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The paper discusses a novel sub-class of linear-in-the-parameters nonlinear filters, the
Legendre nonlinear filters. The novel sub-class combines the best characteristics of
truncated Volterra filters and of the recently introduced even mirror Fourier nonlinear
filters, in particular: (i) Legendre nonlinear filters can arbitrarily well approximate any
causal, time-invariant, finite-memory, continuous, nonlinear system; (ii) their basis
functions are polynomials, specifically, products of Legendre polynomial expansions of
the input signal samples; (iii) the basis functions are also mutually orthogonal for white
uniform input signals and thus, in adaptive applications, gradient descent algorithms with
fast convergence speed can be devised; (iv) perfect periodic sequences can be developed
for the identification of Legendre nonlinear filters. A periodic sequence is perfect for a
certain nonlinear filter if all cross-correlations between two different basis functions,
estimated over a period, are zero. Using perfect periodic sequences as input signals
permits the identification of the most relevant basis functions of an unknown nonlinear
system by means of the cross-correlation method. Experimental results involving
identification of real nonlinear systems illustrate the effectiveness and efficiency of this
approach and the potentialities of Legendre nonlinear filters.

1. Introduction

property that the filter output depends linearly on the filter
coefficients. It includes the well known truncated Volterra
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The paper discusses a novel sub-class of finite memory
linear-in-the-parameters (LIP) nonlinear filters. LIP nonlinear
filters constitute a very broad filter class, which includes
most of the commonly used finite-memory and infinite-
memory nonlinear filters. The class is characterized by the
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filters [1], which are still actively studied and used in
applications [2-9], but also other popular polynomials filters,
as the Hammerstein filters [1,10-13], the memory and
generalized memory polynomial filters [14,15], and non-
polynomial filters based on functional expansions of the
input samples, as the functional link artificial neural net-
works (FLANN) [16] and the radial basis function networks
[17]. The interested reader can refer to [18] for a review
under a unified framework of finite-memory LIP nonlinear
filters. Infinite-memory LIP nonlinear filters have also been
studied [19-24] and used in applications.

Recently, the finite memory LIP class has been enriched
with two novel sub-classes: the Fourier Nonlinear (FN)
filters [25,26] and the Even Mirror Fourier Nonlinear
(EMEFN) filters [26,27]. FN and EMEN filters can be origi-
nated from the truncation of a multidimensional Fourier
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series expansion of a periodic repetition or an even mirror
periodic repetition, respectively, of the nonlinear function
they approximate. FN and EMEFN filters are based on
trigonometric function expansions, as the FLANN filters,
but in contrast to the latter, their basis functions form an
algebra that satisfies all the requirements of the Stone-
Weierstrass approximation theorem [28]. Consequently,
they can arbitrarily well approximate any causal, time-
invariant, finite-memory, continuous, nonlinear system.
EMEN filters provide a much more compact representation
of nonlinear systems than FN filters [26], and thus should
be the preferred choice. It has been shown that EMFN
filters can also be better models than Volterra filters in the
presence of strong nonlinearities, while Volterra filters
provide better results for weak or medium nonlinearities
[26]. An interesting property of EMFN (and FN) filters,
which is not shared by Volterra filters, derives from
orthogonality of the basis functions for white uniform
input signals in the range [—1, +1]. This property is
particularly appealing since it allows the derivation of
gradient descent algorithms with fast convergence speed
and of efficient identification algorithms. In [29,30], it was
shown that perfect periodic sequences (PPSs) can be
developed for the identification of EMFN filters. PPSs have
been extensively studied and proposed as inputs for linear
system identification [31] and in this context they have
found application in signal processing [32], information
theory [33], communications [34,35], and acoustics [36]. A
periodic sequence is called perfect for a modeling filter if
all cross-correlations between two of its basis functions,
estimated over a period, are zero. By applying as input
signal a PPS, it is possible to model an unknown system
exploiting the cross-correlation method, i.e., computing
the cross-correlation between the basis functions and the
system output. The most relevant basis functions, i.e.,
those that guarantee the most compact representation of
the nonlinear system according to some information
criterion, can also be easily estimated.

The novel sub-class of finite memory LIP nonlinear
filters discussed in this paper is that of Legendre nonlinear
(LN) filters, first introduced in [37]. LN filters combine the
best characteristics of truncated Volterra and EMEFN filters,
as detailed in the following. First of all, the basis functions
of LN filters are polynomials, as for Volterra filters. More
specifically, they are products of Legendre polynomial
expansions of the input samples that satisfy all the
requirements of the Stone-Weierstrass approximation
theorem. Therefore, LN filters are universal approximators,
as well as Volterra, FN, and EMEFN filters. With the term
“universal approximators” we mean that these filters can
arbitrarily well approximate any causal, time-invariant,
finite-memory, continuous, nonlinear system. Secondly,
the basis functions of LN filters are orthogonal for white
uniform input signals in [—1, +1], which means that they
share all the benefits offered by FN and EMEN filters in
terms of convergence speed of gradient descent adaptation
algorithms and efficient identification algorithms. As a
matter of fact, it is shown in Section 5 that the 2-norm
condition number of the autocorrelation matrix of the
input data vector for the Volterra filter is always larger
than that of the EMFN and LN filters. As a consequence,

EMFN and LN filters always provide a better convergence
speed than a Volterra filter for white uniform input signals.
Finally, as it was first shown in [38], PPSs can also be
developed and used for the identification of LN filters.
Indeed, they easily allow an efficient estimation of the
most compact representation of the unknown nonlinear
system, by using the cross-correlation approach and some
information criterion. All these advantages come at the
expense of a very small increase of the implementation
complexity with respect to Volterra filters. All these
aspects are considered in detail in the paper.

It is worth noting that LN filters are based on poly-
nomial basis functions including the linear function, and
thus their modeling capabilities are similar to those of
Volterra filters. Therefore, LN filters can provide more
compact models than EMFN filters for weak or medium
nonlinearities. Moreover, identifying LN filters using PPSs
is one of the most efficient methods for the identifica-
tion of Volterra filters. Indeed, once the LN filter has been
identified, it can be easily transformed into a Volterra
filter representation exploiting the properties of Legendre
polynomials.

The approach used in this paper to introduce the LN
filter class can be applied to any family of orthogonal
polynomials defined on a finite interval. Legendre poly-
nomials are specifically considered since they have been
already used for nonlinear filtering. Indeed, they have
found application in Hammerstein models [39,40], FLANN
filters [41-43], and neural networks [44]. Nevertheless, it
should be noticed that the approaches of the literature do
not make use of cross-terms, i.e., products among basis
functions involving samples with different time delay,
which can be very important for modeling nonlinear
systems [18]. The corresponding basis functions do not
form an algebra, because they are not complete under
product. Thus, in contrast to the filters proposed in this
paper, those previously considered are not universal
approximators for causal, time-invariant, finite-memory,
continuous, nonlinear systems.

Compared with the early conference contributions
[37,38], in this paper we present an organic and detailed
introduction of LN filters and their properties, discussing
with particular attention PPSs for LN filters. Differently
from [37], LN filters are introduced in this paper starting
from a normalized set of Legendre polynomials. In contrast
to [38], full proofs of properties of the PPSs for LN filters
are here presented. Moreover, a discussion about the
advantages and disadvantages of using LN filters and PPSs
for system identification is also included in this paper.

The rest of the paper is organized as follows. Section 2
reviews basic concepts about LIP nonlinear filters, the
Stone-Weierstrass theorem, and Legendre polynomials.
Section 3 derives the LN filters and discusses their proper-
ties. Section 4 discusses PPSs for LN filters and their use for
system identification. Section 5 presents experimental
results that illustrate the advantages of LN filters and PPSs.
Concluding remarks follow in Section 6.

Throughout the paper the mathematical notation of
Table 1 is used. Moreover, sets are represented with curly
brackets, intervals with square brackets, while the following
convention for brackets {[(---{[0]}-+)]} is used elsewhere.



Table 1
Mathematical notation.

leg;(x) Legendre polynomial of order i

len;(x) Normalized Legendre polynomial of order i
5jj The Kronecker delta

R The set of real numbers

Ry The interval [—1, +1]

N* The set of positive integers

o The average of L consecutive samples of f{n)

2. Basic concepts

In this section, some basic concepts about LIP nonlinear
filters, the Stone-Weierstrass theorem, and Legendre poly-
nomials are reviewed.

2.1. LIP nonlinear filters

The input-output relationship of a time-invariant,
finite-memory, causal, continuous, nonlinear system can
be expressed by a nonlinear function f of the N most recent
input samples,

y(n) =f[x(n),x(n—1),....x(n—N-+1)], (1)

where the input signal x(n) is assumed to take values in
the range R; = {x e R, with |x| <1}, y(n) e R is the output
signal, and N is the system memory. f[x(n),...,X(Nn—N+1)]
is a multidimensional function in the RY space: each
dimension corresponds to a delayed input sample. In what
follows, f[x(n), ..., x(n—N+1)] is expanded with a series of
basis functions f;,

flx(),x(n—1),...,x(n—N+1)]

+ 00

= '21 cifilx(n),x(n—1),....x(n—N+1)], @)

i=
where ¢; € R, and f; is a continuous function from RY to R,
for all i. Every choice of the set of basis functions f; defines
a different LIP nonlinear filter that can be used to approx-
imate the nonlinear systems in (1). Among all possible
candidates, our interest falls on filters able to arbitra-
rily well approximate every time-invariant, finite-memory,
continuous, nonlinear system. To this purpose, the Stone-
Weierstrass theorem is exploited [28]:

Let A be an algebra of real continuous functions on a
compact set K. If A separates points on K and if A
vanishes at no point of K, then the uniform closure B of
A consists of all real continuous functions on K.

According to the theorem any algebra of real continuous
functions on the compact RY which separates points and
vanishes at no point is able to arbitrarily well approximate
the continuous function f in (1). A family A of real
functions is said to be an algebra if A is closed under
addition, multiplication, and scalar multiplication, i.e., if (i)
f+geA(ii)f-ge A and (iii) ¢f € A, forall f e A, ge A and
for all real constants c.

2.2. Legendre polynomials

Nonlinear filters based on Legendre polynomials are
developed in this paper. Legendre polynomials are ortho-
gonal polynomials in R; with

djj. 3)

1
2
/ 1 leg;(x)leg;(x) dx = 241

Differently from [37], in this paper LN filters are developed
starting from a normalized set of Legendre polynomials,
len;(x), such that

1
/ len;(x)len;(x) dx = 26;;. 4)
-1
This choice simplifies the application of the cross-
correlation method and the derivation of PPSs. The nor-
malized set of Legendre polynomials is obtained by apply-
ing the following recursive relation:

2i+1 2i+3 i [2i+3
len; , 1(x) = o 2l.+1xlen,~(x)fl.+—l mle)nl-,1()c)
5)

with leng(x)=1 and len;(x)=+/3x. With this choice,

len;(x) = v/2i+1leg;(x). The first six normalized Legendre

polynomials are listed in Table 2 with the number of

multiplications and additions necessary to compute them.
Note that according to (4),

1 1
/ len;(x) dx = / len;(x)leng(x) dx =0 (6)
-1 1

for all i > 0.

The product of two Legendre polynomials of order i and
Jj, respectively, can be expressed as a linear combination of
Legendre polynomials up to the order i+j [45]:

i+j
len;()len;j(x) = v/ 2i+1/2j+1 Y

m=|i—j|
Al i)A(;(;{)A(S —m) @ lenn(x) @

where s = (i+j+m)/2 and

3. 2t41)  (20)!

1
AD="F>5"1 T 2Nt

8)

The set of Legendre polynomials satisfies all the
requirements of Stone-Weierstrass theorem on the com-
pact R;. Thus, any continuous function from R; to R can be

Table 2
Normalized Legendre polynomials and the number of multiplications and
additions necessary to compute them.

Polynomial x +
leng(x) =1 0 0
len; (x) = +/3x 1 0

2 1
leny (x) = \/73 (3x2—-1)

N 3 1

lens(x) = 7)((57( -3)

4 2
leny(x) = %@ (35x—30x%+3)

5 2
lens(x) = gx(&x“ —70x%+15)




arbitrarily well approximated with a linear combination of
Legendre polynomials.

3. LN filters

A set of Legendre basis functions that allow us to arbitrarily
well approximate any nonlinear system (1) is now developed
by interpreting f[x(n),x(n—1),...,x(n—N+1)] as a multidi-
mensional function in the RY space. In order to extend the
Legendre expansion to the N-dimensional case, the normal-
ized Legendre polynomials are considered for x= x(n),
x(n—1),...,x(n—N+1):

1, lenq[x(n)], leny[x(n)], lens[x(n)], ...
1,lenq[x(n—1)], leny[x(n — 1)], lens[x(n—1)], ...

i, leni[x(n—N+1)],leny[x(n—N+1)],lens[x(n—N+1)], ...

Then, the terms having different variables are multiplied in
any possible manner, avoiding repetitions, to guarantee com-
pleteness of the algebra under multiplication. The family of so
derived real functions and their linear combinations constitute
an algebra on the compact [—1,1] that satisfies all the
requirements of the Stone-Weierstrass theorem. Indeed, the
set is closed under addition, multiplication (because of (7))
and scalar multiplication. The algebra vanishes at no point
(the set includes the constant 1) and separates points (because
two separate points must have at least one different coordi-
nate x(n—k) and the linear term len;[x(n—k)] separates
them). As a consequence, the LN filters originated by these
basis functions are able to arbitrarily well approximate any
time-invariant, finite-memory, continuous, nonlinear system.

The order of an N-dimensional basis function is defined
as the sum of the orders of the constituent 1-dimensional
basis functions. The basis function of order 0 is the
constant 1.

The basis functions of order 1 are the N 1-dimensional
basis functions of the same order, i.e., the linear terms:

lenq[x(n)], len{[x(n—1)],...,leny[x(n—N-+1)].

The basis functions of order 2 are the N 1-dimensional
basis functions of the same order and the basis functions
originated by the product of two 1-dimensional basis
functions of order 1. Avoiding repetitions, there are N -
(N+1)/2 basis functions of order 2:

leny[x(n)], leny[x(n—1)], ..., leny[x(n—N+1)],
lenq[x(n)]len[x(n—1)], ..., len;[x(n — N +2)]lenq [x(n — N +1)]

lenq[x(n)]lenq[x(n—2)], ..., len [x(n — N +3)]lenq [x(n — N +1)]

iem [x(n)]leny[x(n—N+1)].

Similarly, the basis functions of order 3 are the
N 1-dimensional basis functions of the same order, the
basis functions originated by the product between an
1-dimensional basis function of order 2 and an
1-dimensional basis function of order 1, and the basis
functions originated by the product of three 1-dimensional
basis functions of order 1:

lens[x(n)], lens[x(n—1)], ..., lens[x(n—N+1)],

leny[x(n)]leny[x(n—1)], ..., leny[x(n — N +2)]len; [x(n — N+ 1)]

l.enz[x(n)]lem [X(n—N-+1)],
lenq[x(n)]leny[x(n—1)], ..., len [x(n —N+2)]leny[x(n — N+ 1)],

l.enl [x(n)]leny[x(n—N+1)],
len[x(n)]len;[x(n—1)]len{[x(n —2)], ..., leny [x(n —N+3)]
len;[x(n—N+2)]len[x(n—N+1)],

l.enl [x(m)]len; [x(n—N+2)]len; [x(n— N+ 1)].

This constructive rule can be iterated for any order P.
The basis functions of order P can also be obtained with
the following procedure:

(i) Multiply in every possible way the basis functions of
order P—1 by those of order 1.
(ii) Delete repetitions.
(iii) Apply the following substitution rule for products
between factors having the same time index:

len;(x)len;(x) = len,-(x)«/§x—>1en,v+1(x).

In the last passage, the property in (7) has been
exploited neglecting all polynomials of order less than
i+1.

This procedure for generating the basis functions of order P
from those of order P—1 is the same applied for Volterra
filters, thus the two classes of filters have the same number of
basis functions of order P, memory N. In our case, the linear
combination of all the Legendre basis functions of the same
order P defines an LN filter of uniform order P, having (N+7-1)
terms, where N is the memory length. The linear combination
of all the basis functions with order ranging from O to P and
memory length of N samples defines an LN filter of nonuni-
form order P, whose number of terms is
N+P>

Nr(P.N) = < N

)]
In what follows, S¢(P, N) indicates the set of basis functions of
order less than or equal to P and memory N, with cardinality
N1(P,N). S n(P,N) indicates the subset of S¢(P,N) formed by
the basis functions that are function of x(n), which can be
proved to have cardinality A'r(P— 1, N). f(n) indicates the I-th
LN basis function estimated at time n, with [ ranging between
1 and the cardinality of the set f(n) belongs to.

Given the orthogonality property of the Legendre poly-
nomials, the LN basis functions are orthogonal in RY, ie., for
i#]jitis

+1 +1
/l . filx(), ....x(n=N+1)] - fjlx(n), ... x(n—N+1)]

-dx(n)---dx(n—N+1)=0. (10)

Indeed, the basis functions are product of Legendre polyno-
mials which satisfy (4) and (6). Because of this orthogonality
property, the expansion of f[x(n),...,x(n—N+1)] with the
proposed basis functions is a generalized Fourier series
expansion [46]. Moreover, from (4) the basis functions are
orthonormal for a white uniform distribution of the input



signal in Ry,

+1 +1
/,] o [ FKOD, XN D) fX, XN D)
-pIX(M), ..., Xx(n—N+1)] - dx(1)---dx(n—N+1) = 6, (11)

where p[x(n), ...,x(n—N+1)] is the probability density of the
N-tuple [x(n), ..., x(n—N-+1)], equal to the constant 1/2~. As
a consequence, as for FN and EMFN filters, a fast convergence
of the gradient descent adaptation algorithms, used for non-
linear systems identification, is expected for white uniform
input signals in [—1, +1]. For the same orthogonality prop-
erty, an unbiased estimate for the coefficients of the LN filter
approximating (1) can be easily found using the cross-
correlation method [47]. In fact, the coefficient g of the basis
function fi(n) is given by

g1 =Elf(my(m)), (12)

where the expectation can be estimated using time averages.

To obtain a reasonable estimate for the coefficients using
(12), a huge number of samples (on the order of millions) is
needed [47, p. 77]. To overcome this problem, in the next
section we introduce PPSs for LN filters, i.e., periodic
sequences that guarantee the orthogonality of the basis
functions on a finite time interval.

4. PPS for LN filters and system identification

In this section we first derive PPSs for LN filters and
then discuss their use in system identification.

4.1. PPS for LN filters

The development of PPSs for LN filters follows the
approach of [29,30].

Let us consider a sequence xg, X1, ..., X, 1 of period L. Such
a sequence is perfect for an LN filter of order K and memory N
if all cross-correlations between two different basis functions,
estimated over a period, are zero:

(Fim) - frn(m)L =0, 13)

for all fi(n)eS;n(K,N), fn(n)eS:(K,N) with f,(n)#f,[n).
Together with (13) it is also convenient to impose

i) - fLHim)r =1 (14)

for all f(n) € S;»(K, N) to guarantee orthonormality of the set
of basis functions over a period. It is proved in Appendix that
the system of nonlinear equations defined in (13) and (14) is
equivalent to the following simpler system:

fim)L=0, (15)

for all f(n) € Sy n(2K, N).

In (15) we have Q = N'1(2K — 1, N) equations in L variables
X0,X1, ..., X, _1. For sufficiently large L, the system is under-
determined and may have infinite solutions. In our experi-
ments, a solution for (15) was always found. Any algorithm for
solving nonlinear equation systems can be used. One of the
most effective algorithms that were tested is the Newton-
Raphson method, implemented as in [48, Chapter 9.7], start-
ing from a random distribution of xg, X1, ...,x;_1 in Ry, with
the only modification of reflecting the variables xq, X1, ..., X, _1
in Ry when they exceeded the range. Employing numerical

methods, only an approximate solution is obtained. Never-
theless, the cross-correlations between basis functions can be
made as small as desired, selecting an appropriate precision in
the stop-condition of the Newton-Raphson method. The
number of iterations necessary for this method to converge
depends on the selected precision and on the ratio L/Q.

Since the number of equations Q increases exponen-
tially with the order K and geometrically with the memory
N, even for low orders and memory lengths, Q can be
unacceptably large. The number of equations and variables
can be reduced imposing a specific structure to the
periodic sequence. For example, the following conditions
have been found to almost halve the number of equations
and variables [30]:

(1) Symmetry: when the PPS is formed with the terms
ay,ds, ..., ay and the reversed ones ay, ay—1, ..., i, for
any couple of symmetric basis functions, only one of
them has to be considered.

(2) Oddness: when the PPS is formed with the terms

ai,ds,...,ay and the negated ones —ay, —ay,..., —ay,

all odd basis functions have a priori zero average.

Oddness-1: when the PPS is formed with the terms

ai,ds,..., ay and those obtained by alternatively

negating one every two terms, di, —d,d3, —dg,

..., —ay, all 0dd-1 functions have a priori zero average.

—
w
—

By definition, Odd-1 are all those basis functions that
change their sign by alternatively negating one every
two sample, e.g., len;[x(n)]len;[x(n—1)]. Similarly Odd-2,
0dd-4, ..., functions can be considered. Two or more
conditions can also be considered together. The reduction
in the number of equations takes to a longer period of the
resulting PPS, but is often determinant to solve the system
in (15) since the Newton-Raphson algorithm memory and
the processing time requirements grow with Q3. Another
strategy to reduce the computational complexity of the
system in (15) for large orders and memory lengths resorts
to the use of simplified models, as done for Volterra filters
in [49].

It is also possible to develop sequences that are perfect
at the same time for LN filters and EMFN filters. To this
purpose, together with the equations of the nonlinear
system in (15), we have to impose also the similar
equations for EMFN filters [26]. The number of equations
Q in the nonlinear system increases, and so do the number
of independent variables and the period of the sequence.
The number of iterations necessary for Newton-Raphson
method to converge increases, but convergence was
always found for a sufficiently large period of sequence.
A PPS for LN and EMEN filters will be used in the
experimental results of Section 5.

4.2. Identification using PPS

This subsection describes how PPSs can be used to identify
a time-invariant, finite-memory, causal, continuous, nonlinear
system. When the input-output relationship of the nonlinear
system is expressed as a linear combination of LN basis



functions up to order K and memory N
yn) = ggtfz(n), (16)

the coefficients g; can be estimated with a PPS input by
computing the cross-correlation between the output of the
system and each basis function over a period mL,

& = (fiym))mr, a7
where me N* and L is the PPS period.

4.2.1. Influence of order K

Assume that a PPS for LN filters of order K, memory N,
is used to identify a system formed by a linear combination
of LN basis functions with memory N but maximum order
greater than K, i.e.,

y(m = ;gsz(n)+0:<+1(n), (18)

with f(n) having maximum order K and where Oy 1(n) is a
linear combination of basis functions of order greater than
K. In these conditions, the coefficient g, is affected by an
error generated by Ok, 1(n). The error affects mainly the
coefficients of the higher-order basis functions and, in
general, only mildly the coefficients of the lower-order
basis functions. This can be easily justified by considering
Ok, 1(n) a linear combination of basis functions of order
K+1. All the coefficients g, of the basis functions of order
less than K are not affected by the error, because for the
PPS construction rules the cross-correlation of their basis
functions with Oy, 1(n) is zero. Only the coefficients of the
basis functions of order K are affected, because their cross-
correlation with Ok, 1(n) is generally different from zero.

4.2.2. Influence of memory N

Assume next that a PPS for LN filters of order K,
memory N, is used to identify a system that is a linear
combination of LN basis functions with order K but
memory greater than N, i.e.,

y(n) = ;glfl(n)‘f‘MNJrl(n), (19)

with fi(n) having order K, memory N, and where My 1(n) is
a linear combination of basis functions of memory greater
than N. In this case, the coefficients g; are again affected by
an error generated by My, 1(n). This error affects mainly
the coefficients of the basis functions associated with the
most recent samples, x(n),x(n—1), ..., and, in general, only
mildly the coefficients of the basis functions associated
with the less recent samples, x(n—N+1), x(n—N+2), ... .
To explain this property, let us identify the following
system:

N
v = 3 glenfx(n—| (20)

using a PPS for an LN filter of order 1, memory N. In this
case, the estimate of gg in (17) is affected by an error, since
(len[x(n)] - len[x(n— N)])y is in general different from zero.
In contrast, g¢, ...,gy_1 are not affected by this error since
(len[x(n—1)] - len[x(n—N)])m; =0 forall 1 <i<N-—1 accord-
ing to the construction rules of the PPS.

4.3. Most relevant basis functions and information criteria

The orthonormality of the basis functions on a PPS
period simplifies the identification of the most relevant
basis functions, which maximize the mean square error
(MSE) reduction. For the I-th basis function, the MSE
reduction is

SMSE, = (f(m)y(m)Z,;. @21

A compact representation for the nonlinear system can be
obtained by combining (17) and (21) with some informa-
tion criterion. Common criteria, exploited in the experi-
ments of Section 5, are Akaike's information criterion (AIC)
[50], the Final Prediction Error (FPE) [50], Khundrin's law
of iterated logarithm criterion (LILC) [51], and the Bayesian
information criterion (BIC) [52].

5. Experimental results

To show the potentialities of LN filters, the identifica-
tion of a real-world nonlinear device, i.e., a Behringer Ultra
Feedback Distortion FD300 guitar pedal is considered. The
pedal provides a drive potentiometer that controls the
amount of introduced distortion. In order to reduce as
much as possible the strength of the nonlinearity, which is
particularly sharp in these kind of devices, the potenti-
ometer was set to the allowed minimum level. At the
maximum used volume, the pedal introduced on a 1 kHz
sinusoidal input a second order and a third order harmonic
distortion' of 4.3% and 12.5%, respectively. The signal to
noise ratio on the output signal was of 48 dB.

In what follows, experimental results about the identi-
fication of the pedal (i) with the LMS algorithm and white
uniform noise input and (ii) with the cross-correlation
method and a PPS input are presented. The input signals
have been fed to the pedal at 8 kHz sampling frequency
and the corresponding output has been recorded with a
notebook.

5.1. Identification with LMS algorithm

The pedal is first identified with an LMS algorithm
using a white uniform input signal. The nonlinear system
memory length is lower than 20 samples, and thus the
system has been identified with the LMS algorithm using
(i) a linear filter of 20 sample memory, and (ii) an LN, (iii)
an EMFN, and (iv) a Volterra filter, all without the constant
term and with memory of 20 samples, order 3, and 1770
coefficients. The same step-size has been used in the
identification of all coefficients.

Different nonlinear filters have different modeling
abilities, and thus different steady state Mean-Square-
Errors (MSE) and different convergence properties. A
difficult choice is that of the step-size of the adaptation
algorithm that guarantees a fair comparison between the
different filters. To cope with this problem, the learning
curves of the different filters have been compared by

! The harmonic distortion is defined as the percentage ratio between
the magnitude of each harmonic and that of the fundamental frequency.



choosing for each filter the step-size that obtains the
minimum steady-state MSE with the fastest convergence
speed. Indeed, the steady-state MSE is the sum of three
contributes: (i) the additive noise, (ii) the modeling error,
and (iii) the excess MSE generated by the gradient noise.
The last contribute depends on the choice of the step-size
and, for sufficiently small step-sizes, is negligible com-
pared to the other two contributes. Thus, using the
recorded signals, for each filter structure the nonlinear
system has been identified with a set of step-sizes uni-
formly distributed on a geometric scale. The corresponding
learning curves have been plot on the same diagram and
the largest step-size that reaches the minimum visible
steady-state MSE (with tolerance a fraction of dB error)
has been annotated. Fig. 1 illustrates this approach and
shows the learning curves of MSE for the LN filter using
the LMS algorithm with different step-sizes. Each learning
curve is the ensemble averaged over 50 simulations
applied to non-overlapping data segments. Moreover, the
learning curves have been smoothed using a box filter of
100 sample memory length. From Fig. 1, it can be noticed
that for a step-size y > 5.6 x 10~ the steady-state MSE is
larger than the minimum one, while for y <43 x 10~*
almost the same steady-state MSE is obtained for all
curves.

Using the annotated step-sizes, the learning curves of
the four filters have been compared in Fig. 2. The step-
sizes used for each filter are reported in the legend. The
linear filter and the EMFN and LN filters have orthogonal
basis functions for white uniform input signals, and thus
provide a fast convergence speed of the LMS algorithm.
Since the Volterra filter does not share this orthogonality
property, its convergence speed is much slower than that
of the other filters. In the time interval of Fig. 2, the
Volterra filter does not reach the steady state conditions.
For this reason, at time n =50, 000 it provides a larger MSE
than LN filters, even though better than EMFN filters.
EMFN and LN filters always provide a better convergence
speed than the Volterra filter for white uniform input
signals, whatever the identified system is. The better
convergence speed can be rigorously proved by estimating
the 2-norm condition number (the ratio of the largest
singular value to the smallest) of the input data vector
autocorrelation matrix. At time n, the input data vector is
the vector collecting the values of basis functions fi(n).
For EMFN and LN filters, the condition number is 1
(or close to 1, if estimated on a finite data) because of

Samples x 10

Fig. 1. Learning curves of LN filters for different values of the step-size.

the orthonormality of the basis functions. On the contrary,
for Volterra filters the condition number is always greater
than 1 and it grows with the order and the memory length
of the Volterra filter. As a matter of fact, Table 3 provides
the estimated value over 2,000,000 samples of the condi-
tion number for different orders and memory lengths of
the Volterra filter. The larger the condition number, the
slower is the convergence speed of the LMS adaptation.
Thus, Table 3 shows that, already for low orders and low
memory lengths, the Volterra filter is expected to provide
a worst convergence speed than EMFN and LN filters.

Returning to Fig. 2, the linear filter is unable to cope
with the strong nonlinearity of the pedal and provides here
the worst steady-state performance, but it has also the
fastest convergence speed due to the orthogonality of basis
functions and the reduced number of adapted coefficients.
In this experiment, the LN filter and the EMFN filters show
similar convergence speed but, thanks to the presence of
the linear terms, the steady-state MSE of LN filter is lower
than that of the EMFN filter. However, it has to be pointed
out that, with the same pedal but higher distortion levels,
the EMEN filter has been found to provide lower MSEs than
the LN filter. There is no perfect filter for every condition.
For causal, finite memory, continuous nonlinear systems,
both EMFN and LN filters are eligible candidates for the
identification of the unknown system and both maximize
the convergence speed of the adaptation in the presence of
a white uniform input signal. LN filters are better fitted to
model mild or medium nonlinearities, due to the presence
of the linear terms, while EMFN filters are interesting
candidates for stronger nonlinearities [26].

—Linear p=5.6 E-2
— Volterrap=1.0 E-2 ||
—EMFN p=3.2E—+4

= —IN  p=32E-4
730 Y |
=
—40 | p
750 !
0 1 2 3 4 5
Samples < 1d

Fig. 2. Learning curves of linear, Volterra, EMFN, and LN filters.

Table 3
Number of basis functions and condition number of the input data vector
autocorrelation matrix for a Volterra filter and a white uniform input noise.

Order Memory length  Number of bases  Condition number

2 5 20 7.3
2 10 65 135
2 15 135 19.8
2 20 230 26.1
3 5 55 46.4
3 10 285 106.8
3 15 815 187.4
3 20 1770 293.8




5.2. Identification with the cross-correlation method

In the second experiment, we consider the identification
of the pedal with a PPS. Since the system has a memory
length lower than 20 samples, a PPS suitable for the
identification of LN and EMEFN filters of order 3, memory
20, exploiting oddness, oddness-1, oddness-2, oddness-4,
and symmetry, and with period of L=1,089,328 samples
has been used to identify the pedal.

The pedal is identified with LN and EMEFN filters on a
PPS period using the cross-correlation method. On the
same data, a Volterra filter has been identified with the
method of [53]. Different information criteria have been
used to select the most relevant basis functions. Specifi-
cally the AIC (with parameter 4), the FPE, the LILC, and the
BIC information criteria have been considered. Table 4
summarizes the number of terms selected by these infor-
mation criteria, and the corresponding MSE for the three

Table 4
Results of identification of Behringer FD300.

Filter Information criterion Selected bases MSE
LN AIC(4) 1115 9.35E—-4
FPE 1271 9.34E—4
LILC 1060 9.35E—4
BIC 880 9.36E—4
EMFN AIC(4) 926 2.62E-3
FPE 1067 2.62E-3
LILC 871 2.62E-3
BIC 734 2.62E-3
Volterra AIC(4) 1116 935E-4
FPE 1272 9.34E-4
LILC 1061 9.35E-4
BIC 881 9.36E—4
4
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nonlinear filters. For a linear filter of memory 20 the MSE
is 1.05 x 1072. LN and Volterra filters provide almost
identical results. Indeed, both are polynomial models and
the basis functions of the LN filter are a linear combination
of those of Volterra filter (and vice versa). Thus, both filters
provide the same MSE, and there is only a little difference
in the number of selected basis functions. In contrast, the
EMEN filter gives slightly worse results because it lacks a
linear term. Nevertheless, it has to be pointed out that, at
higher distortion levels of the pedal, the EMEN filter
provides better results than the LN filter. Among the
information criteria, the BIC criteria is the most conserva-
tive (maybe also the most appropriate in these conditions,
since the same MSE is obtained with all criteria) and it
halves the number of filter coefficients used to model
the pedal.

Fig. 3 shows the order and the diagonal number of the
first 400 selected basis functions for LN and EMFN filters
(those for the Volterra filter have not been included since
they are almost identical to those of LN filters). The
“diagonal number” of a basis function is defined as the
maximum time difference between the samples involved
in its expression (for example, len[x(n)]len[x(n—5)] has
diagonal number 5, len[x(n)] has diagonal number 0).
Low diagonal numbers are selected in the first terms.
Thus, if a very compact representation is desired, in this
case the system could be modeled with a simplified LN,
EMEN or Volterra filter with maximum diagonal number
around 10.

5.3. Discussion on LN filters and identification methods
The main advantage of cross-correlation method is the

remarkable computational efficiency. Indeed, it has a
computational cost of TB operations, i.e., multiplications
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Fig. 3. Order and diagonal number of the first 400 selected basis functions for (i)-(ii) the LN filter, (iii)-(iv) the EMFN filter.
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Fig. 4. Block diagram of a second order LN filter.

and additions, with T being the number of samples used
for the identification, B being the number of candidate
basis functions. In the second experiment, the method of
[53] was chosen for comparison purposes because it is one
of the most computationally efficient identification meth-
ods for LIP nonlinear systems available in the literature.
The method of [53] can be applied to any input signal but
has a computational cost of order TBS? operations, with S
being the number of selected basis functions. Thus, the
cross-correlation approach, taking advantage of the prop-
erties of the PPS, reduces the computational cost by a
factor S2. In the experiments, the execution of the cross-
correlation method required a processing time of few
minutes. In contrast, the method of [53] requested hours
of simulation.

Given the very long period L=1,089,328 of the PPS
used in the experiments, it could be argued that a white
uniform noise could be used for the identification of the
LN system with the cross-correlation method obtaining
similar performance. In reality, the mean-square difference
between the coefficients identified with the cross-
correlation method on 1,089,328 white uniform noise
samples and the coefficients obtained with the least
square approach on the same data is 1.5x 10~% In
contrast, the mean-square difference between the coeffi-
cients identified with the cross-correlation method on a
PPS period of 1,089,328 samples and the coefficients
obtained with the least square approach on the same data
is 1.1 x 10~ . Moreover, periodic sequences with shorter
periods can be developed, considering sequences perfect
for LN (EMFN) filters only, or perfect for some simplified
structures. For example, a PPS for linear and EMFN filters
of order 3, memory 20 and period of 201,412 samples was
developed in [30] and a PPS for LN filters of order 3,
memory 20, and period of 357,956 samples was developed
in [37].

Another advantage of the cross-correlation approach is
the simplicity in the ranking and in the selection of the
most relevant basis functions, which allows an easy
integration with any information criteria. This property is
not shared by the LMS identification.

A disadvantage of the LN filters is related to the complexity
of the basis functions in comparison with those of the Volterra
filters. In reality, the computational complexity increment is
very limited, since it is related only to the calculation of the
polynomials len;[x(n)], leny[x(n)],...,lenp[x(n)], being P the
filter order (and, in most cases, P < 3). According to Table 2

the computation of each of these polynomials requires only
few multiplications and additions. Indeed, all the LN basis
functions can be expressed as products of the values and
delayed values of the polynomials len[x(n)], ..., lenp[x(n)].
For example, Fig. 4 shows the block diagram for the imple-
mentation of a second order LN filter of memory N. The block
diagram is formally identical to the implementation of a
second order Volterra filter, apart from the presence of the
blocks len; and len, which compute the corresponding
Legendre polynomials. Thus, for any memory length N, the
computational complexity of a second order LN filter is the
same of a second order Volterra filter apart from three
multiplications and one addition necessary to implement
len; and len,.

Once an LN filter has been identified, it can be easily
converted into a Volterra filter, replacing each of the
Legendre polynomials with its expression in Table 2,
computing the products between the polynomials
involved in each basis function, and reducing the resulting
expression to a sum of products. For example,

Alen; [x(n)]+ Blens[x(n)]+ Clen;[x(n)]len[x(n — 1)]
=AV3x(n)+ B\gx(n) (5x%(n)—3)

5

+C7(3x2(n)—1)«/§x(n—l)
= \/_A—£8> (n)—gCX(n—l)
+KBX (n)+3\/_Cx (mx(n—1).

As a matter of fact, for the properties of Legendre poly-
nomials there is a bijective correspondence between LN
and Volterra filters.

6. Conclusions

A sub-class of polynomial, finite-memory, LIP nonlinear
filters, the LN filters, has been discussed. LN filters are
universal approximators, according to the Stone-Weier-
strass theorem, for causal, time-invariant, finite-memory,
continuous, nonlinear systems, as well as the Volterra
filters and the EMEFN filters. The basis functions of LN
filters are mutually orthogonal for white uniform input
signals, as those of EMFN filters. Thanks to this orthogon-
ality property, gradient descent algorithms with fast con-
vergence speed can be devised. The orthogonality property
can also be guaranteed on a finite period using PPSs, which
allow an efficient identification of LN filters with the cross-
correlation approach. In contrast to the EMFN filters, the
basis functions of LN filters include the linear terms.
Consequently, these filters are better fitted than EMFN
filters for modeling weak or medium nonlinearities. In
summary, the proposed filters combine the best character-
istics of Volterra and EMFN filters.

Examples of PPSs can be downloaded from http://
www.units.it/ipl/res_PSeqs.htm.


http://www.units.it/ipl/res_PSeqs.htm
http://www.units.it/ipl/res_PSeqs.htm

Appendix A. Equivalence between (13), (14) and (15)

In this Appendix, the equivalence between the system
of nonlinear equations in (15) with f,(n) e 5;,(2K,N) and
that in (13) and (14) with f;(n) € Sy 5(K, N), f,(n) € S¢(K,N),
and f(n) # f,(n) is proved.

First, it is shown that (15) implies (13) and (14). Note
that if (15) is met for f,(n) € S;,(2K,N), it is also true for
fi(n) e Sf(2K, N).

For (7), the product between two different basis func-
tion f,(n) € Sy o(K,N) and f,,(n) € S¢(K,N) is a linear combi-
nation of basis functions belonging to Sf(2K,N) and
different from fy(n)=1 (because the summation in (7)
starts for m > 0). Thus, (15) implies (13). Moreover, for any
fi(n), f,z(n) is equal to 1 plus a linear combination of other
basis functions belonging to S;(2K, N). Indeed, the summa-
tion in (7) starts for m=0 and the coefficient of leny(x) is 1.
Thus, (15) implies also (14).

Next, (13) and (14) are assumed true and (15) is proved.
In most cases, any f,(n) € S ,(2K, N) can be directly written
as the product of two basis functions belonging to S;(K,N)
and, from (13), it is (f;(n)). = 0. The only cases where this is
not possible are when f(n) has a factor len.(x) with t > K.
There can be just one of these factors in f (1) € S; (2K, N).
These cases are treated in two steps:

(a) First consider the case t < 2K and take the product of
two Legendre functions of order i and j, respectively,
such thati#j and i+j=t. According to (7), len;(x) can
be expressed as len;(x) - len;(x) minus a linear combi-
nation of Legendre polynomials from order |i—j| >0
till t —1. By applying recursively this reduction rule we
can express len¢(x) as a linear combination of product
of couples of Legendre polynomials of order less than
or equal to K. Thus, from (13), it is {f;(n)), = 0.

In case t=2K, consider the product leng(x) - leng(x).
According to (7), lenyk(x) can be expressed as leng(x) -
leng(x) minus a linear combination of Legendre poly-
nomials from order O till 2K —1. In this linear combi-
nation the coefficient of leng(x) = 1 is 1. Thus, from (14)
and the proof in (a), we find that (f;(n)), = 0.

G
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