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Abstract

The paper addresses nonlinear identification using the Wiener series. Differently from
the traditional approach, the truncated Wiener series is expressed as a linear combination
of basis functions, which are orthogonal for white Gaussian inputs. The coefficients of
the basis functions are efficiently estimated with the cross-correlation method, computing
the cross-correlation between the basis functions and the system output. Perfect periodic
sequences (PPSs), which are periodic sequences guaranteeing the perfect orthogonality
of the basis functions over a period, are also developed. The PPSs allow to avoid the
estimation problems experienced with the cross-correlation method using stochastic in-
puts. The Wiener series formulation in terms of basis functions allows also to develop a
novel, more efficient, multiple-variance identification method. Multiple-variance methods
exploit input signals with multiple variances for estimating the Volterra kernels. They
overcome the problem of locality of the solution, i.e., the fact that the identified model
well approximates the nonlinear system only for input signal variances close to that used
for the identification. Optimal values of the multiple variances are also studied in the

paper. Experimental results, involving the identifications of real devices, show that the
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proposed approach can accurately model the identified system on a wide range of input
variances.
Keywords: Nonlinear filters; Wiener series; Wiener nonlinear filters; Wiener basis

functions; perfect periodic sequences; cross-correlation method; multiple-variance.

1. Introduction

The Wiener series composed of the Wiener G-functionals [1, 2] was introduced to
overcome one of the main limitations of the Volterra filters, whose polynomial terms are
never orthogonal for any input signal. The G-functionals can be derived from the or-
thogonalization of the Volterra series for white Gaussian inputs. They allow the efficient
identification of nonlinear systems with the cross-correlation method, which in the orig-
inal formulation of Lee-Schetzen [1] requires computing the cross-correlations between
products of delayed input samples and the unknown system output. When applied to
stochastic inputs, the approach presents many drawbacks at the point that many re-
searchers consider it just a “legacy” method [3, page 77]: (i) Millions of input samples
are often needed for an accurate estimation of the nonlinear kernels. (ii) Due to the
limitation of the input signal length and to saturation of the input amplitude, an exact
white Gaussian input cannot be generated. (iii) The central moments of a Gaussian
input deviate from ideal values as the moment order increases [4]. (iv) The input non-
idealities affects particularly the estimation of the diagonal points of the kernels [4]. (v)
The problem is exacerbated by the errors caused by a model order under-determination.

Some improvements to the original cross-correlation method of Lee-Schetzen were
provided in [4, 5], where the problems of input non-ideality in the identification of diag-

onal points were addressed. A solution to mitigate the identification errors due to model
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under-determination was proposed in [6].

A known drawback of Volterra and Wiener theory [7] is the problem of “locality of
the solution”, i.e., the fact that the estimated model well approximates the unknown
nonlinear system only for input variances in a neighborhood of that used for the identifi-
cation [6]. The non-idealities of input signal make the output mean square error (MSE)
a function of the input variance [4]. To accurately estimate the higher order kernels,
high input variances are needed to excite high order nonlinearities, but they cause high
identification errors in lower order kernels. Low input variances can obtain an more
accurate estimation of the lower order kernels but they produce an underestimation in
high order ones. The problem can be addressed with multiple-variance approaches [6]:
low input variances are used to model lower order kernels, while the input variance is
gradually increased for higher order kernels. It has to be pointed out that the origi-
nal multiple-variance identification method of [6] requires recomputing all lower order
kernels for each kernel to be estimated. Multiple-variance approaches are very effective
in solving the problem of the locality of the solution and could be fruitfully adapted
and applied to many areas of nonlinear signal processing, from audio effect emulation
[8, 9, 10, 11, 12], to nonlinear acoustic echo cancellation [13, 14, 15, 16], nonlinear active
noise control [17, 18, 19, 20], telecommunications [21, 22, 23, 24, 25], biological system
modeling [3, 26], and dynamic nonlinear system modeling in general.

In this paper, differently from the classical approach based on G-functionals, the
Wiener series is expressed as a linear combination of basis functions, which are orthog-
onal for white Gaussian inputs, as was proposed in the early conference papers [27, 28].
In analogy to Volterra filters, the Wiener series doubly-truncated with respect to the
order and the memory is here called a Wiener Nonlinear (WN) filter. Because of the
orthogonality of Wiener basis functions (WBF) for white Gaussian inputs, the WN filter
coefficients can be efficiently estimated with the cross-correlation method, applied here
by computing the cross-correlation between the basis functions and the system output.

The WN filters are a member of the class of linear-in-the-parameters nonlinear filters,
and in particular of the subclass of functional link polynomial (FLiP) filters [29, 30]. As
the other members of FLiP filter class having orthogonal basis functions, e.g., Even

Mirror Fourier [31, 32], Legendre [33], and Chebyshev [34] nonlinear filters, we show
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in this paper that WN filters admit perfect periodic sequences (PPSs). The PPSs are
periodic sequences that guarantee a perfect orthogonality of the basis functions of a
certain nonlinear filter over a period of the sequence. The PPSs were first used for the
identification of linear systems [35, 36, 37, 38] and were later applied to nonlinear systems
[32, 33]. When applied as input to an unknown nonlinear system, they allow system
identification with the cross-correlation approach. The PPSs for WN filters permit to
avoid many of the problems encountered in Wiener series identification with the cross-
correlation method for stochastic inputs. They realize a perfect orthogonality of the basis
functions on a finite period and they have a finite maximum amplitude. Using PPSs, the
kernel diagonal points can be accurately estimated without the need to resort to specific
algorithms, as in [4, 5, 39]. Using PPSs, it is also possible to easily estimate the most
relevant basis functions, according to some information criterion [32].

By exploiting the formulation of the Wiener series in terms of basis functions, a
novel multiple-variance approach is further developed in the paper. Compared with the
original approach of [6], the proposed approach allows to avoid recomputing all lower
order kernels, with a significant reduction in the computational complexity. Moreover,
multiple-variance PPSs can be devised to further improve the nonlinear estimation. A
procedure for selecting the most relevant basis functions according to some information
criterion [40, 41, 42] is also proposed for the multiple variance approach. Another contri-
bution of the paper is a study about the optimal choice of the multiple input variances,
both for stochastic inputs and for PPSs.

Experimental results are provided to illustrate the advantages of PPSs for WN filters
and of the multiple-variance approach. It is shown that the proposed multiple-variance
approach can accurately model real nonlinear devices on a wide range of input variances.

The proposed system identification approaches have been developed considering in
particular a nonlinear system emulation scenario but could be applied in many other
scenarios requiring system modeling, e.g., in nonlinear system equalization or lineariza-
tion, in vibration and noise control, in measurements robust towards nonlinearities, in
biological system modelling, and many others.

The rest of the paper is organized as follows. The Wiener basis functions and WN

filters are introduced in Section 2. System identification using Wiener basis functions is
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addressed in Section 3. PPSs for WN filters are discussed in Section 4. Multiple-variance
system identification is the topic of Section 5. The optimal choice of basis functions and
input variances is discussed in the same Section. Experimental results are given in Section
6. Eventually, Section 7 provides the conclusions of the paper.

Throughout the paper the following notation is used: E[-] denotes mathematical
expectation, < - > denotes average over an interval of L samples, N'(0,02) indicates
the zero mean, variance o2, normal distribution, R is the set of positive real numbers,

o means “proportional to”.

2. The Wiener basis functions

In this section, the Wiener series is expressed as a linear combination of basis func-
tions. The Wiener basis functions w,(n) are a set of polynomial functions, orthogonal
for any white Gaussian input signal z(n) € N(0,02), i.e., E[ws, (n)ws,(n)] = 0 for any
$1 # So, that can arbitrarily well approximate any discrete time, time-invariant, finite

memory, continuous, nonlinear system,
y(n) = flx(n),z(n —1),...,z(n — N + 1)] (1)

for any memory N, where f is a continuous functions from RN to R.
To develop the set of basis functions, we can first consider the case of N = 1. The

nonlinear system

y(n) = flz(n)] (2)
can be arbitrarily well approximated with the set of monomials
{1, z(n), 2*(n), 2°(n), ...}, 3)

which are not orthogonal for z(n) € N(0,02). Nevertheless, by applying the Gram-
Schmidt orthogonalization to the set in (3), a set of orthogonal polynomials for z(n) €

N(0,02) can be obtained as follows

{1, z(n), 2%(n) — o2, 2*(n)—302z(n), ...}. (4)
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In the orthogonalization procedure input moments naturally appears, determining the
coefficients of the polynomials in (4). These polynomials are related to the Hermite
polynomials [43] and in particular are probabilists’ Hermite polynomials of variance o2,
according to the definition in [44]. The polynomials can be generated with the following
relation

Hjyi (z) = wHj(z) — jor Hj—1(2), ()

where the recursion is initialized with Hy(z) = 1 and Hy(z) = x, and H;(z) is the Hermite
polynomial of degree j. In what follows, for compactness the Hermite polynomials of
order 0 and 1, will be indicated as 1 and x, respectively, while the other polynomials will
be indicated as H;(z), with j = 2,3, ....

To develop the basis functions for N > 1, we follow the same procedure of [33], [45],

and [46]. The Hermite polynomials are first written for z(n),z(n —1),...,z(n — N +1),
L, x(n), HQ[x(n)]’ H3[x(n)]a

1, z(n—1), Hslz(n—1)] Hs[z(n—1)],

1, z(n—N+1), Halx(n — N +1)] Hz[z(n— N +1)],

Then, the polynomials of different variable are multiplied in any possible manner,
taking care of avoiding repetitions. The resulting set of basis functions and their linear
combinations form an algebra on any compact [—A4, +A]Y € RY, with A € R*, because
the set is closed under addition, multiplication, and scalar multiplication. This algebra

satisfies all requirements of the Stone-Weierstrass theorem [47]:

“Let A be an algebra of real continuous functions on a compact set K. If A
separates points on K and if A vanishes at no point of S, then the uniform

closure B of A consists of all real continuous functions on S”.

The algebra of Wiener basis functions separates points and vanishes at no point, and can
thus arbitrarily well approximate the system in (1).
The Wiener basis functions of order from 0 to 3 and memory N are summarized in

Table 1.



Table 1: The Wiener basis functions

Order 0
1
Order 1
x(n —t) fort=0,...,N—1
Order 2
Hlz(n —t)] fort=0,...,N—1
z(n—t)x(n —t —u) foru=1,...,N—1, and
t=0,...,N—1—u,
Order 3
Hslz(n —t)] fort=0,...,N—-1
Hy[z(n —t)]z(n —t —u) foru=1,...,N —1, and
t=0,...,.N—1—u,
z(n —t)Halx(n — t — u)] foru=1,...,N—1, and

t=0,...,N—1—u,
zn—tx(n—t—u)z(n—t—wv) foru=1,...,N—2 and
v=u+1,...,N—1,
t=0,...,N—1—w,

A Wiener nonlinear (WN) filter of order P, memory N, is a linear combination of the
Wiener basis functions up to the order P and memory N. To reduce the number of basis
functions of the filter, it is a common practice to exploit the diagonal representation of
the filter [48] and to limit the diagonal number. The diagonal number is the maximum
time difference between the samples involved in each basis function. The limitation of
the diagonal number finds justification in the experimental observation that in real-world
nonlinear systems the “energy” of the nonlinear kernels tends to concentrate around the
main diagonals, as was observed in nonlinear acoustic echo cancellation [13, 15, 49],
nonlinear active noise control [50, 51], identification of nonlinear systems [52, 39]. For

example, a WN filter of order 3, memory N, and diagonal numbers D, and Dj3 for the



second and third order basis functions, respectively, has the following diagonal form,

N-1 N-1
y(n) = ko +_kyew(n — )+ kg Ho[z(n — b))+

t=0 t=0

D2 N—1—u
+ Z Z kot irur(n —t)z(n —t —u)+
u=1 t=0

N—-1
+ > ks iHale(n — )]+
t=0

D3 N—1—u (6)
+ Z Z ks ¢t ipuHo[z(n —t)]ax(n —t —u)+
u=1l t=0
D3 N—1—u
+> Y kspspusrur(n — ) Halz(n — t —u))+
u=1 t=0

D3s—1 Dz N—l—v
+Z Z Zk&t,wmﬂ_vx(n —t)x(n —t —u)x(n —t — o).

u=1 v=u+1 t=0
For Dy = D3 = N — 1, a full WN filter of order 3 and memory N is obtained. The set
of coefficients k; ... of equal order I forms the so-called I-th kernel of the WN filter. It
should be noted that the expression in (6) is a truncated Wiener series of order 3 and
memory N, and the only difference with the standard formulation [2] is the different
arrangement of terms produced by the basis functions. In what follows, when a short
notation is needed, the s-th Wiener basis functions in (6) will be indicated with w,(n),
with s = 0,1,..., and the corresponding coefficient will be denoted with ks. If we need
to specify also the order ¢, the basis function and the corresponding coefficient will be
denoted with w; 4(n) and k; s, respectively.

The WN filter can be transformed into a Volterra filter, by equating the polynomial

terms of equal degree. For example, the WN filter in (6) can be converted into the



following Volterra filter of order 3 and memory N,

N-1 N-1
y(n) = ho +Z hix(n —t) + Z hg’t’t$2(’n —t)+
t=0 t=0
DQ N—1—u
+ Z Z hotttuz(n —t)z(n —t —u)+
u=1 t=0
N-1
+ > hapei®(n—t)+
t=0
Ds N—l—u (7)
+ Z Z Rt tsut(n —t)x(n —t — u)+
u=1 t=0
D3 N—1—u
> hasiruiruz(n — i (n —t —u)+
u=1 t=0

D3—1 D3 N—1—v

+ Z Z Zhg,t7t+u7t+vz(n —t)x(n —t —u)x(n —t —v).

u=1v=u+1 t=0

By direct inspection, we find that the following conversion formulas hold for any ¢, u, v:

hS,t,t-{-u,t-‘rv = kS,t,t-}-u,t-‘rv) (8)
h?,t,t+u = k2,t7t+u (9)
min(D3,N—1—t)
2 2
hl,t = kl,t - UmkS,t,t,t — 0, E k3,t,t+u,t+u
u=0
min(Ds3,t)
2
—0% Z ks t—ut—ut, (10)
u=0
N-1
2
ho = :ZCQ — 0, E kgﬂnﬂ«. (11)
r=0

3. System identification using Wiener basis functions

By construction the Wiener basis functions are orthogonal for a white Gaussian input
signal z(n) € N(0,02), i.e., Elws, (n)ws,(n)] = 0 for any s1 # so. Thus, the coefficients

ks in (6) can be estimated with the classical cross-correlation approach as follows:

_ Ely(n)ws(n))
K T "
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where y(n) is the unknown nonlinear system output. In (12), the expectations are usually
estimated with time averages over a finite period.

The most relevant basis functions, i.e., the basis functions that guarantee the most
compact representation according to some information criterion in principle can also be
estimated. Indeed, exploiting the orthogonality of the basis functions, the mean square

error (MSE) reduction provided by ws(n) is

OMSE; = (13)
The basis functions can be ranked according to the MSE reduction they produce and
thus the most important basis functions can be selected by minimizing an information
criterion [40, 41, 42]. In Section 6, we will provide some experimental results using the

Bayesian information criterion [41], i.e., minimizing
BIC = Lln[o?(n,)] + n, In[L], (14)

where 02(n,) is the variance of the residual error for the first n, most relevant basis
functions and L is the number of samples used in the identification. The Bayesian
information criterion is one of the most popular and selective information criteria [41, 32].
Other information criteria, like the Akaike’s information criterion [40], the final prediction
error [40], Khundrin’s law of iterated logarithm criterion [42], could also be used. It
should be noted that the basis function selection according to an information criterion
requires the perfect orthogonality of the basis functions and often provides erratic results
when estimating the expectations of the white Gaussian signals with time averages over
finite lengths.

Once a WN filter has been identified, it can be directly used, e.g., to emulate a
nonlinear device, or it can be transformed into another form for different uses. It is also
possible to transform it into a Volterra filter, e.g., with (8)—(11) in case of an order 3
filter.

The cross-correlation method obtained by implementing (12) using Gaussian input
signals requires a huge number of input samples, in the order of millions or more, for
guaranteeing an approximate orthogonality of the basis functions and a reasonable ac-
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curacy in the coefficients. The problem can be solved using perfect periodic sequences
(PPSs), which are periodic sequences that guarantee a perfect orthogonality of the basis

functions over a period.

4. Perfect periodic sequences

In this Section, we want to develop a PPS z,(n) of period L suitable for the iden-
tification of the WN filters up to an order P and memory N with Gaussian variance
o2. For sake of simplicity, we consider a full WN filter, but everything presented holds
also when we limit the diagonal number of the nonlinear kernels. The PPS should to be
bounded by 1, i.e., |xp(n)| < 1 for all n, to be able to faithfully reproduce the sequence
using digital to analog converters.

The approach followed in this paper differs from [32, 46, 53], where PPSs for even
mirror Fourier, Legendre, and Chebyshev filters were obtained.

The cross-product E[ws, (n)ws,(n)] between any two basis functions of a WN filter
of order P and memory N is a linear combination of joint moments of the input signal

z(n) up to the memory N and order 2P, i.e., of
Elz™(n)- 2" (n—1)- ... 2™ (n— N +1)]

with r9,71,...,7v-1 € N and 79 + ... + rny_1 < 2P. The same observation applies
also to the cross-products < wsg, (n)ws, (n) >, with the expectations replaced with time
averages. The orthogonality of the basis functions implies that the joint moments are the
same of a Gaussian distribution, but also the reverse holds. Consider a periodic sequence
xp(n) that over the period L has the same joint moments up to memory N and order 2P
of a white Gaussian signal N(0,02). The periodic sequence guarantees over the period
the orthogonality of all basis functions and is perfect for the identification of the WN
filter. Thus, a PPS for WN filters of memory up to N and order up to P can be obtained

by imposing the following system of nonlinear equations:
<zt(n)-apt(n—1)- ... apN M (= N+ 1) S0=firg  firy * oo Py (15)

for all rg,r1,...,rny—1 € IN with ro > 0 (for the periodicity of the sequence) and ¢+ +
11



...+ 7rn_1 <2P. The quantity p, is the r-th moment of the Gaussian process N(0,02),

. 0 for r odd,
pr = Elz"(n)] = (16)
(r—1Nol for r even,

with ¢!! the double factorial [54] and ¢! =¢-(¢—2)-(¢—4)- ... -1 = %.
2% (252 )
The number of equations @ of the nonlinear system (15) is equal to the number of
different basis functions of a Volterra filter of order 2P —1 and memory N (since ro > 0, all

equations has a factor z,(n) ), ie.,, Q = (vap*l)

. For sufficiently large L, the system
is underdetermined and may have infinite solutions in the variables z,(n). To solve
it, we have found particularly effective the Newton-Raphson method, which has been
implemented as described in [55, ch. 9.7], starting from a random Gaussian distribution
of the variables with variance o2, with the Jacobian matrix computed analytically. The

variables x,,(n) were reflected in [—1, 4+1] every time they exceeded the range to obtain a

sequence bounded by —1 and +1, as desired. The Newton-Raphson method converges to

2

2 is sufficiently small. Indeed, the PPS converges to a

a solution only if the signal power o
distribution similar to the Gaussian and convergence is possible only when the probability
of finding samples outside the range [—1,+1] is sufficiently small. Anyway, a solution
was always found for L ranging between 3Q and 4Q and for o2 < 1/10. The number of
iterations of the Newton-Raphson method depends on the ratio L/Q and on the signal
power 2. The larger the ratio L/Q or the smaller the signal power o2, the faster is the
speed of convergence of the Newton-Raphson method. Since the Newton-Raphson is a
numerical method, the solution is only approximate but the precision can be arbitrarily
improved acting on the stop-condition of the method. Imposing 02 = 1/12, and L = 4Q,
and as stop condition the maximum absolute deviation of the moments to be lower than
10713, the Newton-Raphson method in our experiments has converged in around 100
iterations.

A problem of the system in (15) is the large number of equations and variables also
for low orders P and memories N. Indeed, () depends exponentially on the order P
and geometrically on the memory N. The number of equations and thus variables can

be reduced by imposing specific structures to the PPS, as done in [32] and [33]. The

following conditions can almost halve the number of equations and variables:
12



e Symmetry: when in the PPS for any N-tuple of samples aj,as,...,an, there is
also the reversed one ay,an_1, ..., a1, for every couple of symmetric joint moments

(e.g., < z(n)z3(n—1) > and < 2®(n)z(n —1) >1), it suffices to consider only one

of them.

e Oddness: when in the PPS for any N-tuple of samples aq, as, ..., an, there is also
the negated one —ay, —as, ..., —ay, all odd joint moments are a priori zero.

e Oddness-1: when in the PPS for any N-tuple of samples ay, as, ..., ay, there is also
the one obtained by alternatively negating one every two terms aq, —as, as, ..., —an,

all odd-1 joint moments are a priori zero.

By definition, odd-1 are all those joint moments that change sign by alternatively negating
the sign of the samples, as for example < z(n)z(n —1) >r. Odd-2, Odd-4, Odd-2¥, joint
moments, with & € INT, are similarly defined and could also be exploited to reduce the
number of equations and variables. Multiple structural conditions can be imposed at
the same time and imposing them is often fundamental for being able to find a solution
to the system in (15) in acceptable time. Indeed, the Newton-Raphson algorithm has
memory and processing time requirements that grow with Q3.

PPSs with different variances can be obtained by properly scaling a PPS of variance

2
e

o2. Indeed, if we scale the PPS by a factor ¢, any order r joint moment in (15), with
r=r9+7r1+..+7rn_1, is scaled by a factor ¢" and the sequence is still a PPS suitable
for the identification of WN filters but for Gaussian variance ¢?o2. This property allows
the use of PPSs for the multiple-variance system identification approach of Section 5.

The interested reader can download PPSs for WN filters of order 3, signal power
02 =1/12, and memories N ranging from 5 to 20, from the website [56].

A PPS input signal allows to accurately estimate the coefficients of the WN filter in
(6) with the cross-correlation approach, implemented now computing time averages over

a period L of the sequence, i.e.,

_ <ymws(n) >,
. ORI (17)
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Equation (13) still holds, with the expectations replaced by time averages,

< y(n)ws(n) >2

OMSE, =
) < wg(n) >r

; (18)

thus allowing a simple ranking of the basis functions. The most relevant basis functions
can be selected by minimizing an information criterion, e.g., minimizing (14) for the

Bayesian information criterion.

5. Multiple-variance system identification

The multiple-variance method is used to contrast the problem of locality of the iden-
tified system. When applying the cross-correlation method with stochastic input signals,
the input non-idealities affect the kernel estimation, and the identification of the ker-
nel diagonal points is particularly affected [4]. Any difference between the input joint
moments and the corresponding ideal values causes errors in the identification, even if
the unknown system and the model have the same memory and order. Other sources
of identification error are the under-estimation of the unknown system memory or order
and the effect of the output noise. The effect of these errors is particularly evident in
the phenomenon of the locality of the solution. The normalized MSE (NMSE) between
the output of the unknown system and the identified model is a function of the input
signal power. Often the NMSE provides reasonable results only in a limited range of
input signal powers, around the input variance used to estimate the model. If the system
is identified with an high input variance, the high order nonlinearities are well excited
and a low estimation error is obtained in the high order kernels, but high errors are
caused in the estimation of the low order kernels [6]. The use of a low input variances
can allow a more accurate estimate of the lower order kernels, but at the detriment of
the higher orders kernel estimation. The multiple-variance method improve the accuracy
in the estimation of the different kernels by using input signals with multiple-variances:
the variance is gradually increased for estimating the higher order kernels. In what fol-
lows, we first present the multiple-variance approach and then we discuss how the most

relevant basis functions can be selected according to some information criterion.
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5.1. The multiple-variance approach

In the multiple-variance approach, each nonlinear kernel is estimated with a possibly
different input signal variance 0'320’(2-) of the white Gaussian noise (WGN) or PPS input.
Let us indicated with kj(l) the j —th kernel estimated with input variance 07257 (i) and with
z(® and y(i)(n) the input and output signal, respectively, for the same input variance
in(i). In the original approach of [6], each kernel i is estimated from the expectation
between y(*)(n) and a product of delayed input samples x()(n). For example k§f27t+u7t+v
is estimated from E[y® (n)z®(n — )z (n —t — u)zd(n — t — v)]. Nevertheless, the
approach of [6] requires recomputing each odd/even lower order kernel for each odd/even

kernel to be estimated, since
Ely® (n)a® (n— )2 (n — )] = 307 ) k), + k602 o), (19)

and

Ely® (n)a® (n — )2® (n — )2 (n — )] = 602 5 kS, + 3k 02 5. (20)

Similar formulas can be found also for larger order kernels.

On the contrary, if we consider the unknown system a linear combination of Wiener
basis functions, each kernel can be separately estimated with (12), without the necessity
of recomputing the lower order kernels, with a significant computational saving.

Clearly, the Wiener basis functions and the WN filter coefficients change with the vari-
we want to estimate the corresponding Volterra kernels, which are independent of the
input variance. For a nonlinear system of order 3, by equating (6) and (7), it can be
noticed that the two largest order kernels of the WN filter are equal to the correspond-
ing kernels of the Volterra filter for any input variance o2. Thus, for u = 0,.., D3 — 1,

v=1uU.,D3, t=0,... N —1—w:
3
hs bt to = ké,wf),t+u,t+v (21)
and for u=0,..,D5,t=0,.., N — 1 —u:

hotu = K (22)
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Equating the first order terms in (6) and (7) for o, = 0, ), since kgt)’H%Hv =

kéi)’“ru’wv for all w, v, and ¢, it results

min(D3,N—1—t) min(Ds,t)
hiy = kgt) - ai,(l)kf(jt),t,t - ‘7;(1) Z kgi)}t),t-&-u,t—i-u - (1) Z k3 t—u,t—u,t"
= (23)
Equating the constant terms in (6) and (7) for o, = 0, (g, since ké?;wu = k§2t) ¢4 fOT
all v and ¢, we have
N-1
ho = k(()O) - 03,(0) ké?’r,r (24)
r=0

This procedure can be applied also for filters of order greater than 3 obtaining similar

formulas.

5.2. The most relevant basis functions

Selecting the most relevant basis functions according to some information criterion
in the multiple variance approach is not a trivial task. Equations (18) and (14) cannot
be directly applied since in multiple variance approaches there are multiple inputs and
outputs, and each kernel is separately estimated. Moreover, as shown in the experimental
results for the single variance case, the number of selected basis functions varies with
the input signal power. To address these problems, the basis functions selection was
separately performed on each kernel using (18) and (14), starting from the lowest order
kernel till the highest order one. When processing the kernel of order 4, in (14) the initial
value of n, accounts for all lower order basis functions previously selected, and the initial
value of o2(n,), say o2 (i)» 18 set equal to the output signal power P, (;) =< [y (n)]? >1

minus the power of all previously selected basis functions for input signal variance ai (i)

e., it is
20 =Py — (B2 25
Oc,(1) (1) — (ko )7 (25)
N-1
1 0
o2y = Py — Z (kg,t))Qai,(Q) — (kg2 (26)
t=0
N—-1 Dy N—1—u
2
02 3) = Pu(a) — Z 2tt )20, z,(3) Z Z §,g,t+u2 3»,(3)
t=0 u=1l t=0
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N-1

=S (k)20 o) - k“wzké?t I (27)
t=0

for 1 = 1, 2, and 3, respectively, with the coefficients k;; and ka4, set to zero if the
corresponding basis functions have not been selected. The formulas for 062’ () In (25)—(27),
have been derived by expressing each model of order ¢ — 1 in terms of the basis functions
for ai(i) and computing the powers of these basis functions.

The selection procedure can be easily implemented with the multiple variance ap-
proach discussed in this section, and has proved very effective in all our experimental
results. It allows to reduce the number of basis functions used to model a nonlinear sys-
tem, while keeping almost unaltered the performance of the model at the various input

powers.

5.8. Optimal choice of the multiple variances

An important problem, which has been often overlooked in the literature, is the
optimal choice of the multiple variances used to estimate the nonlinear system. Different
optimality criteria could be used to find the multiple variances. A reasonable criterion
estimates each kernel at the input signal variance that minimizes the error on the kernel
coefficients. Thus, in the following we look for the input variance 0320’ () which minimizes
the Mean Square Deviation (MSD) between the estimated coefficients of the i-th kernel
and the desired value of these coefficients. In order to account for an unknown system
under estimation, which affects most of practical measurements, we assume the unknown
nonlinear system to have order R and memory M possibly larger than those of the model,
which has order P and memory N. We also assume the output of the system to be affected
by an additive white Gaussian noise of variance o2. In these conditions, in the Appendix

we estimate the MSD in the identification of the i-th kernel,

MSDz = ZE [(ki,s - ki,s)Q] (28)

where k; 5 is a measured coefficient using time averages,

- < y(n)w; s(n) >

, 29
’ <wzs(n) > (29)

17



and k;  is its true value,

_ Elymwi.m)]
boo = BT, (m)] (30)

Both in the case of a Gaussian input and of a PPS input, it is shown in the Appendix

that MSD; assumes the same form, i.e.,

U0 Ui, 1 Ui,2 2
MSD; = o2 + 2(i—1) + 2(i—2) toot U "‘Ui,wl%,(i) T
z() Tg (i) T, (i)
2(R—1) Uz‘,uU,%
FTULRO, 4y T (31)
’ Tz, (i)
where u; 0, ..., u; g are proportionality constants and u; o = 0 for a PPS input.

Using the conversion formulas (21)—(24), it is shown in Appendix that (31) applies
(with different proportionality constants) also to the Volterra filter coefficients.

The MSD expression in (31) highlights the different dependence on 0.725, ) in the various
terms. The largest is 0025_’(1.), the lowest is the influence of noise and of the error terms of
order lower than ¢ (i.e., of the terms depending on u; 9, %i1, - -, ;i ;—1) . On the other
hand, the largest is Ui,(i)v the highest is the influence of the error terms of order larger
than i (i.e., of the terms depending on u; 41, ..., u;r). The choice of 057(2.) should
compromise these contrasting effects.

Ideally, each kernel of order 7 should be estimated at the input variance Ug)(i) that
minimizes (31). In reality, the coefficients u; ; are rarely known and the equation (31)
cannot be solved. Nevertheless, this equation is very useful for guiding the choice of the
multiple variances used to estimate the different kernels.

According to (31), the kernel of order 0 should be estimated at the lowest possible

input variance, since
_ 2 4 2R 2
MSDg = uo,0 + 10,105 (g) + 0,205 (o) + - - - + U0,RO% (o) T U0,v0- (32)

Neglecting u, o, the kernel of order 1 should be estimated at the lowest possible input

variance for which the effect of noise is still negligible, since

2
_ gy
MSDy = w11 + Ul,zaz,u) oot Ul,RUi?l)z + w3 (33)
,(1)
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Table 2: Memory and diagonal numbers of the nonlinear kernels of the PPS and of the identified Volterra
and Wiener models. M; is the memory of kernel j, and D; is the diagonal number of kernel j.

Memory Diagonal Number

M, = 64
My = 40 Dy =15
M = 32 Dy =12

If all the kernels of order larger than P are negligible, then the kernel of order P

should be estimated at the largest possible input variance, since

2
U u up,,0
MSDp = —2% + s b upp + ot (34)
To,(P) O, (p) Ta,(P)
Eventually, the kernels of order 2, ..., P—1 should be estimated with input variances

ranging between o2 ), and o2 ).

6. Experimental results

In this Section we provide a set of experimental results that illustrate the proposed
identification procedure and the achievable performances. In what follows, we first report

a description of the experimental set-up and then a discussion on the obtained results.

6.1. The experimental set-up

The identification of a vacuum-tube audio device, i.e., the Synthesis Roma 27AC
amplifier is here considered. The amplifier was loaded with a pair of loadspeakers, as
suggested in the literature [57]. In particular a pair of Auna 501 passive 2-way speakers
with a RMS rated power of 100 W, a nominal impedance of 8 (2, and a frequency range of
92 Hz — 20 kHz was adopted. The volume was set at the highest value and after half an
hour of warm up, the input signal was applied and the output signal was measured across
the amplifier output terminals as an electric signal since the loudspeakers have been used
only as load of the amplifier. At the maximum used amplitude the second, third and
total harmonic distortion in percent on a tone at 1 kHz were respectively, 0.47%, 0.99%

and 1.097%.
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A sampling frequency of 44.1 kHz was adopted since it is sufficient for the charac-
terization the audible part of the output signal [58]. The amplifier was fed with four
WGN sequences and four PPS sequences at different variances and the corresponding
output signals were recorded and used to identify the model. The chosen input variances

{0925,(1)v 057(2), 027(3), 057(4)} were the same for the two set of sequences and were equal to

{Ui,(4)/647 0326,(4)/16’ Ui,(4)/27 05,(4)}7 (35)

respectively, where Ui,( =1 /12. The output signal to noise ratio (SNR) at the max-
imum used input variance was 38 dB and at the minimum used input variance was 28
dB. The PPSs were all scaled version of a PPS of period 2 097 656, suitable for the
identification of a WN filter of order 3, with the following characteristics: memory of 1st
order kernel 64; memory and diagonal number of 2nd order kernel 40 and 15, respec-
tively; memory and diagonal number of 3rd order kernel 32 and 12, respectively, as also
reported in Table 2.

To model the system, four WN filters were identified with the cross-correlation al-
gorithm using PPSs with a different variances belonging to the set in (35). Then, a
single WN filter was identified with the proposed multiple-variance method and with the
original method of [6], estimating each kernel with one of the variances reported in (35).
The WN models were eventually converted into Volterra models using the formulas in
(8)—(11) for a single variance input, or (21)—(24) for the multiple-variance case. The same
identification was performed with the white Gaussian sequences. In all the experiments,
the same results were obtained with the proposed multiple-variance approach and with
the approach of [6], showing the equivalence of the approaches apart from the different
computational complexity.

The Volterra and Wiener models identified with the set of WGN and PPS inputs,
have order 3 and memory and diagonal number of the different kernels again reported
in Table 2. The constant kernel of order 0 has also been considered, and thus these
models have a total of 2705 basis functions and coefficients. For the PPS inputs, reduced
models were then determined by sorting the basis functions according to the MSE they
produce and applying the Bayesian information criterion in (14). The reduced models

were determined also for the WGN inputs, but the basis function selection process pro-
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Table 3: Number of selected basis functions at different orders for the complete models and the reduced

models identified with the multiple variance (MV) approach and single variance (SV) approach with
; 2 2 2 2

variances o3 11,0, 53,05 (31,5 (1)

Complete MV SV SV SV SV

Model O’i’(l) Ui’(z) 092;,(3) ai’(4)
Order 0 1 1 1 0 0 0
Order 1 64 61 57 61 63 63
Order 2 520 44 27 56 114 136
Order 3 2120 118 38 53 100 254
Total 2705 224 123 170 277 453

vided poor results because of the not perfect orthogonality of the basis functions over an
interval of two million samples: a much larger number of basis functions were included
in the model and (25)—(27) often produced negative values. Thus, the results of reduced
models with WGN inputs are not included in the paper. Table 3 provides the number of
selected basis functions of the complete models and of the reduced models obtained with
the Bayesian information criterion using the single variance approach and the multiple
variance approach of Section 5. Note that in the single variance approach the number
of selected basis functions changes with the power of the input signal, because of the
different importance of the basis functions at different input variances.

The identified models were then tested using as input signals 13 WGN sequences
of 2 seconds with variance ranging between 2.0345-107° and 8.33-1072, and 13 music
sequences of 2 seconds (i.e., pop music track “I Know It’s Over” by Mario Biondi) again
with the same variances. The performance of the different models has been compared
using the normalized mean square error (NMSE) defined over the output spectrogram.
The NMSE can be defined formally by considering the Short Time Fourier Transform
(STFT) of the amplifier output and the model output,

Y (7,w) = STFT[y(n)] (36)

Y (1,w) = STET[§(n)], (37)

where y(n) is the amplifier output and (n) is the model output. The STFT is calculated

using a Hamming window and dividing the input signal into eight segments with 50%
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overlap. The mean square error between two matrices can be defined as
N 1 N o
MSE[YaY} = RC ZZ[Y(Z7]) 7Y(Zaj)}23 (38>
(]

where RC' is the product between the number of rows and columns of the matrices. The

NMSE used to assess the performance of the different models is defined as
NMSE = MSE(|¥], [¥ ) /MSE(|Y],0), (39)

where |.| denotes the magnitude applied to each element of the matrix.

6.2. Discussion

Figure 1 shows the test results of the Volterra model identified with white Gaussian
sequences, and tested with white Gaussian noise and music test inputs, respectively. On
the contrary, Figure 2 shows the test results of the Volterra model identified with PPSs,
again for the same white Gaussian noise and music test inputs. Figure 1 and 2 show
the NMSE of both the single-variance models and of the multiple-variance models, as a
function of standard deviation of test signals.

In Figure 1.(a) we can see that the error curve related to the multiple-variance models
interpolates the inferior values of the curves of single-variance models, as the multiple-
variance method was meant to do. The single-variance models have similar performance
to the multiple-variance one only in a short interval around the variance used for the iden-
tification, while outside this interval the error increases up to 15 dB. In Figure 1.(b) the
performance of the multiple-variance model is almost equal to that of the single-variance
model o, 4y, which is superior to all other single-variance models. In Figure 1.(b), for
high input variances all models provide poor identification results. According to Table
3, the complete model is overdetermined and the errors in the coefficients estimation due
to imperfect white Gaussian input manifest especially at high input variances.

In Figure 2, the multiple variance-model identified with PPSs provides very good
results for both the white Gaussian and music test inputs. Also with PPS, the single
variance models can provide slightly better results than the multiple variance model,

around the variances used in the measurements, but for the other variances the multiple
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Figure 2: NMSE of Volterra models identified with PPS. (a) WGN test input, (b) music test input.

variance model is always far superior. It should be noticed that the multiple-variance
model identified with PPSs has a NMSE always lower than —22 dB.

Comparing Figures 1 and 2, the improvement of the NMSE in the multiple variance
approach using PPS inputs can be clearly appreciated. Also with PPS, the single variance
approaches obtain a better NMSE for the variances used in the measurement, but a worse
performance could result at other input variances.

To better visualize the relation between the NMSE, shown in the previous Figures and
the real outputs, Figure 3 reports a comparison between amplifier and Volterra model
outputs, for the case of identification with WGN and PPS input, when as test input is
applied the same music track used for the realization of Figures 1.(b) and 2.(b), with the
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Figure 3: Outputs of amplifier and of (a) multiple-variance WGN Volterra model, (b) multiple-variance
PPS Volterra model, for the music test input.
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Figure 4: Zoom in time (from 400 ms to 470 ms) of outputs of amplifier and of (a) multiple-variance
WGN Volterra model, (b) multiple-variance PPS Volterra model, for the music test input.

maximum variance. Only the first second of music track is reported to make the Figure
clearer. In Figure 4, to better visualize the difference between the two identified Volterra
models, a zoom in time of Figure 3 is reported. As can be clearly seen from both the
Figures 3 and 4, in the case of the music input with highest variance the Volterra model
identified with WGN exhibits a higher error with respect to the model identified with
PPS, as also shown from the NMSE reported in Figures 1 and 2.

Figure 5 reports a time zoom, equivalent to Figure 4, but in the case of WGN test

input. Since the WGN input has higher frequency contents with respect to the music
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Figure 5: Zoom in time (from 400 ms to 410 ms) of outputs of amplifier and of (a) multiple-variance
WGN Volterra model, (b) multiple-variance PPS Volterra model, for the WGN test input.
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Figure 6: Input spectrogram: (a) WGN, (b) music input.

input, a shorter time segment is shown to make the Figure more readable®. The two
models show comparable performance in the case of WGN input, as shown also in the
NMSE Figures 1.(a) and 2.(a), with a slight difference in favour of the PPS Volterra
model.

Finally, Figure 7 shows a comparison between the output spectrograms of the ampli-
fier, of the WGN Volterra model, and of the PPS Volterra model when the input is a

WGN or music at the highest variance (whose spectrograms are reported in Figure 6).

3A Figure with a 1 s duration WGN input, equivalent to Figure 3, is not reported because indistin-
guishable.
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Figure 7: Output spectrogram with WGN (first column) and music input (second column) of (a,b) the
amplifier, (c,d) multiple-variance WGN Volterra model, (e,f) multiple-variance PPS Volterra model.

In Figures 7, the spectrograms of Volterra models are closer together but differences can

still be seen in favour of PPS Volterra model.
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Figure 8: NMSE of Volterra models identified with PPS after basis functions selection according to the
Bayesian information criterion. (a) WGN test input, (b) music test input.

The effect of the application of an information criteria to the selection of the most
relevant basis function, presented in Sec. 5.2 to reduce the computational complexity of
the model, is shown in Figure 8.

This Figure shows the results for the reduced modeled obtained in the single vari-
ance and the multiple variance approach using PPSs inputs and applying the Bayesian
information criterion. In the single variance approach, the reduction in the number of
selected basis functions often improves the estimation performances at the high vari-
ances, because it reduces the influence of error terms in the higher order kernels. This
behavior is visible especially with 057(1) and 0320,(2), where the higher order kernels are
most affected by the low variance of the estimation. In the multiple variance approach,
the reduction in the number of selected basis functions by a factor larger than ten, shown
in Table 3, provides almost no alteration in the curves of NMSE. Overall, the multiple
variance approach is able to provide the best performances for the various input signal
powers, also for the reduced models. Figures equivalent to Figure 4-7 are not shown in

this case because the performance is almost identical to the PPS identification case.

7. Conclusion

The paper has discussed the identification of nonlinear systems exploiting the Wiener
basis functions and WN filters. The Wiener basis functions are a set of polynomial

functions that are orthogonal for any white Gaussian input signal of variance o2. The
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WN filters are a linear combination of the Wiener basis functions. Formulas for converting
the WN filters into Volterra filters have been provided. We have shown that WN filters
admit PPSs. PPSs guarantee the orthogonality of the basis functions over a period of
the sequence and allow the identification of the filter with the cross-correlation method.
Exploiting the properties of Wiener basis functions, we have proposed a novel multiple-
variance approach, which allows to identify nonlinear systems contrasting the locality of
the solution. The proposed multiple-variance approach can be applied also with white
Gaussian input signals, but is particularly effective when the input signal is formed by
PPSs with different variances. In that case, a procedure for selecting the most relevant
basis functions according to an information criterion has been proposed. The optimal
choice of the input variances has been theoretically studied and has taken us to simple
rules to guide the choice of the variances. The experimental results illustrate the proposed
approach and its effectiveness in modeling a real audio device on a wide range of input

signal powers.

Appendix A. MSD in multiple variance identification

When the nonlinear system input x(n) is a Gaussian noise or a PPS of variance 03: (i)

the output of the unknown system can be expressed in the following form:

y(n) = fo(x)(n) + fr(@)(n) + ...+ fi(x)(n) + ... + fr(z)(n) + v(n), (A1)

where v(n) is the additive Gaussian noise, f;(z)(n) for j =0, ..., R are functionals of z(n),
specifically are linear combinations of Wiener basis functions of order j, and fo(z)(n) is a
constant term. Note that changing the input variance a;(i), the Wiener basis functions
and their coefficients change, and also the functionals f;(z)(n) change. In what follows,

for sake of compactness we will indicate f;(z)(n) as f;(n). Thus, it is

y(n) = fo(n)+ fi(n) + ...+ fi(n) + ...+ fr(n) + v(n). (A.2)

We will distinguish between the case of a Gaussian input signal and of a PPS input

signal.
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Appendiz A.1. Gaussian input signal

Let us assume we want to identify the coefficient Ei,s of the basis function of order i

w; s(n). The exact value of this coefficient is

7. E[y(n)wz s(n)] E[fl(n)wz s(n)]
kis= ; = : ) A.
¢ T TERE,m] | Ew?,m) —
while the measured value using time averages is
iy = < y(n)w; s(n) >r (A1)

< wis(n) >

The measured value is affected by different errors due to noise and to the imperfect
orthogonality of the basis functions over a finite time interval.
On a finite time interval of length L, < w} (n) > is in general different from the

ideal value, but in the following we neglect this error and consider
<w?,(n) >1= Blw?,(n)]. (A.5)

In order to estimate the error on k; s, let us decompose f;(n) into
fin) = kiswis(n) + fi(n) + ei(n), (A.6)

and, for any other [ # 4, f;(n) into

filn) = f1(n) + ei(n). (A7)

In (A.6) and (A.7), for all j, f;(n) is the component of f;(n) orthogonal to w; s(n) over
the time interval L, ie., < fj(n)w”(n) >r= 0 for all j. On the other hand, e;(n) is
the error term caused by the imperfect orthogonality of the basis functions, an thus in
general < ej(n)w; s(n) >1# 0 for all j.

Note that in WN filters, the basis functions of order j have power proportional to
ai{(iy thus, the functionals f;(n) and the error terms e;(n) have power proportional to

al_J(i), since they can be expressed as a linear combination of basis functions of order j.
;
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Considering (A.2), (A.6), and (A.7), k; 5 is

< 60(71)’(0175(77,) > < 61(71)11)2'75(71) >

kis=his+
e b < wfys(n) >r <’wl—273(77/) >,

5

+ ...

<er(n)w;s(n) >  <v(n)w;s(n) >L.

_l’_
<wi,(n) > <w? (n) >

(A.8)

According to the authors’ experience, the effect of the error term of order 0 is often
negligible, since in most cases < eg(n)w; s(n) >~ 0.

We can now estimate the MSD of the measured coefficients of order ¢, which is

s

MSD; = Y E [(kis — Fis)?] - (A.9)

We assume the error terms e;(n) to be uncorrelated with each other, with v(n), and with
w; s(n). The values of w; ¢(n) at different time instants are uncorrelated, because of the

orthogonality of the basis functions. In these conditions,

Ele%(n)w? (n E[V?(n)w? (n
+[1§()2 ()]+[2()2,()] (A.10)
E2[w; (n)] E2[wi (n)]
Note that
E[wiq(n)] X Uif(iy (A.11)
Bl (mu?, ()] x 0%, 0%, (A12)
B2y, (n)] = o2o%y. (A13)
Thus,
MSD; = UO,iU;%Z) + u1,i0325((15i) + ’U/2,i0'i((2i;i) +oe uR}iai(g)*i) + ui7,,0;%f)012,, (A.14)

where u; ; for j =0,..., R, and u;, are coefficients of proportionality which depend on

the specific kernel ¢, on the unknown system and also on %2- (i) for large variations of the
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input variance.

Appendiz A.2. PPS input signal

When the input signal is a PPS, the only stochastic term in (A.2) is v(n), all other
quantities are deterministic. Thanks to the PPS, we have a perfect orthogonality of the
basis functions of the model over a period of the sequence. Nevertheless, in most cases
the model underestimates the order and the memory of the unknown system. The basis
functions that have been erroneously neglected in the definition of the model and the
additive noise v(n) are the cause of errors in the estimation of the model coefficients.

Let k; s be the desired value of coefficient of the basis function w; (n), given in (A.3)

for a Gaussian input of variance o2 (i) The corresponding measured coefficients is

1:7

P <y(n)w;s(n) >r
1,8 — 2
< wi’s(n) >L

: (A.15)

where L is the PPS period or a multiple of the PPS period.
For the construction rules of the PPS, the denominator of (A.15) is a constant equal
to the power of the basis function for a Gaussian input of variance 02 (i)’ ie., E[wfs(n)]

We can decompose f;(n) into
fi (Tl) = Ei,swi,s(n) + ?z (n) + € (n), (Alﬁ)

and, for any other [ # i,

filn) = fi(n) + e(n). (A.17)
For all 7, fj (n) is formed by all basis functions of order j that have been neglected in
the model and that are orthogonal with w; s(n), while e;(n) is formed by all the basis
function of order j neglected in the model that are not orthogonal with w; s(n). It should
be noted that eg(n) = 0, since fo(n) is a constant and for the construction rules of the
PPS < w; s(n) >r=0.
Thus, replacing (A.16) and (A.17) in (A.15),

<er(n)w;s(n) > < ea(n)w; s(n) >
<wi275(n) > <wi2)8(n) >1

k‘i’SZEi’S—f— + ...
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<er(mw;s(n) >r  <vn)w;s(n) >L. (A18)
<w? (n) > <w? (n) >

In this expression, the only stochastic term is v(n). Nevertheless, since the PPS has

a sample distribution which is similar to a Gaussian distribution, in the following we

assume the terms e;(n) are stochastic, uncorrelated with each other, with v(n), and with

w; s(n). Under these assumptions we estimate the MSD of the i-th kernel. Estimating

(A.9), and considering that also for a PPS input (A.11), (A.12), and (A.13) hold,

» » R L
MSD; = “171‘02,((11-) )y uz,ﬂifé) D4 “Rv“’ifu) R ui,yaxfz)of, (A.19)
where u; ; for j =1,..., R, and u;, are coefficients of proportionality which depends on

2

the specific kernel 4, on the unknown system and also on o (i

) for large variations of the

input variance.

Appendiz A.3. MSD of Volterra coefficients

In this subsection, we discuss the MSD of the coefficients of the Volterra filter obtained
from the WN to Volterra conversion.

We have shown in Section 2 that the two highest order Volterra kernels are equal to
the corresponding Wiener kernels. Thus, also the MSDs of these kernels are the same.
On the contrary, in the lower order kernels the MSD of the Volterra coefficients of order
i depends on the MSD of the WN filter coefficients of the same order and of order i + 2,
i+ 4, ..., till the maximum order R. As a matter of fact, let us consider the case of a
third order Volterra and WN filter, for which the conversion formulas in (21)—-(24) hold.
According to (21) and (22), the MSD of the kernels of order 3 and 2 of Volterra and WN
filter coincides, and is given by (A.14) and (A.19) for a Gaussian and PPS input signal,
respectively. Let us consider the MSD of the kernel of order 0,

El(ho — ho)?], (A.20)

where hg is the measured coefficient given by (24), and hq is its true value, with

N-1
EO = EO — O'i(o) Z E2,r,r- (A21)
r=0
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It results that

N-1
El(ho — ho)?*] = E{ [ko — ko — 02,0y > (k2.rr — K2,0)]” 7 - (A.22)
r=0
Replacing (A.8) in (A.22), for ¢ = 0 and ¢ = 2,