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ABSTRACT  

In this paper we present a novel approach to the          
optimisation of complex systems affected by epistemic       
uncertainty when system and uncertainty evolve      
dynamically with time; we propose a new modelling        
approach that uses Evidence Theory to capture       
epistemic uncertainty 

A system is considered which is affected by the time          
during the operational life (failure rate, performance       
degradation, function degradation, etc.). The goal is to        
obtain a resilient design: robust with respect to        
performance variability and reliable against possible      
partial failures of one or more components. 

We propose to enhance the Evidence Network Model        
(ENM) with time-dependent reliability functions and      
decompose the problem into subproblems of smaller       
complexity. Through this decomposition uncertainty     
quantification of complex systems becomes affordable      
for a range of real-world applications. 

The method is here applied to a simple resource         
allocation problem where the goal is to optimally        
position subsystems within a spacecraft [1]. 

 

1. INTRODUCTION 

On-orbit space systems are subjected to a hostile        
environment where maintenance is impossible or very       
limited. Therefore, lifetime reliability is an inevitable       
factor to consider during space system design. Longer        
service lifetime or higher confidence in lifetime length        
is commonly reached by introducing redundancy into       
the system employing safety margins and safety factors.        
This traditional method typically misses the proper       
estimation of the uncertainties which can lead to an         
unnecessary high number of redundant systems and an        
increase of development expenses. To reduce the       
unnecessary costs of the space system well-designated       
uncertainty quantification method must be employed. A       

comprehensive review of uncertainty-based design     
techniques for aerospace engineering can be found in        
[2]. These techniques are highly relevant for space        
system design as well. The review discusses the most         
popular uncertainty modelling approaches including     
probability theory, evidence theory, possibility theory,      
interval analysis, and convex modelling. As a       
conclusion, evidence theory is proposed to use if the         
available information is conflicting. The authors also       
provide an overview of uncertainty classification      
schemes. Following their definitions, we adopt the       
taxonomy of risk assessment in this paper. Accordingly,        
uncertainties can be divided into two categories.       
Aleatory uncertainty which stems from an inherently       
random natural process. Hence, this type of uncertainty        
is irreducible and can be well described by the         
probability theory. ​Epistemic uncertainty is due to the        
lack of knowledge or incomplete information and can be         
eliminated by obtaining more knowledge about the       
investigated problem. This type of uncertainty is typical        
in early design phases when multiple experts provide        
different opinions, models are low fidelity, or in the         
case of poor quality and incomplete data. Evidence        
Theory, also known as Dempster-Shafer theory,      
provides a valid mathematical tool to model this type of          
uncertainty [2,3,4,5] though it is computationally      
expensive and difficult to handle.  

A new, called Evidence Network Model (ENM), was        
introduced in [6] and extended in [7] to model         
engineering systems that can be decomposed in a        
number of subsystems or functions. ENMs are       
undirected and connected graphs where each node is a         
sub-system and each link an information pathway. In        
this work, ENMs are extended to include       
time-dependent uncertainty and a time-varying     
performance criterion.  

The proposed method is then used to solve a simple          
resource allocation problem where the subsystems are       
subjected to uncertain time-dependent failure rates and       
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sizing parameters are also uncertain. The goal is to         
optimally position the subsystems within a spacecraft       
[1]. 

2. EVIDENCE THEORY 

In Evidence theory, expert opinions are expressed by        
assigning confidence levels to certain sets of intervals.        
The confidence levels are called basic probability       
assignment (bpa) and represent the probability that an        
uncertain variable is within its corresponding interval.       
All the Cartesian products of these intervals provide a         
power set, the uncertain space ​U​. An element of this          
power set with non-zero bpa is the so-called Focal         
Element (FE), where the bpa of the element is the          
product of the bpas of the constructing intervals. After         
identifying all the FEs, the lower and upper boundary,         
or belief (Bel) and plausibility (Pl), of a proposition ​A          
can be evaluated as: 

 

el(A) pa(F E)B =  ∑
 

F E⊂A,F E∈U
b                           (1) 

l(A) pa(F E)P =  ∑
 

F E∩A≠0,F E∈U
b                           (2) 

 
 
In this paper, a proposition “the state of the system          
loaded by uncertainty is not greater than a threshold         
value” is considered: 

 

 u∈U | f (u)≤v}A = {              (3) 

 

By calculating the Bel and Pl values for each possible          
threshold value two curves can be calculated: the        
Cumulative Belief Function (CBF) and the Cumulative       
Plausibility Function (CPF). The unknown precise      
cumulative distribution function (CDF) is enveloped by       
these two curves.  

In practice, if the maximum value within a FE is not           
greater than the threshold value than the evidences in         
the FE fully support the proposition and thus its bpa          
contributes to Eq. 1. If the minimum value of the FE is            
less than or equal to the threshold value than the FE           
only partially supports the proposition and thus the bpa         
of the FE contributes to Eq. 2.  

This direct method suffers from the curse of        
dimensionality as the number of FEs increases       
exponentially with the number of uncertain variables       
because it results from the Cartesian product of all the          
intervals of all the uncertain parameters. 

 
3. EVIDENCE NETWORK MODELS 

The computational burden of obtaining the exact Bel        

and Pl curves motivates us to calculate approximations        
of the two curves. In this section only the approximation          
of the Bel curve is presented, the Pl curve can be           
approximated similarly. 
A global quantity of interest F is considered: 
 

                                     (4)(d, ) ×U  ⊆ ℝ →ℝ F u : D n+m  
 
where ​F depends on some design parameters       

and uncertain parameters . The∈D⊂ℝ  d n    ∈U⊂ℝ  u m   
set ​D is the available design space and ​U the uncertain           
space.  
ENM separates the uncertain space by defining two        
types of uncertain variables: ​uncoupled uncertain      
variable which has an influence only on one ui         
subsystem ​i and ​coupled uncertain variable which      uij   
influences two subsystems ​i​ and ​j​. 
A generic complex system can be represented as a         
network, where each node is a subsystem and        
information is shared through links between      
subsystems. We can then define the function F as:  
 

(d, ) (d, u , h (d, u , u ))F u =  ∑
N

i=1
gi  i  i  i  ij  

(5) 
 
where ​N is the number of subsystems involved,        

is the vector of scalar ​linking functions(d, u , u )hi  i  ij         
. The functions represent(d, u , u )hij  i  ij    (·, , )gi · ·   

quantities computed by the governing equations of the        
different subsystems. 
As mentioned above, the exact Bel curve is not         
calculated in this approach; instead, an approximation       
of it is estimated with a decomposition approach. It         
reconstructs an approximated belief curve through three       
steps, for a given design vector and the corresponding      d     
worst-case scenario that refers to the uncertain variable        
input which maximises F for the given design vector .d  
 
The first step freezes the uncoupled variables and        
calculate a (partial) belief curve for each function,       hij   
that expresses the contribution of each coupled variable. 
 
In the second step the partial Bel curves are sampled          

times at different levels q, by taking a succession ofN S            
values. Corresponding to eachv |q ...N }{ q = v = 1 S      

sample a coupled vector  is obtained:u︿q
ij  

 
                 (6)|u F (u )} {u︿q

ij
︿q

k,ij = argmaxu ∈F Eij k,ij ij  
 
Finally, in the last step, for each sample the         
decomposition approach constructs an approximation to      
the value of the Bel using only the FEs of the uncoupled            
variables scaled by the belief of the samples. 
The functions are decoupled from the coupling gi        
variables by fixing the value of the linking functions at          

 



 

their maximum values  )u︿q
ij = argmax F (uk

︿q
k,ij   

resulting in Eq. 7: 
 

                            (7)(u ) (d, u , h (d, u , u )gi i = gi  i  
︿

i  i  ︿q
ij  

 
The decoupled governing functions are    (u )gi i   
maximised w.r.t. each and the corresponding   EF k,i     
values  are obtained:g︿q

k,i   

ax  F (d, , )m (u ∈F E )i,i=1...N K
ui u︿q

ij = ∑
N

i=1
g︿q

k ,i i
 

(8) 
 
where E � F E )F K = ( k =1i

k
k ,NN

  
 
with the associated bpa: 
 

                (9)pa (F E ) bpa(F E )∏ ΔBelb q
K = ∏i=1

N
k ,ii ij ij

q    
 
where is the contribution of the partial ΔBel∏ij ij

q        
belief curves of coupled variables and      

is the product of all the bpa’s of thebpa(F E )∏i=1
N

k ,ii
          

focal elements of the uncoupled variables .EF k ,ii
 

The approximation of the belief can then be expressed         
as: 
 

 (F (d, )≤v) pa (F E )Bel u =  ∑
 

q
∑
 

K
b q

K  

(10) 
 
The described approach reduces the computational load       
by reducing the number of maximizations to be linear         
with the problem dimension. For more details about        
definitions and proofs please refer to [6] and [7]. 
 
 
4. CONSTRAINED MIN-MAX APPROACH 

The approach to the design of complex systems under 
uncertainty proposed in this paper, requires the solution        
of one or more constrained min-max optimisation       
problems. The solution to this class of problems is here          
approached with a constrained variant of MPAIDEA, an        
adaptive version of Inflationary Differential Evolution      
[13]. This section describes only the strategy to handle         
constraints in the min-max version of MPAIDEA. More        
details on the approach to the solution of unconstrained         
min-max problems with Inflationary Differential     
Evolution can be found in [14]. 
 
The min-max algorithm proposed in this paper       
iteratively solves a bi-level optimisation, first      
minimising over the design vector ​d (outer loop) and         
then maximising over the uncertainty vector ​u (inner        
loop). The inner loop provides solutions that satisfy the         
constraint, while the outer loop maintains the constraint        
satisfaction while minimising the cost function F.  

The constraint handling procedure, implements the      
following steps: 

● Initialisation of a population of ​d and ​u        
vectors; 

● While the number function evaluations is lower       
than the maximum allowed, do the following 

○ [Outer-Loop]Constrained 
minimisation of the objective function     
over the design space, evaluating the      
cost function over all the  F     
uncertainty vectors stored in the     
archive ​Ar = Ar_u ∪ Ar_c ​updated       
during the inner loop; 

○ [Inner-Loop]Constrained 
maximisation of the cost function     F  
over the uncertain parameters ​u     
(updating the archive ​Ar_u​) and     
parallel maximisation of the constraint     
violation over the uncertainty space U      
(updating the archive ​Ar_c​). If a      
feasible solution cannot be found, the      
constraints are relaxed such that a      
small violation is accepted. 
 

For a more detailed description of the constrained        
min-max approach please refer to [7].  
 
5. RELIABILITY OF SPACE SYSTEMS 

Space system maintenance is highly expensive and       
sometimes impossible due to the operational      
environment. The useful service time of a space system,         
therefore, highly depends on the reliability of the system         
and of its components. For this reason, Reliability-based        
Design Optimisation (RBDO) has been recognised as an        
essential tool for space system design [8].  
Various approaches have been proposed to model the        
reliability of space systems; however, they lack of any         
statistical support from on-orbit data or they are        
focusing on a particular space vehicle of a        
manufacturer. Recently, Castet and Saleh [8-9] have       
presented a reliability model based on actual on-orbit        
data of 1584 Earth-orbiting satellites successfully      
launched between January 1990 and October 2008.       
They employed the Kaplan-Meier estimator [10] to       
build a nonparametric model which was used as a         
reference reliability function. A parametric Weibull      
distribution was fitted on this reference reliability       
function with a maximum likelihood estimation. The       
authors demonstrated that infant mortality (decreasing      
failure rate) is a valid phenomenon for satellites and the          
Weibull distribution with shape parameter less than 1        
well approximates this failure behaviour of satellites       
and their components. 
According to the Weibull distribution, the      
time-dependent reliability function is:  
 

                                                       (11)(t)  R = e−(t/θ)β
 

 



 

 
where 𝜃 and 𝛽 are the scale and shape parameters          
respectively; 𝛽 is dimensionless and 𝜃 is expressed in         
units of time and the shape parameter influence R(t) as          
follow. 
 

1. For 0<𝝱<1, the failure rate is decreasing (infant        
mortality). 

2. For 𝝱=1, the failure rate is constant, and in this          
case the Weibull distribution is equivalent to       
the exponential distribution.  

3. For 𝝱>1, the failure rate is increasing       
(wearout): 

a. For 1<𝝱<2, we have an increasing      
concave failure rate. 

b. For 𝝱=2, we have a linear failure rate,        
and in this case the Weibull      
distribution is equivalent to the     
Rayleigh distribution.  

c. For 𝝱>2, we have an increasi​ng      
convex failure rate.  

d. For 3<𝝱<4, the Weibull distribution     
approaches the normal distribution. 

 
 
6. PROBLEM FORMULATION 

The statistical analysis of Castet and Saleh [8-9] has         
revealed that the failure of telemetry, tracking and        
command (TTC) and the attitude and orbit control        
(AOCS) (particularly the gyros, sensors, and reaction       
wheels) subsystems are the major drivers of satellite        
failure. Considering only small scale satellites (under       
500 kg), it has been shown that TTC and the electrical           
power system (POWER) are the major contributors of        
space system failure [11].  
The positioning problem of a three-subsystem satellite       
containing these critical subsystems is presented in this        
paper to demonstrate the use of the ENM on a          
time-dependent problem. The space system is then       
modelled as a network with three nodes (AOCS, TTC         
and POWER) and two links between TTC-POWER and        
AOCS-POWER.  
 
The objective function we consider is the weighted        
function of the mass and the moment of inertia with          
respect to the vertical axes z: 
 

                                  (12)  r   F = wm ∑
3

i=1
mi + wi ∑

3

i=1
mi i

2  

 
where is the mass of the subsystem ​i ​and is them i          ri

    
horizontal distance of Center of Mass (CoM) from the         
vertical axes z. The and denote the weights and    wm   wi      
for the sake of simplicity they are considered to be equal           
to one. 
The way the subsystems and components are allocated        
influences the centre of gravity of the whole system.         

The mass and size of each component is affected by          
uncertainty in system design parameters and system       
degradation. A failure rate (function of time and        
affected by epistemic uncertainty) is used to quantify        
the performance degradation of power, TTC and AOCS        
systems.  

Our goal is the evaluation of the constrained worst-case         
scenario: 
 

in max  F (d, u)  s.t. C(d, )m d∈D u∈U  u < 0  
(13) 
 
and the reconstruction of the CBF. 
 
The problem is influenced by 24 design parameters and         
17 uncertain parameters. ​Mass, moment of inertia and         
reliability of the systems are all affected by both design          
and uncertainty variables. 
 
In the problem there are one uncoupled parameter for         
AOCS, one for TTC and six for the POWER. Regarding          
the coupled components, there are five uncertain       
parameters that influence both AOCS and POWER and        
six that influence TTC and POWER. This separation        
allows to apply the decomposition method for the belief         
reconstruction. 
 
Two approaches, explained in the next sections, have        
been used to model the reliability of the system.  
 
 

6.1. RELIABILITY IN THE OBJECTIVE 
FUNCTION 

OBJECTIVE FUNCTION: 
With regard to equation [1​2] ​depends only on     ri

      
design parameters while the mass ​m depends on both         
design and uncertain variables. 
Weibull distributions are used to model failure of all the          
subsystems where the shape and scale parameters are        
defined as epistemic uncertainty [8]. 
The failure in the POWER system can occur in the          
battery cells or in the solar panel cells; ​the failure rate is            
then used to modify the number and type of cells of the            
solar panels and of the batteries.  
Failure in the TTC and AOCS, instead, influences the         
power that the two subsystems require from the        
POWER subsystem.  
The variation of these parameters induces a change of         
the mass and size of the component and as a result the            
change of the barycentre and moment of inertia of the          
whole system. 
 
CONSTRAINT: 
There is only a geometric constraint: the subsystems,        
modelled as boxes, can neither intersect each other nor         
the spacecraft body. 
 

 



 

 
6.2. RELIABILITY IN THE CONSTRAINT 

OBJECTIVE FUNCTION:  
The same functions as the previous ones are here used          
to model the mass and the volume of the subsystems,          
but the failure of the components does not influence,         
here, the objective function: it is a constraint. 
 
CONSTRAINT: 
Two constraints are here considered: a geometric one,        
as in the previous approach, and a reliability constraint: 
 

(t, d, u) 0.95R   >             (14) 
 
 
7. RESULTS 

The algorithm described in section 4 has been applied to                   
the considered problem in order to find the worst-case                 
scenario; the parameters have been set as follow: 

● 500000 function evaluation for the whole           
min-max algorithm; 

● 5000 function evaluation for the inner loop; 
● 5000 function evaluation for the outer loop; 

Then the decomposition approach has been applied to               
reconstruct the belief curve with 1000 function             
evaluation for each maximisation. 
 
Figure 1 and Figure 2 show the results obtained with the                     
first approach (section 6.1) and second approach             
(section 6.2) respectively. The belief (blue) and             
plausibility (green) curves are evaluated with the             
Decomposition approach; the min-max (belief equal to             
one), the min-min solution (plausibility equal to zero)               
are evaluated with the constrained approach described             
in section 4. Finally there is a comparison with the                   
classical margin approach. The first approach is more               
restrictive and brings to a higher value for the objective                   
function. 
 
In Figure 1 the nominal solution (black line) has zero                   
belief to occur, while the margin would bring to a robust                     
solution but with an objective function bigger than the                 
necessary. 10% margins have been applied to the               
subsystems, the exchange functions and the final result.  
In Figure 2, that shows the results for a different design                     
vector, 10% margins (red) and 20% margins (purple)               
are not enough to cover the unexpected uncertainty.  
ENM, instead, allows to do a rigorous analysis of the                   
uncertainty associated to the mass of the spacecraft. 
 
For more details about the convergence of the method,                 
please refer to [6] and [7]. 
 

 
Figure 1. Belief, nominal solution and margin for the 

first     approach described in paragraph 6.1 

 

8. CONCLUSIONS 

In this paper we described a new approach to do design                     
for resilience by taking into account both robustness and                 
reliability. The method is the Evidence Network Model               
that is able to model complex systems varying in time                   
and affected by epistemic uncertainty. The approach             
has been validated with a realistic test case regarding                 
the ​resource allocation problem in a spacecraft and         
finally compared with the classical approach of margins. 

 

Figure 2. Belief, nominal solution and margin for the 
second approach described in paragraph 6.2 
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