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The multiple-variance method is a cross-correlation method that exploits input signals with
different powers for the identification of a nonlinear system by means of the Volterra series.
It overcomes the problem of the locality of the solution of traditional nonlinear identification
methods, based on mean square error minimization or cross-correlation, that well approximate
the system only for inputs that have approximately the same power of the identification signal.
The multiple-variance method permits to improve the performance of models of systems that
have inputs with high dynamic, like audio amplifiers. This method is used, for the first time, to
identify three different tube amplifiers. The method is applied to a novel reduced Volterra model
that allows to overcome the problem of the very large number of coefficients required by the
Volterra series by choosing only a proper subset of elements from each kernel. Eventually, the
multiple-variance methodology is applied to different real audio tube devices demonstrating
the effectiveness of the proposed approach in terms of system identification and computational

complexity.

0 INTRODUCTION

The paper addresses the problem of the locality of the
solution in the identification of nonlinear systems with the
Volterra series. The problem affects most of traditional
identification methods based on mean square minimization
or cross-correlation, which well approximate the system
only for inputs that have approximately the same power of
the identification signal. The Volterra series is a polyno-
mial functional series for nonlinear system representation
and identification, extending to functionals the Taylor se-
ries expansion [1]. It owes its spread of use in engineering
to the work of Norbert Wiener on Brownian motion linear
transformation, on higher degree functionals of Brownian
motion, and their orthogonalization [2]. Along with the
work of his colleagues [3], Wiener continued to develop
his theories by combining Volterra series and his previous
works, and finally defining the so called Wiener series. In
real application the Wiener’s method was difficult to imple-
ment due to the use of Brownian motion, so a further step in
its usability came from the work of Lee and Schetzen [4],
who developed a method that uses white Gaussian noise

as input and cross-correlation for parameter estimation of
Wiener series coefficients, the so called cross-correlation
method. Exploiting the relationship between Wiener and
Volterra coefficients, it is then possible to obtain an equiv-
alent Volterra series from the Wiener series.

While in the early works the Volterra series was consid-
ered an analytical power series (infinite sum of elements)
defined in the continuous-time domain, current interest is
addressed to the discrete-time series, truncated in both
memory and order of nonlinearity, generally called dou-
ble truncated Volterra series. Considering the identification
of systems with finite memory, using the Stone-Weierstrass
theorem [5] it can be demonstrated that the approxima-
tion error can be made arbitrary small increasing the order
and memory of the truncated series, and in this sense the
Volterra series is a universal approximator.

While in the analytical continuous-time power series
the identification using the cross-correlation method is
independent of input variance, in truncated discrete-time
series this is no longer true. The approximation error
now depends on the input variance used in the identifi-
cation [6, 7], originating the problem of the locality of the



solution. A Volterra series can be considered optimal only
for inputs with variances in a neighborhood of that used
for identification, either performed with a cross-correlation
or a least mean square based method [8]. An improved
cross-correlation method for nonlinear system identifica-
tion based on multiple-variances has been proposed for
Wiener-Volterra series and Gaussian input in [8]: low input
variances are used to identify lower order Wiener kernels,
while the input variance is gradually increased for higher
order kernels.

In [9] the Wiener series was expressed as a linear com-
bination of Wiener nonlinear (WN) basis functions, which
are orthogonal for white Gaussian inputs. Deterministic
periodic signals, called perfect periodic sequences (PPSs),
that guarantee the orthogonality of the basis functions on
a finite period, can also be developed. Using a PPS input
signal, the identification of an unknown nonlinear filter can
be improved either by using Wiener kernels or Wiener basis
functions as approximators [9, 10].

In a multiple-variance method, the different input vari-
ances allow to reach a lower error than the traditional identi-
fication for a wide range of input dynamics. So this method
is specifically targeted to the identification of systems hav-
ing high dynamic inputs, like audio amplifiers.

In this paper a detailed analysis of a multiple-variance
method applied to tube devices will be performed. In this
context, a well known limitation of Volterra series is the very
large number coefficients involved [11], which increases
exponentially with the filter order and geometrically with
the memory length. We will show that this serious draw-
back can be overtaken by choosing only a subset of elements
from each full memory kernel. The subset is obtained by
delaying and reducing the memory of the identified nonlin-
ear kernels, i.e., considering only the most relevant terms of
each kernel. The estimation of the reduced kernel can still
be done with the cross-correlation estimation method, as
proposed in [10], since with the cross-correlation method
each kernel element is estimated independently of other el-
ements. In this way, it will be shown that it is possible to
obtain a good approximation error also with a reduced num-
ber of kernel elements on an extended range of input sig-
nal variances. Experimental results involving real nonlinear
audio devices, i.e., tube amplifiers and pre-amplifiers, will
illustrate the advantages offered by the proposed approach.

The paper is organized as follows. Sec. 1 will discuss
related works based on nonlinear system identification for
real audio devices. The multiple-variance method will be
described in Sec. 2, while experimental results will be re-
ported in Sec. 3 considering several tube devices, i.e., audio
amplifiers and pre-amplifiers. Finally, concluding remarks
will be given in Sec. 4.

1 RELATED WORKS

In the past years, several different approaches have been
investigated in order to develop a technique suitable for
an efficient modeling of tube audio devices [12]. These
approaches can be divided into three main categories: the
white box approach where the system structure is known

(e.g., the schematic of an amplifier is available), the black
box approach where the system is totally unknown and
only the inputs/outputs are available, the gray box approach
where the structure is not completely known but some fea-
tures are available and could be used to improve the model.
Typically, white box approaches are used to approximate
the amplifier circuit gain stage exploiting differential equa-
tions [13] or the wave digital filters [14, 15], obtaining
a complete mathematical model of real devices. On the
other hand, the gray or black box approaches are based
on well known models, such as the Hammerstein model
[11, 16-17], Wiener model [11, 17], Wiener Hammerstein
model [11, 18], and the Volterra series, that are identified
exploiting particular input signals (e.g., exponential sine
sweep). Starting from the input/output characteristic and
a block diagram of the analog circuit, an iterative param-
eter optimization has been also considered in [19, 20], to
model a dynamic range compression system. To the gray
box approaches belongs also the Significance Aware Fil-
tering concept [21-24] introduced in the field of nonlinear
acoustic echo control, where the long memory nonlinear
acoustic system is decomposed into synergetic subsystems,
separating the long memory linear system representing the
acoustic echo path from a nonlinear part composed by a
very low number of parameters. An example of a black
box approach can be found in [25] where a Volterra se-
ries with kernels expressed as products of one-dimensional
functions has been used for modeling a surround ampli-
fier. Considering the nonlinear identification of other audio
devices, several techniques have been applied for the iden-
tification of guitar pedal distortion effects [26-29, 12] or
nonlinear guitar speaker cabinet [30]. Regarding the pedal
distortion emulation, a methodology based on Volterra se-
ries has been introduced in [26], exploiting its expansion to
approximate the circuit nonlinear part, e.g., the asymmetric
distortion produced by a triode valve or by a saturated op-
erational amplifier. In a similar way, a parametric Wiener
Hammerstein model exploiting an iterative algorithm has
been used in [27] for guitar stompbox identification. In case
of simple circuits such as the overdrive or distortion guitar
pedal, approaches based on physical modeling have also
been studied. In [28] the circuit is approximated exploiting
a nonlinear state-space model, while in [29] the circuit el-
ements are approximated by means of numerical solutions
of ordinary differential equations. Taking into considera-
tion the speaker cabinet of electric guitars, the Volterra
kernels have been used for the cabinet approximations in
[30] exploiting a logarithmic sine sweep technique, which
provides a way to separate the different orders of Volterra
Kernels from the linear part.

With relation to nonlinear digital effects, in [31] it is
shown how the formalism of the Volterra series can be
used to represent the nonlinear Moog ladder filter. In this
case using a truncated version of Volterra series allows to
develop a model for an extended range of input signals.

Then, nonlinear system identification can also be ap-
plied to loudspeaker development: the nonlinear model can
be used to design an equalization filter capable of reducing
the device nonlinearity. In [32], a Volterra series has been



applied to estimate the nonlinearity of a horn loudspeaker,
while in [33] it is shown how to reduce the identified non-
linearity developing an equalization filter. A different tech-
nique is the nonlinear autoregressive moving average with
exogenous input (NARMAX) model, originally proposed
in [34], that has been used in [35, 36] to model loudspeaker
nonlinearities.

Taking into consideration the overall scenario of digital
music, in [37] a method for band-limited discrete-time iden-
tification and modeling of analog nonlinear audio effects,
like tube amps, exciters, etc., has been presented using off-
time digital cross correlation measurements. Finally con-
sidering more classical musical instruments, the Volterra
series representation has also been used to obtain a model
of nonlinear behavior of instruments such as an ocarina in
[38] or a more conventional flute in [39].

2 MULTIPLE-VARIANCE METHOD

In [8] the author shows a strong dependence between the
power of the white noise (cyi), used to identify a Volterra
series, and the approximation capability of model itself,
independently from the algorithm used in the identifica-
tion. The Volterra series, tested with different power inputs,
shows an increasing error as the input power increases or
decreases with respect to that used in the identification. This
happens because several errors affecting the identification
of the Volterra series depend on the input power. The cause
of these errors can be related to the input non-idealities and
to the approximation errors due to the double truncation of
the series, with respect to memory and order of nonlinear-
ity [7]. In traditional algorithms, using high o, inputs has
the advantage of stimulating higher order nonlinearities, in
order to achieve more accurate higher order kernel identi-
fication. As a drawback, the use of high o, values causes
high identification errors in lower order kernels, since the
higher order Wiener kernels, multiplied by the variances of
lower order kernels, are summed to the lower order Volterra
kernels [8].

The rationale should be to use a low o, value for the
lower order kernels and to gradually increase it for higher
order ones. This is the core of the multiple-variance method,
where inputs with different variances are used for Wiener
kernel identification, allowing to reach a lower error with
respect the traditional identification for inputs with wide
dynamics.

We can start by introducing the double truncated Volterra
series that models a discrete time, nonlinear, finite memory
system
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where y(n) is the output of the system, x(n) its input, and
hi(ty, .., T;) is the Volterra kernel of order i. The output
y(n) is a linear combination of product of delayed input
samples, where the delays t; are also the indexes of the
kernel matrices h;(ty, .., T;) .

In order to allow system identification by means of a
cross-correlation method the Volterra series must be rear-
ranged in terms of orthogonal operators:

y) =) (Hix)n) =Y (Gix)n). )

These operators, commonly known as Wiener G-
functionals, are orthogonal to each other and also to Volterra
operators of lower orders if the input x(n) is a stationary
white noise with zero mean and variance o2. The Wiener G-
functionals, unlike the Volterra ones, are non-homogeneous
functionals, being a linear combination of polynomial terms
of different orders. The Wiener kernels can be identified by
means of the multiple variance method with the formulas
presented in [8] that are explicitly reported in the following
up to the fourth order,
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where kf,,j) and y¥(n) are respectively the Wiener kernel of
order p and the system output obtained with the input x?(n)
of variance A; = o2 ;. In the cross-correlation method the
expectations in Eqgs. (3)—(7) are estimated using time aver-
ages over the entire duration of the input and output signal.

Wiener kernels can now be rearranged to obtain directly
the expression of the Volterra kernels and so the Volterra



series. Appropriate normalization is needed in Wiener to
Volterra conversion formulas, unlike in the usual ones, for
taking into account the use of multiple variances. The new
formulas for the changeover from Wiener to Volterra are
reported in the following equations,

hy = kY, ®)
hy = kY, ©)
M—1
hy = kS — 64, Z k(1 1, 13, 1), (10)
‘[3:0
M—1
ho= kD =340 k(L n w), (11)
‘(2:0
M—1
]’lo = k(()o) — AO Z kgz)(‘tl, ‘Cl)
‘E|:0
M—1M—-1
+345 ) Y kT ), (12)
71=0 1,=0

where all kernels have memory equal to M, and the system
has a maximum order P = 3.
The following formula

M+ P
N=< P ), (13)

gives the total number of coefficients of a Wiener or Volterra
truncated series, when all kernels have the same memory.
Eq. (13) provides the well known exponential relationship
used by all papers in support of the curse of dimensionality
of Volterra series.

The curse can be broken by simply avoiding the kernels
to have the same memory and above all avoiding to have
the same memory of the first order one. A procedure for
estimating the kernels of nonlinear audio devices with a
symmetric distribution of the coefficients around the main
peak, as in audio amplifiers, is discussed in the following.
The procedure could be easily modified to address also
asymmetric distributions and it consists of the following
parts:

e The identification of the first order kernel is carried
out using Eq. (3) with a large memory, since it is
not computationally expensive. Then M, is choosen
by discarding all negligible kernel values, i.e., those
under the noise floor.

e From the first order impulse response the delay of
the main peak, Py, is estimated.

e Higher order kernels are identified with Eqgs. (3)—(7),
starting by kernels with an memory M, equal to a
fraction of M; and centered at P, equal to P;.

e M, can be now increased (or, if needed, reduced) by
a steepest descent procedure, until the performance
of the Volterra model is not satisfactory.

Table 1. Experiments Summary

Number of input variances

Test
Device Type Identification Noise Noise Music
Synthesis 4 13 13
SI Audio 5 13 13
Presonus 4 13 13

With this procedure the delay of the first kernel value
different from zero is

D, =P, — Mp/2. (14)

The delay D, and the memory M,, changes for each kernel.
In the experimental part we will show that with the proposed
technique we can obtain a complexity reduction of one order
of magnitude for a third order system and of two orders of
magnitude for a fourth order system.

3 EXPERIMENTAL RESULTS

In this section two experiments were conducted on each
of the three different tube audio devices:

1. Identification and test of one complete multiple-
variance and four complete single-variance Volterra
models in order to prove that the multiple-variance
model performs better, for a wide range of input
powers, than the single-variance models;

2. Identification and test of reduced-kernel models to
prove that the reduced models perform comparably
to the complete ones and that also in this case the
multiple-variance performs better than the single-
variance ones.

The description of the measurement set-up and of the ob-
tained results will be reported in the following subsections.

3.1 Measurement Set-Ups

The proposed methodology has been tested with three
different vacuum-tube amplifiers as reported in Table 1.
Two set-ups have been considered: the first one with HI-FI
vacuum-tube amplifiers, the latter with a microphone tube
pre-amplifier.

In the first setup, the ST Audio OTL509/25 and the Syn-
thesis Roma 27AC amplifiers have been used. Both the
amplifiers have been connected to a pair of Auna 501 pas-
sive 2-way speakers with an RMS rated power of 100 W,
an impedance of 8 €2, and a frequency range of 92 Hz —
20 kHz. The volume has been set at the highest value
and after half an hour of warm up, the input signal has
been applied with a 6 dB of attenuation of the D/A con-
verter, and the output signal has been measured across the
speaker terminals. Even though these two amplifiers are
based on tube technology, they show a different circuit: the
SI Audio amplifier is an all triode OTL Amplifier (output



transformerless), while the Synthesis amplifier shows a
more conventional architecture, with an output transformer.
In the second setup, a microphone tube preamplifier,
i.e., Presonus TubePre, has been used connecting it in loop
with the measurement setup with an unbalanced cable. The
TubePre uses a triode 12AX7 valve, and it allows two main
controls: a drive potentiometer that acts on the valve satu-
ration and a gain control that acts on the overall gain of the
preamplifier adding more volume and distortion. The drive
has been set at 4 dB (within a range from 0 to 20 dB), the
gain at 12 dB (within a range from 3 to 48 dB) and the A/D
converter attenuation of 20 dB; this setting has low values
of drive and gain in order to avoid a too heavy distortion.

For all measurement setup, a National Instruments Com-
pact Rio chassis (cRIO-9024) equipped with a 2-channel
voltage analog output NI-9260 and with a 3-channel volt-
age analog input NI-9232, connected to a desktop PC have
been considered. Both generation and acquisition boards
have been configured to use the same sample clock with a
sample rate of 44100 Hz. The National Instruments soft-
ware LabView was used to generate the test signals and to
acquire the measurements.

Two types of sound tracks have been considered for the
measurement. The first, used for the identification proce-
dure, is composed by the concatenation of white noise sig-
nals with different power values, interleaved with a 1 s of
silence, as shown in Fig. 1(a). The second, used for testing
the identified model, is a combination of music and white
noise, as shown in Fig. 1(b).

In order to exploit all the resolution of the D/A converter,
used to drive the amplifier, the maximum variance in the
identification signal was set equal to 1/12, 0? = A5 =1/12.
With this value only a negligible percentage (0.05%) of
noise values saturates the D/A converter, exceeding 1. In
the following, the nonlinear devices are modeled with third
order or fourth order Volterra systems. Thus, five different
input variances were considered to allow the identification
of each kernel of a fourth order system at a different input
variance. A subset of these input variances will be used for
the identification of third order systems.

The set of variances of the five white noises

{0?, 03, 03, 03, 02} was chosen equal to
{As/64, As/16, As/8, As/2, As}). (15)

Accordingly, the corresponding numeric values of stan-
dard deviations {0}, 02, 03, 04, 0} are

{0.036, 0.0722, 0.102, 0.204, 0.288}. (16)

To test the model performance a normalized mean square
error (NMSE) defined over the output spectrogram has been
used. To define it formally, let us write

Ya(t, ®) = STFT[ya(n)] a7
Ym(t, w) = STFT[ym(n)] (18)

where ya(n) and yy(n) are the output of the amplifier and
of the model, respectively, and the STFT is the Short Time
Fourier Transform, calculated using a Hamming window
such that the signal is divided into eight segments with
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Fig. 1. Input signals used (a) for the identification (b) for testing,
expressed in procedure defined units (p.d.u.) [40].

50% overlapping samples. The mean square error between
two matrices can be defined as

MSE[YaA, Yum]
1
= %c Z ;[YA(L ) = Yuli, )P (19)

where RC is the product between the number of rows and
columns of one matrix. Now we are able to define the
NMSE as

NMSE = MSE(|Yal, [Ym[)/MSE(|Y4l, 0), (20)

where |.| denotes the magnitude applied to each element of
the matrix.

3.2 Synthesis Roma 27AC Identification Results

In the first experiment the Roma 27AC vacuum-tube
amplifier has been identified. Four Volterra models were
identified with the cross-correlation algorithm defined in
[7], each model using an input with a different vari-
ance belonging to the set in Eq. (15). Then, a single
Volterra model was identified with the multiple-variance



Table 2. Variances used in the
multiple-variance estimation method.
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Fig. 2. Roma 27AC: first order Volterra kernel, (a) in time domain
(h1(1)) (b) in frequency domain (|H,(H)|?).

method [8], estimating each Wiener kernel at a different
variance as reported in Table 2.

The memory spans of the kernels of all these Volterra
models were

M, =64, M, =32, M3 =32, 21

where M; is the memory of the Wiener and Volterra kernels
of order j.

Fig. 2 shows the first order kernel of the multiple-
variance Volterra model in time (Fig. 2(a)) and frequency
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Fig. 3. NMSE of complete Volterra models of Roma 27AC. (a)
WGN input, (b) music input.

domain (Fig. 2(b)) respectively. The range of time values
in the x-axis of Fig. 2(a) corresponds to the memory value,
M, = 64, multiplied for the sampling time Tyn.x =
64/44100 = 1.45 ms. Fig. 2(b) also shows the power spec-
trum of the first order kernel of the single-variance Volterra
model, identified with the maximum variance, og.

Fig. 3 shows the NMSE of the single-variance Volterra
models and that of the multiple-variance Volterra model,
as a function of input standard deviation. The Figure was
obtained by using as testing input of the Volterra mod-
els each of the white noise signals belonging to the test-
ing set shown in Fig. 1(b), and calculating the NMSE
for each of them. In the Figure you can count 13 NMSE
points for each curve, one for each of the white noise input
signals.

In Fig. 3(a) we can see that the error curve related to the
multiple-variance method interpolates the inferior values
of the curves for single-variances, as the multiple-variance
method was meant to do.

The single-variance Volterra models have performance
similar to the multiple-variance one only in a short inter-
val around the variance used for the measurement, while



Table 3. Parameters of reduced Volterra

models of Roma 27AC.
memory delay
M] = 64 D] = 0
M, =15 D, =19
My =11 D; =21

outside this interval the error increseas up to 15 dB. It
should be noticed that the proposed model has a NMSE
always less than —25 dB.

Fig. 3(b) shows similar curves but obtained with the
music inputs reported in Fig. 1(b). Also in this Figure
the multiple-variance curve approaches the inferior
values of the curves for single-variances, although the
single-variance model identified with o5 goes better for
some inputs, reaching the best performance difference of
—0.79 dB, but for low variances it performs worse until
6.3 dB.

Each of the Volterra models with the kernel memories
reported in Eq. (21) has a total of 6577 kernel elements.
This can make their real-time implementation very difficult.
With the aim of reducing the complexity of Volterra models
we have applied the procedure described at the end of the
Sec. 2, that consists in reducing the memory extent of the
kernel, keeping a reduced number of kernel values around
the peak of the same kernel. The reduced Volterra models,
that we have found to have comparable performance to the
complete model, have the parameters reported in Table 3,
where the D; are kernel delays, as defined in Eq. (14). The
reduced models have now just 454 kernel elements and can
thus be easily implemented in real-time.

Fig. 4(a) shows the performance of the reduced-memory
Volterra models obtained using white noise inputs. In com-
parison with Fig. 3(a), we can see an improvement of single-
variance model performance for high input variances and a
worsening for small input variances. This can be explained
by considering that, in the reduced kernel models, even
though all the neglected elements of higher order kernels
could contain some missing information about the kernel,
in most cases they contain identification noise. This higher
order kernel noise becomes relevant for high power inputs
(so avoiding it improves the performance), but it is less rele-
vant for low variance inputs, where the missing information
prevails. The multiple-variance method, having much less
identification error, is much less affected from the kernel
truncation, maintaining the same performance at low input
variance and performing a little better only for high input
variances.

Similar results are also shown in Fig. 4(b) that reports the
NMSE obtained with music input. Here, the single-variance
model identified with o5, achieved a better performance
difference of 1.6 dB, with respect the multiple-variance
one, but a worse performance difference of 12.5 dB.

Fig. 5 shows the values of the second-order Volterra ker-
nel of the multiple-variance method that have been esti-
mated in the reduced model. It can be noticed that the
kernel elements shown in the Figure start from 4.3 ms,
corresponding to D, = 19 samples.
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Fig. 4. NMSE of reduced Volterra models of Roma 27AC. (a)
WGN input, (b) music input.
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Fig. 5. Roma 27AC: second order Volterra kernel, /,(t;, 12).

Fig. 6 shows three slices of the third order kernel of the
multiple-variance Volterra model. The third order kernel of
the reduced model has a delay similar to the second order
one (D3 = 21 samples) but a smaller memory, M3 = 11.
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Fig. 6. Roma 27AC: third order Volterra kernel A;3(t;, T2, T3).

3.3 Sl Audio OTL509/25 Identification Results

In the second experiment the SI audio vacuum-tube am-
plifier was identified. Also in this case, four single-variance
and one multiple-variance Volterra models were identi-
fied. The models were of the fourth order. In the multiple-
variance method each kernel was identified with the input
variances reported in Table 4.

The memory of the kernels of all the identified Volterra
models were

M, =64, My =34, My =32, My =29. 22)

Table 4. Variances used in the
multiple-variance estimation method.

kernel input variance
ko 0'%
k] O'%
kz O'%
k3 O‘Azl
k4 O'g
5
| —— multiple-var.
N | h I|‘, §
0 ————nn \.j’\,._-" “.I Iu' \ |I ‘ |I| I| I'I‘I.'I I'-v-"n"-,-".\_r"“./‘vfww— —_—
\ |
Ii | f
| _
£ ||
-10+ ‘ | 1
||II
151 lu' ]
20 i 4
0 0.5 1 1.5
time [ms]
(a)
34
A
—-—-multiple-var.
33+ [ttt 3 ]
“ \'x\
e x
el X
R AN 4 s
m 32 //‘ = \_\\
= s ," W
|-t Py ‘7 .\\
= 31t ol ‘.\\
= A 3
:E » :_/ W
0L~ W
/s W
N\
“\
29 AN ~a
.
", o
R
o1 — . .
10 10*
f [Hz)
(b)

Fig. 7. OTL509/25: first order Volterra kernel (a) in time domain
(hi(v)) (b) in frequency domain (|H,(H)|?).

Figs. 7(a) and 7(b) show the Volterra model of the first
order, in time and frequency domain, respectively. Fig. 7(b)
also shows the power spectrum of the first order model
obtained by the single-variance Volterra model, identified at
the maximum variance, og. It can be noticed a flat response,
a magnitude of H,(f) of about 30 dB that, considering the
attenuation of the D/A converter, corresponds to a gain of
36 dB.

Fig. 8 shows the NMSE of the single-variance Volterra
models and of the multiple-variance Volterra model, as
a function of input standard deviation. The Figure was
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(a) WGN input, (b) music input.

obtained by using as input of the Volterra models each of
the white noise signals belonging to the testing set, shown
in Fig. 1(b), and calculating the NMSE for each of them.

Fig. 8(a) shows that, also in this experiment, the error
curve of the multiple-variance Volterra models interpolates
the inferior values of the errors of the single-variance mod-
els, apart for the single-variance models with o5, which
goes better at the point of maximum variance but performs
worse up to 30 dB at low variances.

Fig. 8(b) shows similar curves, but obtained with the
music inputs of Fig. 1(b). Also in this Figure the multiple-
variance method interpolates the inferior values of the
single-variance one, although the single-variance model
identified with o5, goes better for some inputs, with the
best performance difference of —2.6 dB, but for low vari-
ances it performs worse until 35.5 dB of difference.

Each of these Volterra models, with the kernel memories
reported in Eq. (22), has a total of 42604 kernel elements.
Consequently, also in this experiment we have applied the
procedure described at the end of the Sec. 2 to reduce the
number of kernel elements. The reduced Volterra models

Table 5. Parameters of reduced Volterra

models of OTL509/25.
memory delay
M, =64 D=0
M, =15 D, =19
My =11 D; =21
My= 5 D, =24
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Fig. 9. NMSE of reduced Volterra models of OTL509/25.
(a) WGN input, (b) music input.

that we have found have performance comparable to the
complete models have parameters reported in Table 5.

The reduced models have now just 541 kernel elements
and can be easily implemented in real-time.

Figs. 9(a) and 9(b) show the performance of the reduced-
memory Volterra models, obtained using white noise and
music inputs, respectively. Also in this experiment, in com-
parison with Fig. 8 we can see a performance improve-
ment of the single-variance Volterra model o5 for high in-
put variances and a worsening for small input variances.
In Fig. 9(a) we can see that in some small variance inter-
vals the single-variance Volterra models perform slightly
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Table 6. Variances used in the
multiple-variance estimation method.

kernel input variance
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better than the multiple-variance one but perform definitely
worse for other variance values. In Fig. 9(b) the multiple-
variance Volterra model approaches better the inferior val-
ues of single-variance models.

Fig. 10 shows the second-order kernel that is used in the
reduced multiple-variance Volterra model. The elements
shown in Figure start from 4.3 ms (D, = 19).

Fig. 11 shows three slices of the third order kernel of the
reduced multiple-variance Volterra model. The third order
kernel has a delay similar to the second order one but a
smaller memory, M3 = 11.

3.4 Presonus TubePre Identification Results

In the last experiment the Presonus TubePre microphone
pre-amplifier was identified. Four single-variance Volterra
models and a multiple-variance model of the third order
were first identified. Each kernel of the multiple-variance
model was identified with a different variance as shown in
Table 6.

The memory of the kernels of all the Wiener and Volterra
models are

M, =50, M> =35, Ms = 35. (23)

Figs. 12(a) and 12(b) show the Volterra model of the
first order, in time and frequency domain, respectively.
Fig. 12(b) also shows the power spectrum of the first or-
der model obtained by the single-variance Volterra model,
identified at the maximum variance, 02. It can be noticed
that, while Figs. 2(b) and 7(b) correspond to amplifier gains
of about 36 dB, the magnitude of TubePre, considering the
attenuation of the A/D converter, corresponds to a 20 dB
gain.
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Fig. 11. OTL509/25: third order Volterra kernel (h3(ty, T2, T3)).

Fig. 13 shows the NMSE of single-variance Volterra
models and that of the multiple-variance Volterra model,
as a function of input standard deviation. Fig. 13 shows
the best performance of the multiple-variance methodol-
ogy in the three amplifier identifications, in fact the NMSE
of the multiple-variance Volterra model is always smaller
than that of the single-variance Volterra models.

Each of these Volterra models, with the kernel memories
reported in Eq. (23), has a total of 8451 kernel elements.
Also in this case we have applied the procedure described
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Fig. 12. TubePre: first order Volterra kernel (a) in time domain
(h1(0)) (b) in frequency domain (|H,(H)|).

Table 7. Parameters of reduced Volterra
models of TubePre.

memory delay

M, =50 D=0
M2 = 9 D2 = 26
M;= 9 D; =26

at the end of the Sec. 2, to reduce the number of kernel
elements. The reduced Volterra models, that we have found
to have performance comparable to the complete ones, have
the parameters in Table 7. In this case the reduced models
have just 261 kernel elements.

Figs. 14(a) and 14(b) show the performance of the
reduced-memory Volterra models, obtained using white
noise and music inputs, respectively. The best performance
shown in Fig. 13 is maintained also for the reduced multiple-
variance Volterra models.

Fig. 15 shows the values of second-order kernel identi-
fied in the reduced multiple-variance Volterra model. The
elements shown in the Figure start from 4.3 ms (D, = 19).

Fig. 16 shows three slices of the third order kernel of the

11

(b)

Fig. 13. NMSE of complete Volterra models of TubePre for (a)
WGN input, (b) music input.

Table 8. Comparison between the number of kernel elements
required by the complete Volterra model and by the reduced one,
for the identified amplifiers.

Number of kernel elements

Model Complete Reduced
Amplifier order model model
Synthesis 3 6577 471
ST Audio 4 42604 541
Presonus 3 8451 261

reduced multiple-variance Volterra model. The third order
kernel has a delay and memory equal to the second order
one.

3.5 Discussion

Table 8 shows the number of kernel elements of the
complete models and of the reduced ones for all the three
experiments. A reduction in the number of elements of one
order of magnitude for the third order models and of two
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Fig. 14. NMSE of complete Volterra models of TubePre for (a)
WGN input, (b) music input.
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Fig. 15. TubePre: second order Volterra kernel, /;(t;, 12).

order of magnitude for the fourth order one can be achieved.
As it can be seen by comparing Figs. 3 and 4, Figs. 8
and 9, and finally Figs. 13 and 14, if the multiple-variance
methodology is used this reduction in complexity can be
realized without worsening the identification performance.

This complexity reduction makes it possible to do a real
time implementation of the proposed models. Using a filter
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bank implementation for the Volterra filter [41], a kernel

M+P-2

of order P and memory M requires ( o1 ) multiplica-

tions for computing the input samples cross-products and

M+ ;,) ! ) multiply—accumulate (MAC) operations for the

filter bank operations. Many attempts have been made to
reduce this number, by a proper combination of the op-
erations, either in time [42, 43] or in frequency domain
[44-46]. Regardless of these techniques, Table 9 reports
the number of MAC required by each proposed model per
each sample and the million of MAC per second (MMACS),
by using a filter bank implementation. Each multiplication



Table 9. Number of operations required for a filter bank implementation of Volterra filters.

Complete model Reduced Model
Model MAC per MAC per
Amplifier order sample MMACS sample MMACS
Synthesis 3 7664 338.0 617 27.2
SI Audio 4 57178 2521.5 792 34.9
Presonus 3 9745 429.8 359 15.8

used for computing the input samples cross-products is
counted as a MAC. It can be noticed that the reduced mod-
els, which provides the same modeling performance of the
complete ones, are affordable by most of the DSPs on the
market. On the contrary, the complete models provide an
unacceptable computational burden.

4 CONCLUSION

In this paper it was shown through extensive experiments
that the multiple-variance identification method can be ef-
fectively used to derive Volterra models of different audio
devices. The multiple-variance method allows to avoid the
problem of locality of the solution as shown in the Fig-
ures reporting the NMSE of single-variance and multiple-
variance Volterra models. Indeed, the Figures clearly show
how the NMSE of multiple-variance Volterra models in-
terpolates the inferior NMSE values of the single-variance
models. As a matter of fact, the obtained models can emu-
late audio devices on a wide range of input signal powers.

A technique to reduce the number of elements of Wiener
and Volterra kernels has also been proposed to contrast the
curse of dimensionality and a procedure for their identifica-
tion has been presented. The reduced models identified with
the multiple variance method provide an effective mean to
emulate nonlinear audio devices in real-time applications.
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