually a multivariate Gaussian, i.e.:

100 = G o (g 0T =))

where x is the M -dimensional aleatory vector, vector u and
matrix I' respectively the mean and the variance of the M-
dimensional Gaussian density.

It can be shown [47] that the re-estimation formula for mean
and variance are of the form:

_ il ke
iy (k)
S el k) (00 = i) (00 — prie)”
Zle Vt(iv k)
VI. SYNTHETIC TRACE GENERATION

Mk
3

Vi, k

The approach described in this paper is divided in analy-
sis/generation stages. In the analysis stage, original Memory
Reference Addresses traces are divided in frames whose
execution class is determined. Statistical models learn the
classified sequence by training. In the synthesis stage, the
trained statistical models are used to stochastic-ally generate
the synthetic traces. In particular, we use a Markov Model
to generate sequence of classes of execution captured from
he original Memory Reference Addresses. The classes are
Sequential, Periodic, Random, Jump and Other. During
trace generation, we start from a given initial Memory Address
and from it we reconstruct the execution classes seen during
analysis. For example, if we generate a Sequential frame, we
reconstruct a sequential sequence of addresses according to the
Slope value generated from HmmS. Similarly, to generate
periodic frames we reconstruct a periodic sequence of address
with a Period equal to the value generated by HmmP. The
general structure of the generation algorithm in reported in the
Algorithm 2.
Let us discuss in more detail a couple of issues related to
2. First of all, we summarize in the following points how the
generation of synthetic frames works.
1) Using the initial probability distribution for the first level
MM, start with an initial state;

2) Upon entering in a first level MM state, we find the
initial state of the associated second level HMM using
the initial probability distribution reported in (5);

3) Generate a sequence [until the termination state T is

reached;

4) Return to the first level MM and make a state transition;

5) Goto 2;

Secondly, let us summarize how the periodic frames are
generated is periodic, its values are given by the genPseq
routine The genPseq algorithm is described in Algorithm 3.

As reported in Algorithm 2, random sequences are gen-
erated by the genRseq(start,index, N) routine. Its inputs
are the Codebook index, the starting address and the frame
dimension. The Codewords are structured as reported in (3).
Using that information, the Cumulative Distribution Function
(CDF) is built from the Histogram and the max,min values by
cumulative sum. The resulting CDF has values from 0 to 1
while the abscissa values range from min to max. Also min
and max are stored in the Codeword. The CDF is stored in
an array data structure where the array indexes are mapped
from O to 1 and the corresponding array elements contain the
values of the cumulative distribution function. It is well known

Algorithm 2 SyntheticFrameGeneration Algorithm

Input: start, secondLevel M M Array, currentState;
Output: syntheticMemoryRe ference Frame;
get Actual State(first Level M M);
switch (currentState)
case S:
getNextSlope(HmmS);
seq = genSseq(start, slope, N);
start = last_seq_address;
case P:
getNextPeriod(HmmP);
seq = genPseq(start, period, N);
start = last_seq_address;
case R:
getNextCodeBookIndex(HmmR);
seq = genRseq(start,index, N);
start = last_seq_address;
case J:
getNextJump(HmmY);
seq = genJseq(start, jump, N);
start = last_seq_address;
case O:
get NextValues(HmmO);
seq = genOseq(start,values, N);
start = last_seq_address;
end switch
frame = seq;
return frame, start;

Algorithm 3 PeriodicFrameGeneration Algorithm

Input: start, period, N,
Output: syntheticFrame,last_address;
J=0;
for : = 1toN do
m = MODULO(i, period);
j=Jj+1L
if (m == 0) then
syntheticFrame(i) = start;
i=1
else
syntheticFrame(i) = start + j — 1;
end if
end for
last_address = syntheticFrame(i);
return syntheticFrame,last_address;

that the inverse transformation method is a general method for
generating random numbers from any probability distribution
given its cumulative distribution function [16]. In practice, for
each element of the frame, we take a random number from
0 and 1, we find the corresponding array index according to
the mapping, and return the number contained in the array
corresponding to the index. That is a random number generated
according to the statistical distribution of the original frame.

The whole synthetic trace is built concatenating the frames
generated as described in Section VI.

VII. EXPERIMENTAL RESULTS

We want to study if the algorithm is able to capture enough
locality from the original traces. The simplest way to do that
is to compare cache miss rate curves. We performed such
experiments using a cache simulator, in particular the Dinero
IV [31] and the benchmark suite SPEC2000 [28], [44]. Even if
this benchmark suite has been officially discontinued by SPEC,
still it is well suited to our purposes, as it is less demanding
than more recent benchmarks, like SPEC2006. In Figure 12,
Figure 13, Figure 14, and Figure 15, we report the miss-rate
results for the crafty, gzip, twolf, vortex SPE2000
benchmarks.

186.crafty benchmark

O original trace 1
O synthetic trace

Instruction Cache Miss-Rate [%)]

0 i a1 4
10 10* 10°
Instruction Cache Size [bytes]

Fig. 12: Original vs. synthetic instruction cache miss-rates for
crafty benchmark

VIII. CASE STUDY

In this Section we present the analysis of trace gcc by the
described algorithm.

In Figure 16, we report a section of the memory reference
trace obtained from the gcc benchmark. The values of address
references are reported in bytes versus time.

In Figure 17, we report the memory references obtained
with the described algorithm. Clearly the trace is different from
original. What we want to preserve, however, is the locality
of the addresses.

164 .gzip benchmark
25 T

ol O original trace i

O synthetic trace

Instruction Cache Miss-Rate [%)]

10* 10°
Instruction Cache Size [bytes]

Fig. 13: Original vs. synthetic instruction cache miss-rates for
gzip benchmark

300.twolf benchmark

25

2ok O original trace
O synthetic trace

Instruction Cache Miss—Rate [%]

0 L L

4

10° 10
Instruction Cache Size [bytes]

Fig. 14: Original vs. synthetic instruction cache miss-rates for
twolf benchmark

In Figure 18, we can see an histogram of the execution
classes extracted from the original sequence. The number of
frames classified as Other is the majority, which means that
in many case the automatic classifier is not able to decide if
the frame is sequentia, periodic, random or jump. However,
the algorithm classify half of the total frames.

In Figure 19, we report the cache miss rate of the synthetic
trace compared with the original. This result shows that the
algorithm is able to capture a good level of locality of gcc.

255.vortex benchmark

25

O original trace

20 O synthetic trace

Instruction Cache Miss—-Rate [%)]

1 n n n L
10" 10°
Instruction Cache Size [bytes]

Fig. 15: Original vs. synthetic instruction cache miss-rates for
vortex benchmark

Section of Gcc Memory Reference Trace

x 10°
6 T T T T T T
lorocmmt mpem om e @ PO r@imem ot
-—
5k e 7
sl
s Y o 1

BRI

kS
.
"

Virtual Addresses [bytes]

wr
)

Virtual Time

Fig. 16: gcc benchmark analysis: address references versus
time

IX. FINAL REMARKS AND FUTURE WORK

In this paper we describe an approach for workload char-
acterization using ergodic hidden Markov models. The page
references sequences produced by a running application are
divided into short virtual time segments and used to train an
HMM which models the sequence and is then used for run-
time classification of the application type and for synthetic
traces generation. The main contribution of our approach are
on one hand that a run-time classification of the running ap-
plication type can be performed and on the other hand that the
applications behavior are modeled in such a way that synthetic

<105 Synthetic Gecc Memory Reference Trace

35
. 'f o;‘ 3, oo
g;' R R
g VUL S CI N
— L2 s 4 tettl
0 IAEARTIE IS T
Q : R TR B A A Y Y
= 3 [} Y e
S 2 ATk
e 3, 44, 44 TR
— 5 } {s‘{s‘i
. -
0 -
o 2 . | — S
@ Ly 5 |
jul 2 M
3 5 . . i e
< TET RS - U Y v
RN ¥] ¥ I
— AR i vt
© ¢ :‘ :I 3 -J’t 3, " N
2 s RE ey 8,0,
£ % [i
~ * .
S oskh™ta s —_— 4
s 8 & ,——m—- .
. N, Y
ol=
0 1 2 3 4 5 6
. . 6
Virtual Time x 10

Fig. 17: gcc benchmark analysis: synthetic address reference

Histogram of the Memory Access Patterns of a GCC Execution
14000 T T T T T T

12000

10000

8000

6000

4000

Number of frames out of the total number

2000

X
30‘(\9 ox“e’

Fig. 18: gcc benchmark analysis: distribution of the execution
classes

benchmarks can be generated. Using trace-driven simulation
with SPEC2000 benchmarks, the mean classification rate is
about 82% for each traces and about 76% using a single HMM
to model a single application type. Many future developments
of our approach are possible since what we propose in this
paper — to use time-varying non-linear processing techniques
to treat sequences produced by programs during execution —
is a novel approach in computer architecture studies.

For instance, one can substitute HnHMM with stream clas-
sification methods e.g. [23], [26], [39] or streaming sequen-
tial pattern mining approach [25] to allow for a batch-free
adaptation to the sequences produced by programs during
the execution. A promising further direction that we want to
additionally investigate is to improve the synthetic trace gen-
eration by considering the end-to-end context of the process
that generates sequences out of program execution. In this

Instruction Cache Miss—Rate [%]

176.gcc benchmark

25 T T

O original trace 1
O synthetic trace

0 " P S S S S R

10* 10°
Instruction Cache Size [bytes]

Fig. 19: gcc benchmark analysis: original vs. synthetic in-
struction cache miss-rates for gcc

case, application of online stream process mining will help in
discovering the underlying process and adapt to it in real time
[24].

[1]

[2]

[3]

[4]

[5]
[6]

[8]
[9]

[10]

[11]

REFERENCES

S. G. Abraham and B. R. Rau. Predictingf low latencies using
cache profiles. Internal Report HPL94110, Compiler and Architecture
Research, pages 1-44, 1996.

T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi. Streamlining data
cache access with fast address calculation. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture, ISCA ’95,
Santa Margherita Ligure, Italy, June 22-24, 1995, pages 369-380, 1995.
L. Barriga and R. Ayani. Parallel cache simulation on multiprocessor
workstations. In Proceeding of the 22nd International Conference on
Parallel Processing, pages 3—11, 1993.

E. Berg and E. Hagersten. Statcache: a probabilistic approach to
efficient and accurate data locality analysis. In 2004 IEEE International
Symposium on Performance Analysis of Systems and Software, March
10-12, 2004, Austin, Texas, USA, Proceedings, pages 20-27, 2004.

M. Brehob and R. Enbody. An analytical model of locality and caching.
Michigan State University, pages 1-9, 1999.

O. Brewer, J. J. Dongarra, and D. C. Sorensen. Tools to aid in the
analysis of memory access patterns for FORTRAN programs. Parallel
Computing, 9(1):25-35, 1988.

H. H. Bui, D. Q. Phung, and S. Venkatesh. Learning hierarchical
hidden markov models with general state hierarchy. In Proceedings of
the Nineteenth National Conference on Artificial Intelligence, Sixteenth
Conference on Innovative Applications of Artificial Intelligence, July
25-29, 2004, San Jose, California, USA, pages 324-329, 2004.

C. Cammarota. The difference-sign runs length distribution in testing
for serial independence. Journal of Applied Statistics, pages 1-11, 2010.
R. Carl and J. E. Smith. Modeling superscalar processors via statistical
simulation. In In Workshop on performance analysis and its impact on
design, pages 3—11, 1998.

J. Choi, S. H. Noh, S. L. Min, and Y. Cho. An implementation study of
a detection-based adaptive block replacement scheme. In Proceedings
of the 1999 USENIX Annual Technical Conference, June 6-11, 1999,
Monterey, California, USA, pages 239-252, 1999.

J. Choi, S. H. Noh, S. L. Min, and Y. Cho. Towards application/file-level
characterization of block references: a case for fine-grained buffer man-
agement. In Proceedings of the 2000 ACM SIGMETRICS international

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

conference on Measurement and modeling of computer systems, Santa
Clara, CA, USA, June 18-21, 2000, pages 286-295, 2000.

J. Choi, S. H. Noh, S. L. Min, E. Ha, and Y. Cho. Design, implemen-
tation, and performance evaluation of a detection-based adaptive block
replacement scheme. IEEE Trans. Computers, 51(7):793-800, 2002.
A. N. M. 1. Choudhury, K. C. Potter, and S. G. Parker. Interactive
visualization for memory reference traces. Comput. Graph. Forum,
27(3):815-822, 2008.

W. Cochran, J. Cooley, D. Favin, H. Helms, R. Kaenel, W. Lang,
G. Maling, D. Nelson, C. Rader, and P. Welch. What is the fast fourier
transform? Proceedings of the IEEE, pages 1664 — 1674, 1967.

P. J. Denning and S. C. Schwartz. Properties of the working set model.
Commun. ACM, 15(3):191-198, 1972.

L. Devroye. Non- Uniform Random Variate Generation. Springer Verlag,
1986.

L. Eeckhout, K. D. Bosschere, and H. Neefs. Performance analysis
through synthetic trace generation. In International Symposium on
Performance Analysis of Systems and Software, pages 3—11, 2000.

D. Ferrari. On the foundations of artificial workload design. In Proceed-
ings of the 1984 ACM SIGMETRICS conference on Measurement and
modeling of computer systems, Cambridge, Massachusetts, USA, August
21-24, 1984, pages 8-14, 1984.

S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov
model: Analysis and applications. Machine Learning, 32(1):41-62,
1998.

R. Gray. Vector quantization. [EEE ASSP Magazine, pages 4 — 29,
1984.

K. S. Grimsrud, J. K. Archibald, R. L. Frost, and B. E. Nelson. On the
accuracy of memory reference models. In Computer Performance Eval-
uation, Modeling Techniques and Tools, 7th International Conference,
Vienna, Austria, May 3-6, 1994, Proceedings, pages 369-388, 1994.
L. Harrison. Examination of a memory access classification scheme
for pointer-intensive and numeric programs. In Proceedings of the 10th
international conference on Supercomputing, ICS 1996, Philadelphia,
PA, USA, May 25-28, 1996, pages 133-140, 1996.

M. Hassani, P. Kranen, R. Saini, and T. Seidl. Subspace anytime
stream clustering. In Conference on Scientific and Statistical Database
Management, SSDBM 14, Aalborg, Denmark, June 30 - July 02, 2014,
pages 37:1-37:4, 2014.

M. Hassani, S. Siccha, F. Richter, and T. Seidl. Efficient process
discovery from event streams using sequential pattern mining. In /EEE
Symposium Series on Computational Intelligence, SSCI 2015, Cape
Town, South Africa, December 7-10, 2015, pages 1366—1373, 2015.
M. Hassani, D. Tows, A. Cuzzocrea, and T. Seidl. BFSPMiner: an
effective and efficient batch-free algorithm for mining sequential patterns
over data streams. International Journal of Data Science and Analytics,
Dec 2017.

M. Hassani, D. Tows, and T. Seidl. Understanding the bigger picture:
batch-free exploration of streaming sequential patterns with accurate
prediction. In Proceedings of the Symposium on Applied Computing,
SAC 2017, Marrakech, Morocco, April 3-7, 2017, pages 866-869, 2017.
P. Heildelberger and H. Stone. Parallel trace-driven simulation by time
partitioning. In Proceedings of the Winter Simulation Conference, pages
734-737, 1990.

J. Henning. Spec cpu2000: measuring cpu performance in the new
millennium. Computer, pages 1-44, 2000.

M. A. Holliday. Techniques for cache and memory simulation using
address reference traces. Int. Journal in Computer Simulation, 1(2),
1991.

A. Hossain and D. J. Pease. An analytical model for trace cache
instruction fetch performance. In 19th International Conference on
Computer Design (ICCD 2001), VLSI in Computers and Processors,
23-26 September 2001, Austin, TX, USA, Proceedings, pages 477-480,
2001.

M. D. H. Jan Elder. Dinero iv trace-driven uniprocessor cache simulator,
2003.

B. Jang, D. Schaa, P. Mistry, and D. R. Kaeli. Exploiting memory access
patterns to improve memory performance in data-parallel architectures.
IEEE Trans. Parallel Distrib. Syst., 22(1):105-118, 2011.

J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. Kim.
A low-overhead, high-performance unified buffer management scheme
that exploits sequential and looping references. In 4th Symposium on
Operating System Design and Implementation (OSDI 2000), San Diego,
California, USA, October 23-25, 2000, pages 119-134, 2000.

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

D. E. Knuth. The art of computer programming, Volume II: Seminumer-
ical Algorithms. Addison-Wesley, 1998.

D. Kulic and Y. Nakamura. Incremental learning of human behaviors
using hierarchical hidden markov models. In 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, October 18-22,
2010, Taipei, Taiwan, pages 4649—4655, 2010.

D. Lee, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. Kim.
LRFU: A spectrum of policies that subsumes the least recently used and
least frequently used policies. IEEE Trans. Computers, 50(12):1352—
1361, 2001.

J. Lee, C. Park, and S. Ha. Memory access pattern analysis and stream
cache design for multimedia applications. In Proceedings of the 2003
Asia and South Pacific Design Automation Conference, ASP-DAC 03,
Kitakyushu, Japan, January 21-24, 2003, pages 22-27, 2003.

T. Lobos, Z. Leonowicz, and J. Rezmer. Harmonics and interharmonics
estimation using advanced signal processing methods. In Harmonics and
Quality of Power, 2000. Proceedings. Ninth International Conference on,
pages 335-340, 2000.

Y. Lu, M. Hassani, and T. Seidl. Incremental temporal pattern mining
using efficient batch-free stream clustering. In Proceedings of the
29th International Conference on Scientific and Statistical Database
Management, Chicago, IL, USA, June 27-29, 2017, pages 7:1-7:12,
2017.

C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney,
S. Wallace, V. J. Reddi, and K. M. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proceedings of
the ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation, Chicago, IL, USA, June 12-15, 2005.

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal, 9(2):78-117,
1970.

D. Nicol, A. Greenberg, and B. Lubachevsky. Massively parallel
algorithms for trace-driven cache simulation. In Proceedings of the 6th
workshop on Parallel and Distributed Simulation (1992), pages 3-11,
1992.

A. J. Niessen and H. A. G. Wijshoff. Address reference generation in
a memory hierarchy simulator environment, 1995.

C. Niki, J. Thornock, and K. Flanagan. Using the bach trace col-
lection mechanism to characterize the spec2000 integer benchmarks.
In Proceedings of the Third IEEE Annual Workshop on Workload
Characterization, pages 369-380, 2000.

D. B. Noonburg and J. P. Shen. A framework for statistical modeling
of superscalar processor performance. In Proceedings of the 3rd IEEE
Symposium on High-Performance Computer Architecture (HPCA ’97),
San Antonio, Texas, USA, February 1-5, 1997, pages 298-309, 1997.
P. Podder, T. Z. Khan, M. H. Khan, and M. M. Rahman. Comparative
performance analysis of hamming,hanning and blackman window. In-
ternational Journal of Computer Applications (0975 8887), 96(18):1-7,
2014.

L. Rabiner and B. Juang. Foundamentals of Speech Recognition. Prentice
Hall Signal Processing Series, 1993.

C. A. Ronao and S. Cho. Recognizing human activities from smartphone
sensors using hierarchical continuous hidden markov models. IJDSN,
13(1), 2017.

E. Sorenson and J. K. Flanagan. Evaluating synthetic trace models using
locality surfaces. In International Workshop on Workload Characteri-
zation, pages 3—11, 1992.

H. S. Stone. High-performance computer architecture (3. ed.). Addison-
Wesley, 1993.

D. Thiébaut, J. L. Wolf, and H. S. Stone. Synthetic traces for trace-driven
simulation of cache memories. /EEE Trans. Computers, 41(4):388-410,
1992.

K. Wakabayashi and T. Miura. Topology estimation of hierarchical
hidden markov models for language models. In Natural Language
Processing and Information Systems, 15th International Conference on
Applications of Natural Language to Information Systems, NLDB 2010,
Cardiff, UK, June 23-25, 2010. Proceedings, pages 129-139, 2010.

