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Abstract

Small interfering RNA (siRNA) is emerging as a novel therapeutic for treating various 
diseases, provided a safe and efficient delivery is available. In particular, specific delivery to 
target cells is critical for achieving high therapeutic efficacy while reducing toxicity. Amphiphilic 
dendrimers are emerging as novel promising carriers for siRNA delivery by virtue of the 
combined multivalent cooperativity of dendrimers with the self-assembling property of lipid 
vectors. Here, we report a ballistic approach for targeted siRNA delivery to cancer cells using an 
amphiphilic dendrimer equipped with a dual targeting peptide bearing a RGDK warhead. 
According to the molecular design, the amphiphilic dendrimer was expected to deliver siRNA 
effectively, while the aim of the targeting peptide was to home in on tumors via interaction of its 
warhead with integrin and the neuropilin-1 receptor on cancer cells. Coating the positively 
charged siRNA/dendrimer delivery complex with the negatively charged segment of the targeting 
peptide via electrostatic interactions led to small and stable nanoparticles which were able to 
protect siRNA from degradation while maintaining the accessibility of RGDK for targeting 
cancer cells and preserving the ability of the siRNA to escape from endosomes. The targeted 
system had enhanced siRNA delivery, stronger gene silencing and more potent anticancer activity 
compared to non-targeted or covalent dendrimer-based systems. In addition, neither acute toxicity 
nor induced inflammation was observed. Consequently, this delivery system constitutes a 
promising non-viral vector for targeted delivery and can be further developed to provide 
RNAi-based personalized medicine against cancer. Our study also gives new perspectives on the 
use of nanotechnology based on self-assembling dendrimers in various biomedical applications.

Key words

Amphiphilic dendrimer, self-assembling, gene therapy, integrin, neuropilin-1 receptor, 

heat-shock protein 27 
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Introduction

Gene therapy based on RNA interference (RNAi), a post-transcriptional gene 

silencing phenomenon triggered by small interfering RNA (siRNA),[1, 2] is emerging as a 

promising therapeutic option for treating various diseases.[3-5] Particularly exciting is the 

first ever RNAi-based gene-silencing siRNA drug “patisiran”, which was approved by 

FDA this year.[6] As siRNA targets and breaks down the corresponding mRNA via 

Watson-Crick base-pairing, in principle it can be harnessed to target any gene with 

known sequence, in particular, disease-associated genes for therapeutic purposes.[3-5] 

However, naked siRNA is not a stable therapeutic agent per se as it can be rapidly 

degraded by enzymes such as nucleases or esterases, which pervade body fluids. In 

addition, siRNA molecules are hydrophilic and highly negatively charged, and hence 

cannot readily cross cell membranes to reach the RNAi machinery in the cytosol for gene 

silencing. Moreover, if administered at high concentration, naked siRNA will often 

generate off-target effects, which can induce severe adverse effects. Consequently, there 

is a high demand for safe and effective siRNA delivery systems which are able to protect 

the nucleic acid from degradation, deliver it to the target cells, and ultimately promote 

functional gene silencing.[7-10] 

Both viral and non-viral delivery vectors have been explored for siRNA delivery. 

Although viral delivery is more effective, increasing concerns over the immunogenicity 

and toxicity of viral vectors urge the development and improvement of synthetic carrier 

systems.[7-10] Lipids and polymers are the most commonly applied non-viral vectors for 

siRNA delivery.[11-15] Dendrimers, a special family of polymers, have emerged as 

promising siRNA carriers by virtue of their well-defined structural architecture, 

cooperative multivalence, and intriguing ability to carry a high cargo payload within a 

nanosized volume.[16-20] We have recently developed a series of cationic amphiphilic 

dendrimers[21-24] which couple the multivalent cooperativity of dendrimer vectors with the 

self-assembling property of lipid vectors, hence capitalizing on the advantageous 
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characteristics of both lipid and dendrimer vectors for effective delivery.[25, 26] One of 

these multivalent self-assembling dendrimers, AD (Scheme 1A), exhibits particularly 

high performance for siRNA delivery to a wide range of cell types, including highly 

challenging human primary cells and stem cells.[22] Importantly, AD is also able to 

deliver siRNA to tumors in xenograft mice for successful in vivo gene silencing and 

potent anticancer activity.[22]

With the aim of further improving the AD-mediated siRNA delivery, we wanted to 

endow AD with an active targeting ability for specific delivery to cancer cells within 

tumor lesions. In principle, active targeting can be realized by introducing a targeting 

moiety on the delivery system, which can interact with and bind to ligands or receptors 

present on the cell surface.[27, 28] In this way, the therapeutic cargo can be delivered 

specifically to the target cells, thereby achieving higher therapeutic efficacy while sparing 

other cells to reduce toxicity. Different targeting agents such as antibodies, peptides and 

small molecular ligands have been applied to construct active targeting systems.[27-31] 

Among them, the RGDK peptide is particularly appealing for cancer targeting because it 

has dual targeting capacity within a short peptide segment.[32] On one hand, RGD can 

target tumor endothelium by interacting with 3 integrin, which is overexpressed in 

tumor vasculature;[33, 34] on the other hand, RGDK is able to bind to the neuropilin-1 

(Nrp-1) receptor, which is present on tumor cells, hence promoting cancer cell 

penetration and uptake.[32, 35] In a previous study, we were able to demonstrate the 

validity of this dual targeting strategy for siRNA delivery and enhanced performance in 

gene silencing using a poly(amidoamine) PAMAM dendrimer of generation 5 (G5) that 

was decorated with the same targeting peptide.[36] However, producing a large quantity of 

pure, high-generation PAMAM dendrimers requires considerable cost, time and effort. [37, 

38] Accordingly, in this paper we report the introduction of the dual targeting warhead 

RGDK to the small amphiphilic dendrimer AD-based delivery system (Scheme 1), which 

effectively led to targeted siRNA delivery and enhanced gene silencing compared to the 
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non-targeting system. In contrast to our former study,[36] in the present effort we exploit 

the quintessence of nanotechnology, i.e., the controlled self-assembly of small, 

synthetically amenable building blocks to generate a nanosystem for siRNA delivery. We 

further demonstrate that decoration of the resulting siRNA/AD system with this dual 

targeting peptide is not only feasible but, most importantly, leads to in vitro and in vivo 

results substantially superior to those achieved with the covalent high-generation 

dendrimer decorated with the same peptide. This is the first report to explore a targeting 

strategy for self-assembling dendrimer-mediated siRNA delivery.
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6

Scheme 1. Strategy for active delivery of siRNA using an amphiphilic dendrimer AD vector with the 

dual targeting peptide. (A) Chemical structure of the amphiphilic dendrimer AD. (B) The targeting 

peptide E16G6RGDK composed of three distinct functional segments: RGDK as the targeting warhead, 

oligo(glutamic acid) E16 as the negatively charged sequence to interact with positively charged 

siRNA/AD complexes, and the neutral oligo(glycine) G6 as the linker to bridge the targeting unit and 

the siRNA loading complex. (C) Cartoon illustration of the formation of the siRNA/AD/E16G6RGDK 

complexes for targeted siRNA delivery.
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In our strategy to append the RGDK targeting moiety on the AD-based delivery 

system, we used the peptide E16G6RGDK, which is composed of three distinct functional 

segments: 1) the targeting unit RGDK, 2) the negatively charged oligo(glutamic acid) 

E16, and 3) the neutral oligo(glycine) G6 (Scheme 1B). The RGDK segment will mediate 

the dual active targeting function by homing to the tumor vasculature via RGD/integrin 

binding and, at the same time, targeting cancer cells via binding of RGDK to Nrp-1 

receptors on the cell surface. The negatively charged oligo(glutamic acid) segment E16 

will serve to promote the attachment of the targeting peptide to the positively charged 

siRNA/AD complex via electrostatic interaction.[36, 39] The neutral oligo(glycine) segment 

G6 will act as the linker to connect the targeting warhead RGDK to the siRNA/AD 

delivery complexes (Scheme 1C). To prove the concept of this targeting delivery, we 

used PC-3 prostate cancer cells as the cancer model, because PC-3 cells have highly 

over-expressed integrin and Nrp-1 receptors on the surface.[30, 40]

Prostate cancer (PCa) has the highest incidence rate and is the major cause of 

cancer-related deaths in males in Western countries.[41] Although androgen deprivation 

therapy is beneficial as the standard first-line treatment in early-stage hormone-naive 

PCa, castration-resistant prostate cancer (CRPC) unfortunately often develops within one 

or two years.[42, 43] CRPC is associated with poor prognosis, high apoptosis resistance and 

high mortality,[44] and no efficacious treatment for managing CRPC is clinically available 

to date.[43] Recently, we demonstrated that using AD-mediated siRNA delivery to target 

the cancer cell survival gene Hsp27, which encodes heat shock protein 27,[45-47] is an 

effective approach for treating CRPC.[22] In this study, we provide further proof that the 

AD-based delivery system equipped with the RGDK targeting peptide is much more 

effective than the non-targeted one and superior to the covalent G5 PAMAM dendrimer 

decorated with the same peptide for siRNA delivery and gene silencing of Hsp27,[36] 

ultimately leading to more potent anticancer activity in CRPC models in vitro and in vivo. 

The superior delivery efficiency can be ascribed to the active dual targeting mechanism 
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via RGD/integrin and RGDK/Nrp-1 receptor interactions in addition to the excellent 

delivery performance of the amphiphilic dendrimer AD. Therefore, this study 

demonstrates that the strategy to coat the amphiphilic dendrimer-based siRNA delivery 

system with the dual targeting RGDK warhead constitutes a powerful approach to 

achieve effective and specific tumor targeting for more efficient siRNA delivery and 

potent gene silencing. This approach can be further developed for RNAi-based 

personalized medicine in fighting cancer.

Results and discussion

Formation of small and stable peptide-decorated siRNA/AD/E16G6RGDK complexes

For effective siRNA delivery, it is important that the delivery system is small and 

stable. This is because small nanoparticulate complexes can penetrate deep into tumor 

tissue and be taken up efficiently by cancer cells, and stable delivery complexes 

effectively protect the siRNA against enzyme degradation. In our system, by simply 

adding the targeting peptide E16G6RGDK to the siRNA/AD complex in solution, small 

and spherical nanoparticles were formed, as illustrated by the results obtained using 

transmission electron microscopy (TEM) (Figure 1A) and dynamic light scattering 

(DLS) analysis (Figure 1B). The dimensions of the peptide-decorated 

siRNA/AD/E16G6RGDK complexes are around 30-45 nm, which are in the size range 

required for effective cellular uptake. In addition, the zeta potential of the 

siRNA/AD/E16G6RGDK nanoparticles is +15 mV, which is lower than the non-coated 

siRNA/AD complexes (+32 mV). This finding indicates that the negatively charged 

E16G6RGDK peptide indeed bound to the positively charged siRNA/AD complexes as 

expected, hence decreasing the positive surface charge. 
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Figure 1. Small and stable siRNA/AD/E16G6RGDK complexes formed by adding the peptide 

E16G6RGDK to the siRNA/AD complexes. (A) TEM imaging and (B) DLS analysis of the 

siRNA/AD/E16G6RGDK complexes (siRNA/AD at N/P ratio of 10, AD/peptide at molar ratio 5.0). 

(C) Representative integrated ITC profiles for titration of the siRNA/AD complexes with the 

E16G6RGDK peptide in ultrapure water (T = 25 °C). The solid red lines are data fitted with a 

sigmoidal function. The insert shows the corresponding ITC raw data. All experiments were run in 

triplicate. (D) Agarose gel shift analysis of the siRNA/AD/E16G6RGDK complexes versus the 

siRNA/AD complexes (siRNA/AD at N/P ratio of 10, AD/peptide ratio varying from 2.0 to 20). (E) 

The siRNA/AD/E16G6RGDK complexes are able to protect siRNA from RNase A digestion. 

(siRNA/AD at N/P ratio 10; AD/peptide ratio 5.0).

We further assessed the binding thermodynamics of the E16G6RGDK peptides to the 

siRNA/AD complexes by carrying out isothermal titration calorimetry (ITC) 

measurements. The binding process is mainly characterized by a favorable enthalpic 

contribution (Η = −5.0 ± 0.2 kcal/mol), as testified by the exothermic peaks of the 

corresponding thermogram (Figure 1C). A small favorable entropy change is also 

estimated (-TΔS = -1.9 kcal/mol) and, accordingly, the overall complex formation is 

thermodynamically favored, with a free energy of binding (ΔG) value of -6.8 kcal/mol. 
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The substantial enthalpic nature of the binding supports the fact that the electrostatic 

forces play the leading role while the positive entropic term can be reasonably ascribed to 

stabilizing peptide/complex hydrophobic interactions and water/ion release into the bulk 

solvent. 

We next studied the stability of the siRNA/AD/E16G6RGDK complexes using gel 

mobility shift assays in the presence of RNase. As shown in Figure 1D, adding the 

peptide E16G6RGDK to the siRNA/AD complexes at different peptide/AD ratios did not 

cause any siRNA release, highlighting the formation of stable siRNA/AD/E16G6RGDK 

complexes and complete encapsulation of siRNA. Further experiments with RNase 

treatment demonstrate that the siRNA/AD/E16G6RGDK complexes effectively protected 

siRNA from enzymatic digestion, whereas free siRNA was not stable and was degraded 

rapidly within 5.0 minutes (Figure 1E). Collectively, our results show that the 

peptide-coated siRNA/AD/E16G6RGDK complexes are small and stable, and are able to 

protect siRNA from degradation. All these are important and beneficial features for 

effective siRNA delivery. 

Accessible RGDK targeting moieties in the stable peptide-coated complexes 

To get further insight into the peptide-coated siRNA/AD/E16G6RGDK complexes at 

the molecular level, we performed atomistic molecular dynamics (MD) simulations as we 

did in our previous work. [21,48] As can be seen in Figure 2A, a stable (1.0 μs) Janus-like 

nanoparticle was formed, in which four E16G6RGDK peptides are adsorbed onto the 

siRNA/AD assembly, with the nucleic acids on the opposite side. From the same figure, 

it is evident that, as initially surmised, the negative tails of the peptides (E16) are in close 

contact with the positive charges of the PAMAM dendron heads of AD and, most 

importantly, the RGDK warhead groups protrude well into the solvent (Figure 2A). This 

qualitative observation is quantitatively supported by the results in Figure 2B, which 
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shows the radial distribution function (RDF) for the positively charged terminals of the 

AD molecules and the RGDK terminals of the four E16G6RGDK peptides. These curves 

clearly indicate that the RDGK moieties are located away from the nanoparticle 

periphery, thus being available for interaction with the cellular receptors. Finally, the 

targeting peptides are compared in Figure 2C. In agreement with the experimentally 

determined zeta-potentials, binding of the negatively charged peptides on the surface of 

the siRNA/AD complex results in a lower positive electrostatic surface compared to the 

undecorated siRNA/AD binary assembly.

Figure 2. (A) (Left) Cartoon showing the arrangement of the siRNA molecule (gray) and the 4 

E16G6RGDK moieties (colored as in the right panel) on the AD nanomicelle (blue), as derived from 

the detailed atomistic molecular simulations. (Center) Equilibrated molecular dynamics (MD) 

snapshot of a siRNA/AD micelle in complex with 4 E16G6RGDK peptides numbered as E16G6RGDK1 

to E16G6RGDK4 and colored as follows: E16G6RGDK1, tail (E16G6) sandy brown, head (RGDK) 

firebrick; E16G6RGDK2, tail light green, head olive drab; E16G6RGDK3, tail khaki, head golden rod; 

E16G6RGDK4, tail plum, head magenta). The siRNA molecule is portrayed with its van der Waals 

surface in gray. The AD micelle is shown in dark slate blue sticks-and-balls, while the 4 peptides are 

depicted as colored spheres, as above precised. Ions and counterions are shown as green and purple 

hollow spheres; water is shown as a light cyan surface. (Right) Zoomed view of the system in panel A 

showing the RGDK warhead group of E16G6RGDK4 protruding into the solvent as an example. (B) 
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Radial distribution function as a function of the distance from the AD micelle center of mass for the 

AD positively charged terminal groups (dark slate blue), and for each of the 4 RGDK warhead groups. 

Colors as in panel A. (C) Electrostatic surface potential of the siRNA/AD micelle (left) and of the 

siRNA/AD/(E16G6RGDK)4 complex (right) as extracted from the equilibrated portion of the 

corresponding MD simulations. Dark blue represents a highly positively charged surface, while red 

represents a highly negatively charged surface. (D) Free energy of binding (Gb) of each E16G6RGDK 

peptide on the siRNA/AD micelle. Colors as in panel A. The empty color bars (left bar of each pair) 

represent the value of Gb for the entire peptide molecule, while the filled color bars (right bar of each 

pair) give the contribution to Gb from the negatively charged E16G6 tails only. 

To estimate the intensity of the interaction between each peptide and the siRNA/AD 

complex, the MD data were further processed using the MM/PBSA approach.[49-51] The 

free energy of binding (Gb) between each of the four E16G6RGDK peptides and the 

siRNA/AD complex is shown in Figure 2D. All peptides are characterized by a favorable 

(i.e., negative) Gb value (in the range -7.0 ± 0.2 – -6.1 ± 0.2 kcal/mol, empty bars in 

Figure 2D). The major contribution to binding is the strong electrostatic interaction 

between the negatively charged peptide tails (E16) and the protonated amines at the AD 

terminals (filled bars in Figure 2D). Altogether, our molecular simulation results further 

support our initial molecular concept and hypothesis that the E16G6RGDK peptides form 

stable complexes with siRNA/AD, ultimately yielding nanoparticles with a lower positive 

surface charge while leaving the RGDK warheads available for cellular receptor 

interactions. All the simulation data are in line with our experimental results.

Enhanced cell uptake via dual receptor-mediated interactions followed by effective 

endosomal escape 

Our aim in decorating the siRNA/AD delivery complex with the dual targeting 

peptide E16G6RGDK was to improve the delivery efficiency and specificity by actively 

targeting cancer cells via both RGD/integrin binding and RGDK/Nrp-1 interaction while 
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also ensuring effective endosomal escape. We therefore first investigated the uptake of 

the peptide-decorated complexes by PC-3 prostate cancer cells, which are characterized 

by high expression of both integrin and Nrp-1 receptors.[30, 40] Using siRNA labeled with 

the fluorescent dye Cy5, we found that the internalization of the peptide-coated 

Cy5-siRNA/AD/E16G6RGDK complexes was significantly (3.0-fold) higher than the 

non-coated Cy5-siRNA/AD complexes in PC-3 cells (Figure 3A). In addition, the uptake 

of the peptide-decorated Cy5-siRNA/AD/E16G6RGDK complexes was considerably 

reduced in the presence of cyclic RGD (cRGD) (Figure 3B), indicating that cRGD 

competed with the peptide-coated nanoparticles for integrin binding. This confirms that 

the peptide-decorated delivery complexes indeed bound to integrin via the RGD motif. 

Also, as shown by confocal microscopic imaging in Figure 3C, cells pretreated with 

anti-Nrp-1-receptor monoclonal antibody had dramatically reduced internalization of the 

Cy5-siRNA/AD/E16G6RGDK complexes compared to untreated cells. This highlights 

that the peptide-decorated complexes are effectively taken up by cells via RGDK/Nrp-1 

receptor interaction. Collectively, these results provide evidence that the cellular uptake 

of the peptide-coated siRNA/dendrimer complexes was indeed mediated by 

RGD/integrin and RGDK/Nrp-1 receptor interactions, and the uptake of the decorated 

complexes by PC-3 cells was more efficient than the non-decorated ones.

After cellular uptake, it is important that the peptide-decorated delivery complexes 

are able to escape from the endosomes and release siRNA for subsequent gene silencing. 

We therefore further examined the endosomal escape of the fluorescent 

Cy5-siRNA/AD/E16G6RGDK complexes in the presence of LysoTracker, which 

fluorescently labels acidic compartments. As we can see in the confocal microscopic 

images (Figure 3D), after 0.5 h incubation the fluorescent signals from the LysoTracker 

and the Cy5 dye co-localized in sharp and clear-cut spots, implying that the 

Cy5-siRNA/AD/E16G6RGDK complexes were entrapped in the endosomes. Notably, 

after 1.0 h incubation, disperse and smeared Cy5 fluorescent signals were observed, 
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suggesting that the some of the Cy5-siRNA/AD/E16G6RGDK complexes had escaped 

from the endosomes into the cytoplasm. After 2.0 h, more of the Cy5 fluorescent signals 

were diffuse in the cytoplasm and there was less co-localization with the LysoTracker, 

indicating the successful escape of the Cy5-siRNA from the endosomes. Consequently, 

the peptide-decorated siRNA delivery complexes are able to circumvent endosome 

trapping and effectively release siRNA in the cytoplasm for subsequent gene silencing.

Figure 3. The siRNA/AD/E16G6RGDK complexes are effectively taken up by PC-3 prostate cancer 
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cells via RGD/integrin and RGDK/neuropilin-1 (Nrp-1) receptor interactions, and are then released 

from endosomes. (A) Flow cytometry analysis of the cellular uptake of siRNA/AD/E16G6RGDK 

complexes compared to siRNA/AD complexes using Cy5-labeled siRNA. (B) Flow cytometry 

analysis of the cellular uptake of siRNA/AD/E16G6RGDK complexes in the absence and presence of 

cyclic RGD (cRGD). (C) Confocal microscopic imaging of the cellular uptake of 

siRNA/AD/E16G6RGDK complexes in the absence and presence of Nrp-1-receptor antibody. (D) 

Confocal microscopic imaging of the endosomal escape of the siRNA/AD/E16G6RGDK complexes 

after incubation times of 0 (control), 0.5, 1.0 and 2.0 h. Red channel image shows the Cy5-labeled 

siRNA/AD/E16G6RGDK complexes, green channel image shows the endosomes marked by 

LysoTracker Red, blue channel image shows the nuclei of PC-3 cells stained by DAPI (C) or 

Hoechst33342 (D). The siRNA/AD/E16G6RGDK complexes were formed using 50 nM siRNA, N/P 

ratio 10, AD/peptide molar ratio 5.0. Data are presented as mean ± SD. **, p ≤ 0.01 as calculated by 

Student’s t-test.

Targeted delivery increases gene silencing and anticancer activity in vitro 

We next compared the ability of the targeting peptide-decorated siRNA delivery 

complexes and the non-decorated ones to down-regulate Hsp27 in PC-3 prostate cancer 

cells. Using a low concentration (20 nM) of siRNA targeting Hsp27, a small chaperone 

protein involved in cancer cell proliferation and drug resistance, the peptide-coated 

siRNA/AD/E16G6RGDK complexes were significantly more effective than the 

non-coated siRNA/AD complexes at knocking down Hsp27 at the mRNA level (Figure 

4A), leading to more than 90% inhibition of Hsp27 protein expression (Figure 4B). Of 

note, a significantly higher siRNA concentration (50 nM) was necessary to produce 

comparable effects using the generation 5 PAMAM dendrimer decorated with the same 

peptide. [36] This highlights that the peptide-coated delivery system effectively improved 

gene silencing. The enhanced down-regulation of Hsp27 by the targeting complexes was 

reduced in the presence of either cRGD or anti-Nrp-1-receptor antibody (Figure 4C), 

indicating that cRGD and anti-Nrp-1-receptor antibody competed with the peptide-coated 

nanoparticles for binding with integrin and Nrp-1 receptors, respectively. This again 
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supports the view that the peptide-decorated delivery complexes indeed act via integrin- 

and Nrp-1 receptor-mediated targeting. Further assessment of in vitro anticancer activity 

using MTT assay revealed that the peptide-decorated siRNA/AD/E16G6RGDK complexes 

drastically reduced the proliferation of PC-3 cells with respect to the non-coated 

siRNA/AD complexes (Figure 4D). Collectively, our results demonstrate that actively 

targeted delivery via the peptide-coated nanosystem is indeed more effective for 

siRNA-mediated gene silencing of Hsp27, and leads to a more pronounced reduction in 

proliferation than the non-targeted delivery system.

Figure 4. The targeted siRNA/AD/E16G6RGDK system is much more effective than the non-targeted 

siRNA/AD system for Hsp27 silencing and antiproliferation in PC-3 prostate cancer cells. Hsp27 

silencing at (A) mRNA and (B) protein levels, determined using qRT-PCR and western blotting, 

respectively. (C) The improved down-regulation of Hsp27 at the mRNA level by the targeting 

complexes is reduced in the presence of either cRGD or anti-Nrp-1-receptor antibody. (D) MTT assay 

of the antiproliferation effect of the complexes on PC-3 cells. Conditions used: 20 nM siRNA, N/P 

ratio 10, AD/peptide molar ratio 5.0. Data are presented as mean ± SD. **, p ≤ 0.01; ***, p ≤ 0.001 as 

calculated by Student’s t-test.
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Targeted delivery enhances gene silencing and antitumor activity in vivo 

To investigate the power of the targeting system for siRNA delivery in vivo, we used 

the PC-3 xenograft nude mouse model. We first assessed the tumor targeting capability of 

these formulations using fluorescent Cy5-labeled siRNA. Ex vivo imaging of isolated 

tumors showed that the targeting system siRNA/AD/E16G6RGDK had significantly 

higher mean florescence intensity (MFI) in tumors than the non-targeting system 

siRNA/AD (Figure 5A and Figure 5B). This result demonstrates that decoration with the 

targeting peptide indeed enhanced the tumor targeting capability of the amphiphilic 

dendrimer in vivo. 

We further examined gene silencing and tumor growth inhibition with both targeting 

and non-targeting systems. The siRNA delivery complexes were administered twice per 

week for 4.0 weeks. It is worth mentioning that we applied a very low siRNA 

concentration of 0.25 mg/kg at N/P ratio 5, which is more than 10 times lower than that 

used when performing the same experiments using the covalent G5 PAMAM dendrimer, 

[36] i.e., the conventional siRNA concentration used for in vivo siRNA delivery in mice 

(3.0 mg/kg). Remarkably, the targeted siRNA/AD/E16G6RGDK delivery system reduced 

the tumor growth much more effectively than the non-targeted siRNA/AD system 

(Figure 5C). Also, immunohistochemistry (IHC) analysis revealed that cancer cell 

proliferation was inhibited more efficiently in tumors from mice treated with the targeted 

siRNA/AD/E16G6RGDK complexes than in tumors from mice treated with non-targeted 

ones (Figure 5D). Further western blotting analysis of the protein level of Hsp27 in 

tumor tissue (Figure 5E) confirmed that the silencing of Hsp27 was indeed more 

effective in mice treated with the targeted siRNA/AD/E16G6RGDK delivery system than 

the non-targeted one. All these data demonstrate that the targeted delivery approach is 

more potent in gene silencing than non-targeted delivery, and hence more effective in 
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inhibiting cancer cell proliferation and retarding tumor growth in PC-3 xenografts. In 

addition, there was no alteration of the body weights of the mice (Figure 5F), which 

highlights the promising safety profile of this delivery system. Altogether, these results 

provide strong evidence for enhanced siRNA delivery specifically to cancer cells using 

the amphiphilic dendrimer AD-based delivery system equipped with the dual targeting 

peptide. 

Figure 5. The targeted siRNA/AD/E16G6RGDK delivery system (A-B) accumulates more efficiently 

in tumor tissues and (C-D) is much more potent than the non-targeted siRNA/AD system for gene 

silencing and anticancer activity in tumor xenograft mice. Cy5-siRNA/AD complexes and 
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Cy5-siRNA/AD/E16G6RGDK complexes were administered to PC-3 xenograft mice via i.v. injection 

in PBS buffer (1.0 mg/kg siRNA, N/P ratio 5.0, AD/peptide molar ratio 5). (A) Fluorescence images 

of siRNAs accumulated in isolated tumors. (B) Fluorescence quantification analysis of tumors in (A) 

using imaging software. Data were normalized to the tumors from PBS-treated animals. PC-3 

xenograft nude mice were administered twice per week with PBS buffer, siRNA/AD complexes or 

siRNA/AD/E16G6RGDK complexes (0.25 mg/kg siRNA, N/P ratio 5.0, AD/peptide molar ratio 5). (C) 

Tumor growth assessed by measuring tumor size. (D) Cancer cell proliferation in tumor tissue 

revealed by immunohistochemistry using Ki67-staining. (E) Expression of Hsp27 protein in tumors 

quantified using western blotting. (F) Mouse body weight monitoring during the treatment. Data are 

presented as mean ± SD. *, p ≤ 0.05; **, p ≤ 0.01, ***, p ≤ 0.001 as calculated by Student’s t-test.

The targeted delivery system is safe and devoid of toxicity

The superior delivery capacity of the targeted delivery system motivated us to 

further evaluate its toxicity profile for eventual therapeutic applications. We performed 

the MTT assay, which measures cell metabolic activity and provides an indication of 

metabolic toxicity, and the LDH assay, which determines the membrane integrity by 

quantifying the lactate dehydrogenase released from cells into the extracellular medium. 

Results from both MTT and LDH assays using a non-targeting scramble siRNA control 

revealed that neither metabolic toxicity nor membrane damage was induced in cancer 

cells (PC-3 cells) (Figure 6A and 6B) and non-cancer cells (HEK cells) (Figure 6C and 

6D) after treatment with the targeted siRNA/AD/E16G6RGDK delivery system and the 

non-targeted one. Neither the targeted siRNA/AD/E16G6RGDK nanoparticles nor the 

non-targeted siRNA/AD nanoparticles caused any notable hemolytic toxicity at low 

concentrations. It is noteworthy that the targeted system caused significantly less 

hemolysis at high concentrations than the non-targeted system (Figure 6E). This finding 

indicates that coating the positively charged siRNA/AD complexes with the negatively 

charged E16G6RGDK peptide reduced the hemolytic toxicity. This may be ascribed to the 

decreased positive surface charge of the peptide-coated delivery system, as revealed by 
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zeta potential measurement and molecular simulations described above.

Figure 6. In vitro toxicity assessment of the targeted siRNA/AD/E16G6RGDK delivery system versus 

the non-targeted siRNA/AD system. Toxicity assessment using MTT assay and LDH assay for (A, B) 

PC-3 prostate cancer cells and (C, D) human embryonic kidney (HEK 293) cells (20 nM siRNA, N/P 

ratio 10, AD/peptide molar ratio 5.0). (E) Left panel: hemolysis assay of the siRNA/AD complexes 

and the siRNA/AD/E16G6RGDK complexes in comparison with AD alone at different concentrations 

of AD (0.50, 1.0, 2.5, 5.0, 10 μM), which correspond to siRNA concentrations of 10, 20, 50, 100, 200 

nM. Right panel: quantitative analysis of hemolysis determined by UV absorption at 540 nm. Data are 

presented as mean ± SD. ***, p ≤ 0.001 as calculated by Student’s t-test.
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Furthermore, in healthy mice treated with PBS buffer, the targeted delivery system 

siRNA/AD/E16G6RGDK and the non-targeted system siRNA/AD did not cause any signs 

of discomfort or unusual behavior or body weight change when delivering the scrambled 

control siRNA. In addition, mice treated with either the targeted or the non-targeted 

siRNA/AD systems showed no evidence of induced inflammation, whereas mice treated 

with the positive control lipopolysaccharide (LPS) exhibited significantly elevated levels 

of inflammatory factors such as IL-6, INF-γ, TNF-α, GM-CSF, MCP-1, KC and IL-1β 

(Figure 7A). Moreover, several major serum biochemistry parameters, including alanine 

transaminase (ALT), aspartate transaminase (AST), total Bilirubin (TBIL), UREA, total 

protein (TP), alkaline phosphatase (ALP), triacylglycerol (TG) and total cholesterol 

(TCHO), remained at normal levels at 24 h post-administration, indicating that the main 

organs, including the liver and kidneys, function well after treatment with these 

formulations (Figure 7B). Histological analysis of the main organs collected at 24 h 

post-treatment revealed that both siRNA/AD and siRNA/AD/E16G6RGDK were devoid 

of acute toxicity since no significant pathological change was observed in any of the 

tissue sections (Figure 7C). All these data highlight that the targeted delivery system 

composed of AD and E16G6RGDK is safe, as judged by the lack of cytotoxic effects, 

acute toxicity or inflammatory responses. 
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Figure 7. In vivo toxicity assessment of the targeted siRNA/AD/E16G6RGDK delivery system versus 

the non-targeted siRNA/AD system. (A) Cytokine response in mice determined by quantifying the 

serum levels of IL-6, INF-γ, TNF-α, GM-CSF, MCP-1, KC and IL-1β at 3 h post-injection using 

Luminex-detection technology according to the manufacturer’s protocol. Lipopolysaccharide (LPS) 

was used as the positive control. Data are presented as mean ± SEM. *, p < 0.05, ***, p < 0.001, 

versus PBS group, as calculated by Student’s t-test. (B) Major serum biochemistry parameters 

measured in mouse serum collected at 24 h post-injection. Alanine transaminase (ALT), aspartate 

transaminase (AST), and alkaline phosphatase (ALP) are measured as U/L; total Bilirubin (TBIL), 

UREA, triacylglycerol (TG) and total cholesterol (TCHO) are measured as mmol/L; total protein (TP) 

is measured as g/L. Data are shown as mean ± SEM. (C) Histopathological analysis of major organs 

from mice treated with siRNA/AD and siRNA/AD/E16G6RGDK. Tissue samples were collected at 24 

h post-administration. No significant histopathological changes were observed in any of the tissue 

sections. Images were enlarged 200 times with the microscope.

Conclusions

In this study, we established a novel system for targeted siRNA delivery based on the 

amphiphilic dendrimer AD equipped with the targeting peptide E16G6RGDK, which bears 
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the dual targeting warhead RGDK, the negatively charged oligo(glutamic acid) E16 and 

the neutral spacer oligo(glycine) G6. This peptide stably coated the positively charged 

siRNA/AD delivery complexes via electrostatic interaction with its negatively charged 

E16 segment. The so-formed nanoparticles were small, stable, and able to protect siRNA 

from degradation. Furthermore, the targeting segment RGDK was accessible for binding 

to and interacting with the integrin and the neuropilin-1 receptor molecules on the surface 

of PC-3 prostate cancer cells. This consequently led to specific and enhanced cellular 

uptake of siRNA followed by effective endosomal escape of the siRNA, which further 

promoted much stronger gene silencing and resulted in more potent anticancer activity 

than the non-targeted system in castration-resistant prostate cancer models in vitro and in 

vivo. In addition, neither in vitro cytotoxicity, nor acute in vivo toxicity, nor induced in 

vivo inflammation was observed for the targeted delivery system. These results indicate 

the potential of this targeting system for safe and functional siRNA delivery and 

consequent gene silencing and anticancer activity. This targeting system hence holds 

great promise for treating prostate cancer, in particular castration-resistant prostate 

cancer, for which there is no efficacious treatment yet. 

It is worth mentioning that our amphiphilic dendrimer AD has been previously 

demonstrated to deliver siRNA to tumors in xenograft mice for successful gene silencing 

and anticancer activity.[22] Those results can mainly be attributed to passive tumor 

targeting via the enhanced permeation and retention (EPR) effect in addition to the 

excellent delivery ability of AD. In this study, we equipped this siRNA delivery system 

with the dual targeting peptide, further imparting the capacity to specifically target cancer 

cells for improved gene silencing and hence much more potent anticancer activity at a 

significantly lower dosage of siRNA. This is the first report to explore a targeting 

strategy for self-assembling dendrimer-mediated siRNA delivery. Compared with our 

previous studies using conventional covalent dendrimers,[36, 52] this amphiphilic 

dendrimer system has similar siRNA loading capacity but more than 10-fold greater 
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potency for in vivo siRNA delivery and consequent antitumor activity. We expect that 

this approach using a dual targeting peptide to decorate the amphiphilic dendrimer-based 

delivery system [26, 27] can be applied for siRNA delivery to develop RNAi-based 

personalized medicine against various cancers in general. We are actively working in this 

direction.

Associated content

Supporting information: materials and methods as well as all experimental protocols for 

TEM, DLS, computational details, ITC, cell uptake and endosome release, siRNA 

delivery, gene silencing, anticancer activity and toxicity etc. This information is available 

free of charge via the Internet.
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