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Abstract

The paper addresses nonlinear identification using the Wiener series. Differently from

the traditional approach, the truncated Wiener series is expressed as a linear combination

of basis functions, which are orthogonal for white Gaussian inputs. The coefficients of

the basis functions are efficiently estimated with the cross-correlation method, computing

the cross-correlation between the basis functions and the system output. Perfect periodic

sequences (PPSs), which are periodic sequences guaranteeing the perfect orthogonality

of the basis functions over a period, are also developed. The PPSs allow to avoid the

estimation problems experienced with the cross-correlation method using stochastic in-

puts. The Wiener series formulation in terms of basis functions allows also to develop a

novel, more efficient, multiple-variance identification method. Multiple-variance methods

exploit input signals with multiple variances for estimating the Volterra kernels. They

overcome the problem of locality of the solution, i.e., the fact that the identified model

well approximates the nonlinear system only for input signal variances close to that used

for the identification. Optimal values of the multiple variances are also studied in the

paper. Experimental results, involving the identifications of real devices, show that the

1Corresponding author: Alberto Carini, Tel.: +39 040 5583453.

1



proposed approach can accurately model the identified system on a wide range of input

variances.

Keywords: Nonlinear filters; Wiener series; Wiener nonlinear filters; Wiener basis

functions; perfect periodic sequences; cross-correlation method; multiple-variance.

1. Introduction

The Wiener series composed of the Wiener G-functionals [1, 2] was introduced to

overcome one of the main limitations of the Volterra filters, whose polynomial terms are

never orthogonal for any input signal. The G-functionals can be derived from the or-

thogonalization of the Volterra series for white Gaussian inputs. They allow the efficient

identification of nonlinear systems with the cross-correlation method, which in the orig-

inal formulation of Lee-Schetzen [1] requires computing the cross-correlations between

products of delayed input samples and the unknown system output. When applied to

stochastic inputs, the approach presents many drawbacks at the point that many re-

searchers consider it just a “legacy” method [3, page 77]: (i) Millions of input samples

are often needed for an accurate estimation of the nonlinear kernels. (ii) Due to the

limitation of the input signal length and to saturation of the input amplitude, an exact

white Gaussian input cannot be generated. (iii) The central moments of a Gaussian

input deviate from ideal values as the moment order increases [4]. (iv) The input non-

idealities affects particularly the estimation of the diagonal points of the kernels [4]. (v)

The problem is exacerbated by the errors caused by a model order under-determination.

Some improvements to the original cross-correlation method of Lee-Schetzen were

provided in [4, 5], where the problems of input non-ideality in the identification of diag-

onal points were addressed. A solution to mitigate the identification errors due to model
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under-determination was proposed in [6].

A known drawback of Volterra and Wiener theory [7] is the problem of “locality of

the solution”, i.e., the fact that the estimated model well approximates the unknown

nonlinear system only for input variances in a neighborhood of that used for the identifi-

cation [6]. The non-idealities of input signal make the output mean square error (MSE)

a function of the input variance [4]. To accurately estimate the higher order kernels,

high input variances are needed to excite high order nonlinearities, but they cause high

identification errors in lower order kernels. Low input variances can obtain an more

accurate estimation of the lower order kernels but they produce an underestimation in

high order ones. The problem can be addressed with multiple-variance approaches [6]:

low input variances are used to model lower order kernels, while the input variance is

gradually increased for higher order kernels. It has to be pointed out that the origi-

nal multiple-variance identification method of [6] requires recomputing all lower order

kernels for each kernel to be estimated. Multiple-variance approaches are very effective

in solving the problem of the locality of the solution and could be fruitfully adapted

and applied to many areas of nonlinear signal processing, from audio effect emulation

[8, 9, 10, 11, 12], to nonlinear acoustic echo cancellation [13, 14, 15, 16], nonlinear active

noise control [17, 18, 19, 20], telecommunications [21, 22, 23, 24, 25], biological system

modeling [3, 26], and dynamic nonlinear system modeling in general.

In this paper, differently from the classical approach based on G-functionals, the

Wiener series is expressed as a linear combination of basis functions, which are orthog-

onal for white Gaussian inputs, as was proposed in the early conference papers [27, 28].

In analogy to Volterra filters, the Wiener series doubly-truncated with respect to the

order and the memory is here called a Wiener Nonlinear (WN) filter. Because of the

orthogonality of Wiener basis functions (WBF) for white Gaussian inputs, the WN filter

coefficients can be efficiently estimated with the cross-correlation method, applied here

by computing the cross-correlation between the basis functions and the system output.

The WN filters are a member of the class of linear-in-the-parameters nonlinear filters,

and in particular of the subclass of functional link polynomial (FLiP) filters [29, 30]. As

the other members of FLiP filter class having orthogonal basis functions, e.g., Even

Mirror Fourier [31, 32], Legendre [33], and Chebyshev [34] nonlinear filters, we show
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in this paper that WN filters admit perfect periodic sequences (PPSs). The PPSs are

periodic sequences that guarantee a perfect orthogonality of the basis functions of a

certain nonlinear filter over a period of the sequence. The PPSs were first used for the

identification of linear systems [35, 36, 37, 38] and were later applied to nonlinear systems

[32, 33]. When applied as input to an unknown nonlinear system, they allow system

identification with the cross-correlation approach. The PPSs for WN filters permit to

avoid many of the problems encountered in Wiener series identification with the cross-

correlation method for stochastic inputs. They realize a perfect orthogonality of the basis

functions on a finite period and they have a finite maximum amplitude. Using PPSs, the

kernel diagonal points can be accurately estimated without the need to resort to specific

algorithms, as in [4, 5, 39]. Using PPSs, it is also possible to easily estimate the most

relevant basis functions, according to some information criterion [32].

By exploiting the formulation of the Wiener series in terms of basis functions, a

novel multiple-variance approach is further developed in the paper. Compared with the

original approach of [6], the proposed approach allows to avoid recomputing all lower

order kernels, with a significant reduction in the computational complexity. Moreover,

multiple-variance PPSs can be devised to further improve the nonlinear estimation. A

procedure for selecting the most relevant basis functions according to some information

criterion [40, 41, 42] is also proposed for the multiple variance approach. Another contri-

bution of the paper is a study about the optimal choice of the multiple input variances,

both for stochastic inputs and for PPSs.

Experimental results are provided to illustrate the advantages of PPSs for WN filters

and of the multiple-variance approach. It is shown that the proposed multiple-variance

approach can accurately model real nonlinear devices on a wide range of input variances.

The proposed system identification approaches have been developed considering in

particular a nonlinear system emulation scenario but could be applied in many other

scenarios requiring system modeling, e.g., in nonlinear system equalization or lineariza-

tion, in vibration and noise control, in measurements robust towards nonlinearities, in

biological system modelling, and many others.

The rest of the paper is organized as follows. The Wiener basis functions and WN

filters are introduced in Section 2. System identification using Wiener basis functions is
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addressed in Section 3. PPSs for WN filters are discussed in Section 4. Multiple-variance

system identification is the topic of Section 5. The optimal choice of basis functions and

input variances is discussed in the same Section. Experimental results are given in Section

6. Eventually, Section 7 provides the conclusions of the paper.

Throughout the paper the following notation is used: E[ · ] denotes mathematical

expectation, < · >L denotes average over an interval of L samples, N (0, σ2
x) indicates

the zero mean, variance σ2
x, normal distribution, R+ is the set of positive real numbers,

∝ means “proportional to”.

2. The Wiener basis functions

In this section, the Wiener series is expressed as a linear combination of basis func-

tions. The Wiener basis functions ws(n) are a set of polynomial functions, orthogonal

for any white Gaussian input signal x(n) ∈ N (0, σ2
x), i.e., E[ws1(n)ws2(n)] = 0 for any

s1 6= s2, that can arbitrarily well approximate any discrete time, time-invariant, finite

memory, continuous, nonlinear system,

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)] (1)

for any memory N , where f is a continuous functions from RN to R.

To develop the set of basis functions, we can first consider the case of N = 1. The

nonlinear system

y(n) = f [x(n)] (2)

can be arbitrarily well approximated with the set of monomials

{1, x(n), x2(n), x3(n), . . .}, (3)

which are not orthogonal for x(n) ∈ N (0, σ2
x). Nevertheless, by applying the Gram-

Schmidt orthogonalization to the set in (3), a set of orthogonal polynomials for x(n) ∈

N (0, σ2
x) can be obtained as follows

{1, x(n), x2(n)− σ2
x, x3(n)− 3σ2

xx(n), . . .}. (4)
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In the orthogonalization procedure input moments naturally appears, determining the

coefficients of the polynomials in (4). These polynomials are related to the Hermite

polynomials [43] and in particular are probabilists’ Hermite polynomials of variance σ2
x,

according to the definition in [44]. The polynomials can be generated with the following

relation

Hj+1(x) = xHj(x)− jσ2
xHj−1(x), (5)

where the recursion is initialized withH0(x) = 1 andH1(x) = x, andHj(x) is the Hermite

polynomial of degree j. In what follows, for compactness the Hermite polynomials of

order 0 and 1, will be indicated as 1 and x, respectively, while the other polynomials will

be indicated as Hj(x), with j = 2, 3, ....

To develop the basis functions for N > 1, we follow the same procedure of [33], [45],

and [46]. The Hermite polynomials are first written for x(n), x(n− 1), . . . , x(n−N + 1),

1, x(n), H2[x(n)], H3[x(n)], . . .

1, x(n− 1), H2[x(n− 1)] H3[x(n− 1)], . . .

...

1, x(n−N + 1), H2[x(n−N + 1)] H3[x(n−N + 1)], . . .

Then, the polynomials of different variable are multiplied in any possible manner,

taking care of avoiding repetitions. The resulting set of basis functions and their linear

combinations form an algebra on any compact [−A,+A]N ∈ RN , with A ∈ R+, because

the set is closed under addition, multiplication, and scalar multiplication. This algebra

satisfies all requirements of the Stone-Weierstrass theorem [47]:

“Let A be an algebra of real continuous functions on a compact set K. If A

separates points on K and if A vanishes at no point of S, then the uniform

closure B of A consists of all real continuous functions on S”.

The algebra of Wiener basis functions separates points and vanishes at no point, and can

thus arbitrarily well approximate the system in (1).

The Wiener basis functions of order from 0 to 3 and memory N are summarized in

Table 1.
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Table 1: The Wiener basis functions

Order 0

1

Order 1

x(n− t) for t = 0, . . . , N − 1

Order 2

H2[x(n− t)] for t = 0, . . . , N − 1

x(n− t)x(n− t− u) for u = 1, . . . , N − 1, and
t = 0, . . . , N − 1− u,

Order 3

H3[x(n− t)] for t = 0, . . . , N − 1

H2[x(n− t)]x(n− t− u) for u = 1, . . . , N − 1, and
t = 0, . . . , N − 1− u,

x(n− t)H2[x(n− t− u)] for u = 1, . . . , N − 1, and
t = 0, . . . , N − 1− u,

x(n− t)x(n− t− u)x(n− t− v) for u = 1, . . . , N − 2, and
v = u+ 1, . . . , N − 1,
t = 0, . . . , N − 1− v,

A Wiener nonlinear (WN) filter of order P , memory N , is a linear combination of the

Wiener basis functions up to the order P and memory N . To reduce the number of basis

functions of the filter, it is a common practice to exploit the diagonal representation of

the filter [48] and to limit the diagonal number. The diagonal number is the maximum

time difference between the samples involved in each basis function. The limitation of

the diagonal number finds justification in the experimental observation that in real-world

nonlinear systems the “energy” of the nonlinear kernels tends to concentrate around the

main diagonals, as was observed in nonlinear acoustic echo cancellation [13, 15, 49],

nonlinear active noise control [50, 51], identification of nonlinear systems [52, 39]. For

example, a WN filter of order 3, memory N , and diagonal numbers D2 and D3 for the
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second and third order basis functions, respectively, has the following diagonal form,

y(n) = k0 +

N−1∑
t=0

k1,tx(n− t) +

N−1∑
t=0

k2,t,tH2[x(n− t)]+

+

D2∑
u=1

N−1−u∑
t=0

k2,t,t+ux(n− t)x(n− t− u)+

+

N−1∑
t=0

k3,t,t,tH3[x(n− t)]+

+

D3∑
u=1

N−1−u∑
t=0

k3,t,t,t+uH2[x(n− t)]x(n− t− u)+

+

D3∑
u=1

N−1−u∑
t=0

k3,t,t+u,t+ux(n− t)H2[x(n− t− u)]+

+

D3−1∑
u=1

D3∑
v=u+1

N−1−v∑
t=0

k3,t,t+u,t+vx(n− t)x(n− t− u)x(n− t− v).

(6)

For D2 = D3 = N − 1, a full WN filter of order 3 and memory N is obtained. The set

of coefficients kl,... of equal order l forms the so-called l-th kernel of the WN filter. It

should be noted that the expression in (6) is a truncated Wiener series of order 3 and

memory N , and the only difference with the standard formulation [2] is the different

arrangement of terms produced by the basis functions. In what follows, when a short

notation is needed, the s-th Wiener basis functions in (6) will be indicated with ws(n),

with s = 0, 1, . . . , and the corresponding coefficient will be denoted with ks. If we need

to specify also the order i, the basis function and the corresponding coefficient will be

denoted with wi,s(n) and ki,s, respectively.

The WN filter can be transformed into a Volterra filter, by equating the polynomial

terms of equal degree. For example, the WN filter in (6) can be converted into the
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following Volterra filter of order 3 and memory N ,

y(n) = h0 +

N−1∑
t=0

h1,tx(n− t) +

N−1∑
t=0

h2,t,tx
2(n− t)+

+

D2∑
u=1

N−1−u∑
t=0

h2,t,t+ux(n− t)x(n− t− u)+

+

N−1∑
t=0

h3,t,t,tx
3(n− t)+

+

D3∑
u=1

N−1−u∑
t=0

h3,t,t,t+ux
2(n− t)x(n− t− u)+

+

D3∑
u=1

N−1−u∑
t=0

h3,t,t+u,t+ux(n− t)x2(n− t− u)+

+

D3−1∑
u=1

D3∑
v=u+1

N−1−v∑
t=0

h3,t,t+u,t+vx(n− t)x(n− t− u)x(n− t− v).

(7)

By direct inspection, we find that the following conversion formulas hold for any t, u, v:

h3,t,t+u,t+v = k3,t,t+u,t+v, (8)

h2,t,t+u = k2,t,t+u (9)

h1,t = k1,t − σ2
xk3,t,t,t − σ2

x

min(D3,N−1−t)∑
u=0

k3,t,t+u,t+u

−σ2
x

min(D3,t)∑
u=0

k3,t−u,t−u,t, (10)

h0 = k0 − σ2
x

N−1∑
r=0

k2,r,r. (11)

3. System identification using Wiener basis functions

By construction the Wiener basis functions are orthogonal for a white Gaussian input

signal x(n) ∈ N (0, σ2
x), i.e., E[ws1(n)ws2(n)] = 0 for any s1 6= s2. Thus, the coefficients

ks in (6) can be estimated with the classical cross-correlation approach as follows:

ks =
E[y(n)ws(n)]

E[w2
s(n)]

, (12)
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where y(n) is the unknown nonlinear system output. In (12), the expectations are usually

estimated with time averages over a finite period.

The most relevant basis functions, i.e., the basis functions that guarantee the most

compact representation according to some information criterion in principle can also be

estimated. Indeed, exploiting the orthogonality of the basis functions, the mean square

error (MSE) reduction provided by ws(n) is

δMSEs =
E2[y(n)ws(n)]

E[w2
s(n)]

. (13)

The basis functions can be ranked according to the MSE reduction they produce and

thus the most important basis functions can be selected by minimizing an information

criterion [40, 41, 42]. In Section 6, we will provide some experimental results using the

Bayesian information criterion [41], i.e., minimizing

BIC = L ln[σ2
ε (np)] + np ln[L], (14)

where σ2
ε (np) is the variance of the residual error for the first np most relevant basis

functions and L is the number of samples used in the identification. The Bayesian

information criterion is one of the most popular and selective information criteria [41, 32].

Other information criteria, like the Akaike’s information criterion [40], the final prediction

error [40], Khundrin’s law of iterated logarithm criterion [42], could also be used. It

should be noted that the basis function selection according to an information criterion

requires the perfect orthogonality of the basis functions and often provides erratic results

when estimating the expectations of the white Gaussian signals with time averages over

finite lengths.

Once a WN filter has been identified, it can be directly used, e.g., to emulate a

nonlinear device, or it can be transformed into another form for different uses. It is also

possible to transform it into a Volterra filter, e.g., with (8)–(11) in case of an order 3

filter.

The cross-correlation method obtained by implementing (12) using Gaussian input

signals requires a huge number of input samples, in the order of millions or more, for

guaranteeing an approximate orthogonality of the basis functions and a reasonable ac-
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curacy in the coefficients. The problem can be solved using perfect periodic sequences

(PPSs), which are periodic sequences that guarantee a perfect orthogonality of the basis

functions over a period.

4. Perfect periodic sequences

In this Section, we want to develop a PPS xp(n) of period L suitable for the iden-

tification of the WN filters up to an order P and memory N with Gaussian variance

σ2
x. For sake of simplicity, we consider a full WN filter, but everything presented holds

also when we limit the diagonal number of the nonlinear kernels. The PPS should to be

bounded by 1, i.e., |xp(n)| < 1 for all n, to be able to faithfully reproduce the sequence

using digital to analog converters.

The approach followed in this paper differs from [32, 46, 53], where PPSs for even

mirror Fourier, Legendre, and Chebyshev filters were obtained.

The cross-product E[ws1(n)ws2(n)] between any two basis functions of a WN filter

of order P and memory N is a linear combination of joint moments of the input signal

x(n) up to the memory N and order 2P , i.e., of

E[xr0(n) ·xr1(n− 1) · . . . ·xrN−1(n−N + 1)]

with r0, r1, . . . , rN−1 ∈ N and r0 + . . . + rN−1 ≤ 2P . The same observation applies

also to the cross-products < ws1(n)ws2(n) >L with the expectations replaced with time

averages. The orthogonality of the basis functions implies that the joint moments are the

same of a Gaussian distribution, but also the reverse holds. Consider a periodic sequence

xp(n) that over the period L has the same joint moments up to memory N and order 2P

of a white Gaussian signal N (0, σ2
x). The periodic sequence guarantees over the period

the orthogonality of all basis functions and is perfect for the identification of the WN

filter. Thus, a PPS for WN filters of memory up to N and order up to P can be obtained

by imposing the following system of nonlinear equations:

< xr0p (n) ·xr1p (n− 1) · . . . ·xrN−1
p (n−N + 1) >L= µr0 ·µr1 · . . . ·µrN−1

, (15)

for all r0, r1, . . . , rN−1 ∈ N with r0 > 0 (for the periodicity of the sequence) and r0 +r1 +
11



. . .+ rN−1 ≤ 2P . The quantity µr is the r-th moment of the Gaussian process N (0, σ2
x),

µr = E[xr(n)] =

 0 for r odd,

(r − 1)!!σrx for r even,
(16)

with q!! the double factorial [54] and q!! = q · (q − 2) · (q − 4) · . . . · 1 = q!

2
q−1
2 ( q−1

2 )!
.

The number of equations Q of the nonlinear system (15) is equal to the number of

different basis functions of a Volterra filter of order 2P−1 and memoryN (since r0 > 0, all

equations has a factor xp(n) ), i.e., Q =
(
N+2P−1

N

)
. For sufficiently large L, the system

is underdetermined and may have infinite solutions in the variables xp(n). To solve

it, we have found particularly effective the Newton-Raphson method, which has been

implemented as described in [55, ch. 9.7], starting from a random Gaussian distribution

of the variables with variance σ2
x, with the Jacobian matrix computed analytically. The

variables xp(n) were reflected in [−1,+1] every time they exceeded the range to obtain a

sequence bounded by −1 and +1, as desired. The Newton-Raphson method converges to

a solution only if the signal power σ2
x is sufficiently small. Indeed, the PPS converges to a

distribution similar to the Gaussian and convergence is possible only when the probability

of finding samples outside the range [−1,+1] is sufficiently small. Anyway, a solution

was always found for L ranging between 3Q and 4Q and for σ2
x ≤ 1/10. The number of

iterations of the Newton-Raphson method depends on the ratio L/Q and on the signal

power σ2
x. The larger the ratio L/Q or the smaller the signal power σ2

x, the faster is the

speed of convergence of the Newton-Raphson method. Since the Newton-Raphson is a

numerical method, the solution is only approximate but the precision can be arbitrarily

improved acting on the stop-condition of the method. Imposing σ2
x = 1/12, and L = 4Q,

and as stop condition the maximum absolute deviation of the moments to be lower than

10−13, the Newton-Raphson method in our experiments has converged in around 100

iterations.

A problem of the system in (15) is the large number of equations and variables also

for low orders P and memories N . Indeed, Q depends exponentially on the order P

and geometrically on the memory N . The number of equations and thus variables can

be reduced by imposing specific structures to the PPS, as done in [32] and [33]. The

following conditions can almost halve the number of equations and variables:
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• Symmetry: when in the PPS for any N -tuple of samples a1, a2, . . . , aN , there is

also the reversed one aN , aN−1, . . . , a1, for every couple of symmetric joint moments

(e.g., < x(n)x3(n−1) >L and < x3(n)x(n−1) >L), it suffices to consider only one

of them.

• Oddness: when in the PPS for any N -tuple of samples a1, a2, . . . , aN , there is also

the negated one −a1,−a2, . . . ,−aN , all odd joint moments are a priori zero.

• Oddness-1: when in the PPS for any N -tuple of samples a1, a2, . . . , aN , there is also

the one obtained by alternatively negating one every two terms a1,−a2, a3, . . . ,−aN ,

all odd-1 joint moments are a priori zero.

By definition, odd-1 are all those joint moments that change sign by alternatively negating

the sign of the samples, as for example < x(n)x(n− 1) >L. Odd-2, Odd-4, Odd-2k, joint

moments, with k ∈ N+, are similarly defined and could also be exploited to reduce the

number of equations and variables. Multiple structural conditions can be imposed at

the same time and imposing them is often fundamental for being able to find a solution

to the system in (15) in acceptable time. Indeed, the Newton-Raphson algorithm has

memory and processing time requirements that grow with Q3.

PPSs with different variances can be obtained by properly scaling a PPS of variance

σ2
x. Indeed, if we scale the PPS by a factor c, any order r joint moment in (15), with

r = r0 + r1 + ...+ rN−1, is scaled by a factor cr and the sequence is still a PPS suitable

for the identification of WN filters but for Gaussian variance c2σ2
x. This property allows

the use of PPSs for the multiple-variance system identification approach of Section 5.

The interested reader can download PPSs for WN filters of order 3, signal power

σ2
x = 1/12, and memories N ranging from 5 to 20, from the website [56].

A PPS input signal allows to accurately estimate the coefficients of the WN filter in

(6) with the cross-correlation approach, implemented now computing time averages over

a period L of the sequence, i.e.,

ks =
< y(n)ws(n) >L
< w2

s(n) >L
. (17)
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Equation (13) still holds, with the expectations replaced by time averages,

δMSEs =
< y(n)ws(n) >2

L

< w2
s(n) >L

, (18)

thus allowing a simple ranking of the basis functions. The most relevant basis functions

can be selected by minimizing an information criterion, e.g., minimizing (14) for the

Bayesian information criterion.

5. Multiple-variance system identification

The multiple-variance method is used to contrast the problem of locality of the iden-

tified system. When applying the cross-correlation method with stochastic input signals,

the input non-idealities affect the kernel estimation, and the identification of the ker-

nel diagonal points is particularly affected [4]. Any difference between the input joint

moments and the corresponding ideal values causes errors in the identification, even if

the unknown system and the model have the same memory and order. Other sources

of identification error are the under-estimation of the unknown system memory or order

and the effect of the output noise. The effect of these errors is particularly evident in

the phenomenon of the locality of the solution. The normalized MSE (NMSE) between

the output of the unknown system and the identified model is a function of the input

signal power. Often the NMSE provides reasonable results only in a limited range of

input signal powers, around the input variance used to estimate the model. If the system

is identified with an high input variance, the high order nonlinearities are well excited

and a low estimation error is obtained in the high order kernels, but high errors are

caused in the estimation of the low order kernels [6]. The use of a low input variances

can allow a more accurate estimate of the lower order kernels, but at the detriment of

the higher orders kernel estimation. The multiple-variance method improve the accuracy

in the estimation of the different kernels by using input signals with multiple-variances:

the variance is gradually increased for estimating the higher order kernels. In what fol-

lows, we first present the multiple-variance approach and then we discuss how the most

relevant basis functions can be selected according to some information criterion.
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5.1. The multiple-variance approach

In the multiple-variance approach, each nonlinear kernel is estimated with a possibly

different input signal variance σ2
x,(i) of the white Gaussian noise (WGN) or PPS input.

Let us indicated with k
(i)
j,... the j−th kernel estimated with input variance σ2

x,(i), and with

x(i) and y(i)(n) the input and output signal, respectively, for the same input variance

σ2
x,(i). In the original approach of [6], each kernel i is estimated from the expectation

between y(i)(n) and a product of delayed input samples x(i)(n). For example k
(i)
3,t,t+u,t+v

is estimated from E[y(i)(n)x(i)(n − t)x(i)(n − t − u)x(i)(n − t − v)]. Nevertheless, the

approach of [6] requires recomputing each odd/even lower order kernel for each odd/even

kernel to be estimated, since

E[y(2)(n)x(2)(n− t)x(2)(n− t)] = 3σ4
x,(2)k

(2)
2,t,t + k

(2)
0 σ2

x,(2), (19)

and

E[y(3)(n)x(3)(n− t)x(3)(n− t)x(3)(n− t)] = 6σ4
x,(3)k

(3)
3,t,t,t + 3k

(3)
1,tσ

2
x,(3). (20)

Similar formulas can be found also for larger order kernels.

On the contrary, if we consider the unknown system a linear combination of Wiener

basis functions, each kernel can be separately estimated with (12), without the necessity

of recomputing the lower order kernels, with a significant computational saving.

Clearly, the Wiener basis functions and the WN filter coefficients change with the vari-

ance of the input signal. Given the multiple-variance kernels {k(0)0 , k
(1)
1,. , k

(2)
2,.,., k

(3)
3,.,.,., ...},

we want to estimate the corresponding Volterra kernels, which are independent of the

input variance. For a nonlinear system of order 3, by equating (6) and (7), it can be

noticed that the two largest order kernels of the WN filter are equal to the correspond-

ing kernels of the Volterra filter for any input variance σ2
x. Thus, for u = 0, .., D3 − 1,

v = u, ..,D3, t = 0, .., N − 1− v:

h3,t,t+u,t+v = k
(3)
3,t,t+u,t+v (21)

and for u = 0, .., D2, t = 0, .., N − 1− u:

h2,t,t+u = k
(2)
2,t,t+u. (22)
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Equating the first order terms in (6) and (7) for σx = σx,(1), since k
(1)
3,t,t+u,t+v =

k
(3)
3,t,t+u,t+v for all u, v, and t, it results

h1,t = k
(1)
1,t − σ2

x,(1)k
(3)
3,t,t,t − σ2

x,(1)

min(D3,N−1−t)∑
u=0

k
(3)
3,t,t+u,t+u − σ2

x,(1)

min(D3,t)∑
u=0

k
(3)
3,t−u,t−u,t.

(23)

Equating the constant terms in (6) and (7) for σx = σx,(0), since k
(0)
2,t,t+u = k

(2)
2,t,t+u for

all u and t, we have

h0 = k
(0)
0 − σ2

x,(0)

N−1∑
r=0

k
(2)
2,r,r. (24)

This procedure can be applied also for filters of order greater than 3 obtaining similar

formulas.

5.2. The most relevant basis functions

Selecting the most relevant basis functions according to some information criterion

in the multiple variance approach is not a trivial task. Equations (18) and (14) cannot

be directly applied since in multiple variance approaches there are multiple inputs and

outputs, and each kernel is separately estimated. Moreover, as shown in the experimental

results for the single variance case, the number of selected basis functions varies with

the input signal power. To address these problems, the basis functions selection was

separately performed on each kernel using (18) and (14), starting from the lowest order

kernel till the highest order one. When processing the kernel of order i, in (14) the initial

value of np accounts for all lower order basis functions previously selected, and the initial

value of σ2
ε (np), say σ2

ε,(i), is set equal to the output signal power Py,(i) =< [y(i)(n)]2 >L

minus the power of all previously selected basis functions for input signal variance σ2
x,(i),

i.e., it is

σ2
ε,(1) = Py,(1) − (k

(0)
0 )2, (25)

σ2
ε,(2) = Py,(2) −

N−1∑
t=0

(k
(1)
1,t )

2σ2
x,(2) − (k

(0)
0 )2, (26)

σ2
ε,(3) = Py,(3) −

N−1∑
t=0

(k
(2)
2,t,t)

22σ4
x,(3) −

D2∑
u=1

N−1−u∑
t=0

(k
(2)
2,t,t+u)2σ4

x,(3)
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−
N−1∑
t=0

(k
(1)
1,t )

2σ2
x,(3) −

[
k
(0)
0 +

N−1∑
t=0

k
(2)
2,t,t(σ

2
x,(3) − σ

2
x,(2))

]2
, (27)

for i = 1, 2, and 3, respectively, with the coefficients k1,t and k2,t,u set to zero if the

corresponding basis functions have not been selected. The formulas for σ2
ε,(i) in (25)–(27),

have been derived by expressing each model of order i− 1 in terms of the basis functions

for σ2
x,(i) and computing the powers of these basis functions.

The selection procedure can be easily implemented with the multiple variance ap-

proach discussed in this section, and has proved very effective in all our experimental

results. It allows to reduce the number of basis functions used to model a nonlinear sys-

tem, while keeping almost unaltered the performance of the model at the various input

powers.

5.3. Optimal choice of the multiple variances

An important problem, which has been often overlooked in the literature, is the

optimal choice of the multiple variances used to estimate the nonlinear system. Different

optimality criteria could be used to find the multiple variances. A reasonable criterion

estimates each kernel at the input signal variance that minimizes the error on the kernel

coefficients. Thus, in the following we look for the input variance σ2
x,(i) which minimizes

the Mean Square Deviation (MSD) between the estimated coefficients of the i-th kernel

and the desired value of these coefficients. In order to account for an unknown system

under estimation, which affects most of practical measurements, we assume the unknown

nonlinear system to have order R and memory M possibly larger than those of the model,

which has order P and memoryN . We also assume the output of the system to be affected

by an additive white Gaussian noise of variance σ2
ν . In these conditions, in the Appendix

we estimate the MSD in the identification of the i-th kernel,

MSDi =
∑
s

E
[
(ki,s − ki,s)2

]
(28)

where ki,s is a measured coefficient using time averages,

ki,s =
< y(n)wi,s(n) >L
< w2

i,s(n) >L
, (29)
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and ki,s is its true value,

ki,s =
E[y(n)wi,s(n)]

E[w2
i,s(n)]

. (30)

Both in the case of a Gaussian input and of a PPS input, it is shown in the Appendix

that MSDi assumes the same form, i.e.,

MSDi =
ui,0
σ2i
x,(i)

+
ui,1

σ
2(i−1)
x,(i)

+
ui,2

σ
2(i−2)
x,(i)

+ . . .+ ui,i + ui,i+1σ
2
x,(i) + . . .

+ui,Rσ
2(R−i)
x,(i) +

ui,νσ
2
ν

σ2i
x,(i)

, (31)

where ui,0, . . . , ui,R are proportionality constants and ui,0 = 0 for a PPS input.

Using the conversion formulas (21)–(24), it is shown in Appendix that (31) applies

(with different proportionality constants) also to the Volterra filter coefficients.

The MSD expression in (31) highlights the different dependence on σ2
x,(i) in the various

terms. The largest is σ2
x,(i), the lowest is the influence of noise and of the error terms of

order lower than i (i.e., of the terms depending on ui,0, ui,1, . . . , ui,i−1) . On the other

hand, the largest is σ2
x,(i), the highest is the influence of the error terms of order larger

than i (i.e., of the terms depending on ui,i+1, . . . , ui,R). The choice of σ2
x,(i) should

compromise these contrasting effects.

Ideally, each kernel of order i should be estimated at the input variance σ2
x,(i) that

minimizes (31). In reality, the coefficients ui,j are rarely known and the equation (31)

cannot be solved. Nevertheless, this equation is very useful for guiding the choice of the

multiple variances used to estimate the different kernels.

According to (31), the kernel of order 0 should be estimated at the lowest possible

input variance, since

MSD0 = u0,0 + u0,1σ
2
x,(0) + u0,2σ

4
x,(0) + . . .+ u0,Rσ

2R
x,(0) + u0,νσ

2
ν . (32)

Neglecting u1,0, the kernel of order 1 should be estimated at the lowest possible input

variance for which the effect of noise is still negligible, since

MSD1 = u1,1 + u1,2σ
2
x,(1) + . . .+ u1,Rσ

2R−2
x,(1) + u1,ν

σ2
ν

σ2
x,(1)

. (33)
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Table 2: Memory and diagonal numbers of the nonlinear kernels of the PPS and of the identified Volterra
and Wiener models. Mj is the memory of kernel j, and Dj is the diagonal number of kernel j.

Memory Diagonal Number

M1 = 64
M2 = 40 D2 = 15
M3 = 32 D3 = 12

If all the kernels of order larger than P are negligible, then the kernel of order P

should be estimated at the largest possible input variance, since

MSDP =
uP,0
σ2P
x,(P )

+
uP,1

σ
2(P−1)
x,(P )

+ . . .+ uP,P +
uP,νσ

2
ν

σ2P
x,(P )

. (34)

Eventually, the kernels of order 2, . . . , P −1 should be estimated with input variances

ranging between σ2
x,(1), and σ2

x,(P ).

6. Experimental results

In this Section we provide a set of experimental results that illustrate the proposed

identification procedure and the achievable performances. In what follows, we first report

a description of the experimental set-up and then a discussion on the obtained results.

6.1. The experimental set-up

The identification of a vacuum-tube audio device, i.e., the Synthesis Roma 27AC

amplifier is here considered. The amplifier was loaded with a pair of loadspeakers, as

suggested in the literature [57]. In particular a pair of Auna 501 passive 2-way speakers

with a RMS rated power of 100 W, a nominal impedance of 8 Ω, and a frequency range of

92 Hz – 20 kHz was adopted. The volume was set at the highest value and after half an

hour of warm up, the input signal was applied and the output signal was measured across

the amplifier output terminals as an electric signal since the loudspeakers have been used

only as load of the amplifier. At the maximum used amplitude the second, third and

total harmonic distortion in percent on a tone at 1 kHz were respectively, 0.47%, 0.99%

and 1.097%.
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A sampling frequency of 44.1 kHz was adopted since it is sufficient for the charac-

terization the audible part of the output signal [58]. The amplifier was fed with four

WGN sequences and four PPS sequences at different variances and the corresponding

output signals were recorded and used to identify the model. The chosen input variances

{σ2
x,(1), σ

2
x,(2), σ

2
x,(3), σ

2
x,(4)} were the same for the two set of sequences and were equal to

{σ2
x,(4)/64, σ2

x,(4)/16, σ2
x,(4)/2, σ

2
x,(4)}, (35)

respectively, where σ2
x,(4) = 1/12. The output signal to noise ratio (SNR) at the max-

imum used input variance was 38 dB and at the minimum used input variance was 28

dB. The PPSs were all scaled version of a PPS of period 2 097 656, suitable for the

identification of a WN filter of order 3, with the following characteristics: memory of 1st

order kernel 64; memory and diagonal number of 2nd order kernel 40 and 15, respec-

tively; memory and diagonal number of 3rd order kernel 32 and 12, respectively, as also

reported in Table 2.

To model the system, four WN filters were identified with the cross-correlation al-

gorithm using PPSs with a different variances belonging to the set in (35). Then, a

single WN filter was identified with the proposed multiple-variance method and with the

original method of [6], estimating each kernel with one of the variances reported in (35).

The WN models were eventually converted into Volterra models using the formulas in

(8)–(11) for a single variance input, or (21)–(24) for the multiple-variance case. The same

identification was performed with the white Gaussian sequences. In all the experiments,

the same results were obtained with the proposed multiple-variance approach and with

the approach of [6], showing the equivalence of the approaches apart from the different

computational complexity.

The Volterra and Wiener models identified with the set of WGN and PPS inputs,

have order 3 and memory and diagonal number of the different kernels again reported

in Table 2. The constant kernel of order 0 has also been considered, and thus these

models have a total of 2705 basis functions and coefficients. For the PPS inputs, reduced

models were then determined by sorting the basis functions according to the MSE they

produce and applying the Bayesian information criterion in (14). The reduced models

were determined also for the WGN inputs, but the basis function selection process pro-
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Table 3: Number of selected basis functions at different orders for the complete models and the reduced
models identified with the multiple variance (MV) approach and single variance (SV) approach with
variances σ2

x,(1)
, σ2

x,(2)
, σ2

x,(3)
, σ2

x,(4)
.

Complete MV SV SV SV SV
Model σ2

x,(1) σ2
x,(2) σ2

x,(3) σ2
x,(4)

Order 0 1 1 1 0 0 0
Order 1 64 61 57 61 63 63
Order 2 520 44 27 56 114 136
Order 3 2120 118 38 53 100 254
Total 2705 224 123 170 277 453

vided poor results because of the not perfect orthogonality of the basis functions over an

interval of two million samples: a much larger number of basis functions were included

in the model and (25)–(27) often produced negative values. Thus, the results of reduced

models with WGN inputs are not included in the paper. Table 3 provides the number of

selected basis functions of the complete models and of the reduced models obtained with

the Bayesian information criterion using the single variance approach and the multiple

variance approach of Section 5. Note that in the single variance approach the number

of selected basis functions changes with the power of the input signal, because of the

different importance of the basis functions at different input variances.

The identified models were then tested using as input signals 13 WGN sequences

of 2 seconds with variance ranging between 2.0345 · 10−5 and 8.33 · 10−2, and 13 music

sequences of 2 seconds (i.e., pop music track “I Know It’s Over” by Mario Biondi) again

with the same variances. The performance of the different models has been compared

using the normalized mean square error (NMSE) defined over the output spectrogram.

The NMSE can be defined formally by considering the Short Time Fourier Transform

(STFT) of the amplifier output and the model output,

Y (τ, ω) = STFT[y(n)] (36)

Ŷ (τ, ω) = STFT[ŷ(n)], (37)

where y(n) is the amplifier output and ŷ(n) is the model output. The STFT is calculated

using a Hamming window and dividing the input signal into eight segments with 50%
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overlap. The mean square error between two matrices can be defined as

MSE[Ŷ , Y ] =
1

RC

∑
i

∑
j

[Ŷ (i, j)− Y (i, j)]2, (38)

where RC is the product between the number of rows and columns of the matrices. The

NMSE used to assess the performance of the different models is defined as

NMSE = MSE(|Ŷ |, |Y |)/MSE(|Y |, 0), (39)

where |.| denotes the magnitude applied to each element of the matrix.

6.2. Discussion

Figure 1 shows the test results of the Volterra model identified with white Gaussian

sequences, and tested with white Gaussian noise and music test inputs, respectively. On

the contrary, Figure 2 shows the test results of the Volterra model identified with PPSs,

again for the same white Gaussian noise and music test inputs. Figure 1 and 2 show

the NMSE of both the single-variance models and of the multiple-variance models, as a

function of standard deviation of test signals.

In Figure 1.(a) we can see that the error curve related to the multiple-variance models

interpolates the inferior values of the curves of single-variance models, as the multiple-

variance method was meant to do. The single-variance models have similar performance

to the multiple-variance one only in a short interval around the variance used for the iden-

tification, while outside this interval the error increases up to 15 dB. In Figure 1.(b) the

performance of the multiple-variance model is almost equal to that of the single-variance

model σx,(4), which is superior to all other single-variance models. In Figure 1.(b), for

high input variances all models provide poor identification results. According to Table

3, the complete model is overdetermined and the errors in the coefficients estimation due

to imperfect white Gaussian input manifest especially at high input variances.

In Figure 2, the multiple variance-model identified with PPSs provides very good

results for both the white Gaussian and music test inputs. Also with PPS, the single

variance models can provide slightly better results than the multiple variance model,

around the variances used in the measurements, but for the other variances the multiple
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(a) (b)

Figure 1: NMSE of Volterra models, identified with WGN. (a) WGN test input, (b) music test input.

(a) (b)

Figure 2: NMSE of Volterra models identified with PPS. (a) WGN test input, (b) music test input.

variance model is always far superior. It should be noticed that the multiple-variance

model identified with PPSs has a NMSE always lower than −22 dB.

Comparing Figures 1 and 2, the improvement of the NMSE in the multiple variance

approach using PPS inputs can be clearly appreciated. Also with PPS, the single variance

approaches obtain a better NMSE for the variances used in the measurement, but a worse

performance could result at other input variances.

To better visualize the relation between the NMSE, shown in the previous Figures and

the real outputs, Figure 3 reports a comparison between amplifier and Volterra model

outputs, for the case of identification with WGN and PPS input, when as test input is

applied the same music track used for the realization of Figures 1.(b) and 2.(b), with the
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amplifier

model

(a)

amplifier

model

(b)

Figure 3: Outputs of amplifier and of (a) multiple-variance WGN Volterra model, (b) multiple-variance
PPS Volterra model, for the music test input.

amplifier

model

(a)

amplifier

model

(b)

Figure 4: Zoom in time (from 400 ms to 470 ms) of outputs of amplifier and of (a) multiple-variance
WGN Volterra model, (b) multiple-variance PPS Volterra model, for the music test input.

maximum variance. Only the first second of music track is reported to make the Figure

clearer. In Figure 4, to better visualize the difference between the two identified Volterra

models, a zoom in time of Figure 3 is reported. As can be clearly seen from both the

Figures 3 and 4, in the case of the music input with highest variance the Volterra model

identified with WGN exhibits a higher error with respect to the model identified with

PPS, as also shown from the NMSE reported in Figures 1 and 2.

Figure 5 reports a time zoom, equivalent to Figure 4, but in the case of WGN test

input. Since the WGN input has higher frequency contents with respect to the music
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amplifier

model

(a)

amplifier

model

(b)

Figure 5: Zoom in time (from 400 ms to 410 ms) of outputs of amplifier and of (a) multiple-variance
WGN Volterra model, (b) multiple-variance PPS Volterra model, for the WGN test input.

(a) (b)

Figure 6: Input spectrogram: (a) WGN, (b) music input.

input, a shorter time segment is shown to make the Figure more readable3. The two

models show comparable performance in the case of WGN input, as shown also in the

NMSE Figures 1.(a) and 2.(a), with a slight difference in favour of the PPS Volterra

model.

Finally, Figure 7 shows a comparison between the output spectrograms of the ampli-

fier, of the WGN Volterra model, and of the PPS Volterra model when the input is a

WGN or music at the highest variance (whose spectrograms are reported in Figure 6).

3A Figure with a 1 s duration WGN input, equivalent to Figure 3, is not reported because indistin-
guishable.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Output spectrogram with WGN (first column) and music input (second column) of (a,b) the
amplifier, (c,d) multiple-variance WGN Volterra model, (e,f) multiple-variance PPS Volterra model.

In Figures 7, the spectrograms of Volterra models are closer together but differences can

still be seen in favour of PPS Volterra model.
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(a) (b)

Figure 8: NMSE of Volterra models identified with PPS after basis functions selection according to the
Bayesian information criterion. (a) WGN test input, (b) music test input.

The effect of the application of an information criteria to the selection of the most

relevant basis function, presented in Sec. 5.2 to reduce the computational complexity of

the model, is shown in Figure 8.

This Figure shows the results for the reduced modeled obtained in the single vari-

ance and the multiple variance approach using PPSs inputs and applying the Bayesian

information criterion. In the single variance approach, the reduction in the number of

selected basis functions often improves the estimation performances at the high vari-

ances, because it reduces the influence of error terms in the higher order kernels. This

behavior is visible especially with σ2
x,(1) and σ2

x,(2), where the higher order kernels are

most affected by the low variance of the estimation. In the multiple variance approach,

the reduction in the number of selected basis functions by a factor larger than ten, shown

in Table 3, provides almost no alteration in the curves of NMSE. Overall, the multiple

variance approach is able to provide the best performances for the various input signal

powers, also for the reduced models. Figures equivalent to Figure 4-7 are not shown in

this case because the performance is almost identical to the PPS identification case.

7. Conclusion

The paper has discussed the identification of nonlinear systems exploiting the Wiener

basis functions and WN filters. The Wiener basis functions are a set of polynomial

functions that are orthogonal for any white Gaussian input signal of variance σ2
x. The
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WN filters are a linear combination of the Wiener basis functions. Formulas for converting

the WN filters into Volterra filters have been provided. We have shown that WN filters

admit PPSs. PPSs guarantee the orthogonality of the basis functions over a period of

the sequence and allow the identification of the filter with the cross-correlation method.

Exploiting the properties of Wiener basis functions, we have proposed a novel multiple-

variance approach, which allows to identify nonlinear systems contrasting the locality of

the solution. The proposed multiple-variance approach can be applied also with white

Gaussian input signals, but is particularly effective when the input signal is formed by

PPSs with different variances. In that case, a procedure for selecting the most relevant

basis functions according to an information criterion has been proposed. The optimal

choice of the input variances has been theoretically studied and has taken us to simple

rules to guide the choice of the variances. The experimental results illustrate the proposed

approach and its effectiveness in modeling a real audio device on a wide range of input

signal powers.

Appendix A. MSD in multiple variance identification

When the nonlinear system input x(n) is a Gaussian noise or a PPS of variance σ2
x,(i),

the output of the unknown system can be expressed in the following form:

y(n) = f0(x)(n) + f1(x)(n) + . . .+ fi(x)(n) + . . .+ fR(x)(n) + ν(n), (A.1)

where ν(n) is the additive Gaussian noise, fj(x)(n) for j = 0, ..., R are functionals of x(n),

specifically are linear combinations of Wiener basis functions of order j, and f0(x)(n) is a

constant term. Note that changing the input variance σ2
x,(i), the Wiener basis functions

and their coefficients change, and also the functionals fj(x)(n) change. In what follows,

for sake of compactness we will indicate fj(x)(n) as fj(n). Thus, it is

y(n) = f0(n) + f1(n) + . . .+ fi(n) + . . .+ fR(n) + ν(n). (A.2)

We will distinguish between the case of a Gaussian input signal and of a PPS input

signal.
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Appendix A.1. Gaussian input signal

Let us assume we want to identify the coefficient ki,s of the basis function of order i

wi,s(n). The exact value of this coefficient is

ki,s =
E[y(n)wi,s(n)]

E[w2
i,s(n)]

=
E[fi(n)wi,s(n)]

E[w2
i,s(n)]

, (A.3)

while the measured value using time averages is

ki,s =
< y(n)wi,s(n) >L
< w2

i,s(n) >L
. (A.4)

The measured value is affected by different errors due to noise and to the imperfect

orthogonality of the basis functions over a finite time interval.

On a finite time interval of length L, < w2
i,s(n) >L is in general different from the

ideal value, but in the following we neglect this error and consider

< w2
i,s(n) >L= E[w2

i,s(n)]. (A.5)

In order to estimate the error on ki,s, let us decompose fi(n) into

fi(n) = ki,swi,s(n) + f i(n) + ei(n), (A.6)

and, for any other l 6= i, fl(n) into

fl(n) = f l(n) + el(n). (A.7)

In (A.6) and (A.7), for all j, f j(n) is the component of fj(n) orthogonal to wi,s(n) over

the time interval L, i.e., < f j(n)wi,s(n) >L= 0 for all j. On the other hand, ej(n) is

the error term caused by the imperfect orthogonality of the basis functions, an thus in

general < ej(n)wi,s(n) >L 6= 0 for all j.

Note that in WN filters, the basis functions of order j have power proportional to

σ2j
x,(i), thus, the functionals fj(n) and the error terms ej(n) have power proportional to

σ2j
x,(i), since they can be expressed as a linear combination of basis functions of order j.
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Considering (A.2), (A.6), and (A.7), ki,s is

ki,s = ki,s +
< e0(n)wi,s(n) >L
< w2

i,s(n) >L
+
< e1(n)wi,s(n) >L
< w2

i,s(n) >L
+ . . .

+
< eR(n)wi,s(n) >L
< w2

i,s(n) >L
+
< ν(n)wi,s(n) >L
< w2

i,s(n) >L
. (A.8)

According to the authors’ experience, the effect of the error term of order 0 is often

negligible, since in most cases < e0(n)wi,s(n) >L' 0.

We can now estimate the MSD of the measured coefficients of order i, which is

MSDi =
∑
s

E
[
(ki,s − ki,s)2

]
. (A.9)

We assume the error terms ej(n) to be uncorrelated with each other, with ν(n), and with

wi,s(n). The values of wi,s(n) at different time instants are uncorrelated, because of the

orthogonality of the basis functions. In these conditions,

MSDi =
∑
s

[
E[e20(n)w2

i,s(n)]

E2[w2
i,s(n)]

+
E[e21(n)w2

i,s(n)]

E2[w2
i,s(n)]

+ . . .

+
E[e2R(n)w2

i,s(n)]

E2[w2
i,s(n)]

+
E[ν2(n)w2

i,s(n)]

E2[w2
i,s(n)]

]
. (A.10)

Note that

E[w2
i,s(n)] ∝ σ2i

x,(i), (A.11)

E[e2j (n)w2
i,s(n)] ∝ σ2j

x,(i)σ
2i
x,(i), (A.12)

E[ν2(n)w2
i,s(n)] ∝ σ2

νσ
2i
x,(i). (A.13)

Thus,

MSDi = u0,iσ
−2i
x,(i) + u1,iσ

2(1−i)
x,(i) + u2,iσ

2(2−i)
x,(i) + · · ·+ uR,iσ

2(R−i)
x,(i) + ui,νσ

−2i
x,(i)σ

2
ν , (A.14)

where ui,j for j = 0, . . . , R, and ui,ν are coefficients of proportionality which depend on

the specific kernel i, on the unknown system and also on σ2
x,(i), for large variations of the
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input variance.

Appendix A.2. PPS input signal

When the input signal is a PPS, the only stochastic term in (A.2) is ν(n), all other

quantities are deterministic. Thanks to the PPS, we have a perfect orthogonality of the

basis functions of the model over a period of the sequence. Nevertheless, in most cases

the model underestimates the order and the memory of the unknown system. The basis

functions that have been erroneously neglected in the definition of the model and the

additive noise ν(n) are the cause of errors in the estimation of the model coefficients.

Let ki,s be the desired value of coefficient of the basis function wi,s(n), given in (A.3)

for a Gaussian input of variance σ2
x,(i). The corresponding measured coefficients is

ki,s =
< y(n)wi,s(n) >L
< w2

i,s(n) >L
, (A.15)

where L is the PPS period or a multiple of the PPS period.

For the construction rules of the PPS, the denominator of (A.15) is a constant equal

to the power of the basis function for a Gaussian input of variance σ2
x,(i), i.e., E[w2

i,s(n)].

We can decompose fi(n) into

fi(n) = ki,swi,s(n) + f i(n) + ei(n), (A.16)

and, for any other l 6= i,

fl(n) = f l(n) + el(n). (A.17)

For all j, f j(n) is formed by all basis functions of order j that have been neglected in

the model and that are orthogonal with wi,s(n), while ej(n) is formed by all the basis

function of order j neglected in the model that are not orthogonal with wi,s(n). It should

be noted that e0(n) = 0, since f0(n) is a constant and for the construction rules of the

PPS < wi,s(n) >L= 0.

Thus, replacing (A.16) and (A.17) in (A.15),

ki,s = ki,s +
< e1(n)wi,s(n) >L
< w2

i,s(n) >L
+
< e2(n)wi,s(n) >L
< w2

i,s(n) >L
+ . . .
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+
< eR(n)wi,s(n) >L
< w2

i,s(n) >L
+
< ν(n)wi,s(n) >L
< w2

i,s(n) >L
. (A.18)

In this expression, the only stochastic term is ν(n). Nevertheless, since the PPS has

a sample distribution which is similar to a Gaussian distribution, in the following we

assume the terms ej(n) are stochastic, uncorrelated with each other, with ν(n), and with

wi,s(n). Under these assumptions we estimate the MSD of the i-th kernel. Estimating

(A.9), and considering that also for a PPS input (A.11), (A.12), and (A.13) hold,

MSDi = u1,iσ
2(1−i)
x,(i) + u2,iσ

2(2−i)
x,(i) + · · ·+ uR,iσ

2(R−i)
x,(i) + ui,νσ

−2i
x,(i)σ

2
ν , (A.19)

where ui,j for j = 1, . . . , R, and ui,ν are coefficients of proportionality which depends on

the specific kernel i, on the unknown system and also on σ2
x,(i), for large variations of the

input variance.

Appendix A.3. MSD of Volterra coefficients

In this subsection, we discuss the MSD of the coefficients of the Volterra filter obtained

from the WN to Volterra conversion.

We have shown in Section 2 that the two highest order Volterra kernels are equal to

the corresponding Wiener kernels. Thus, also the MSDs of these kernels are the same.

On the contrary, in the lower order kernels the MSD of the Volterra coefficients of order

i depends on the MSD of the WN filter coefficients of the same order and of order i+ 2,

i + 4, ..., till the maximum order R. As a matter of fact, let us consider the case of a

third order Volterra and WN filter, for which the conversion formulas in (21)–(24) hold.

According to (21) and (22), the MSD of the kernels of order 3 and 2 of Volterra and WN

filter coincides, and is given by (A.14) and (A.19) for a Gaussian and PPS input signal,

respectively. Let us consider the MSD of the kernel of order 0,

E[(h0 − h0)2], (A.20)

where h0 is the measured coefficient given by (24), and h0 is its true value, with

h0 = k0 − σ2
x,(0)

N−1∑
r=0

k2,r,r. (A.21)
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It results that

E[(h0 − h0)2] = E

{
[k0 − k0 − σ2

x,(0)

N−1∑
r=0

(k2,r,r − k2,r,r)]2
}
. (A.22)

Replacing (A.8) in (A.22), for i = 0 and i = 2, and using the same assumptions of the

previous subsections, it is possible to prove that

E[(h0 − h0)2] = E[(k0 − k0)2] + σ2
x,(0)

N−1∑
r=0

E[(k2,r,r − k2,r,r)2] = MSD0 + σ2
x,(0)MSD′2,

(A.23)

where MSD0 is given by (A.14) or (A.19), and MSD′2 is the MSD of the main diagonal

of the WN second order kernel, and, similarly to (A.14) and (A.19),

MSD′2 =
u′i,0
σ4
x,(2)

+
u′2,1
σ2
x,(2)

+
u′2,2
σ0
x,(2)

+ u′2,3σ
2
x,(2) +

u′2,νσ
2
ν

σ4
x,(2)

, (A.24)

with u′2,0, ...., u′2,3 and u′2,ν that are coefficients of proportionality.

Posing σ2
x,(2) = r2σ

2
x,(0) for some constant r2, it is possible to show that (A.22) assume

the same form of (A.14) and (A.19); only the coefficients of proportionality uj,0 and u0,ν

change.

The same result can be proved also for the MSD of the first order kernel,

n−1∑
t=0

E[(h1,t−

h1,t)
2].
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ate functional link adaptive filters for nonlinear acoustic echo cancellation, in: Signal Processing

Conference (EUSIPCO), 2017 25th European, IEEE, 2017, pp. 1145–1149.

[17] L. Tan, J. Jiang, Adaptive Volterra filters for active noise control of nonlinear processes, IEEE

Trans. Signal Processing 49 (8) (2001) 1667–1676.

[18] D. P. Das, G. Panda, Active mitigation of nonlinear noise processes using a novel filtered-s LMS

algorithm, IEEE Trans. Speech and Audio Processing 12 (3) (2004) 313–322.

[19] N. V. George, G. Panda, Advances in active noise control: A survey, with emphasis on recent

nonlinear techniques, Signal Processing 93 (2) (2013) 363–377.

[20] V. Patel, D. Comminiello, M. Scarpiniti, N. V. George, A. Uncini, Design of hybrid nonlinear spline

adaptive filters for active noise control, in: Neural Networks (IJCNN), 2016 International Joint

Conference on, IEEE, 2016, pp. 3420–3425.

[21] J. Patra, R. Pal, R. Baliarsingh, G. Panda, Nonlinear channel equalization for QAM signal constel-

lation using artificial neural networks, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on 29 (2) (1999) 262–271. doi:10.1109/3477.752798.

[22] J. Kim, K. Konstantinou, Digital predistortion of wideband signals based on power amplifier model

with memory, Electronics Letters 37 (2001) 1417–1418.

[23] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, J. Pastalan, A generalized memory polynomial model

34



for digital predistortion of RF power amplifiers, IEEE Trans. Signal Processing 54 (2006) 3852–3860.

[24] F.-L. Luo (Ed.), Digital Front-End in Wireless Communications and Broadcasting, Cambridge

University Press, Cambridge, UK, 2011.

[25] R. Braithwaite, Digital predistortion of an RF power amplifier using a reduced Volterra series model

with a memory polynomial estimator, IEEE Transactions on Microwave Theory and Techniques

65 (10) (2017) 3613–3623.

[26] V. Marmarelis, Analysis of physiological systems: The white-noise approach, Springer Science &

Business Media, 2012.

[27] A. Carini, S. Cecchi, L. Romoli, S. Orcioni, Perfect periodic sequences for nonlinear Wiener filters,

in: 2016 24th European Signal Processing Conference (EUSIPCO), 2016, pp. 1788–1792.

[28] S. Orcioni, S. Cecchi, A. Carini, Multivariance nonlinear system identification using Wiener basis

functions and perfect sequences, in: 2017 25th European Signal Processing Conference (EUSIPCO),

2017, pp. 2679–2683.

[29] G. L. Sicuranza, A. Carini, Nonlinear system identification using quasi-perfect periodic sequences,

Signal Processing 120 (2016) 174–184.

[30] A. Carini, S. Cecchi, S. Orcioni, Orthogonal LIP nonlinear filters, in: D. Comminello, J. C. Pŕıncipe
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