Au$_{279}$(SR)$_{84}$: The Smallest Gold Thiolate Nanocrystal That Is Metallic and the Birth of Plasmon

Naga Arjun Sakthivel,† Mauro Stener, Luca Sementa,§ Alessandro Fortunelli,* Guda Ramakrishna,‡ and Amala Dass*†

†Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
‡Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
§Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States

Supporting Information

ABSTRACT: We report a detailed study on the optical properties of Au$_{279}$(SR)$_{84}$ using steady-state and transient absorption measurements to probe its metallic nature, time-dependent density functional theory (TDDFT) studies to correlate the optical spectra, and density of states (DOS) to reveal the factors governing the origin of the collective surface plasmon resonance (SPR) oscillation. Au$_{279}$ is the smallest identified gold nanocrystal to exhibit SPR. Its optical absorption exhibits SPR at 510 nm. Power-dependent bleach recovery kinetics of Au$_{279}$ suggests that electron dynamics dominates its relaxation and it can support plasmon oscillations. Interestingly, TDDFT and DOS studies with different tail group residues (−CH$_3$ and −Ph) revealed the important role played by the tail groups of ligands in collective oscillation. Also, steady-state and time-resolved absorption for Au$_{36}$, Au$_{44}$, and Au$_{133}$ were studied to reveal the molecule-to-metal evolution of aromatic AuNMs. The optical gap and transient decay lifetimes decrease as the size increases.

Over the last two decades, the phenomenon of surface plasmon resonance (SPR) has gained prime attention, and major advances have been made toward targeted cancer therapy, catalysis, and energy devices. Among the colloidal metal particles, gold nanoparticles have attracted attraction since ancient times for their aesthetics and exquisite optical properties. The optical properties of these nanoparticles vary significantly from the bulk gold and with size and type of passivating agent employed because of quantum confinement effect. The size and structure of the nanoparticle have been understood to be the major factors influencing the evolution of surface plasmon resonance (SPR) and its intensity. Optical response of the nanoparticles can be tuned by understanding their dependence on numerous factors, e.g., the intensity of the SPR increases as the size increases, and by alloying with a heteroatom.

The seminal work of Whetten et al. on gold nanomolecules (AuNMs) single out an approximate boundary for the core size at which the molecular-to-metallic evolution occurs. More detailed investigations have then followed on the emergence of plasmonic response in AuNMs and have further specified the size range between 200 and 400 Au atoms as the range in which incipient plasmonic features appear. However, the precise size at which the evolution takes place and the details of this evolution are still unclear to date.

Among different techniques, time-resolved transient absorption measurements were often used to differentiate molecule-like and plasmon-like transitions in AuNMs. Metal nanocrystals that are plasmonic show prominent bleach near 530 nm and exhibit power-dependent decay of the transients that can be modeled with a two-temperature model. On the other hand, molecule-like nanoparticles show single-particle transitions with interesting excited-state absorption characteristics and power-independent transient decay traces. In this study, ultrafast transient absorption measurements were carried out to clarify molecule-like versus plasmon-like transitions of 4-tert-butylbenzenethiolate (TBBT)-protected AuNMs.

Since Faraday’s work on minute metal particles, theoretical models such as Mie theory, Drude model, jellium model, etc. have been applied to correlate the experimental optical behavior of nanoparticles depending on their size, atomic structure, electronic structure, properties of the nanoparticle environment, etc. It should be stressed that the surface plasmon resonance is a collective phenomenon and therefore cannot be described by a single-particle model, as it entails the coupling of many excited configurations. Several investigations have shown that a convenient method that is able to describe both collective and molecular-type single-electron independent excitations and is also computationally affordable for systems up to 1–2 thousand atoms is time-dependent density functional theory (TDDFT), and this method has been widely applied to investigate the optical response of metal NMs.

Accepted: February 26, 2018
Numerous experimental and computational works have been performed to reveal the molecule-to-metal transitions and structure dependence with size. To date, alkanethiolate series of AuNMs [Au$_{25}$(SR)$_{18}$, Au$_{36}$(SR)$_{24}$, ..., Au$_{44}$(SR)$_{28}$, Au$_{50}$(SR)$_{30}$, Au$_{94}$(SR)$_{44}$, Au$_{133}$(SR)$_{52}$, and Au$_{279}$(SR)$_{84}$ (R is alkyl chain or phenylethane group)] have been widely studied to probe the evolution of molecular-to-metallic behavior (Table S1). However, only Au$_{36}$(SR)$_{24}$, Au$_{133}$(SR)$_{52}$, and Au$_{279}$(SR)$_{84}$ structures have been crystallographically resolved. The lack of crystallographic structures of plasmonic gold nanocrystals has been hampering the understanding of the role of ligands in collective oscillation and the origin of SPR.

Recent advancements employing the bulky and rigid TBBT$^{-40}$ as a ligand to favor the crystal growth has rendered the crystal structure determination of Faradaurate-279 (F-279, Au$_{279}$(SPH)$_{84}$) nanocrystal41 feasible. TBBT-protected series of AuNMs include Au$_{28}$(SR)$_{20}$, Au$_{36}$(SR)$_{24}$, Au$_{44}$(SR)$_{28}$, Au$_{50}$(SR)$_{30}$, Au$_{94}$(SR)$_{44}$, Au$_{133}$(SR)$_{52}$, and Au$_{279}$(SR)$_{84}$ [SR, TBBT]. Au$_{36}$, Au$_{133}$, and Au$_{279}$ are thermochemically stable and can be synthesized in high yields, whereas others are not as stable and are not readily synthesizable. Also, no stable intermediate size has been identified between Au$_{133}$ and Au$_{279}$ in this series (Figure S1). Thus, the three stable AuNMs (36, 1.3 nm; 133, 1.7 nm; and 279, 2.2 nm) were chosen for the optical and transient absorption measurements (Table S1 lists various stable sizes in three AuNMs series). Additionally, Au$_{44}$ (1.4 nm) was studied to better illustrate the transition from molecular-like to metal-like behavior in TBBT series. Zhou et al. have recently reported the excited-state dynamics of Au$_{256}$, Au$_{360}$, Au$_{440}$, and Au$_{52}$ periodic face-centered cubic NMs.

Figure 1. (a) UV–vis–NIR absorption spectra and (b) photon energy plot of Au$_{246}$ TBBT-protected gold nanocrystals (red, solid) compared with Au$_{36}$(SR)$_{24}$, Au$_{44}$(SR)$_{28}$, Au$_{50}$(SR)$_{30}$, and Au$_{94}$(SR)$_{44}$ (aliphatic, aromatic, and bulky) produce discrete stable sizes in the molecule-to-metal regime. There are no AuNMs series that have been reported which span the whole molecule-to-metal transition in small increments (1.9, 2.0, 2.1, 2.2, 2.3 nm, etc.). Can the stable sizes across various ligand-protected series of AuNMs be compared to determine where the molecule-to-metal transition occurs precisely? Does the contribution from ligand group to the properties of AuNMs makes it nonlinear to draw a comparison? Although the electronic features of the ligands play a vital role in the optical properties of AuNMs, the cross comparison of the different series of AuNMs is the only conceivable way to underpin the precise point of molecule-to-metal transition. While Au$_{44}$(SR)$_{28}$ is the smallest known AuNMs to exhibit characteristics of metallic behavior in the form of core-localized plasmon resonance (CLPR), among the three equally sized 2.2 nm nanomolecules (Au$_{286}$, Au$_{279}$, and Au$_{329}$), F-279 is the smallest gold thiolate nanocrystal to exhibit classical SPR with a strong absorption band at 510 nm. Therefore, F-279 is the smallest identified piece of Au metal. The next question that might arise is, could there be a stable intermediate size between Au$_{246}$(SR)$_{30}$ and Au$_{279}$(SR)$_{54}$. This is one of the next important open questions to be addressed in this field of research. Xu et al. have predicted that the evolution from molecule-to-metal transition in AuNMs might occur at ~263 Au atoms by interpolating the trend between band gap and number of Au atoms for known NMs.

Herein, we report the optical properties of F-279 and the evolution of molecular to metal-like behavior in aromatic thiolate-protected AuNMs for the first time, using (a) optical absorption, (b) computational studies on optical spectra of F-279 compared with Au$_{133}$, (c) projected density of states (PDOS) of F-279 structure with -CH$_3$ and -C$_6$H$_5$ residues, and (d) transient absorption measurements.
The optical absorption spectra of Au279(SR)84 compared with Au36(SR)24, Au44(SR)28, and Au133(SR)52 TBBT-protected series of AuNMs are shown in Figure 1a. The Au36, Au44, and Au133 have unique optical absorption features for discrete transitions indicative of molecule-like behavior. Au36 has two absorption features at 37S and 57S nm and a broad shoulder around 410 nm. Au44 has a prominent feature at 380 nm and a broad absorption band near 750 nm. Au133 has a broad, strong absorption feature at 510 nm and minor features at 430 and 710 nm. The F-279 nanocrystals exhibit plasmonic behavior with SPR band centered at 510 nm. Interestingly, the SPR band is red-shifted compared to F-329, which is located at 495 nm.10 Such a red shift is imparted by the aromatic ligand.53

The size-dependent optical spectra in Figure 1 are reminiscent of the report by Whetten et al. on a series of alkane-thiolate-protected AuNMs. That is, as the size decreases to <2 nm, the plasmonic feature diminishes and transforms into molecular-like transitions. The features are unique to each NM sizes because of the quantum confinement effect. The onset of electronic transitions from highest occupied levels (HOMOs) to the lowest unoccupied molecular orbitals (LUMOs) in alkane-thiolate-protected AuNMs were observed at ~1.6 eV, and it remains nearly the same throughout the evolution from molecular to plasmonic behavior. However, in the case of aromatic TBBT-protected series of AuNMs, the onset of electronic transitions varies across the distinct sizes, i.e., onset energy decreases as the size increases: Au133, ~1.7 eV and Au44, ~1.5 eV (Figure 1b). The SPR band of F-279 is centered at 2.25 eV. The 510 nm feature of Au133 is reminiscent of emergent SPR, which can be readily seen in the photon energy plot at the 2.45 eV feature (Figure 1b). Figure 1c reports the Au279(SPh)84 structure by theoretical addition of Ph residues to the Au279S84 experimental crystallographic structure (see the Supporting Information for details).

Figure 2a reports the simulated TDDFT spectrum of Au279(SPh)84 and compares it with the previously reported simulated spectrum of Au133(SPh)52,40 both obtained using the Perdew–Burke–Ernzerhof (PBE) xc-functional. An inspection of this figure immediately conveys that the absorption intensity between 460 and 600 nm increases significantly in the 2–4 eV region for the larger species: the nearly flat profile of the Au133(SPh)52 spectrum clearly transforms into a well-pronounced, although somewhat broad peak in Au279(SPh)84. Considering the limitations associated with a TDDFT approach using a PBE xc-functional (which lacks Hartree–Fock exchange and Coulombic-tail terms in the potential54), particularly in the RT-TDDFT formalism that is known to overestimate s/d damping of the optical response in AuNMs,55 the present simulations confirm the birth of the plasmon resonance in TBBT-protected Au nanocrystals and thus the soundness of the experimental analysis. A further question in this respect is how much of this enhanced optical response is due to a classical free-electron plasmonic phenomenon or to a resonance effect of the Au–S core with the aromatic thus conjugated –Ph ligands, as discussed in ref 56. Previous detailed investigations on the emergence of plasmonic response in Au(SR)14,15 NMs suggest in fact that Au279(SR)84 should be right on the verge of a classical plasmonic behavior and thus exhibit an absorption peak in the ~530 nm region a bit less well-defined than that shown in Figure 2. A DOS analysis provides insight into this question. As shown in Figure 2b via a comparison between the Au279(SPh)84 and Au279(SCH3)84 total DOS at the LDA level (see also Figure S2 for more details and the PDOS projected onto the different atomic species), the presence of the aromatic ligands introduces peaks in the region of virtual orbitals close to the band gap that resonate with the Au–S core and distort and red-shift the DOS in the region of the occupied orbitals, an effect that contributes to the experimentally observed plasmonic enhancement in Au279(SPh–Bu)84.

To complete the theoretical analysis, in Figure S3 we report the simulated TDDFT spectra of Au279(SPh)84, Au279(SCH3)84, Au133(SPh)52, and Au133(SCH3)52, obtained using a different xc-functional, namely, the VS98 one,57,58 which has been shown to provide a better description of plasmonic effects.39 Unfortunately, because of computational limitations we can report only the TDDFT spectra calculated along the z-Cartesian component of the electric field, but they are sufficient to confirm and support on stronger grounds our previous analysis.
and conclusions about the insurgence of a plasmon resonance in Au279(SPh)84 and the importance of ligand conjugation effects.

Time-resolved transient absorption spectroscopy is one technique that is best suited to probe molecule-to-metal transitions in AuNMs.16−22 In the molecule-like regime, the NMs are described by single-particle excitations, while in the metallic regime, they show collective oscillations described by surface plasmon bleach.16,17 Pump-power-dependent transient absorption measurements can differentiate molecule-like versus metal-like transitions. To unravel the evolution of molecule−metal transitions for the investigated AuNMs, transient absorption measurements were carried out after excitation at 370 nm, and corresponding excited-state absorption spectra at representative time delays for Au36, Au44, Au133, and Au279 are presented in Figure 3. Transient species living much longer than 1 ns were observed for both Au36 and Au44 NMs, while the transients of Au133 decayed quickly, suggesting faster excited-state deactivation; interesting plasmon bleach features were observed for Au279. Detailed femtosecond−nanosecond transient absorption measurements of Au36 (Figure S4) and Au44 (Figure S5) have shown excited-state recombination time constants of 115 ± 10 and 70 ± 8 ns, respectively. On the other hand, interesting excited-state absorption features were observed for Au133 (Figure S6) with a bleach at 500 nm and two positive excited-state absorption (ESA) spectra with maxima at 570 and 650 nm. However, all the transients of Au133 decayed very fast, and an average lifetime of 4.5 ps was determined from the analysis. The observed transient spectra for Au133 matched with what was reported earlier.22 Interestingly, prominent bleach with a maximum at 540 nm and positive ESA around the bleach were observed for Au279 immediately after excitation and decays fast with increasing time delays (Figure S7). The observed transient spectral features for Au279 resemble what was observed for plasmonic gold nanoparticles.16,17,24,25

Although transient absorption spectra of Au279 have shown the signatures of the plasmonic bleach, it is important to prove if it indeed supports the plasmonic features. To examine the metallic character of Au279, pump-power-dependent measurements were carried out for Au133 and Au279 NMs. The normalized transient decay traces of Au133 at 650 nm and Au279 at 540 nm are shown in parts A and B of Figure 4. It can be observed from the figure that no pump-power dependence was observed for Au133, while small pump-power dependence can be seen for Au279. The absence of pump-power dependence of transient decay traces of Au133 suggest the molecule-like nature, and a similar conclusion was reached in an earlier study on this nanomolecule.22 The transient decay traces of both Au133 and Au279 at different pump powers were fitted to exponential decay functions, and the obtained lifetimes as a function of pump-power were shown in Figure 4C. It is evident that Au133 does not show any pump-power dependence while the decay lifetimes of Au279 increase with increase in pump-power consistent with a two-temperature model of electron−phonon relaxation.17 Intense bleach with a maximum at 540 nm and pump-power-dependent bleach recovery for Au279 prove the metallic character of the nanocrystal and show that it can support plasmon absorption. A linear fit of the bleach recovery lifetimes of Au279 has yielded a slope of 0.91 ± 0.05 ps, which is close to what was reported for plasmonic gold clusters.17 The transient absorption results conclusively show that Au279 supports...
plasmonic transitions and the relaxation can be satisfactorily described by electron dynamics and a two-temperature model. This is by far the smallest ligand-protected gold nanocrystal that supports plasmonic absorption, the previous one being Au\textsubscript{329}••. Optical gap, electrochemical gap, and electronically excited-state lifetimes of aromatic TBBT-protected AuNMs decrease with increase in size (see the Supporting Information for details).

In summary, the optical properties of F-279 nanocrystals were studied using combined steady-state and time-resolved absorption measurements and theoretical calculations. Experimental and calculated electronic absorption spectral features for F-279 suggest the presence of plasmonic absorption, whereas smaller nanomolecules show discrete electronic absorption features. Theoretical analysis and simulations confirm the birth of the plasmon resonance, with an additional contribution due to the resonance between excitations pertaining to the aromatic ligand and the Au–S shell. Transient absorption measurements for F-279 show a strong bleach and power-dependent bleach recovery kinetics similar to what was observed for gold clusters that can support plasmonic absorption.

ACKNOWLEDGMENTS

NSF-CHE-1255519 supported the work performed by N.A.S. and A.D. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Support from CINECA supercomputing center within the ISCRA program is most gratefully acknowledged.

REFERENCES

25. Thanthirige, V. D.; Kim, M.; Choi, W.; Kwak, K.; Lee, D.; Ramakrishna, G. Temperature-Dependent Absorption and Ultrafast Exciton Relaxation Dynamics in M\textsubscript{Au}(SR)\textsubscript{44} Clusters (M = Pt, Hg):

