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Abstract Euclid is a European Space Agency medium-class mission selected for
launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid

This article is a revised version of https://doi.org/10.12942/1rr-2013-6.

Change summary: Major revision, updated and expanded. Forecasts are not updated in this version, with
respect to 2012.

Change details: The main changes are in Part I, where Sect. 1.4 was merged in parts with Sect. 1.5, some
text reordered and updated; a couple of subsections are new. There are smaller updates in the other parts.
Seven new figures were added. About 300 new references have been cited.

DISCLAIMER: This is not an official Euclid document and its content reflects solely the views of the
contributing authors.

B (The Euclid Theory Working Group)
euclidtheoryreview @ gmail.com

*Extended author information available at the end of the article.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s41114-017-0010-3&domain=pdf
https://doi.org/10.12942/lrr-2013-6

2 Page2of 345 L. Amendola et al. (The Euclid Theory Working Group)

is to understand the origin of the accelerated expansion of the universe. Euclid will
explore the expansion history of the universe and the evolution of cosmic structures
by measuring shapes and red-shifts of galaxies as well as the distribution of clusters
of galaxies over a large fraction of the sky. Although the main driver for Euclid is the
nature of dark energy, Euclid science covers a vast range of topics, from cosmology
to galaxy evolution to planetary research. In this review we focus on cosmology and
fundamental physics, with a strong emphasis on science beyond the current standard
models. We discuss five broad topics: dark energy and modified gravity, dark matter,
initial conditions, basic assumptions and questions of methodology in the data analysis.
This review has been planned and carried out within Euclid’s Theory Working Group
and is meant to provide a guide to the scientific themes that will underlie the activity

of the group during the preparation of the Euclid mission.
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Introduction

Euclid! (Laureijs et al. 2011; Refregier 2009; Cimatti et al. 2009) is an ESA medium-
class mission selected for the second launch slot (expected for 2020) of the cosmic
vision 2015-2025 program. The main goal of Euclid is to understand the physical
origin of the accelerated expansion of the universe. Euclid is a satellite equipped
with a 1.2m telescope and three imaging and spectroscopic instruments working in
the visible and near-infrared wavelength domains. These instruments will explore the
expansion history of the universe and the evolution of cosmic structures by measuring
shapes and redshifts of galaxies over a large fraction of the sky. The satellite will be
launched by a Soyuz ST-2.1B rocket and transferred to the L2 Lagrange point for a
6-year mission that will cover at least 15,000 square degrees of sky. Euclid plans to
image a billion galaxies and measure nearly 100 million galaxy redshifts.

These impressive numbers will allow Euclid to realize a detailed reconstruction of
the clustering of galaxies out to a redshift 2 and the pattern of light distortion from

1 Continuously updated information on Euclid is available on http://www.euclid-ec.org.
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weak lensing to redshift 3. The two main probes, redshift clustering and weak lensing,
are complemented by a number of additional cosmological probes: cross correlation
between the cosmic microwave background and the large scale structure; abundance
and properties of galaxy clusters and strong lensing and possible luminosity distance
through supernovae Ia. To extract the maximum of information also in the nonlinear
regime of perturbations, these probes will require accurate high-resolution numerical
simulations. Besides cosmology, Euclid will provide an exceptional dataset for galaxy
evolution, galaxy structure, and planetary searches. All Euclid data will be publicly
released after a relatively short proprietary period and will constitute for many years
the ultimate survey database for astrophysics.

A huge enterprise like Euclid requires highly considered planning in terms not only
of technology but also for the scientific exploitation of future data. Many ideas and
models that today seem to be abstract exercises for theorists will in fact finally become
testable with the Euclid surveys. The main science driver of Euclid is clearly the nature
of dark energy, the enigmatic substance that is driving the accelerated expansion of
the universe. As we discuss in detail in Part I, under the label “dark energy” we
include a wide variety of hypotheses, from extradimensional physics to higher-order
gravity, from new fields and new forces to large violations of homogeneity and isotropy.
The simplest explanation, Einstein’s famous cosmological constant, is still currently
acceptable from the observational point of view, but is not the only one, nor necessarily
the most satisfying, as we will argue. Therefore, it is important to identify the main
observables that will help distinguish the cosmological constant from the alternatives
and to forecast Euclid’s performance in testing the various models.

Since clustering and weak lensing also depend on the properties of dark matter,
Euclid is a dark matter probe as well. In Part IT we focus on the models of dark matter
that can be tested with Euclid data, from massive neutrinos to ultra-light scalar fields.
We show that Euclid can measure the neutrino mass to a very high precision, making
it one of the most sensitive neutrino experiments of its time, and it can help identify
new light fields in the cosmic fluid.

The evolution of perturbations depends not only on the fields and forces active
during the cosmic eras, but also on the initial conditions. By reconstructing the initial
conditions we open a window on the inflationary physics that created the perturbations,
and allow ourselves the chance of determining whether a single inflaton drove the
expansion or a mixture of fields. In Part IIT we review the choices of initial conditions
and their impact on Euclid science. In particular we discuss deviations from simple
scale invariance, mixed isocurvature-adiabatic initial conditions, non-Gaussianity, and
the combined forecasts of Euclid and CMB experiments.

Practically all of cosmology is built on the copernican principle, a very fruitful idea
postulating a homogeneous and isotropic background. Although this assumption has
been confirmed time and again since the beginning of modern cosmology, Euclid’s
capabilities can push the test to new levels. In Part IV we challenge some of the
basic cosmological assumptions and predict how well Euclid can constrain them. We
explore the basic relation between luminosity and angular diameter distance that holds
in any metric theory of gravity if the universe is transparent to light, and the existence
of large violations of homogeneity and isotropy, either due to local voids or to the

@ Springer



2 Page 10 of 345 L. Amendola et al. (The Euclid Theory Working Group)

cumulative stochastic effects of perturbations, or to intrinsically anisotropic vector
fields or spacetime geometry.

Finally, in Part V we review some of the statistical methods that are used to forecast
the performance of probes like Euclid, and we discuss some possible future develop-
ments.

This review has been planned and carried out within Euclid’s Theory Working
Group and is meant to provide a guide to the scientific themes that will underlie the
activity of the group during the preparation of the mission. At the same time, this
review will help us and the community at large to identify the areas that deserve closer
attention, to improve the development of Euclid science and to offer new scientific
challenges and opportunities.

Part I Dark energy
L.1 Introduction

With the discovery of cosmic acceleration at the end of the 1990s, and its possible
explanation in terms of a cosmological constant, cosmology has returned to its roots
in Einstein’s famous 1917 paper that simultaneously inaugurated modern cosmology
and the history of the constant A. Perhaps cosmology is approaching a robust and
all-encompassing standard model, like its cousin, the very successful standard model
of particle physics. In this scenario, the cosmological standard model could essentially
close the search for a broad picture of cosmic evolution, leaving to future generations
only the task of filling in a number of important, but not crucial, details.

The cosmological constant is still in remarkably good agreement with almost all cos-
mological data more than 10 years after the observational discovery of the accelerated
expansion rate of the universe. However, our knowledge of the universe’s evolution is
so incomplete that it would be premature to claim that we are close to understanding
the ingredients of the cosmological standard model. If we ask ourselves what we know
for certain about the expansion rate at redshifts larger than unity, or the growth rate of
matter fluctuations, or about the properties of gravity on large scales and at early times,
or about the influence of extra dimensions (or their absence) on our four dimensional
world, the answer would be surprisingly disappointing.

Our present knowledge can be succinctly summarized as follows: we live in a
universe that is consistent with the presence of a cosmological constant in the field
equations of general relativity, and as of 2016, the value of this constant corresponds to
afractional energy density today of £24 ~ 0.7. However, far from being disheartening,
this current lack of knowledge points to an exciting future. A decade of research on
dark energy has taught many cosmologists that this ignorance can be overcome by
the same tools that revealed it, together with many more that have been developed in
recent years.

Why then is the cosmological constant not the end of the story as far as cosmic
acceleration is concerned? There are at least three reasons. The first is that we have
no simple way to explain its small but non-zero value. In fact, its value is unexpect-
edly small with respect to any physically meaningful scale, except the current horizon
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scale. The second reason is that this value is not only small, but also surprisingly close
to another unrelated quantity, the present matter-energy density. That this happens
just by coincidence is hard to accept, as the matter density is diluted rapidly with the
expansion of space. Why is it that we happen to live at the precise, fleeting epoch
when the energy densities of matter and the cosmological constant are of compara-
ble magnitude? Finally, observations of coherent acoustic oscillations in the cosmic
microwave background (CMB) have turned the notion of accelerated expansion in
the very early universe (inflation) into an integral part of the cosmological standard
model. Yet the simple truth that we exist as observers demonstrates that this early
accelerated expansion was of a finite duration, and hence cannot be ascribable to a
true, constant A; this sheds doubt on the nature of the current accelerated expansion.
The very fact that we know so little about the past dynamics of the universe forces
us to enlarge the theoretical parameter space and to consider phenomenology that a
simple cosmological constant cannot accommodate.

These motivations have led many scientists to challenge one of the most basic tenets
of physics: Einstein’s law of gravity. Einstein’s theory of general relativity (GR) is a
supremely successful theory on scales ranging from the size of our solar system down
to micrometers, the shortest distances at which GR has been probed in the laboratory
so far. Although specific predictions about such diverse phenomena as the gravitational
redshift of light, energy loss from binary pulsars, the rate of precession of the perihelia
of bound orbits, and light deflection by the sun are not unique to GR, it must be regarded
as highly significant that GR is consistent with each of these tests and more. We can
securely state that GR has been tested to high accuracy at these distance scales.

The success of GR on larger scales is less clear. On astrophysical and cosmological
scales, tests of GR are complicated by the existence of invisible components like dark
matter and by the effects of spacetime geometry. We do not know whether the physics
underlying the apparent cosmological constant originates from modifications to GR
(i.e., an extended theory of gravity), or from a new fluid or field in our universe that
we have not yet detected directly. The latter phenomena are generally referred to as
‘dark energy’ models.

If we only consider observations of the expansion rate of the universe we cannot
discriminate between a theory of modified gravity and a dark-energy model. However,
itis likely that these two alternatives will cause perturbations around the ‘background’
universe to behave differently. Only by improving our knowledge of the growth of
structure in the universe can we hope to progress towards breaking the degeneracy
between dark energy and modified gravity. Part I of this review is dedicated to this
effort. We begin with a review of the background and linear perturbation equations
in a general setting, defining quantities that will be employed throughout. We then
explore the nonlinear effects of dark energy, making use of analytical tools such as the
spherical collapse model, perturbation theory and numerical N-body simulations. We
discuss a number of competing models proposed in literature and demonstrate what
the Euclid survey will be able to tell us about them. For an updated review of present
cosmological constraints on a variety of dark energy and modified gravity models, we
refer to the Planck 2015 analysis (Planck Collaboration 2016¢).
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1.2 Background evolution

Most of the calculations in this review are performed in the Friedmann—Lemaitre—
Robertson—Walker (FLRW) metric

d 2
ds?> = —dr® + a@t)? < rk S +r2do* + rsin® 0 d¢2) , 1.2.1)
r

1 —

where a(t) is the scale factor (normalized to a = 1 today) and k the spatial curvature.
The usual symbols for the Hubble function H = a/a and the density fractions £2,,
where x stands for the component, are employed. We characterize the components with
the subscript M or m for matter, y or r for radiation, b for baryons, k or K for curvature
and A for the cosmological constant. Whenever necessary for clarity, we append a
subscript 0 to denote the present epoch, e.g., £2)7 0. Sometimes the conformal time
n = [ dt/a and the conformal Hubble function H = a H = da/(adn) are employed.
Unless otherwise stated, we denote with a dot derivatives w.r.t. cosmic time ¢ (and
sometimes we employ the dot for derivatives w.r.t. conformal time 1) while we use a
prime for derivatives with respect to In a.

The energy density due to a cosmological constant with p = — p is obviously
constant over time. This can easily be seen from the covariant conservation equation
T;f; , = 0 for the homogeneous and isotropic FLRW metric,

6+3H(p+ p)=0. 1.2.2)

However, since we also observe radiation with p = p/3 and non-relativistic matter
for which p =~ 0, it is natural to assume that the dark energy is not necessarily limited
to a constant energy density, but that it could be dynamical instead.

One of the simplest models that explicitly realizes such a dynamical dark energy
scenario is described by a minimally-coupled canonical scalar field evolving in a
given potential. For this reason, the very concept of dynamical dark energy is often
associated with this scenario, and in this context it is called ‘quintessence’ (Wetterich
1988; Ratra and Peebles 1988). In the following, the scalar field will be indicated with
¢. Although in this simplest framework the dark energy does not interact with other
species and influences spacetime only through its energy density and pressure, this
is not the only possibility and we will encounter more general models later on. The
homogeneous energy density and pressure of the scalar field ¢ are defined as

¢ _ ¢ _ P
pp="71V(@). pp="7-V(#) wy= 0o (12.3)

and wy is called the equation-of-state parameter. Minimally-coupled dark-energy mod-
els can allow for attractor solutions (Copeland et al. 1998; Liddle and Scherrer 1999;
Steinhardt et al. 1999): if an attractor exists, depending on the potential V (¢) in which
dark energy rolls, the trajectory of the scalar field in the present regime converges to
the path given by the attractor, though starting from a wide set of different initial con-
ditions for ¢ and for its first derivative ¢. Inverse power law and exponential potentials
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are typical examples of potential that can lead to attractor solutions. As constraints on
wy become tighter (e.g., Komatsu et al. 2011), the allowed range of initial conditions
to follow into the attractor solution shrinks, so that minimally-coupled quintessence
is actually constrained to have very flat potentials. The flatter the potential, the more
minimally-coupled quintessence mimics a cosmological constant, the more it suffers
from the same fine-tuning and coincidence problems that affect a ACDM scenario
(Matarrese et al. 2004).

However, when GR is modified or when an interaction with other species is active,
dark energy may very well have a non-negligible contribution at early times. There-
fore, it is important, already at the background level, to understand the best way to
characterize the main features of the evolution of quintessence and dark energy in
general, pointing out which parameterizations are more suitable and which ranges
of parameters are of interest to disentangle quintessence or modified gravity from a
cosmological constant scenario.

In the following we briefly discuss how to describe the cosmic expansion rate in
terms of a small number of parameters. This will set the stage for the more detailed
cases discussed in the subsequent sections. Even within specific physical models it is
often convenient to reduce the information to a few phenomenological parameters.

Two important points are left for later: from Eq. (I.2.3) we can easily see that
wy > —1 as long as py > 0, i.e., uncoupled canonical scalar field dark energy never
crosses wy = — 1. However, this is not necessarily the case for non-canonical scalar
fields or for cases where GR is modified. We postpone to Sect. 1.3.3 the discussion of
how to parametrize this ‘phantom crossing’ to avoid singularities, as it also requires
the study of perturbations.

The second deferred part on the background expansion concerns a basic statistical
question: what is a sensible precision target for a measurement of dark energy, e.g.,
of its equation of state? In other words, how close to wy = — 1 should we go before
we can be satisfied and declare that dark energy is the cosmological constant? We will
address this question in Sect. 1.4.

1.2.1 Parametrization of the background evolution

If one wants to parametrize the equation of state of dark energy, two general approaches
are possible. The first is to start from a set of dark-energy models given by the theory
and to find parameters describing their wy as accurately as possible. Only later one
can try and include as many theoretical models as possible in a single parametrization.
In the context of scalar-field dark-energy models (to be discussed in Sect. 1.5.1),
Crittenden et al. (2007) parametrize the case of slow-rolling fields, Scherrer and Sen
(2008) study thawing quintessence, Hrycyna and Szydlowski (2007) and Chiba et al.
(2010) include non-minimally coupled fields, Setare and Saridakis (2009) quintom
quintessence, Dutta and Scherrer (2008) parametrize hilltop quintessence, Chiba et al.
(2009) extend the quintessence parametrization to a class of k-essence models, Huang
et al. (2011) study a common parametrization for quintessence and phantom fields.
Another convenient way to parametrize the presence of a non-negligible homogeneous
dark energy component at early times (usually labeled as EDE) was presented in
Wetterich (2004). We recall it here because we will refer to this example in Sect. 1.6.1.1.
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In this case the equation of state is parametrized as:

wo
= 1.2.4
x@ = a1 o (24
where b is a constant related to the amount of dark energy at early times, i.e.,
3
b=—— = (1.2.5)
]n $2¢ + ln -Qm,OY

Here the subscripts ‘0’ and ‘e’ refer to quantities calculated today or early times,
respectively. With regard to the latter parametrization, we note that concrete theoretical
and realistic models involving a non-negligible energy component at early times are
often accompanied by further important modifications (as in the case of interacting
dark energy), not always included in a parametrization of the sole equation of state
such as (1.2.4) (for further details see Sect. 1.6 on nonlinear aspects of dark energy and
modified gravity).

The second approach is to start from a simple expression of w without assuming any
specific dark-energy model (but still checking afterwards whether known theoretical
dark-energy models can be represented). This is what has been done by Huterer and
Turner (2001), Maor et al. (2001), Weller and Albrecht (2001) (linear and logarithmic
parametrization in z), Chevallier and Polarski (2001), Linder (2003) (linear and power
law parametrization in a), Douspis et al. (2006), Bassett et al. (2004) (rapidly varying
equation of state).

The most common parametrization, widely employed in this review, is the linear
equation of state (Chevallier and Polarski 2001; Linder 2003)

wx (a) = wo + we(1 —a), (1.2.6)

where the subscript X refers to the generic dark-energy constituent. While this
parametrization is useful as a toy model in comparing the forecasts for different dark-
energy projects, it should not be taken as all-encompassing. In general, a dark-energy
model can introduce further significant terms in the effective wy (z) that cannot be
mapped onto the simple form of Eq. (1.2.6).

An alternative to model-independent constraints is measuring the dark-energy den-
sity px (z) (or the expansion history H (z)) as a free function of cosmic time (Wang and
Garnavich 2001; Tegmark 2002; Daly and Djorgovski 2003). Measuring px(z) has
advantages over measuring the dark-energy equation of state wy (z) as a free function;
px (z) is more closely related to observables, hence is more tightly constrained for
the same number of redshift bins used (Wang and Garnavich 2001; Wang and Freese
2006). Note that px (z) is related to wy (z) as follows (Wang and Garnavich 2001):

px(z) exp {/Z dz’ M} (1.2.7)
0

px(0) 142
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Hence, parametrizing dark energy with wy (z) implicitly assumes that py (z) does not
change sign in cosmic time. This precludes whole classes of dark-energy models in
which px(z) becomes negative in the future (“Big crunch” models, see Wang et al.
2004 for an example) (Wang and Tegmark 2004).

Note that the measurement of px (z) is straightforward once H (z) is measured from
baryon acoustic oscillations, and £2,, is constrained tightly by the combined data from
galaxy clustering, weak lensing, and cosmic microwave background data—although
strictly speaking this requires a choice of perturbation evolution for the dark energy
as well, and in addition one that is not degenerate with the evolution of dark matter
perturbations; see Kunz (2009).

Another useful possibility is to adopt the principal component approach (Huterer
and Starkman 2003), which avoids any assumption about the form of w and assumes it
to be constant or linear in redshift bins, then derives which combination of parameters
is best constrained by each experiment.

For a cross-check of the results using more complicated parameterizations, one can
use simple polynomial parameterizations of w and ppg(z)/ppg(0) (Wang 2008b).

1.3 Perturbations

This section is devoted to a discussion of linear perturbation theory in dark-energy
models. Since we will discuss a number of non-standard models in later sections,
we present here the main equations in a general form that can be adapted to various
contexts. This section will identify which perturbation functions the Euclid survey
(Laureijs et al. 2011) will try to measure and how they can help us to characterize the
nature of dark energy and the properties of gravity.

1.3.1 Cosmological perturbation theory
Here we provide the perturbation equations in a dark-energy dominated universe for
a general fluid, focusing on scalar perturbations.

For simplicity, we consider a flat universe containing only (cold dark) matter and
dark energy, so that the Hubble parameter is given by

1da\? - a1+ wa)
H? = (ZE) = H [Qmoa 3+ (1 — 2my) exp (—3[1 Tda)].
(L3.1)

We will consider linear perturbations on a spatially-flat background model, defined
by the line of element

ds? = a? [— (1+2A) dn? +2B; dydx’ + ((1 + 2HL) 8;j + 2Hrij) dx; dxf] ,
(13.2)
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where A is the scalar potential; B; a vector shift; Hy, is the scalar perturbation to the
spatial curvature; HIT] is the trace-free distortion to the spatial metric; dn = dt/a is
the conformal time.

We will assume that the universe is filled with perfect fluids only, so that the energy
momentum tensor takes the simple form

™ = (p+ p)utu’ + p g™’ + O™, (1.3.3)

where p and p are the density and the pressure of the fluid respectively, u* is the
four-velocity and IT*" is the anisotropic-stress perturbation tensor that represents the
traceless component of the T]’

The components of the perturbed energy momentum tensor can be written as:

1) = — (5 + 8p) (1.3.4)
T) =6+ p) (vj — B)) (13.5)
Ty = (p+p)v' (13.6)
Ti = (p+06p) 8 + p ITh. (13.7)

Here p and p are the energy density and pressure of the homogeneous and isotropic
background universe, §p is the density perturbation, §p is the pressure perturbation,
v! is the velocity vector. Here we want to investigate only the scalar modes of the
perturbation equations. So far the treatment of the matter and metric is fully general
and applies to any form of matter and metric. We now choose the Newtonian gauge
(also known as the longitudinal or Poisson gauge), characterized by zero non-diagonal
metric terms (the shift vector B; = 0 and H;/ = 0) and by two scalar potentials ¥
and @; the metric Eq. (I.3.2) then becomes

ds? = a2 [—(1 £2W) di? + (1 — 20) du; dx"]. (13.8)

The advantage of using the Newtonian gauge is that the metric tensor g, is diagonal
and this simplifies the calculations. This choice not only simplifies the calculations
but is also the most intuitive one as the observers are attached to the points in the
unperturbed frame; as a consequence, they will detect a velocity field of particles falling
into the clumps of matter and will measure their gravitational potential, represented
directly by ¥'; @ corresponds to the perturbation to the spatial curvature. Moreover, as
we will see later, the Newtonian gauge is the best choice for observational tests (i.e.,
for perturbations smaller than the horizon).

In the conformal Newtonian gauge, and in Fourier space, the first-order perturbed
Einstein equations give (see Ma and Bertschinger 1995, for more details):

o+ 32 (qS + gw) = —47Ga® " pubda, (1.3.9)
o

K2 (qi + Zw) =47Ga*> ) (pu + po)la (1.3.10)
o
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a i a? k2

; . . 5

S+ (¥ +20)+ <2— — —2> W+ —(®— W) =47Ga® Y bpy. (13.11)
a a a 3 =

k(@ — W) = 121 Ga? Z (Pa + Pa) T (1.3.12)
o

where a dot denotes d/dn, 84 = 8pu/Pu, the index « indicates a sum over all matter
components in the universe and 7 is related to 17;. through:

o . -
p+pm=-— <k,‘kj — 36”) H; (I.3.13)

The energy—momentum tensor components in the Newtonian gauge become:

1) = — (5 + 8p) (L3.14)
ikiTi = —ikiT? = (p + p) 6 (1.3.15)
T = (p+8p) & + pIT; (1.3.16)

where we have defined the variable 0 = ik; v/ that represents the divergence of the
velocity field.

Perturbation equations for a single fluid are obtained taking the covariant derivative
of the perturbed energy momentum tensor, i.e., TV“ "= 0. We have

. . 1 (6
8:—(1+w)(9—3q§)—3g<—f)—w8> for v=0 (13.17)
a\p
o 5
6=-—21—=3w6— 0+ k2P0 2y i for =i (13.18)
a 1+w 14+w

The equations above are valid for any fluid. The evolution of the perturbations depends
on the characteristics of the fluids considered, i.e., we need to specify the equation
of state parameter w, the pressure perturbation p and the anisotropic stress 7. For
instance, if we want to study how matter perturbations evolve, we simply substi-
tute w = §p = m = 0 (matter is pressureless) in the above equations. However,
Egs. (I.3.17) and (1.3.18) depend on the gravitational potentials ¥ and @, which in
turn depend on the evolution of the perturbations of the other fluids. For instance, if
we assume that the universe is filled by dark matter and dark energy then we need to
specify §p and m for the dark energy.

The problem here is not only to parameterize the pressure perturbation and the
anisotropic stress for the dark energy (there is not a unique way to do it, see below,
especially Sect. 1.3.3 for what to do when w crosses — 1) but rather that we need to
run the perturbation equations for each model we assume, making predictions and
compare the results with observations. Clearly, this approach takes too much time. In
the following Sect. 1.3.2 we show a general approach to understanding the observed
late-time accelerated expansion of the universe through the evolution of the matter
density contrast.
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In the following, whenever there is no risk of confusion, we remove the overbars
from the background quantities.

1.3.2 Modified growth parameters

Even if the expansion history, H (z), of the FLRW background has been measured (at
least up to redshifts ~ 1 by supernova data, i.e., via the luminosity distance), it is not
possible yet to identify the physics causing the recent acceleration of the expansion of
the universe. Information on the growth of structure at different scales and different
redshifts is needed to discriminate between models of dark energy (DE) and modified
gravity (MG). A definition of what we mean by DE and MG will be postponed to
Sect. LS.

An alternative to testing predictions of specific theories is to parameterize the pos-
sible departures from a fiducial model. Two conceptually-different approaches are
widely discussed in the literature:

e Model parameters capture the degrees of freedom of DE/MG and modify the
evolution equations of the energy—momentum content of the fiducial model. They
can be associated with physical meanings and have uniquely-predicted behavior
in specific theories of DE and MG.

e Trigger relations are derived directly from observations and only hold in the fidu-
cial model. They are constructed to break down if the fiducial model does not
describe the growth of structure correctly.

As the current observations favor concordance cosmology, the fiducial model is typi-
cally taken to be spatially flat FLRW in GR with cold dark matter and a cosmological
constant, hereafter referred to as ACDM.

For a large-scale structure and weak lensing survey the crucial quantities are the
matter-density contrast and the gravitational potentials and we therefore focus on
scalar perturbations in the Newtonian gauge with the metric (1.3.8).

We describe the matter perturbations using the gauge-invariant comoving density
contrast Ay = 8y + 3aHOy/ k? where & m and 0y are the matter density contrast
and the divergence of the fluid velocity for matter, respectively. The discussion can be
generalized to include multiple fluids.

In ACDM, after radiation-matter equality there is no anisotropic stress present and
the Einstein constraint equations become

—k*® = 47Gd’py Ay, D =W (1.3.19)

These can be used to reduce the energy—momentum conservation of matter simply to
the second-order growth equation

3
A+ [2+ (n H)'] Ay = SQu(@Au, (13.20)

Primes denote derivatives with respect to In a and we define the time-dependent frac-
tional matter density as 2y(a) = 87 Gpy(a)/(3H 2). Notice that the evolution of
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Ay is driven by 2 (a) and is scale-independent throughout (valid on sub- and super-
Hubble scales after radiation-matter equality). We define the growth factor G(a) as
A = ApG(a). This is very well approximated by the expression

G(a) ~ exp {/ di, [2um (a’)y]} (1.3.21)
1 a
and dloe G
— og ~ Y
fe= dloga 2um(a) (1.3.22)

defines the growth rate and the growth index y that is found to be y4 ~ 0.545 for
the ACDM solution (see Wang and Steinhardt 1998; Linder 2005; Huterer and Linder
2007; Ferreira and Skordis 2010).

Clearly, if the actual theory of structure growth is not the ACDM scenario, the
constraints (I.3.19) will be modified, the growth Eq. (I.3.20) will be different, and
finally the growth factor (I.3.21) is changed, i.e., the growth index is different from
y4 and may become time and scale dependent. Therefore, the inconsistency of these
three points of view can be used to test the ACDM paradigm.

1.3.2.1 Two new degrees of freedom

Any generic modification of the dynamics of scalar perturbations with respect to the
simple scenario of a smooth dark-energy component that only alters the background
evolution of ACDM can be represented by introducing two new degrees of freedom
in the Einstein constraint equations. We do this by replacing (1.3.19) with

— k@ =47GQ(a, kh)a’pyu Ay, @ = n(a, k)W. (1.3.23)

Non-trivial behavior of the two functions Q and n can be due to a clustering dark-
energy component or some modification to GR. In MG models the function Q(a, k)
represents a mass screening effect due to local modifications of gravity and effectively
modifies Newton’s constant. In dynamical DE models Q represents the additional
clustering due to the perturbations in the DE. On the other hand, the function n(a, k)
parameterizes the effective anisotropic stress introduced by MG or DE, which is absent
in ACDM.

Given an MG or DE theory, the scale- and time-dependence of the functions QO
and 7 can be derived and predictions projected into the (Q, n) plane. This is also
true for interacting dark sector models, although in this case the identification of the
total matter density contrast (DM plus baryonic matter) and the galaxy bias become
somewhat contrived (see, e.g., Song et al. 2010, for an overview of predictions for
different MG/DE models).

Using the above-defined modified constraint Eq. (1.3.23), the conservation equa-
tions of matter perturbations can be expressed in the following form (see Pogosian
et al. 2010)
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o _Un—t+moy9 x5 —3(nH)'/Q gy
M= X2+ 20 pteMaEM = 2 420 aH
0 2°%4M xQ 784M

3
0l = —Ou — zaHszMgA,v,, (1.3.24)
n

where we define xp = k/(aH /0). Remember 2y = 2y (a) as defined above.
Notice that it is Q/n that modifies the source term of the 6y, equation and therefore
also the growth of A ;. Together with the modified Einstein constraints (1.3.23) these
evolution equations form a closed system for (A, 67, @, ¥) which can be solved
for given (Q, n).

The influence of the Hubble scale is modified by Q, such that now the size of x¢
determines the behavior of Ajs; on “sub-Hubble” scales, xp > 1, we find

Ay +[2+nH)]4), = %QM(Q)%AM (1.3.25)

and 0y = —aH A’),. The growth equation is only modified by the factor O/ on the
RHS with respect to ACDM (1.3.20). On “super-Hubble” scales, xg < 1, we have

/ , 2 (nH) 1
AM:—[l/n—1+(an)]AM+m o o™
0

3
0l = —Ou — > Qm aH;AM. (1.3.26)

QO and 1 now create an additional drag term in the Ay equation, except if n > 1
when the drag term could flip sign. Pogosian et al. (2010) also showed that the metric
potentials evolve independently and scale-invariantly on super-Hubble scales as long
as xg — 0 for k — 0. This is needed for the comoving curvature perturbation, ¢, to
be constant on super-Hubble scales.

Many different names and combinations of the above defined functions (Q, n) have
been used in the literature, some of which are more closely related to actual observables
and are less correlated than others in certain situations (see, .g., Amendola et al. 2008b;
Mota et al. 2007; Song et al. 2010; Pogosian et al. 2010; Daniel et al. 2010; Daniel
and Linder 2010; Ferreira and Skordis 2010).

For instance, as observed above, the combination Q/n modifies the source term
in the growth equation. Moreover, peculiar velocities are following gradients of the
Newtonian potential, ¥, and therefore the comparison of peculiar velocities with the
density field is also sensitive to Q/n. So we define

w=0/n= —k>W = 4xGa’u(a, k) pyAy. (1.3.27)

Weak lensing and the integrated Sachs—Wolfe (ISW) effect, on the other hand, are
measuring (¢ + ¥)/2, which is related to the density field via

1 1
=500 +1/m=Jum+1) = —k> (@ + W) =81Ga’ X (a, k) pmAu.

(1.3.28)
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A summary of different other variables used was given by Daniel et al. (2010). For
instance, the gravitational slip parameter introduced by Caldwell et al. (2007) and
widely used is related through @ = 1/n — 1. Recently, Daniel and Linder (2010) used
{G= X, u=Q, V= u}, while (Bean and Tangmatitham 2010) defined R = 1/n.
All these variables reflect the same two degrees of freedom additional to the linear
growth of structure in ACDM.

Any combination of two variables out of {Q, n, i, X, ...} is a valid alternative to
(Q, n). It turns out that the pair (u, X') is particularly well suited when CMB, WL
and LSS data are combined as it is less correlated than others (see Zhao et al. 2010;
Daniel and Linder 2010; Axelsson et al. 2014).

1.3.2.2 Parameterizations and non-parametric approaches

So far we have defined two free functions that can encode any departure of the growth
of linear perturbations from ACDM. However, these free functions are not measurable,
but have to be inferred via their impact on the observables. Therefore, one needs to
specify a parameterization of, e.g., (Q, n) such that departures from ACDM can be
quantified. Alternatively, one can use non-parametric approaches to infer the time and
scale-dependence of the modified growth functions from the observations.

Ideally, such a parameterization should be able to capture all relevant physics with
the least number of parameters. Useful parameterizations can be motivated by predic-
tions for specific theories of MG/DE (see Song et al. 2010) and/or by pure simplicity
and measurability (see Amendola et al. 2008b). For instance, Zhao et al. (2010) and
Daniel et al. (2010) use scale-independent parameterizations that model one or two
smooth transitions of the modified growth parameters as a function of redshift. Bean
and Tangmatitham (2010) also adds a scale dependence to the parameterization, while
keeping the time-dependence a simple power law:

0. k) = 1+ [Qoe ™5 + 0 (1= e7k) — 1] @,

n(a, k)~ =1+ [Roe_k/k“‘ T Reo (1 - e—"/kv) - 1] @, (1.3.29)

with constant Qp, O, Ry, Reo, s and k.. Generally, the problem with any kind of
parameterization is that it is difficult—if not impossible—for it to be flexible enough
to describe all possible modifications.

Daniel et al. (2010) and Daniel and Linder (2010) investigate the modified growth
parameters binned in z and k. The functions are taken constant in each bin. This
approach is simple and only mildly dependent on the size and number of the bins.
However, the bins can be correlated and therefore the data might not be used in
the most efficient way with fixed bins. Slightly more sophisticated than simple bin-
ning is a principal component analysis (PCA) of the binned (or pixelized) modified
growth functions. In PCA uncorrelated linear combinations of the original pixels are
constructed. In the limit of a large number of pixels the model dependence disap-
pears. At the moment however, computational cost limits the number of pixels to
only a few. Zhao et al. (2009a, 2010) employ a PCA in the (u, ) plane and find
that the observables are more strongly sensitive to the scale-variation of the modified
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growth parameters rather than the time-dependence and their average values. This
suggests that simple, monotonically or mildly-varying parameterizations as well as
only time-dependent parameterizations are poorly suited to detect departures from
ACDM.

1.3.2.3 Trigger relations

A useful and widely popular trigger relation is the value of the growth index y in
ACDM. It turns out that the value of y can also be fitted also for simple DE models
and sub-Hubble evolution in some MG models (see, e.g., Linder 2005, 2009; Huterer
and Linder 2007; Linder and Cahn 2007; Nunes and Mota 2006; Ferreira and Skordis
2010). For example, for a non-clustering perfect fluid DE model with equation of state
w(z) the growth factor G(a) given in (I1.3.21) with the fitting formula

y =0.5540.05[1 +w(z=1)] (1.3.30)

is accurate to the 1073 level compared with the actual solution of the growth Eq.
(1.3.20). Generally, for a given solution of the growth equation the growth index can
simply be computed using

In (AM) —InAy

vl =—ron@

1.3.31)

The other way round, the modified gravity function u can be computed for a given y
(Pogosian et al. 2010)

2 y—1 v ’ ’
w= §QM (a) [.QM(a)—l—2~|—(lnH) -3y +vy lny]. (1.3.32)

The fact that the value of y is quite stable in most DE models but strongly differs
in MG scenarios means that a large deviation from y 4 signifies the breakdown of GR,
a substantial DE clustering or a breakdown of another fundamental hypothesis like
near-homogeneity. Furthermore, using the growth factor to describe the evolution of
linear structure is a very simple and computationally cheap way to carry out forecasts
and compare theory with data. However, several drawbacks of this approach can be
identified:

e As only one additional parameter is introduced, a second parameter, such as n, is
needed to close the system and be general enough to capture all possible modifi-
cations.

e The growth factor is a solution of the growth equation on sub-Hubble scales and,
therefore, is not general enough to be consistent on all scales.

e The framework is designed to describe the evolution of the matter density contrast
and is not easily extended to describe all other energy—momentum components
and integrated into a CMB-Boltzmann code.
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1.3.3 Phantom crossing

In this section, we pay attention to the evolution of the perturbations of a general
dark-energy fluid with an evolving equation of state parameter w. Current limits on
the equation of state parameter w = p/p of the dark energy indicate that p ~ —p, and
so do not exclude p < —p, aregion of parameter space often called phantom energy.
Even though the region for which w < — 1 may be unphysical at the quantum level,
it is still important to probe it, not least to test for coupled dark energy and alternative
theories of gravity or higher dimensional models that can give rise to an effective or
apparent phantom energy.

Although there is no problem in considering w < — 1 for the background evolution,
there are apparent divergences appearing in the perturbations when a model tries to
cross the limit w = — 1. This is a potential headache for experiments like Euclid that
directly probe the perturbations through measurements of the galaxy clustering and
weak lensing. To analyze the Euclid data, we need to be able to consider models that
cross the phantom divide w = — 1 at the level of first-order perturbations (since the
only dark-energy model that has no perturbations at all is the cosmological constant).

However, at the level of cosmological first-order perturbation theory, there is no
fundamental limitation that prevents an effective fluid from crossing the phantom
divide.

As w — —1 the terms in Egs. (I.3.17) and (I.3.18) containing 1/(1 + w) will
generally diverge. This can be avoided by replacing 6 with a new variable V defined
via V = p (1 + w) 6. This corresponds to rewriting the 0-i component of the energy
momentum tensor as ik ; Toj = V, which avoids problems if TOJ # 0 when p = — p.
Replacing the time derivatives by a derivative with respect to the logarithm of the scale
factor In a (denoted by a prime), we obtain (Ma and Bertschinger 1995; Hu 2004; Kunz
and Sapone 2006):

% 5
§ =31 +w)d — — —3 (—_p - w8> (1.3.33)
Ha 0
, k> 8p k?
V= —(1=3w)V+—L 4 (1+w)— ¥ —7). (1.3.34)
Ha p Ha

In order to solve Eqgs. (I.3.33) and (1.3.34) we still need to specify the expressions for
dp and mr, quantities that characterize the physical, intrinsic nature of the dark-energy
fluid at first order in perturbation theory. While in general the anisotropic stress plays
an important role as it gives a measure of how the gravitational potentials @ and ¥
differ, we will set it in this section to zero, 7 = (. Therefore, we will focus on the form
of the pressure perturbation. There are two important special cases: barotropic fluids,>
which have no internal degrees of freedom and for which the pressure perturbation is
fixed by the evolution of the average pressure, and non-adiabatic fluids like, e.g., scalar
fields for which internal degrees of freedom can change the pressure perturbation.

2 As pointed out in Vikman (2005), barotropic fluids where the energy conservation equation defines the
evolution can in any case not cross w = — 1 as this is a fixed point of the evolution.
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1.3.3.1 Parameterizing the pressure perturbation
Barotropic fluids.

We define a fluid to be barotropic if the pressure p depends strictly only on the energy
density p: p = p(p). These fluids have only adiabatic perturbations, so that they are
often called adiabatic. We can write their pressure as

d
p(p) = p(p +80) = p(p) + ﬁ sp+ 0 [(5/0)2] . (13.35)
o

Here p(p) = p is the pressure of the isotropic and homogeneous part of the fluid. The
second term in the expansion (I.3.35) can be re-written as

w
=w —Ecz

dp|
3aH(1 + w)

= (1.3.36)
del;

a’

k-0 k~18

where we used the equation of state and the conservation equation for the dark-energy
density in the background. We notice that the adiabatic sound speed cg will necessarily
diverge for any fluid where w crosses — 1.

However, for a perfect barotropic fluid the adiabatic sound speed cg turns out to
be the physical propagation speed of perturbations. Therefore, it should never be
negative (cg < 0)—otherwise classical, and possible quantum, instabilities appear
(superluminal propagation, CZ > 1, may be acceptable as the fluid is effectively a kind
of ether that introduces a preferred frame, see Babichev et al. 2008). Even worse, the
pressure perturbation

8p = c28p = (w - m> 80 (13.37)
will necessarily diverge if w crosses — 1 and §p # 0. Even if we find a way to stabilize
the pressure perturbation, for instance an equation of state parameter that crosses the
— 1 limit with zero slope (w), there will always be the problem of a negative speed of
sound that prevents these models from being viable dark-energy candidates (Vikman
2005; Kunz and Sapone 2006).

Non-adiabatic fluids

To construct a model that can cross the phantom divide, we therefore need to violate
the constraint that p is a unique function of p. At the level of first-order perturbation
theory, this amounts to changing the prescription for §p, which now becomes an
arbitrary function of k and 7. One way out of this problem is to choose an appropriate
gauge where the equations are simple; one choice is, for instance, the rest frame of
the fluid where the pressure perturbation reads (in this frame)

sp = é2p, (1.3.38)
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where now the 652, is the speed with which fluctuations in the fluid propagate, i.e., the
sound speed. We can write Eq. (1.3.38), with an appropriate gauge transformation, in
a form suitable for the Newtonian frame, i.e., for Egs. (1.3.33) and (1.3.34). We find
that the pressure perturbation is given by (Erickson et al. 2002; Bean and Dore 2004;
Carturan and Finelli 2003)

8p = 25p + 3aH (a) (53 - cg) (1.3.39)

k_2 .
The problem here is the presence of cg, which goes to infinity at the crossing and it is
impossible that this term stays finite except if V' — 0 fast enough or w = 0, but this
is not, in general, the case.

This divergence appears because for w = — 1 the energy momentum tensor
Eq. (I.3.3) reads T*" = pgH”. Normally the four-velocity u* is the time-like eigen-
vector of the energy—momentum tensor, but now all vectors are eigenvectors. So the
problem of fixing a unique rest-frame is no longer well posed. Then, even though the
pressure perturbation looks fine for the observer in the rest-frame, because it does not
diverge, the badly-defined gauge transformation to the Newtonian frame does, as it
also contains ¢2.

1.3.3.2 Regularizing the divergences

We have seen that neither barotropic fluids nor canonical scalar fields, for which the
pressure perturbation is of the type (1.3.39), can cross the phantom divide. However,
there is a simple model (called the quintom model Feng et al. 2005; Hu 2005) consisting
of two fluids of the same type as in the previous Sect. 1.3.3.1 but with a constant w on
either side of w = — 1.3 The combination of the two fluids then effectively crosses
the phantom divide if we start with w,; > — 1, as the energy density in the fluid with
w < — 1 will grow faster, so that this fluid will eventually dominate and we will end
up with wyy < — 1.

The perturbations in this scenario were analyzed in detail in Kunz and Sapone
(2006), where it was shown that in addition to the rest-frame contribution, one also
has relative and non-adiabatic perturbations. All these contributions apparently diverge
at the crossing, but their sum stays finite. When parameterizing the perturbations in
the Newtonian gauge as

Sp(k,t) =y(k,t)dp(k,t) (1.3.40)

the quantity y will, in general, have a complicated time and scale dependence. The
conclusion of the analysis is that indeed single canonical scalar fields with pressure
perturbations of the type (1.3.39) in the Newtonian frame cannot cross w = — 1, but
that this is not the most general case. More general models have a priori no problem
crossing the phantom divide, at least not with the classical stability of the perturbations.

3 While the scalar field with a constant w < — 1 does not exhibit instabilities at the level of classical
perturbation theory, it is generally a ghost and unstable at the quantum level. It is however possible to
construct stable models without ghosts that can cross the phantom barrier, for example, based on kinetic
gravity braiding (Pujolas et al. 2011; Deffayet et al. 2010). As mentioned below, also the effective dark
energy in coupled dark energy—dark matter models can cross the phantom barrier.
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Kunz and Sapone (2006) found that a good approximation to the quintom model
behavior can be found by regularizing the adiabatic sound speed in the gauge trans-
formation with

v(1
N | G sl) (1.3.41)
3Hal(1 +w)? + 1]
where A is a tunable parameter which determines how close to w = — 1 the regular-

ization kicks in. A value of A ~ 1/1000 should work reasonably well. However, the
final results are not too sensitive on the detailed regularization prescription.

This result appears also related to the behavior found for coupled dark-energy
models (originally introduced to solve the coincidence problem) where dark matter
and dark energy interact not only through gravity (Amendola 2000a). The effective
dark energy in these models can also cross the phantom divide without divergences
(Huey and Wandelt 2006; Das et al. 2006; Kunz 2009).

The idea is to insert (by hand) a term in the continuity equations of the two fluids

om + 3Hpy = A (1.3.42)
ox +3H (1 +wy) px = — A, (1.3.43)

where the subscripts m, x refer to dark matter and dark energy, respectively. In this
approximation, the adiabatic sound speed cg reads

2 Dx Wy
o= =Wy — , 1.3.44
@ Px * 3aH (1 +wy) + A/px ( )

which stays finite at crossing as long as A # 0.
However in this class of models there are other instabilities arising at the perturba-
tion level regardless of the coupling used, (cf. Viliviita et al. 2008).

1.3.3.3 A word on perturbations when w = — 1
Although a cosmological constant has w = — 1 and no perturbations, the converse
is not automatically true: w = — 1 does not necessarily imply that there are no

perturbations. It is only when we set from the beginning (in the calculation):

p=—p (1.3.45)
Sp = —8p (1.3.46)
7 =0, (1.3.47)

ie., TH oc g'v, that we have as a solution § = V = 0.

For instance, if we set w = — 1 and §p = y8p (where y can be a generic function)
in Eqgs. (I.3.33) and (I.3.34) we have § # 0 and V # 0. However, the solutions are
decaying modes due to the —% (1 — 3w) V term so they are not important at late times;
but it is interesting to notice that they are in general not zero.

As another example, if we have a non-zero anisotropic stress 7 then the Egs. (1.3.33)
and (I.3.34) will have a source term that will influence the growth of § and V in the
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same way as ¥ does (just because they appear in the same way). The (1 + w) term in
front of 7 should not worry us as we can always define the anisotropic stress through

P 1 .
p(l+w)m=— <k,~kj - galj) ', (1.3.48)

where 1 ’J # 0 when i # j is the real traceless part of the energy momentum tensor,
probably the quantity we need to look at: as in the case of V = (1 + w)#, there is no
need for IT o (1 + w)m to vanish when w = — 1.

It is also interesting to notice that when w = — 1 the perturbation equations tell us
that dark-energy perturbations are not influenced through ¥ and @' [see Egs. (1.3.33)
and (I.3.34)]. Since @ and ¥ are the quantities directly entering the metric, they must
remain finite, and even much smaller than 1 for perturbation theory to hold. Since, in the
absence of direct couplings, the dark energy only feels the other constituents through
the terms (1 +w)¥ and (1 + w)@®’, it decouples completely in the limit w = — 1 and
just evolves on its own. But its perturbations still enter the Poisson equation and so
the dark matter perturbation will feel the effects of the dark-energy perturbations.

Although this situation may seem contrived, it might be that the acceleration of the
universe is just an observed effect as a consequence of a modified theory of gravity. As
was shown in Kunz and Sapone (2007), any modified gravity theory can be described
as an effective fluid both at background and at perturbation level; in such a situation it
is imperative to describe its perturbations properly as this effective fluid may manifest
unexpected behavior.

1.4 Generic properties of dark energy and modified gravity models

This section explores some generic issues that are not necessarily a feature of any par-
ticular model. We will recall the properties of particular classes of models as examples,
leaving the details of the model description to Sect. L.5.

We begin by discussing the general implications of modelling dark energy as an
extra degree of freedom, instead of the cosmological constant. We then discuss how the
literature tends to categorize models into models of dark energy and models of modi-
fied gravity. We focus on the expansion of the cosmological background and ask what
precision of measurement is necessary in order to make definite statements about large
parts of the interesting model space. Then we address the issue of dark-energy pertur-
bations, their impact on observables and how they can be used to distinguish between
different classes of models. Finally, we present some general consistency relations
among the perturbation variables that all models of modified gravity should fulfill.

14.1 Dark energy as a degree of freedom

De Sitter spacetime, filled with only a cosmological constant, is static, undergoes no
evolution. It is also invariant under Lorentz transformations. When other sources of
energy—momentum are added into this spacetime, the dynamics occurs on top of this
static background, or better to say—vacuum. This is to say that the cosmological
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constant is a form of dark energy which has no dynamics of its own and the value of
which is fixed for all frames and coordinate choices.

A dynamical model for acceleration implies the existence of some change of the
configuration in space or time. It is no longer a gravitational vacuum. In the case of
a perfectly homogeneous and isotropic universe, the evolution can only be a function
of time. In reality, the universe has neither of these properties and therefore the con-
figuration of any dynamical dark energy must also be inhomogeneous. Whether the
inhomogeneities are small is a model-dependent statement.

It is important to stress that there exists no such thing as a modified gravity theory
with no extra degrees of freedom beyond the metric. All models which seemingly
involve just the metric degrees of freedom in some modified sense (say f(R) or f(G)),
in fact can be shown to be equivalent to general relativity plus an extra scalar degree
of freedom with some particular couplings to gravity (Chiba 2003; Kobayashi et al.
2011). Modifications such as massive gravity increase the number of polarisations.

In the context of ACDM, it has proven fruitful to consider the dynamics of the
universe in terms of a perturbation theory: a separation into a background, linear and
then higher-order fluctuations, each of increasingly small relevance (see Sect. 1.3.1).
These perturbations are thought to be seeded with a certain amplitude by an inflationary
era at early times. Gravitational collapse then leads to a growth of the fluctuations,
eventually leading to a breakdown of the perturbation theory; however, for dark matter
in ACDM, this growth is only large enough to lead to non-linearity at smaller scales.

When dynamical DE is introduced, it must be described by at least one new (poten-
tially more) degree of freedom. In principle, in order to make any statements about any
such theory, one must specify the initial conditions on some space-like hypersurface
and then the particular DE model will describe the subsequent evolutionary history.
Within the framework of perturbation theory, initial conditions must be specified for
both the background and the fluctuations. The model then provides a set of related
evolution equations at each order.

We defer the discussion of the freedom allowed at particular orders to the appropriate
sections below (Sect. 1.4.3 for the background, Sect. 1.4.4 for the perturbations). Here,
let us just stress that since DE is a full degree of freedom, its initial conditions will
contain both adiabatic and isocurvature modes, which may or may not be correlated,
depending on their origin and which may or may not survive until today, depending on
the particular model. Secondly, the non-linearity in the DE configuration is in principle
independent of the non-linearity in the distribution of dark matter and will depend
on both the particular model and the initial conditions. For example, the chameleon
mechanism present in many non-minimally coupled models of dark energy acts to
break down DE perturbation theory in higher-density environments (see Sect. 1.5.8).
This breakdown of linear theory is environment-dependent and only indirectly related
to non-linearities in the distribution of dark matter.

Let us underline that the absolute and unique prediction of ACDM is that A is
constant in space and time and therefore does not contribute to fluctuations at any
order. Any violation of this statement at any one order, if it cannot be explained
by astrophysics, is sufficient evidence that the acceleration is not caused by vacuum
energy.
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1.4.2 A definition of modified gravity

In this review we often make reference to DE and MG models. Although in an increas-
ing number of publications a similar dichotomy is employed, there is currently no
consensus on where to draw the line between the two classes. Here we will introduce
an operational definition for the purpose of this document.

Roughly speaking, what most people have in mind when talking about standard dark
energy are models of minimally-coupled scalar fields with standard kinetic energy in
4-dimensional Einstein gravity, the only functional degree of freedom being the scalar
potential. Often, this class of model is referred to simply as “quintessence”. However,
when we depart from this picture a simple classification is not easy to draw. One
problem is that, as we have seen in the previous sections, both at background and at
the perturbation level, different models can have the same observational signatures
(Kunz and Sapone 2007). This problem is not due to the use of perturbation theory:
any modification to Einstein’s equations can be interpreted as standard Einstein gravity
with a modified “matter” source, containing an arbitrary mixture of scalars, vectors
and tensors (Hu and Sawicki 2007b; Kunz et al. 2008).

Therefore, we could simply abandon any attempt to distinguish between DE and
MG, and just analyse different models, comparing their properties and phenomenol-
ogy. However, there is a possible classification that helps us set targets for the
observations, which is often useful in concisely communicating the results of complex
arguments. In this review, we will use the following notation:

e Standard dark energy These are models in which dark energy lives in standard
Einstein gravity and does not cluster appreciably on sub-horizon scales and does
not carry anisotropic stress. As already noted, the prime example of a standard dark-
energy model is a minimally-coupled scalar field with standard kinetic energy, for
which the sound speed equals the speed of light.

o Clustering dark energy In clustering dark-energy models, there is an additional
contribution to the Poisson equation due to the dark-energy perturbation, which
induces Q # 1. However, in this class we require n = 1, i.e., no extra effective
anisotropic stress is induced by the extra dark component. A typical example is a
k-essence model with a low sound speed, ¢? < 1.

e Modified gravity models These are models where from the start the Einstein
equations are modified, for example scalar—tensor and f (R) type theories, Dvali—
Gabadadze—Porrati (DGP) as well as interacting dark energy, in which effectively
a fifth force is introduced in addition to gravity. Generically they change the clus-
tering and/or induce a non-zero anisotropic stress. Since our definitions are based
on the phenomenological parameters, we also add dark-energy models that live
in Einstein’s gravity but that have non-vanishing anisotropic stress into this class
since they cannot be distinguished by cosmological observations.

Notice that both clustering dark energy and explicit modified gravity models lead
to deviations from what is often called ‘general relativity’ (or, like here, standard
dark energy) in the literature when constraining extra perturbation parameters like the
growth index y . For this reason we generically call both of these classes MG models. In
other words, in this review we use the simple and by now extremely popular (although
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admittedly somewhat misleading) expression “modified gravity” to denote models in
which gravity is modified and/or dark energy clusters or interacts with other fields.
Whenever we feel useful, we will remind the reader of the actual meaning of the
expression “modified gravity” in this review.

Therefore, on sub-horizon scales and at first order in perturbation theory our defi-
nition of MG is straightforward: models with Q = n = 1 (see Eq. 1.3.23) are standard
DE, otherwise they are MG models. In this sense the definition above is rather conve-
nient: we can use it to quantify, for instance, how well Euclid will distinguish between
standard dynamical dark energy and modified gravity by forecasting the errors on Q, n
or on related quantities like the growth index y .

On the other hand, it is clear that this definition is only a practical way to group
different models and should not be taken as a fundamental one. We do not try to set a
precise threshold on, for instance, how much dark energy should cluster before we call
it modified gravity: the boundary between the classes is therefore left undetermined
but we think this will not harm the understanding of this document.

1.4.3 The background: to what precision should we measure w?

The effect of dark energy on background expansion is to add a new source of energy
density. The chosen model will have dynamics which will cause the energy density
to evolve in a particular manner. On the simplest level, this evolution is a result of
the existence of intrinsic hydrodynamical pressure of the dark energy fluid which can
be described by the instantaneous equation of state. Alternatively, an interaction with
other species can result in a non-conservation of the DE EMT and therefore change the
manner in which energy density evolves (e.g. coupled dark energy). Taken together,
all these effects add up to result in an effective equation of state for DE which drives
the expansion history of the universe.

Itis important to stress that all background observables are geometrical in nature and
therefore can only be measurements from curvatures. It is not possible to disentangle
the dark energy and dark matter in a model independent matter and therefore only
the measurement of the Hubble parameter up to a normalization factor, H(z)/Hy,
and the spatial curvature £2o can be obtained in a DE-model independent manner. In
particular, the measurement of the dark-matter density, £2,,0, becomes possible only
on choosing some parameterization for wegr (€.g., a constant) (Amendola et al. 2013a).
One must therefore always be mindful that extracting DE properties from background
measurements is limited to constraining the coefficients of a chosen parameterization
of the effective equation of state for the DE component, rather than being measurements
of the actual effective w and definitely not the intrinsic w of the dark energy.

Given the above complications, two crucial questions are often asked in the context
of dark-energy surveys:

e Since current measurements of the expansion history appear so consistent with
w = — 1, do we not already know that the dark energy is a cosmological constant?

e To which precision should we measure w? Or equivalently, why is the Euclid target
precision of about 0.01 on wg and 0.1 on w, interesting?
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We will now attempt to answer these questions at least partially. First, we address
the question of what the measurement of w can tell us about the viable model space of
DE. Then we examine whether we can draw useful lessons from inflation. Finally, we
will look at what we can learn from arguments based on Bayesian model comparison.

In the first part, we will argue that whereas any detection of a deviation from
ACDM expansion history immediately implies that acceleration is not driven by a
cosmological constant, the converse is not true, even if w = — 1 exactly. We will
also argue that a detection of a phantom equation of state, w < — 1, would reveal
that gravity is not minimally coupled or that dark energy interacts and immediately
eliminate the perfect-fluid models of dark energy, such as quintessence.

Then we will see that for single field slow-roll inflation models we effectively
measure w ~ — | with percent-level accuracy (see Fig. 1); however, the deviation from
a scale-invariant spectrum means that we nonetheless observe a dynamical evolution
and, thus, a deviation from an exact and constant equation of state of w = — 1.
Therefore, we know that inflation was not due to a cosmological constant; we also
know that we can see no deviation from a de Sitter expansion for a precision smaller
than the one Euclid will reach.

In the final part, we will consider the Bayesian evidence in favor of a true cos-
mological constant if we keep finding w = — 1; we will see that for priors on wo
and w, of order unity, a precision like the one for Euclid is necessary to favor a true
cosmological constant decisively. We will also discuss how this conclusion changes
depending on the choice of priors.

1.4.3.1 What can a measurement of w tell us?

The prediction of ACDM is that w = — 1 exactly at all times. Any detection of
a deviation from this result immediately disqualifies the cosmological constant as a
model for dark energy.

The converse is not true, however. Simplest models of dynamical dark energy, such
as quintessence (Sect. [.5.1) can approach the vacuum equation of state arbitrarily
closely, given sufficiently flat potentials and appropriate initial conditions. An equation
of state w = — 1 at all times is inconsistent with these models, but this may never be
detectable.

Moreover, there exist classes of models, e.g., shift-symmetric k-essence with de-
Sitter attractors, which have equation of state w = — 1 exactly, once the attractor is
approached. Despite this, the acceleration is not at all driven by a cosmological con-
stant, but by a perturbable fluid which has vanishing sound speed and can cluster. Such
models can only be differentiated from a cosmological constant by the measurements
of perturbations, if at all, see Sect. 1.4.4.

Beyond eliminating the cosmological constant as a mechanism for acceleration,
measuring w > — 1 is not by itself very informative as to the nature of dark energy.
Essentially all classes of models can evolve with such an equation of state given
appropriate initial conditions (which is not to say that any evolution history can be
produced by any class of models). On the other hand, the observation of a phantom
equation of state, w < — 1, at any one moment in time is hugely informative as to
the nature of gravitational physics. It is well known that any such background made
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up of either a perfect fluid or a minimally coupled scalar field suffers from gradient
instabilities, ghosts or both (Dubovsky et al. 2006). Therefore such an observation
immediately implies that either gravity is non-minimally coupled and therefore there is
a fifth force, that dark energy is not a perfect fluid, that dark energy interacts with other
species, or that dynamical ghosts are not forbidden by nature, perhaps being stabilized
by amechanism such as ghost condensation (Arkani-Hamed et al. 2004b). Any of these
would provide a discovery in itself as significant as excluding a cosmological constant.
In conclusion, we aim to measure w since it is the most direct way of disproving
that acceleration is caused by a cosmological constant. However, if it turns out that no
significant deviation can be detected this does not imply that the cosmological constant
is the mechanism for dark energy. The clustering properties must then be verified and
found to not disagree with ACDM predictions.
1.4.3.2 Lessons from inflation

In all probability the observed late-time acceleration of the universe is not the first
period of accelerated expansion that occurred during its evolution: the current standard
model of cosmology incorporates a much earlier phase with ¢ > 0, called inflation.
Such a period provides a natural mechanism for generating several properties of the
universe: spatial flatness, gross homogeneity and isotropy on scales beyond naive
causal horizons and nearly scale-invariant initial fluctuations.

The first lesson to draw from inflation is that it cannot have been due to a pure
cosmological constant. This is immediately clear since inflation actually ended and
therefore there had to be some sort of time evolution. We can go even further: since
de Sitter spacetime is static, no curvature perturbations are produced in this case (the
fluctuations are just unphysical gauge modes) and therefore an exactly scale-invariant
power spectrum would have necessitated an alternative mechanism.

The results obtained by the Planck collaboration from the first year of data imply
that the initial spectrum of fluctuations is not scale invariant, but rather has a tilt given
by ng = 0.9608 £ 0.0054 and is consistent with no running and no tensor modes
(Planck Collaboration 2014a). This is consistent with the final results from WMAP
(Hinshaw et al. 2013). It is surprisingly difficult to create this observed fluctuation
spectrum in alternative scenarios that are strictly causal and only act on sub-horizon
scales (Spergel and Zaldarriaga 1997; Scodeller et al. 2009).

Let us now translate what the measured properties of the initial power spectrum
of fluctuations imply for a observer existing during the inflationary period. We will
assume that inflation was driven by one of the simple models (i.e., with sound speed
¢s = 1). Following the analysis in [li¢ et al. (2010), we notice that

1+ 2h_2 14.1)
:———2—8, o
W="32 = 3%

where ey = 2M1§1(H "/H)? and where the prime denotes a derivative with respect to
the inflaton field.

This equation of state is directly related to the tensor-to-scalar ratio through » ~
24(1 4+ w). Since no tensor modes have been detected thus far, no deviation from
w = — 1 has been seen either. In fact the Planck 95% limit is » < 0.1 implying that
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Fig.1 The evolution of w as a function of the comoving scale k, using only the 5-year WMAP CMB data.
Red and yellow are the 95 and 68% confidence regions for the LV formalism. Blue and purple are the same
for the flow-equation formalism. From the outside inward, the colored regions are red, yellow, blue, and
purple. Image reproduced by permission from Ili¢ et al. (2010); copyright by APS

1 + w < 0.04. Moreover, the spectral tilt itself is also related to the rate of change of
w,

dIn(l + w)
_—mn 2 —
N (M — €m)

2ng = (ng — 1) +4en 1.4.2)

where ny = ZMEZ,IH”/H. Thus, if ny # 1 we have that either ny # 0 or ey # 0,
and consequently either w # —1 or w is not constant at the pivot scale.
We can rewrite Eq. (1.4.1) as

|
(1+w) == (0~ 1)+ UTH ~ 0.007 + "TH (14.3)

Without tuning, it is natural for ny ~ 0(8%1). However, classes of models exist where
nu ~ e€p. Thus, given the observations of the scale dependence of the initial curvature
fluctuations, we can conclude that 1 + w should lie between 0.005 and 0.04, which is
well within the current experimental bounds on the DE equation of state and roughly at
the limit of Euclid’s sensitivity. We have plotted the allowed values of w as a function
of scale in Fig. 1.

We should note that there are classes of models where the cancellation between ny
and the tilt in Eq. (I.4.3) is indeed natural which is why one cannot give a lower limit
for the amplitude of primordial gravitational waves and w lies arbitrarily close to — 1.
On the other hand, the observed period of inflation is probably in the middle of a long
slow-roll phase. By Eq. (1.4.2), this cancellation would only happen at one moment in
time. We have plotted the typical evolution of w in inflation in Fig. 2.

Despite being the only other physically motivated period of acceleration, inflation
does occur at a very different energy scale, between 1 MeV and GUT scale 10'° GeV,
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Fig. 2 The complete evolution -0.3 \ \ \
of w(N), from the flow-equation
results accepted by the CMB 04 | |
likelihood. Inflation is made to e
end at N = 0 where
w(N=0)=-1/3 -05 1
corresponding to €7 (N = 0)
= 1. For our choice of priors on 0.6 |
the slow-roll parameters at ’
N =0, we find that w decreases 5
rapidly towards — 1 (see inset) -0.7 N 1
and stays close to it during the
period when the observable 08 | |
scales leave the horizon ’
(N = 40-60). Image reproduced
by permission from Ili¢ et al. -0.9 1
(2010); copyright by APS
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while the energy scale for dark energy is 1073 eV. We should therefore be wary about
pushing the analogy too far.

1.4.3.3 When should we stop? Bayesian model comparison

In Sect. 1.4.3.1, we explained that the measurement of the equation of state w can
exclude some classes of models, including the cosmological constant of ACDM.
However, most classes of models allow the equation of state to be arbitrarily close to
that of vacuum energy, w = — 1, while still representing completely different physics.
Since precision cannot be infinite, we need to propose an algorithm to determine how
well this property should be measured. As we showed in Sect. 1.4.3.2 above, inflation
provides an example of a period that acceleration that, if it occurred at late times would
have been judged as consistent with w = — 1 given today’s constraints. We therefore
should require a better measurement, but how much better?

We approach the answer to this question from the perspective of Bayesian evidence:
at what precision does the non-detection of a deviation of the background expansion
history signifies that we should prefer the simpler null hypothesis that w = — 1.

In our Bayesian framework, the first model, the null hypothesis My, posits that
the background expansion is due to an extra component of energy density that has
equation of state w = — 1 at all times. The other models assume that the dark energy
is dynamical in a way that is well parametrized either by an arbitrary constant w (model
M) or by a linear fit w(a) = wo + (1 — a)w, (model M>).

Here we are using the constant and linear parametrization of w because on the
one hand we can consider the constant w to be an effective quantity, averaged over
redshift with the appropriate weighting factor for the observable, see Simpson and
Bridle (2006), and on the other hand because the precision targets for observa-
tions are conventionally phrased in terms of the figure of merit (FoM) given by
1//Cov(wo, wy)]. We will, therefore, find a direct link between the model prob-
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ability and the FoM. It would be an interesting exercise to repeat the calculations with
a more general model, using e.g. PCA, although we would expect to reach a similar
conclusion.

Bayesian model comparison aims to compute the relative model probability

P(Mold) _ P(d|Mo) P(Mo)

= (14.4)
P(Mild)  P(d|My) P(M1)

where we used Bayes formula and where By = P(d|My)/P(d|My) is called the
Bayes factor. The Bayes factor is the amount by which our relative belief in the two
models is modified by the data, with In By; > 0 (< 0) indicating a preference for
model 0 (model 1). Since model M is nested in M at the point w = — 1 and in
model M; at (wg = — 1, w, = 0), we can use the Savage—Dickey (SD) density ratio
(e.g. Trotta 2007a). Based on SD, the Bayes factor between the two models is just the
ratio of posterior to prior at w = — 1 or at (wgp = — 1, w, = 0), marginalized over all
other parameters.

Let us start by following Trotta et al. (2010) and consider the Bayes factor By
between a cosmological constant model w = — 1 and a free but constant effective w.
If we assume that the data are compatible with wegr = — 1 with an uncertainty o, then
the Bayes factor in favor of a cosmological constant is given by

 [2Ap+ A Ay AN\
B = ;T |:erfc <—E> — erfc (E)} s (145)

where for the evolving dark-energy model we have adopted a flat prior in the region
—1— A_ < weir < —1 + A4 and we have made use of the Savage—Dickey density
ratio formula (see Trotta 2007a). The prior, of total width A = A, + A_, is best
interpreted as a factor describing the predictivity of the dark-energy model under
consideration. In what follows we will consider example benchmark three models as
alternatives to w = — 1:

e Fluid-like: we assume that the acceleration is driven by a fluid the background
configuration of which satisfies both the strong energy condition and the null
energy condition, i.e., we have that Ay =2/3, A_ =0.

e Phantom: phantom models violate the null energy condition, i.e., are described by
Ay =0, A_ > 0, with the latter being possibly rather large.

e Small departures: We assume that the equation of state is very close to that of
vacuum energy, as seems to have been the case during inflation: A, = A_ = 0.01.

A model with a large A will be more generic and less predictive, and therefore is dis-
favored by the Occam’s razor of Bayesian model selection, see Eq. (1.4.5). According
to the Jeffreys’ scale for the strength of evidence, we have a moderate (strong) pref-
erence for the cosmological constant model for 2.5 < In Bg; < 5.0 (In Bg; > 5.0),
corresponding to posterior odds of 12:1-150:1 (above 150:1).

We plot in Fig. 3 contours of constant observational accuracy o in the model pre-
dictivity space (A_, A) for In B = 3.0 from Eq. (I.4.5), corresponding to odds
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Fig. 3 Required accuracy on
weff = — 1 to obtain strong
evidence against a model where
—1—A_ <wef < -1+ A4
as compared to a cosmological
constant model, w = — 1. For a
given o, models to the right and
above the contour are disfavored
with odds of more than 20:1

Error on w, Iog1 D{c)

Table1 Strength of evidence disfavoring the three example benchmark models against a ACDM expansion

history, using an indicative accuracy on w = — 1 from present data, o ~ 0.1

Model (Ay,A) In B today (o = 0.1)
Phantom (0, 10) 4.4 (strongly disfavored)
Fluid-like (2/3,0) 1.7 (slightly disfavored)
Small departures (0.01, 0.01) 0.0 (inconclusive)

Table 2 Required precision o of the value of w for future surveys in order to disfavor the three benchmark

models against w = — 1 for two different strengths of evidence
Model (A, A-) Required o for odds

> 20:1 > 150:1
Phantom (0, 10) 0.4 5% 1072
Fluid-like (2/3,0) 3x 1072 3x1073
Small departures (0.01,0.01) 4x1074 5x107°

of 20-1 in favor of a cosmological constant (slightly above the “moderate” thresh-
old. The figure can be interpreted as giving the space of extended models that can
be significantly disfavored with respect to w = — 1 at a given accuracy. The results
for the 3 benchmark models mentioned above (fluid-like, phantom or small depar-
tures from w = — 1) are summarized in Table 1. Instead, we can ask the question
which precision needs to reached to support ACDM at a given level. This is shown
in Table 2 for odds 20:1 and 150:1. We see that to rule out a fluid-like model, which
also covers the parameter space expected for canonical scalar field dark energy, we
need to reach a precision comparable to the one that the Euclid satellite is expected to
attain.

By considering the model M, we can also provide a direct link with the target
DETF FoM: Let us choose (fairly arbitrarily) a flat probability distribution for the
prior, of width Awp and Aw, in the dark-energy parameters, so that the value of
the prior is 1/(AwoAw,) everywhere. Let us assume that the likelihood is Gaussian
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in wo and w, and centered on ACDM (i.e., the data fully supports A as the dark
energy).

As above, we need to distinguish different cases depending on the width of the
prior. If you accept the argument of the previous section that we expect only a small
deviation from w = — 1, and set a prior width of order 0.01 on both wo and w,, then
the posterior is dominated by the prior, and the ratio will be of order 1 if the future
data is compatible with w = — 1. Since the precision of the experiment is comparable
to the expected deviation, both ACDM and evolving dark energy are equally probable
(as argued above and shown for model M) in Table 1), and we have to wait for a
detection of w # —1 or a significant further increase in precision (cf. the last row in
Table 2).

However, one often considers a much wider range for w, for example the fluid-
like model with wy € [—1/3, —1] and w, € [— 1, 1] with equal probability (and
neglecting some subtleties near w = — 1). If the likelihood is much narrower than
the prior range, then the value of the normalized posterior at w = — 1 will be
2/ (27 +/]|Cov(wg, wy)| = FoM/m (since we excluded w < — 1, else it would half
this value). The Bayes factor is then given by

AwygAw,FoM
- .

By = (1.4.6)

For the prior given above, we end up with By; ~ 4FoM/(37) ~ 0.4FoM. In order to
reach a “decisive” Bayes factor, usually characterized asIn B > 5Sor B > 150, we thus
need a figure of merit exceeding 375. Demanding that Euclid achieve a FoM > 500
places us, therefore, on the safe side and allows to reach the same conclusions (the
ability to favor the ACDM expansion history decisively if the data is in full agreement
with w = — 1) under small variations of the prior as well.

To summarize, the most direct effect of dynamical dark energy is the modification
of the expansion history. We used inflation as a dark-energy prototype to show that the
current experimental bounds of w &~ — 1.0 &= 0.1 are not yet sufficient to significantly
favor a parameter-free ACDM expansion history: we showed that we need to reach a
percent-level accuracy both to have any chance of observing a deviation of w from — 1
if the dark energy is similar to inflation, and because it is at this point thata w = — 1
expansion history beings to be favored decisively for prior widths of order 1.

We do not expect to be able to improve much our knowledge with a lower-precision
measurement of w, unless dark energy is significantly different from w = — 1 either
at late times or, for example, owing to a significant early-dark-energy component
(Pettorino et al. 2013). A large deviation would be the preferred situation for Euclid,
as then we would be able to observe the evolution of dark energy rather than just a
fixed state, which would be much more revealing. However, even if the expansion
history matches that of ACDM to some arbitrary precision, this does not imply that
the cosmological constant is accelerating the universe. Even on such configurations
a large amount of freedom exists which can then only be tested by investigating the
evolution of large-scale structure, to which we now turn.
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1.4.4 Dark-energy: linear perturbations and growth rate

Without a given model for dark energy, the evolution of its perturbations is not deter-
mined by the background expansion history. As we have explained in Sect. 1.4.1, the
cosmological constant is the only form of dark energy which does not carry fluctu-
ations at all, with all dynamical DE models clustering to a larger or smaller extent.
Since both dark matter and dark energy must interact (at least) through gravity, the
existence of these fluctuations would alter the geodesics on which pressureless dark
matter moves and therefore also change the clustering history of the dark matter. This
implies that the appropriate evolution history for perturbations is another consistency
check that ACDM must satisfy over and above the matching background expansion
history.

In order to meaningfully discuss dark-energy fluctuations, we must specify the
following:

o the field content of the dark-energy sector

o the initial conditions for the fluctuations

e cither the initial conditions for the DE background configuration and subsequent
evolution or a measurement of the background expansion history as discussed in
Sect. 1.4.3

e the rules for evolving the fluctuations (i.e., the model of dark energy)

A scalar—vector—tensor decomposition of the perturbations on the FLRW background
can be performed, where each of the spins evolves independently at linear order.
Since general relativity only contains tensors as dynamical degrees of freedom, any
dynamics in the scalar and vector modes is determined by the matter content. Therefore
fluctuations of dark energy provide a source for metric degrees of freedom.

Typically, a vector or tensor degree of freedom will contain all the lower helicities
and therefore source all the perturbations of lower spin. For example, a vector dark
energy (e.g., Einstein-Aether or TeVeS), will in general source both vector and scalar
perturbations. Higher-spin perturbations would affect polarization predictions for the
CMB if the dark energy contributed a significant part of the energy density during
recombination (Lim 2005), but otherwise are unconstrained and appear largely unin-
vestigated in the literature, where most attention is paid to scalar modes even in models
containing higher-spin matter. If the dark energy itself contains multiple degrees of
freedom, the perturbations will also feature internal modes which do not change any
of the potential observables, such as the gravitational potentials, and only affect how
they evolve in time.

Each of the new dynamical modes must be given appropriate initial conditions.
Typically, they should be set during inflation, where the dark energy plays the role of
a spectator field(s). In particular, the dark energy will contribute to the scalar adiabatic
mode, which is constant on scales larger than the cosmological horizon. In addition,
it will introduce new isocurvature modes with respect to matter and radiation. In
general, these only decay if the dark energy interacts with the other matter components
and equilibrates, in particular if the dark energy features a tracker in its evolution
history (Malquarti and Liddle 2002). These isocurvature modes affect the CMB and
are strongly constrained, but again only if the dark energy is a significant fraction
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of total energy density during recombination, such as in early dark energy models.
Otherwise, the isocurvature modes do not become relevant until the late universe where
they can affect structure formation or at least the magnitude of the ISW effect on the
CMB (Gordon and Hu 2004). If the dark-energy is not coupled to the inflaton and is not
involved in reheating, the isocurvature modes are likely to be statistically uncorrelated.

In practice, for the purpose of the late universe, the assumption is made that the
isocurvature modes are not present and only the scalar adiabatic mode is considered.
Let us take this point of view for the remainder of this section. Therefore what we
discuss now are the possible rules for evolving the linear scalar perturbations.

As discussed in Sect. 1.3.2, a “closure” relation between the dark matter density
perturbation Ay and the scalar gravitational potentials @ and ¥ is enough to describe
the evolution of all these variables Sawicki et al. (2013). We can define two variables
Q and 7,

—k*® =47GQ(a, k)a’pu Ay, @ = n(a, k¥, (1.4.7)

which provide such closure relations. However, these two variables are actually just
a recasting of the equations: they effectively parameterize the particular solutions
that are realized by the universe, rather than necessarily saying anything in particular
about the model: Q describes the energy density perturbations of dark energy in the
realized configuration, while 7 is a statement about the anisotropic stress carried by
that configuration. It should be clear that at any one particular redshift it is always be
possible to arrange the dark-energy configuration such that Q = n = 1.

In ACDM, the dark-matter density perturbation A s and the gravitational potential
@ are related through a constraint, if we ignore the other components in the uni-
verse, such as baryons and radiation. In dynamical dark-energy models with a single
additional degree of freedom, the Aj; equation is one of two coupled second-order
differential equations, with time- and scale-dependent coefficients determined by the
model.

At this point, one often employs the quasi-static approximation, i.e. neglecting all
time derivatives in the dynamical equation for @, which is equivalent to treating it as
a constraint and therefore the dark energy purely as an effective modification of the
constraint structure of general relativity, rather than as a full degree of freedom. This
sort of approximation seems to be valid inside the sound horizon for the dark energy
at least for some models, although it is not proven that it works in general. Under this
quasi-static approximation, in any (single) scalar—tensor theory (Sawicki et al. 2013)

27172 2 27172 2

a“H= + k*“hs a“H* 4+ k“hy

0=h — ) 1= hy —>—75 ) (1.4.8)
a“H* + k*h3 a*H?* + k*hs

where the h; are essentially arbitrary functions of time only, determined by the action
of the model. In fact, a more general argument given in Silvestri et al. (2013), proves
that simply requiring quasi-staticity and locality for the theory of dark energy implies
that both the functions Q and 7 are ratios of polynomials of (k /a H)? with coefficients
purely functions of time. Theories which break these assumptions, can have a different
structure, e.g., DGP where contributions appear at order k/aH as a result of the
existence of a singular brane source (Amin et al. 2008).

@ Springer



2 Page 40 of 345 L. Amendola et al. (The Euclid Theory Working Group)

Let us now discuss under what circumstances the two functions Q and 7 deviate
from their ACDM values considerably and therefore would presumably significantly
change observables.

1.4.4.1 Anisotropic stress: 1 # 1

A deviation of 1 from 1 results from anisotropic stress at first order in perturbations
of the fluid. This occurs in the early universe owing to relativistic neutrinos, but is
negligible at late times. Note that at second order in perturbations anisotropic stress is
always present (e.g., Ballesteros et al. 2012).

The existence of anisotropic stress is a frame-dependent question. Models such
as f(R) gravity which exhibit anisotropic stress, can be redefined through a frame
transformation to have none. In addition to specifying a model, we must therefore fix a
frame in order to discuss this properly. The natural frame to pick is the Jordan frame of
the baryons. This is defined as the frame related to the metric on the geodesics of which
visible matter propagates when in free fall. In many modified-gravity models, this is
also the Jordan frame for dark matter, i.e., gravity-like forces couple to just the EMT,
irrespective of species. All observations of perturbations to be performed by Euclid
are those of the motion of galaxies and light which directly probes the Jordan-frame
metric for these species.

Given the fixed baryon Jordan frame, the anisotropic stress appears whenever the
effective Planck mass is not constant, i.e., whenever the normalization of the kinetic
term of gravitons is time dependent, or when the speed of tensor modes is different
from the speed of light. Anisotropic stress therefore is a probe of the nature of the
action for gravitational waves. This occurs whenever there are dynamical degrees of
freedom which are coupled non-minimally to gravity. For example, the f(R) action,
seemingly without any additional dynamical degrees of freedom, can be Legendre
transformed into the equivalent (Chiba 2003)

1

S=—
2k?2

d*x /=g [PR + V() + Lo (W], (14.9)

with V(¢) = f — R(¢) fr, where the coupling between gravity and the scalar ¢ = fr
is explicit.

On the other hand, many coupled dark energy models are constructed to be very
similar to f(R), but introduce a split between the dark matter and visible matter
frames. When the visible matter is subdominant gravitationally, the growth of dark
matter perturbations in these two classes of models should be very similar. However,
all the measurements are always performed through the galaxies and weak lensing
and therefore observations are different; in particular, there is no anisotropic stress in
CDE models (Motta et al. 2013).

When dealing with multiple degrees of freedom, it is in principle possible to tune
them in such a way that the time-variation of the Planck mass cancels out and therefore
there would be no anisotropic stress despite non-minimal coupling to gravity in the
baryon Jordan frame. However, if the action for the two degrees of freedom is of a
different model class, it is not clear whether it is possible to perform this cancellation
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during more than one era of the evolution of the universe, e.g., matter domination (see
Saltas and Kunz 2011 for the case of f(R, G) gravity*).

1.4.4.2 Clustering: Q # 1

The implication of DE clustering, O # 1 is that the dark matter perturbations are
dressed with dark energy perturbations. This means that the effect of some particular
density of matter is to curve space differently than in ACDM. On scales where Q is a
constant, the dark-energy distribution follows that of the dark matter precisely. OGN
is an effective Newton’s constant for non-relativistic matter.

If the curvature of space sourced by the DM changes, then so does the gravitational
force acting on the dark matter. This implies that given a fixed background expansion
history, the growth rate of the perturbations is different, see Sect. 1.3.2.

As discussed in Sect. 1.4.1, only a cosmological constant is not perturbed at all.
Therefore only in this case do we have Q = 1 exactly up to relativistic corrections
near the cosmological horizon, k/aH ~ 1.

However, when the dark energy comprises a single dynamical degree of freedom
and has an EMT of perfect-fluid form (e.g., k-essence is the most general model of
this type, with quintessence 1.5.1 as a subclass) and the background expansion history
is very close to ACDM, the exact equations for the DE/DM system coupled through
gravity can be written as (Motta et al. 2013)

H H' k\?
" + (4 +o 3c§) '+ (3 +2o+ 3c§> D + (:S—H> o= (14.10)
3 a’H
— EQm (CSZSm + 3(6‘3 - Csz)k—zem>
k2
8+ H ' =30" 0 +20, = 7 ® (1.4.11)

with ¢2 = PbEe/ Phi the adiabatic sound speed and the prime denoting differentiation
w.r.t. In a. Deep inside the sound horizon, csk /a H > 1, the standard Poisson constraint
can be recovered from Eq. (1.4.10), i.e., O = 1. The growth rate of the dark matter
perturbation is then fully determined by the background expansion and is only different
from the ACDM one when the expansion history deviates significantly. This is the
standard case of quintessence, for which the sound speed ¢y = 1.

In the opposite limit of clustering dark energy, ¢s = 0, which is typical of k-essence
models such as the ghost-condensate (Arkani-Hamed et al. 2004b) or dusty dark energy
(Limetal. 2010), there is no sound horizon, just as for dark-matter dust, and in principle
the dark energy clusters. If the background expansion is now very close to ACDM
(i.e.,w~ —1and cg ~ 0), Eq. (1.4.10) reduces to the standard equation in ACDM. If
the initial conditions are adiabatic, the evolution of both the potential and of the dark
matter density is the same as in ACDM, i.e., O = 1 again. Any deviations are purely

4 All f(G) models with G the Gauss—Bonnet term as in fact a particular choice of non-minimally coupled
scalar—tensor theories, a subclass of the Horndeski lagrangian, see Kobayashi et al. (2011).
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a result of a different background expansion history. The above implies that given a
very similar expansion history to ACDM, dark-energy models comprising a single
degree of freedom that is minimally coupled do not significantly cluster (Sapone and
Kunz 2009) if the initial conditions are adiabatic and there is no anisotropic stress.

For significant clustering, a coupling of dark energy to gravity or dark matter
is required, with a strength similar to that of gravity (or possibly to other species,
with appropriately stronger couplings to compensate for the relatively smaller energy
density). All models which exhibit significant anisotropic stress also cluster signifi-
cantly, since the anisotropic stress is a sign of non-minimal coupling to gravity, see
Sect. 1.4.4.1. This implies that models such as coupled dark energy also cluster, since
they are effectively scalar—tensor models with non-universal couplings to matter.

If the couplings are universal, the most general class of models where Q # 1
while there is no anisotropic stress are kinetic gravity braiding models of dark energy
(Deffayet et al. 2010), which are a class of imperfect fluids (Pujolas et al. 2011). The
effective Planck mass is constant in these models, however there is still non-minimal
coupling to gravity on the level of the equations of motion. This implies that they
cluster significantly (Kimura and Yamamoto 2011).

In summary, given a fixed background expansion history close to ACDM, the
appearance of anisotropic stress is a sign of a modification of the action for gravitational
waves in the Jordan frame of baryons: either a time-varying effective Planck mass,
i.e., a normalization scale for graviton kinetic terms or a deviation of the speed of
gravitational waves from that of light. On the other hand, a detection of significant
clustering, resulting in a growth rate significantly deviating from the ACDM one, is a
sign of coupling of the dark-energy to gravity or some of the species with a strength
similar to that of gravity.

1.4.5 Parameterized frameworks for theories of modified gravity

As explained in earlier sections of this report, modified-gravity models cannot be dis-
tinguished from dark-energy models by using solely the FLRW background equations.
But by comparing the background expansion rate of the universe with observables
that depend on linear perturbations of an FRW spacetime we can hope to distinguish
between these two categories of explanations. An efficient way to do this is via a
parameterized, model-independent framework that describes cosmological perturba-
tion theory in modified gravity. We present here one such framework, the parameterized
post-Friedmann formalism (Baker et al. 2013)° that implements possible extensions
to the linearized gravitational field equations.

The parameterized post-Friedmann approach (PPF) is inspired by the parameterized
post-Newtonian (PPN) formalism (Will and Nordtvedt 1972; Will 1971), which uses
a set of parameters to summarize leading-order deviations from the metric of GR.
PPN was developed in the 1970s for the purpose of testing of alternative gravity
theories in the solar system or binary systems, and is valid in weak-field, low-velocity
scenarios. PPN itself cannot be applied to cosmology, because we do not know the

5 Not to be confused with a different formalism of the same name by other authors (Hu and Sawicki 2007b).

@ Springer



Cosmology and fundamental physics with the Euclid satellite Page 43 of 345 2

exact form of the linearized metric for our Hubble volume. Furthermore, PPN can
only test for constant deviations from GR, whereas the cosmological data we collect
contain inherent redshift dependence.

For these reasons the PPF framework is a parameterization of the gravitational field
equations (instead of the metric) in terms of a set of functions of redshift. A theory of
modified gravity can be analytically mapped onto these PPF functions, which in turn
can be constrained by data.

We begin by writing the perturbed Einstein field equations for spin-0 (scalar) per-
turbations in the form:

Gy = 8nG 8Ty, +8Ultnftri° +8U3;)°'f + gauge invariance fixing terms, (1.4.12)

where 87}, is the usual perturbed stress—energy tensor of all cosmologically-relevant
fluids. The tensor U l‘}‘f‘ric holds new terms that may appear in a modified theory,
containing perturbations of the metric (in GR such perturbations are entirely accounted
for by 6G ). $U Sbo'f * holds perturbations of any new degrees of freedom that are
introduced by modifications to gravity. A simple example of the latter is a new scalar
field, such as introduced by scalar—tensor or Galileon theories. However, new degrees
of freedom could also come from spin-0 perturbations of new tensor or vector fields,
Stiickelberg fields, effective fluids and actions based on curvature invariants (such as
f (R) gravity).

In principle there could also be new terms containing matter perturbations on
the RHS of Eq. (I1.4.12). However, for theories that maintain the weak equivalence
principle—i.e., those with a Jordan frame where matter is uncoupled to any new
fields—these matter terms can be eliminated in favor of additional contributions to
sUmEtic and sUSOT-.

The tensor SUﬁ‘fmc is then expanded in terms of two gauge-invariant perturbation

variables @ and I". & is one of the standard gauge-invariant Bardeen potentials, while

I isthe following combination of the Bardeen potentials: =1 / k(P +H¥). We use
I instead of the usual Bardeen potential ¥ because I has the same derivative order as
@ (whereas ¥ does not). We then deduce that the only possible structure of 8Ule‘ri°
that maintains the gauge-invariance of the field equations is a linear combination of
&, I and their derivatives, multiplied by functions of the cosmological background
(see Egs. (1.4.13)—(1.4.17) below).

sU 3f 1 is similarly expanded in a set of gauge-invariant potentials { X; } that contain
the new degrees of freedom. Baker et al. (2013) presented an algorithm for constructing
the relevant gauge-invariant quantities in any theory.

For concreteness we will consider here a theory that contains only one new degree
of freedom and is second-order in its equations of motion (a generic but not watertight
requirement for stability, see Woodard 2007). Then the four components of Eq. (1.4.12)
are:

— %8G = 87a>G pydy + Aok’ + Fok* I + apk®§ + ark i + KM + 2€)
(1.4.13)
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—a%G? =V, [SnazG ot (1 + a0 + Bok® + IokI* + Bok

B+ KMo (b + 2e)] (1.4.14)
a?8Gt = 387a>G py Iy + Cok>® + C1kD + Jok* I + Jik I + yok* %

+yikx + 2% (1.4.15)

+KEMp (D + 2€) (1.4.16)

25 Ai 2 ~  Dp 2 N €
a8Gj=87TaGpM(l—i—wM)EM—i—DOCI)—i—T@—i-KOF—i-TF

A €1 X € 3
Yeog+ 254 23 (14.17)

k k2

where SCA}; = SG; — %8G’,§. Each of the lettered coefficients in Eqs. (I1.4.13)—(1.4.17)
is a function of cosmological background quantities, i.e., functions of time or redshift;
this dependence has been suppressed above for clarity. Potentially, the coefficients
could also depend on scale, but this dependence is not arbitrary Silvestri et al. 2013).
These PPF coefficients are the analogy of the PPN parameters; they are the objects
that a particular theory of gravity ‘maps onto’, and the quantities to be constrained
by data. Numerous examples of the PPF coefficients corresponding to well-known
theories are given in Baker et al. (2013).

The final terms in Egs. (I.4.13)—(1.4.16) are present to ensure the gauge invariance
of the modified field equations, as is required for any theory governed by a covariant
action. The quantities M o, Mg and M p are all pre-determined functions of the back-
ground. € and v are off-diagonal metric perturbations, so these terms vanish in the
conformal Newtonian gauge. The gauge-fixing terms should be regarded as a piece of
mathematical book-keeping; there is no constrainable freedom associated with them.

One can then calculate observable quantities—such as the weak lensing kernel
or the growth rate of structure f(z)—using the parameterized field Egs. (I.4.13)-
(1.4.17). Similarly, they can be implemented in an Einstein—Boltzmann solver code
such as CAMB (Lewis et al. 2000b) to utilize constraints from the CMB. If we take
the divergence of the gravitational field equations [i.e., the unperturbed equivalent
of Eq. (I.4.12)], the left-hand side vanishes due to the Bianchi identity, while the
stress—energy tensor of matter obeys its standard conservation equations (since we are
working in the Jordan frame). Hence the U -tensor must be separately conserved, and
this provides the necessary evolution equation for the variable yx:

5 (v [upmerie + utet]) =o. 14.18)

Equation (I.4.18) has two components. If one wishes to treat theories with more than
two new degrees of freedom, further information is needed to supplement the PPF
framework.

The full form of the parameterized Eqs. (I1.4.13)—(1.4.17) can be simplified in the
‘quasistatic regime’, that is, significantly sub-horizon scales on which the time deriva-
tives of perturbations can be neglected in comparison to their spatial derivatives (Hu
and Sawicki 2007b). Quasistatic lengthscales are the relevant stage for weak lensing
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surveys and galaxy redshift surveys such as those of Euclid. A common parameteri-
zation used on these scales has the form:

2V2P = 87a’G p(a, k) py Ay, (L4.19)
¢ _ (a, k) (1.4.20)
v =yla, s A

where {1, v} are two functions of time and scale to be constrained. This parameter-
ization has been widely employed (Bertschinger and Zukin 2008; Daniel and Linder
2010; Linder and Cahn 2007; Bean and Tangmatitham 2010; Pogosian et al. 2010;
Zhao et al. 2010; Dossett et al. 2011; Hojjati et al. 2011, 2012). It has the advantages
of simplicity and somewhat greater physical transparency: w(a, k) can be regarded
as describing evolution of the effective gravitational constant, while y (a, k) can, to a
certain extent, be thought of as acting like a source of anisotropic stress (see Sect. 1.4.4).

Let us make a comment about the number of coefficient functions employed in the
PPF formalism. One may justifiably question whether the number of unknown func-
tions in Eqs. (1.4.13)—(1.4.17) could ever be constrained. In reality, the PPF coefficients
are not all independent. The form shown above represents a fully agnostic description
of the extended field equations. However, as one begins to impose restrictions in theory
space (even the simple requirement that the modified field equations must originate
from a covariant action), constraint relations between the PPF coefficients begin to
emerge. These constraints remove freedom from the parameterization.

Even so, degeneracies will exist between the PPF coefficients. It is likely that a
subset of them can be well-constrained, while another subset have relatively little
impact on current observables and so cannot be tested. In this case it is justifiable to
drop the untestable terms. Note that this realization, in itself, would be an interesting
statement—that there are parts of the gravitational field equations that are essentially
unknowable.

Finally, we note that there is also a completely different, complementary approach
to parameterizing modifications to gravity. Instead of parameterizing the linearized
field equations, one could choose to parameterize the perturbed gravitational action.
This approach has been used recently to apply the standard techniques of effective field
theory to modified gravity; see Battye and Pearson (2012), Bloomfield et al. (2013),
Gubitosi et al. (2013) and references therein.

L.5 Models of dark energy and modified gravity

In this section we review a number of popular models of dynamical DE and MG. This
section is more technical than the rest and it is meant to provide a quick but self-
contained review of the current research in the theoretical foundations of DE models.
The selection of models is of course somewhat arbitrary but we have tried to cover
the most well-studied cases and those that introduce new and interesting observable
phenomena.
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L5.1 Quintessence

In this review, we refer to scalar field models with canonical kinetic energy in Einstein’s
gravity as “quintessence models”. Scalar fields are obvious candidates for dark energy,
as they are for the inflaton, for many reasons: they are the simplest fields since they
lack internal degrees of freedom, do not introduce preferred directions, are typically
weakly clustered (as discussed later on), and can easily drive an accelerated expansion.
If the kinetic energy has a canonical form, the only degree of freedom is then provided
by the field potential (and of course by the initial conditions). The typical requirement
is that the potentials are flat enough to lead to the slow roll inﬂation today with an
energy scale ppg ~ 1071234 , and a mass scale mg < 10~ Be

Quintessence models are the prototypical DE models (Caldwell etal. 1998) and as
such are the most studied ones. Since they have been explored in many reviews of DE,
we limit ourselves here to a few remarks.°

The quintessence model is described by the action

/d“x./_[ R+£¢:|+SM, L¢=—%gﬂ”aﬂ¢au¢—x/(¢), (L5.1)

where k2 = 87 G and R is the Ricci scalar and Sy, is the matter action. The fluid
satisfies the continuity equation

pm +3H (py + pu) = 0. (1.5.2)

The energy—momentum tensor of quintessence is

SERVE AT >

1
= 3,000 — guuv [zg“ﬁawaw + V(d))} . (1.5.4)

As we have already seen, in a FLRW background, the energy density py and the
pressure py of the field are

1 1
pp =T = ¢> +V @), py= 3T’(¢) 567 -V@., 155

which give the equation of state

o
wy=Pe & 2V (1.5.6)

Py P> +2V(P)

6 This subsection is based on Amendola and Tsujikawa (2010).
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In the flat universe, Einstein’s equations give the following equations of motion:

5 211 ‘9
H == [5¢ + V() + pM], (15.7)
2
1= =5 (82 + ow + p). (15.8)

where k2 = 87 G. The variation of the action (I.5.1) with respect to ¢ gives
¢+3Hp+Vy=0, (L5.9)

where V4 = dV /d¢.

During radiation or matter dominated epochs, the energy density pjs of the fluid
dominates over that of quintessence, i.e., py > pg. If the potential is steep so that
the condition ¢%/2 > V(¢) is always satisfied, the field equation of state is given
by wg = 1 from Eq. (I.5.6). In this case the energy density of the field evolves as
P X a~®, which decreases much faster than the background fluid density.

The condition wy < — 1/3 is required to realize the late-time cosmic acceleration,
which translates into the condition ¢?> < V (¢). Hence the scalar potential needs to
be shallow enough for the field to evolve slowly along the potential. This situation is
similar to that in inflationary cosmology and it is convenient to introduce the following
slow-roll parameters (Bassett et al. 2006)

1 (Ve Voo
=__ (), = 92 1.5.10
6.&‘ 2/(2 ( V ) nS K2 V ( )

If the conditions €¢; <« 1 and [ns] < 1 are satisﬁ@d, the evolution of the field is
sufficiently slow so that ¢* < V(¢) and |$| < |3H| in Egs. (I.5.7) and (1.5.9).
From Eq. (1.5.9) the deviation of wy from — 1 is given by

2
Ve

_ 15.11
9H2(, + 1)2py (>1D

I+wy =

where & = ¢ JG3H $). This shows that wgy is always larger than — 1 for a positive
potential and energy density. In the slow-roll limit, |£;| < 1 and ¢>/2 < V(¢), we
obtain 1 + wy = 2¢,/3 by neglecting the matter fluid in Eq. (1.5.7), i.e., 3H? ~
k2V (¢). The deviation of wg from — 1 is characterized by the slow-roll parameter
€5. It is also possible to consider Eq. (I.5.11) as a prescription for the evolution of the
potential given wy(z) and to reconstruct a potential that gives a desired evolution of
the equation of state (subject to w € [— 1, 1]). This was used, for example, in Bassett
et al. (2002).

However, in order to study the evolution of the perturbations of a quintessence
field it is not even necessary to compute the field evolution explicitly. Rewriting the
perturbation equations of the field in terms of the perturbations of the density contrast
34 and the velocity 0 in the conformal Newtonian gauge, one finds (see, e.g., Kunz
and Sapone 2006, “Appendix A” section) that they correspond precisely to those of a
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fluid, (1.3.17) and (1.3.18), with 7 = 0 and 8p = ¢28p +3aH (c? — c2)(1 +w)pl/ k>
with cf = 1. The adiabatic sound speed, c,, is defined in Eq. (I.3.36). The large value
of the sound speed Cf, equal to the speed of light, means that quintessence models do
not cluster significantly inside the horizon (see Sapone and Kunz 2009; Sapone et al.
2010, and Sect. 1.8.6 for a detailed analytical discussion of quintessence clustering
and its detectability with future probes, for arbitrary cf,).

Many quintessence potentials have been proposed in the literature. A simple crude
classification divides them into two classes, (i) “freezing” models and (ii) “thawing”
models (Caldwell and Linder 2005). In class (i) the field was rolling along the potential
in the past, but the movement gradually slows down after the system enters the phase
of cosmic acceleration. The representative potentials that belong to this class are

(i) Freezing models

o V(¢)=M""p™" (n>0),
o V(p) = Mg exp <a¢2/m§1).

The former potential does not possess a minimum and hence the field rolls down the
potential toward infinity. This appears, for example, in the fermion condensate model
as a dynamical supersymmetry breaking (Binétruy 1999). The latter potential has a
minimum at which the field is eventually trapped (corresponding to wy = — 1). This
potential can be constructed in the framework of supergravity (Brax and Martin 1999).

In thawing models (ii) the field (with mass m) has been frozen by Hubble friction
[i.e., the term H¢ in Eq. (1.5.9)] until recently and then it begins to evolve once H
drops below mg. The equation of state of DE is wy ~ —1 at early times, which is
followed by the growth of wg. The representative potentials that belong to this class
are

(ii) Thawing models

o V(®) = Vo+ M*"¢" (n>0),
o V(p) = M*cos’(¢/f).

The former potential is similar to that of chaotic inflation (n = 2, 4) used in the early
universe (with Vy = 0) (Linde 1983), while the mass scale M is very different. The
model with n = 1 was proposed by Kallosh et al. (2003) in connection with the
possibility to allow for negative values of V (¢). The universe will collapse in the
future if the system enters the region with V (¢) < 0. The latter potential appears as a
potential for the Pseudo-Nambu—Goldstone Boson (PNGB). This was introduced by
Frieman et al. (1995) in response to the first tentative suggestions that the universe may
be dominated by the cosmological constant. In this model the field is nearly frozen at
the potential maximum during the period in which the field mass my is smaller than
H, but it begins to roll down around the present (my >~ H).

Potentials can also be classified in several other ways, e.g., on the basis of the exis-
tence of special solutions. For instance, tracker solutions have approximately constant
wy and §24 along special attractors. A wide range of initial conditions converge to
a common, cosmic evolutionary tracker. Early DE models contain instead solutions
in which DE was not negligible even during the last scattering. While in the specific
Euclid forecasts Sect. 1.8 we will not explicitly consider these models, it is worthwhile
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to note that the combination of observations of the CMB and of large scale structure
(such as Euclid) can dramatically constrain these models drastically improving the
inverse area figure of merit compared to current constraints, as discussed in Huterer
and Peiris (2007).

1.5.2 K-essence

In a quintessence model it is the potential energy of a scalar field that leads to the
late-time acceleration of the expansion of the universe; the alternative, in which the
kinetic energy of the scalar field which dominates, is known as k-essence. Models of
k-essence are characterized by an action for the scalar field of the following form

S = /d4x V=gp(@, X), (L5.12)

where X = (1/2)g""V,¢V,¢. The energy density of the scalar field is given by

py =2X-2 — p, (15.13)

and the pressure is simply py = p(¢, X). Treating the k-essence scalar as a perfect
fluid, this means that k-essence has the equation of state

__r (15.14)

We

where the subscript, x indicates a derivative with respect to X. Clearly, with a suitably
chosen p the scalar can have an appropriate equation of state to allow it to act as dark
energy.

The dynamics of the k-essence field are given by a continuity equation

po = —3H(py + py). 15.15)

or equivalently by the scalar equation of motion

92 9
GMV, Vyp +2X—L P g (5.16)
AXop 3¢
where 5
ap 9°p
GW = gV 4 —ZVheVYe. 1.5.17
xé Taxz ¢V'p ( )

For this second order equation of motion to be hyperbolic, and hence physically

meaningful, we must impose

1 42x XX _ . (15.18)
Psx

K-essence was first proposed by Armendariz-Picon et al. (2000, 2001), where it was
also shown that tracking solutions to this equation of motion, which are attractors in the
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space of solutions, exist during the radiation and matter-dominated eras for k-essence
in a similar manner to quintessence.
The speed of sound for k-essence fluctuation is

2 P.x

2o Px (15.19)
Y pox +2Xp.xx

So that whenever the kinetic terms for the scalar field are not linear in X, the speed of
sound of fluctuations differs from unity. It might appear concerning that superluminal
fluctuations are allowed in k-essence models (and even necessarily arise in models
where k-essence dark energy solves the coincidence problem Bonvin et al. 2006).
However, it was shown in Babichev et al. (2008) that this does not lead to any causal
paradoxes.

1.5.3 Coupled dark-energy models

A first class of models in which dark energy shows dynamics, in connection with
the presence of a fifth force different from gravity, is the case of ‘interacting dark
energy’: we consider the possibility that dark energy, seen as a dynamical scalar field,
may interact with other components in the universe. This class of models effectively
enters in the “explicit modified gravity models” in the classification above, because
the gravitational attraction between dark matter particles is modified by the presence
of a fifth force. However, we note that the anisotropic stress for DE is still zero in the
Einstein frame, while it is, in general, non-zero in the Jordan frame. In some cases
(when a universal coupling is present) such an interaction can be explicitly recast
in a non-minimal coupling to gravity, after a redefinition of the metric and matter
fields (Weyl scaling). We would like to identify whether interactions (couplings) of
dark energy with matter fields, neutrinos or gravity itself can affect the universe in an
observable way.

In this subsection, we give a general description of the following main interacting
scenarios:

couplings between dark energy and baryons;

couplings between dark energy and dark matter (coupled quintessence);
couplings between dark energy and neutrinos (growing neutrinos, MaVaNs);
universal couplings with all species (scalar—tensor theories and f(R)).

el o e

In all these cosmologies the coupling introduces a fifth force, in addition to standard
gravitational attraction. The presence of a new force, mediated by the DE scalar field
(sometimes called the ‘cosmon’ Wetterich 1988, seen as the mediator of a cosmolog-
ical interaction) has several implications and can significantly modify the process of
structure formation. We will discuss cases (2) and (3) in Sect. II.

In these scenarios the presence of the additional interaction couples the evolution
of components that in the standard A-FLRW would evolve independently. The stress—
energy tensor T, of each species is, in general, not conserved—only the total stress—
energy tensor is. Usually, at the level of the Lagrangian, the coupling is introduced by
allowing the mass m of matter fields to depend on a scalar field ¢ via a function m (¢)
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whose choice specifies the interaction. This wide class of cosmological models can
be described by the following action:

1 -
S= /d4xv—g [— 53“¢>3M¢> —U@) —m(d)yy + Ekin[W]i|v (1.5.20)

where U (¢) is the potential in which the scalar field ¢ rolls, ¢ describes matter fields,
and g is defined in the usual way as the determinant of the metric tensor, whose
background expression is g, = diag[— a2, a?, 4%, a?).

For a general treatment of background and perturbation equations we refer to
Kodama and Sasaki (1984), Amendola (2000a, 2004) and Pettorino and Baccigalupi
(2008). Here the coupling of the dark-energy scalar field to a generic matter component
(denoted by index «) is treated as an external source Q 4, in the Bianchi identities:

Vo Ty = Qs (1.5.21)

with the constraint
> QO =0. (1.5.22)
o

The zero component of (I.5.21) gives the background conservation equations:

dpy _ d

i —3HA + wg)py + ,3((1))&(1 — 3Wq) Pas (1.5.23)
dpe _ —3H( + we) pa — ,3(45)d—¢(1 — 3wq) P (1.5.24)
dn dn

for a scalar field ¢ coupled to one single fluid & with a function 8(¢), which in general
may not be constant. The choice of the mass function m(¢) corresponds to a choice
of B(¢) and equivalently to a choice of the source Q (), and specifies the strength of
the coupling according to the following relations:

d1nm(g) o
Q@ = TTa A, my = iy e PO? (1.5.25)

where m,, is the constant Jordan-frame bare mass. The evolution of dark energy is
related to the trace T, and, as a consequence, to density and pressure of the species «.
We note that a description of the coupling via an action such as (I1.5.20) is originally
motivated by the wish to modify GR with an extension such as scalar—tensor theories.
In general, one of more couplings (Brookfield et al. 2008) can be active.

As for perturbation equations, it is possible to include the coupling in a modified
Euler equation:

dv, d¢
—-—+ (H - ﬂ(¢)—) Vo — V [®y + Bp] = 0. (1.5.26)
dn dn
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The Euler equation in cosmic time (df = a dt) can also be rewritten in the form of an
acceleration equation for particles at position r:

- G
Vo= —Hvy -V “rm“. (L5.27)

The latter expression explicitly contains all the main ingredients that affect dark-energy
interactions:

1. a fifth force V [®, + B¢] with an effective Ga = Gyl + 2,82(q>)];
2. avelocity dependent term Hvy=H (1 - ﬂ(qb)%) Vo
3. atime-dependent mass for each particle «, evolving according to (1.5.25).

The relative significance of these key ingredients can lead to a variety of potentially
observable effects, especially on structure formation. We will recall some of them in
the following subsections as well as, in more detail, for two specific couplings in the
dark matter Sects. I1.10, I1.8 of this report.

1.5.3.1 Dark energy and baryons

A coupling between dark energy and baryons is active when the baryon mass is a
function of the dark-energy scalar field: m;, = m(¢). Such a coupling is constrained
to be very small: main bounds come from tests of the equivalence principle and solar
system constraints (Bertotti et al. 2003). More in general, depending on the coupling,
bounds on the variation of fundamental constants over cosmological time-scales may
have to be considered (Marra and Rosati 2005; Dent et al. 2008, 2009; Martins et al.
2010, and references therein). It is presumably very difficult to have significant cos-
mological effects due to a coupling to baryons only. However, uncoupled baryons can
still play a role in the presence of a coupling to dark matter (see Sect. 1.6 on nonlinear
aspects).

1.5.3.2 Dark energy and dark matter

An interaction between dark energy and dark matter (CDM) is active when CDM mass
is a function of the dark-energy scalar field: m. = m.(¢). In this case the coupling is
not affected by tests on the equivalence principle and solar-system constraints and can
therefore be stronger than the one with baryons. One may argue that dark-matter par-
ticles are themselves coupled to baryons, which leads, through quantum corrections,
to direct coupling between dark energy and baryons. The strength of such couplings
can still be small and was discussed in Dent et al. (2009) for the case of neutrino—dark-
energy couplings. Also, quantum corrections are often recalled to spoil the flatness of
a quintessence potential. However, it may be misleading to calculate quantum correc-
tions up to a cutoff scale, as contributions above the cutoff can possibly compensate
terms below the cutoff, as discussed in Wetterich (2008).

Typical values of S presently allowed by observations (within current CMB data) are
within the range 0 < 8 < 0.06 (at 95% CL for a constant coupling and an exponential
potential) (Bean et al. 2008b; Amendola et al. 2003b; Amendola 2004; Amendola
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and Quercellini 2003), or possibly more (La Vacca et al. 2009; Kristiansen et al.
2010) if neutrinos are taken into account or for more realistic time-dependent choices
of the coupling. This framework is generally referred to as ‘coupled quintessence’
(CQ). Various choices of couplings have been investigated in literature, including
constant and varying (¢) (Amendola 2000a; Mangano et al. 2003; Amendola 2004;
Koivisto 2005; Guo et al. 2007; Quartin et al. 2008; Quercellini et al. 2008; Pettorino
and Baccigalupi 2008; Gannouji et al. 2010; Pourtsidou et al. 2013) or within a PPF
formalism (Skordis et al. 2015).

The presence of a coupling (and therefore, of a fifth force acting among dark-matter
particles) modifies the background expansion and linear perturbations (Amendola
2000b,a, 2004), therefore, affecting CMB and cross-correlation of CMB and LSS
(Amendola and Quercellini 2003; Amendola 2004; Amendola et al. 2003b; Amendola
and Quercellini 2004; Bean et al. 2008b; La Vacca et al. 2009; Kristiansen et al. 2010;
Xia 2009; Mainini and Mota 2012; Amendola et al. 2011).

Furthermore, structure formation itself is modified (Maccio et al. 2004; Manera
and Mota 2006; Koivisto 2005; Mainini and Bonometto 2006; Sutter and Ricker 2008;
Abdalla et al. 2009; Mota 2008; Bertolami et al. 2009; Wintergerst and Pettorino 2010;
Baldi et al. 2010; Baldi 2011b, a; Baldi and Pettorino 2011; Baldi and Viel 2010; Li
et al. 2011; Li and Barrow 2011b; Zhao et al. 2010; Marulli et al. 2012).

An alternative approach, also investigated in the literature (Mangano et al. 2003;
Viliviita et al. 2008, 2010; Majerotto et al. 2010; Gavela et al. 2009, 2010; Caldera-
Cabral et al. 2009b; Schaefer et al. 2008; Caldera-Cabral et al. 2009a), where the
authors consider as a starting point Eq. (I.5.21): the coupling is then introduced by
choosing directly a covariant stress—energy tensor on the RHS of the equation, treating
dark energy as a fluid and in the absence of a starting action. The advantage of this
approach is that a good parameterization allows us to investigate several models of dark
energy at the same time. Problems connected to instabilities of some parameterizations
or to the definition of a physically-motivated speed of sound for the density fluctuations
can be found in Viliviita et al. (2008). It is also possible to both take a covariant form
for the coupling and a quintessence dark-energy scalar field, starting again directly
from Eq. (I.5.21). This has been done, e.g., in Boehmer et al. (2008) and Boehmer
et al. (2010). At the background level only, Chimento et al. (2003), Chimento and
Pavon (2006), del Campo et al. (2006), and Olivares et al. (2006) have also considered
which background constraints can be obtained when starting from a fixed present ratio
of dark energy and dark matter. The disadvantage of this approach is that it is not clear
how to perturb a coupling that has been defined as a background quantity.

A Yukawa-like interaction was investigated (Farrar and Peebles 2004; Das et al.
2006), pointing out that coupled dark energy behaves as a fluid with an effective
equation of state w < —1, though staying well defined and without the presence of
ghosts (Das et al. 2006).
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For an illustration of observable effects related to dark-energy—dark-matter inter-
action see also Sect. (II.10) of this report.

1.5.3.3 Dark energy and neutrinos

A coupling between dark energy and neutrinos can be even stronger than the one with
dark matter and as compared to gravitational strength. Typical values of g are order
50-100 or even more, such that even the small fraction of cosmic energy density in
neutrinos can have a substantial influence on the time evolution of the quintessence
field. In this scenario neutrino masses change in time, depending on the value of
the dark-energy scalar field ¢. Such a coupling has been investigated within MaVaNs
(Fardon et al. 2004; Peccei 2005; Bi et al. 2005; Afshordi et al. 2005; Weiner and Zurek
2006; Das and Weiner 2011; Takahashi and Tanimoto 2006; Spitzer 2006; Bjelde
et al. 2008; Brookfield et al. 2006a,b) and more recently within growing neutrino
cosmologies (Amendola et al. 2008a; Wetterich 2007; Mota et al. 2008; Wintergerst
et al. 2010; Wintergerst and Pettorino 2010; Pettorino et al. 2010; Brouzakis et al.
2011; Baldi et al. 2011). In this latter case, DE properties are related to the neutrino
mass and to a cosmological event, i.e., neutrinos becoming non-relativistic. This leads
to the formation of stable neutrino lumps (Mota et al. 2008; Wintergerst et al. 2010;
Baldi et al. 2011) at very large scales only (~100Mpc and beyond) as well as to
signatures in the CMB spectra (Pettorino et al. 2010). For an illustration of observable
effects related to this case see Sect. I1.8 of this report.

1.5.3.4 Scalar—tensor theories

Scalar-tensor theories (Wetterich 1988; Hwang 1990a,b; Damour et al. 1990; Casas
etal. 1991, 1992; Wetterich 1995; Uzan 1999; Perrotta et al. 2000; Faraoni 2000; Bois-
seau et al. 2000; Riazuelo and Uzan 2002; Perrotta and Baccigalupi 2002; Schimd et al.
2005; Matarrese et al. 2004; Pettorino et al. 2005a, b; Capozziello et al. 2007; Appleby
and Weller 2010) extend GR by introducing a non-minimal coupling between a scalar
field (acting also as dark energy) and the metric tensor (gravity); they are also some-
times referred to as ‘extended quintessence’. We include scalar—tensor theories among
‘interacting cosmologies’ because, via a Weyl transformation, they are equivalent to
a GR framework (minimal coupling to gravity) in which the dark-energy scalar field
¢ is coupled (universally) to all species (Wetterich 1988; Maeda 1989; Wands 1994,
Esposito-Farese and Polarski 2001; Pettorino and Baccigalupi 2008; Catena et al.
2007). In other words, these theories correspond to the case where, in action (1.5.20),
the mass of all species (baryons, dark matter, ...) is a function m = m(¢) with the
same coupling for every species «. Indeed, a description of the coupling via an action
such as (1.5.20) is originally motivated by extensions of GR such as scalar—tensor the-
ories. Typically the strength of the scalar-mediated interaction is required to be orders
of magnitude weaker than gravity (Lee 2010; Pettorino et al. 2005a and references
therein for recent constraints). It is possible to tune this coupling to be as small as is
required—for example by choosing a suitably flat potential V' (¢) for the scalar field.
However, this leads back to naturalness and fine-tuning problems.
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In Sects. 1.5.4 and 1.5.5, we will discuss in more detail a number of ways in which
new scalar degrees of freedom can naturally couple to standard model fields, while
still being in agreement with observations. We mention here only that the presence
of chameleon mechanisms (Brax et al. 2004, 2008, 2010a; Mota and Winther 2011;
Mota and Shaw 2007; Hui et al. 2009; Davis et al. 2012b) can, for example, modify
the coupling depending on the environment. In this way, a small (screened) coupling
in high-density regions, in agreement with observations, is still compatible with a
bigger coupling (8 ~ 1) active in low density regions. In other words, a dynamical
mechanism ensures that the effects of the coupling are screened in laboratory and solar
system tests of gravity.

Typical effects of scalar—tensor theories on CMB and structure formation include:

e enhanced ISW (Pettorino et al. 2005a; Giannantonio 2009; Zhao et al. 2010);
e violation of the equivalence principle: extended objects such as galaxies do not all
fall at the same rate (Amendola and Quercellini 2004; Hui et al. 2009).

However, it is important to remark that screening mechanisms are meant to protect
the scalar field in high-density regions (and therefore allow for bigger couplings in low
density environments) but they do not address problems related to self-acceleration
of the DE scalar field, which still usually require some fine-tuning to match present
observations on w. f(R) theories, which can be mapped into a subclass of scalar—
tensor theories, will be discussed in more detail in Sect. 1.5.4.

1.5.4 f(R) gravity

In parallel to models with extra degrees of freedom in the matter sector, such as
interacting quintessence (and k-essence, not treated here), another promising approach
to the late-time acceleration enigma is to modify the left-hand side of the Einstein
equations and invoke new degrees of freedom, belonging this time to the gravitational
sector itself. One of the simplest and most popular extensions of GR and a known
example of modified gravity models is the f(R) gravity in which the 4-dimensional
action is given by some generic function f(R) of the Ricci scalar R (for an introduction
see, e.g., Amendola and Tsujikawa 2010):

1
S = W d4X\/ _gf(R) + Sm(guw .‘Ilm)’ (1528)

where as usual ¥ = 87G, and S, 1s a matter action with matter fields ¥;,,. Here G
is a bare gravitational constant: we will see that the observed value will in general be
different. As mentioned in the previously, it is possible to show that f (R) theories can
be mapped into a subset of scalar—tensor theories and, therefore, to a class of interact-
ing scalar field dark-energy models universally coupled to all species. When seen in
the Einstein frame (Wetterich 1988; Maeda 1989; Wands 1994; Esposito-Farese and
Polarski 2001; Pettorino and Baccigalupi 2008; Catena et al. 2007), action (I.5.28) can,
therefore, be related to the action (I.5.20) shown previously. Here we describe f (R)
in the Jordan frame: the matter fields in S, obey standard conservation equations and,
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therefore, the metric g, corresponds to the physical frame (which here is the Jordan
frame).
There are two approaches to deriving field equations from the action (I.5.28).

e (I) The metric formalism
The first approach is the metric formalism in which the connections IS, are the
usual connections defined in terms of the metric g, . The field equations can be
obtained by varying the action (I.5.28) with respect to g,,,:

1
F(R)Ruv(8) = 5 f (R)guv = Vi Vo F(R) + g LIF (R) = Ty, (15.29)

where F(R) = df/0R (we also use the notation fr = 9df/0R, frr =
32 f/9R?), and T, wv 1s the matter energy—momentum tensor. The trace of
Eq. (I.5.29) is given by

30F(R) + F(R)R — 2f(R) = «°T, (1.5.30)

where T = g"*"T,, = —p + 3P. Here p and P are the energy density and the
pressure of the matter, respectively.

e (II) The Palatini formalism

The second approach is the Palatini formalism, where F/g‘y and g, are treated as
independent variables. Varying the action (I.5.28) with respect to g, gives

1
FIR) Ry () = 5 f (R)gyw = KTy, 1.5.31)

where R, (I") is the Ricci tensor corresponding to the connections ng' In gen-
eral this is different from the Ricci tensor R, (g) corresponding to the metric
connections. Taking the trace of Eq. (I.5.31), we obtain

F(R)R —2f(R) = k*T, (1.5.32)

where R(T') = gV R, (I") is directly related to T'. Taking the variation of the
action (I.5.28) with respect to the connection, and using Eq. (I1.5.31), we find

KTy _FR(D) - f

1 1
Ru.v(g)_zg/wR(g) = g,uv"‘;(vy,vvF_guvDF)

F 2F
3 1
~357 [BMFB,,F — zg,w(VF)Z] ) (1.5.33)

InGR we have f(R) = R—2A and F(R) = 1, so that the term [JF (R) in Eq. (1.5.30)
vanishes. In this case both the metric and the Palatini formalisms give the relation
R =—k?T = «*( p —3P), which means that the Ricci scalar R is directly determined
by the matter (the trace 7).
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In modified gravity models where F'(R) is a function of R, the term [JF (R) does not
vanish in Eq. (1.5.30). This means that, in the metric formalism, there is a propagating
scalar degree of freedom, i = F(R). The trace Eq. (1.5.30) governs the dynamics of
the scalar field ¥—dubbed “scalaron” (Starobinsky 1980). In the Palatini formalism
the kinetic term LJF' (R) is not present in Eq. (I.5.32), which means that the scalar-field
degree of freedom does not propagate freely (Amarzguioui et al. 2006; Li et al. 2007,
2009, 2008b).

The de Sitter point corresponds to a vacuum solution at which the Ricci scalar is
constant. Since [JF (R) = 0 at this point, we get

F(R)R—-2f(R) =0, (1.5.34)

which holds for both the metric and the Palatini formalisms. Since the model f(R) =
o R? satisfies this condition, it possesses an exact de Sitter solution (Starobinsky 1980).

It is important to realize that the dynamics of f(R) dark-energy models is different
depending on the two formalisms. Here we confine ourselves to the metric case only;
details of a viable model in unifying the metric and Palatini formalism can be found
in Harko et al. (2012).

Already in the early 1980s, it was known that the model f(R) = R + aR? can be
responsible for inflation in the early universe (Starobinsky 1980). This comes from the
fact that the presence of the quadratic term o R? gives rise to an asymptotically exact
de Sitter solution. Inflation ends when the term oz R? becomes smaller than the linear
term R. Since the term o R? is negligibly small relative to R at the present epoch, this
model is not suitable to realizing the present cosmic acceleration.

Since a late-time acceleration requires modification for small R, models of the type
f(R) = R —a/R" (¢ > 0,n > 0) were proposed as a candidate for dark energy
(Capozziello 2002; Carroll et al. 2004; Nojiri and Odintsov 2003). While the late-time
cosmic acceleration is possible in these models, it has become clear that they do not
satisfy local gravity constraints because of the instability associated with negative
values of f grr (Chiba 2003; Dolgov and Kawasaki 2003; Soussa and Woodard 2004;
Olmo 2005; Faraoni 2006). Moreover a standard matter epoch is not present because
of alarge coupling between the Ricci scalar and the non-relativistic matter (Amendola
et al. 2007b).

Then, we can ask what are the conditions for the viability of f(R) dark-energy
models in the metric formalism. In the following we first present such conditions and
then explain step by step why they are required.

e (i) fr > 0for R > Ro (> 0), where Ry is the Ricci scalar at the present epoch.
Strictly speaking, if the final attractor is a de Sitter point with the Ricci scalar
Ry (> 0), then the condition f g > 0 needs to hold for R > Rj.

This is required to avoid a negative effective gravitational constant.

e (ii) frr > Ofor R > Ry.

This is required for consistency with local gravity tests (Dolgov and Kawasaki
2003; Olmo 2005; Faraoni 2006; Navarro and Van Acoleyen 2007), for the presence
of the matter-dominated epoch (Amendola et al. 2007b, a), and for the stability of
cosmological perturbations (Carroll et al. 2006; Song et al. 2007a; Bean et al.
2007; Faulkner et al. 2007).
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e (iii) f(R) - R —2A for R > Ry.
This is required for consistency with local gravity tests (Amendola and Tsujikawa
2008; Hu and Sawicki 2007a; Starobinsky 2007; Appleby and Battye 2007; Tsu-
jikawa 2008) and for the presence of the matter-dominated epoch (Amendola et al.
2007a).

e (iv)0 < ;RR(r =—2) <latr= % _—)
This is required for the stability of the late-time de Sitter point (Miiller et al. 1988;

Amendola et al. 2007a).

For example, the model f(R) = R — «/R" (¢ > 0, n > 0) does not satisfy the
condition (i1).
Below we list some viable f(R) models that satisfy the above conditions.

(A) f(R)=R— uR(R/R)? with 0<p <1, u, R.>0, (1.5.35)
(R/R)™

with n, u, R. > 0, (1.5.36)

(C) f(R) = R — uR. [1 - (1 n RZ/Rg)_'l} with n, 1, Re > 0, (15.37)
(D) f(R) = R — uRctanh (R/R,)  with u, Re > 0. (1.5.38)

The models (A), (B), (C), and (D) have been proposed in Amendola et al. (2007a),
Hu and Sawicki (2007a), Starobinsky (2007), and Tsujikawa (2008), respectively. A
model similar to (D) has been also proposed in Appleby and Battye (2007), while
a generalized model encompassing (B) and (C) has been studied in Miranda et al.
(2009). In model (A), the power p needs to be close to O to satisfy the condition
(iii). In models (B) and (C) the function f(R) asymptotically behaves as f(R) —
R—uR[1—(R?/ Rg)_”] for R >> R. and hence the condition (iii) can be satisfied even
forn = O(1). In model (D) the function f(R) rapidly approaches f(R) — R — uR.
in the region R > R.. These models satisfy f(R = 0) = 0, so the cosmological
constant vanishes in the flat spacetime.

Let us consider the cosmological dynamics of f (R) gravity in the metric formalism.
It is possible to carry out a general analysis without specifying the form of f(R). In
the flat FLRW spacetime the Ricci scalar is given by

R=6 (2H2 + H) , (1.5.39)

where H is the Hubble parameter. As a matter action S, we take into account non-
relativistic matter and radiation, which satisfy the usual conservation equations p,, +
3Hp, = 0and p, +4Hp, = 0respectively. From Egs. (I.5.29) and (1.5.30) we obtain
the following equations

3FH? = k% (pm + pr) + (FR — f)/2 —3HF, (1.5.40)
—2FH =« [pm + 4/3)p, 1+ F — HF. (1.5.41)
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We introduce the dimensionless variables:

F f R K2 p,

E—W, X3 = ——5 X4 = W, (1542)

6H?’

together with the following quantities

i< P
3FH?

2m

=1—x1—xp—x3—x4, $2, =x4, S$2pg=x1+x2+x3. (1.543)

It is straightforward to derive the following differential equations (Amendola et al.
2007a):

X = —1—x3—3x2 +xf — x123 + x4, (1.5.44)
X =22 x4 — ), (1.5.45)
X = _x’lnﬁ — 23 (x3 — 2), (L5.46)
xjy = —2x3x4 + X1X4, (1.5.47)

where the prime denotes d/d Ina and

dinF R
m= 4 RjRr (15.48)
dnR _ fxr
di R
__dnf __Rfr_x3 (15.49)
dln R f X2

From Eq. (I.5.49) one can express R as a function of x3 /x;. Since m is a function of R, it
follows that m is a function of , i.e., m = m(r). The ACDM model, f(R) = R—2A,
corresponds to m = 0. Hence the quantity m characterizes the deviation from the
ACDM model. Note also that the model, f(R) = aRIT™ —2A, gives a constant
value of m. The analysis using Eqs. (1.5.44)—(1.5.47) is sufficiently general in the
sense that the form of f(R) does not need to be specified.

The effective equation of state of the system (i.e., piot/Prot) 1S

1
Weff = —g(Z)@ —1). (1.5.50)

The dynamics of the full system can be investigated by analyzing the stability
properties of the critical phase-space points as in, e.g., Amendola et al. (2007a). The
general conclusions is that only models with a characteristic function m (r) positive
and close to ACDM, i.e., m > 0, are cosmologically viable. That is, only for these
models one finds a sequence of a long decelerated matter epoch followed by a stable
accelerated attractor.
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The perturbation equations have been derived in, e.g., Hwang and Noh (2002) and
Tsujikawa et al. (2008b). Neglecting the contribution of radiation one has

1 3
5;,/1 + <X3 — —x1> 5;,1 — 5(1 — X1 — X3 — X3)0m

2
1] k? s L .
=3 — — 6+ 3x7 = 3x] = 3x1(x3 — 1) ¢ 6F
A5
+3(=2x1 +x3 — DSF' + 35#”}, (L5.51)

SF” + (1 —2x1 + x3)8F'
k> 2 _
+ |:—2 2t 2 (s + D —xj +x12:| SF
X5 m
= (1 —x1 —x2— x3)8m — X158, (15.52)

where 8F = §F /F, and the new variable x5 = a H satisfies
xg = (x3 — 1) xs. (I.5.53)

The perturbation 6 F can be written as 6 F = f gprd R and, therefore, SF = m6R /R.
These equations can be integrated numerically to derive the behavior of §,, at all scales.
However, at sub-Hubble scales they can be simplified and the following expression
for the two MG functions Q, n of Eq. (1.3.23) can be obtained:

kZ
=1
¢ 3(a®?M? +k?)
=1 2% (1.5.54)
T T3 eM 42 >
where
2 1
M = . (1.5.55)
3fRR

Note that in the ACDM limit f gg — Oand Q,n — 1.

These relations can be straightforwardly generalized. In De Felice et al. (2010), the
perturbation equations for the f(R) Lagrangian have been extended to include coupled
scalar fields and their kinetic energy X = —¢ ,¢"/2, resulting in a f(R, ¢, X)-
theory. In the slightly simplified case in which f(R, ¢, X) = fi(R, ¢) + f2(¢, X),
with arbitrary functions f1, 2, one obtains

1 (L+2r)(fx +2m) +2F5 JF
F (143r)(f.x +2r2) +3F3/F

(1+2r)(f.x +2r2) +2F 3 /F
n= :
(1+4r)(f x +2r2) +4F% JF

(1.5.56)
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where the notation f x or F 4 denote differentiation wrt X or ¢, respectively, and
where 1| = 2—2% and r, = Z—iMé, My = — f¢/2 being the scalar field effective
mass. In the same paper (De Felice et al. 2010) an extra term proportional to X[ ¢ in
the Lagrangian is also taken into account.

Euclid forecasts for the f(R) models will be presented in Sect. 1.8.7.

1.5.5 Massive gravity and higher-dimensional models

Instead of introducing new scalar degrees of freedom such as in f (R) theories, another
philosophy in modifying gravity is to modify the graviton itself. In this case the new
degrees of freedom belong to the gravitational sector itself; examples include massive
gravity and higher-dimensional frameworks, such as the Dvali-Gabadadze—Porrati
(DGP) model (Dvali et al. 2000) and its extensions. The new degrees of freedom can
be responsible for a late-time acceleration of the universe, as is summarized below for
a choice of selected models. We note here that while such self-accelerating solutions
are interesting in their own right, they do not tackle the old cosmological constant
problem: why the observed cosmological constant is so much smaller than expected
in the first place. Instead of answering this question directly, an alternative approach
is the idea of degravitation (see Dvali et al. 2002, 2003; Arkani-Hamed et al. 2002;
Dvali et al. 2007), where the cosmological constant could be as large as expected
from standard field theory, but would simply gravitate very little (see the paragraph in
Sect. 1.5.5.2 below).

1.5.5.1 Infrared modifications of gravity

Infrared modifications of gravity are of great interest for cosmology as they can affect
the evolution of the Universe in two different ways, via self-acceleration and degrav-
itation, as illustrated below.

Self-acceleration

The first interest in modifications of gravity is the possibility of self-acceleration where
the late-time acceleration of the Universe is not sourced by a cosmological constant
or dark energy but rather by the graviton itself. This interesting phenomenology was
first encountered in the DGP model as is explained below and was later shown to
be also present in the Galileon, massive gravity and bi-gravity. Technically speaking
if the Galileon is considered as a scalar field in its own right then the acceleration
of the Universe is due to a new scalar degree of freedom and lies in the category of
dark energy. However massive gravity and higher-dimensional models of gravity often
behave as a Galileon model in some limit, where the Galileon plays the role of one
of the graviton’s own degree of freedom, in this sense Galileon models are often also
thought of models of self-acceleration.

Degravitation

The idea behind degravitation is to modify gravity in the IR, such that the vacuum
energy could have a weaker effect on the geometry, and therefore reconcile a natural
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value for the vacuum energy as expected from particle physics with the observed late-
time acceleration. Such modifications of gravity typically arise in models of massive
gravity (Dvali et al. 2002, 2003, 2007; Arkani-Hamed et al. 2002), i.e., where gravity
is mediated by a massive spin-2 field. The extra-dimensional DGP scenario presented
below, represents a specific model of soft mass gravity, where gravity weakens at large
distance, with a force law going as 1/r. Nevertheless, this weakening is too weak to
achieve degravitation and tackle the cosmological constant problem. However, an
obvious way out is to extend the DGP model to higher dimensions, thereby diluting
gravity more efficiently at large distances. This is achieved in models of cascading
gravity, as is presented below. An alternative to cascading gravity is to work directly
with theories of constant mass gravity (hard mass graviton).

1.5.5.2 Models

Infrared modifications of gravity usually weaken the effect of gravity on cosmological
scales, i.e., the propagation of gravitational waves is affected at distances and time-
scales that are of the order of the size and age of the current Universe. These infrared
modifications of general relativity are united by the common feature of invoking new
degrees of freedom which could be used to either explain the recent acceleration of
the Hubble expansion or tackle the cosmological constant problem. Below we will
discuss different models which share these features.

DGP

The DGP model is one of the important infrared (IR) modified theories of gravity.
From a four-dimensional point of view this corresponds effectively to a theory in
which the graviton acquires a soft mass m. In this braneworld model our visible
universe is confined to a brane of four dimensions embedded into a five-dimensional
bulk. At small distances, the four-dimensional gravity is recovered due to an intrinsic
Einstein—Hilbert term sourced by the brane curvature causing a gravitational force
law that scales as r~2. At large scales the gravitational force law asymptotes to an
r~3 behavior. The cross over scale r. = m~! is given by the ratio of the Planck
masses in four (M4) and five (Ms) dimensions. One can study perturbations around flat
spacetime and compute the gravitational exchange amplitude between two conserved
sources, which does not reduce to the GR result even in the limit m— 0. However, the
successful implementation of the Vainshtein mechanism for decoupling the additional
modes from gravitational dynamics at sub-cosmological scales makes these theories
still very attractive (Vainshtein 1972). Hereby, the Vainshtein effect is realized through
the nonlinear interactions of the helicity-0 mode r, as will be explained in further detail
below. Thus, this vVDVZ discontinuity does not appear close to an astrophysical source
where the 7 field becomes nonlinear and these nonlinear effects of 7 restore predictions
to those of GR. This is most easily understood in the limit where M4, M5 — oo and
m — 0 while keeping the strong coupling scale A = (M4m?)!/? fixed. This allows
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us to treat the usual helicity-2 mode of gravity linearly while treating the helicity-0
mode 7 nonlinearly. The resulting effective action is then
1
Ly =370r — F(an)zmn, (1.5.57)
where interactions already become important at the scale A << Mp; (Luty et al. 2003).
Furthermore, in this model, one can recover an interesting range of cosmologies,
in particular a modified Friedmann equation with a self-accelerating solution. The
Einstein equations thus obtained reduce to the following modified Friedmann equation
in a homogeneous and isotropic metric (Deffayet et al. 2002a)

87G
H?+mH = T[Tp, (1.5.58)

such that at higher energies one recovers the usual four-dimensional behavior, H ~ p,
while at later time corrections from the extra dimensions kick in. As is clear in this
Friedmann equation, this braneworld scenario holds two branches of cosmological
solutions with distinct properties. The self-accelerating branch (minus sign) allows
for a de Sitter behavior H = const = m even in the absence of any cosmological
constant p4 = 0 and as such it has attracted a lot of attention. Unfortunately, this
branch suffers from a ghost-like instability. The normal branch (the plus sign) instead
slows the expansion rate but is stable. In this case a cosmological constant is still
required for late-time acceleration, but it provides significant intuition for the study of
degravitation.

The Galileon

Even though the DGP model is interesting for several reasons like giving the Vainshtein
effect a chance to work, the self-acceleration solution unfortunately introduces extra
ghost states as outlined above. However, it has been generalized to a “Galileon” model,
which can be considered as an effective field theory for the helicity-0 field . Galileon
models are invariant under shifts of the field = and shifts of the gradients of = (known
as the Galileon symmetry), meaning that a Galileon model is invariant under the
transformation

T — T +c+uvxH, (1.5.59)

for arbitrary constant ¢ and v, Ininduced gravity braneworld models, this symmetry is
naturally inherited from the five-dimensional Poincaré invariance (de Rham and Tolley
2010). The Galileon theory relies strongly on this symmetry to constrain the possible
structure of the effective m Lagrangian, and insisting that the effective field theory for
7 bears no ghost-like instabilities further restricts the possibilities (Nicolis et al. 2009).
It can be shown that there exist only five derivative interactions which preserve the
Galilean symmetry in flat spacetime without introducing ghosts. In curved spacetimes
the situation is more subtle, see Deffayet et al. (2009) for details. In flat spacetime, the
interactions are symbolically of the form EJ(,D = 7 and LJ(,") = (871)2(8 871)”_2, for
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n = 2,...5. A general Galileon Lagrangian can be constructed as a linear combination
of these Lagrangian operators. The effective action for the DGP scalar (1.5.57) can
be seen to be a combination of [,,(,2) and 57(13). Such interactions have been shown
to naturally arise from Lovelock invariants in the bulk of generalized braneworld
models (de Rham and Tolley 2010). However, the Galileon does not necessarily require
a higher-dimensional origin and can be consistently treated as a four-dimensional
effective field theory.

As shown in Nicolis et al. (2009), such theories can allow for self-accelerating
de Sitter solutions without any ghosts, unlike in the DGP model. In the presence of
compact sources, these solutions can support spherically-symmetric, Vainshtein-like
nonlinear perturbations that are also stable against small fluctuations. However, this
is constrained to the subset of the third-order Galileon, which contains only E;,l), LJ(TZ)
and ,67(,3) (Mota et al. 2010).

The fact that they give rise to second order equations of motion, have a symmetry and
allow for healthy self-accelerating solutions, have initiated a wealth of investigations
in cosmology. Moreover the non-renormalization theorem makes them theoretically
very interesting since once the parameters in the theory are tuned by observational
constraints they are radiatively stable. This means that the coefficients governing the
Galileon interactions are technically natural.

“Generalized galileons” and Horndeski interactions

The Galileon terms described above form a subset of the “generalized Galileons”. A
generalized Galileon model allows nonlinear derivative interactions of the scalar field
7 in the Lagrangian while insisting that the equations of motion remain at most sec-
ond order in derivatives, thus removing any ghost-like instabilities. However, unlike
the pure Galileon models, generalized Galileons do not impose the symmetry of
Eq. (I.5.59). These theories were first written down by Horndeski (1974). They are alin-
ear combination of Lagrangians constructed by multiplying the Galileon Lagrangians
£7(f) by an arbitrary scalar function of the scalar 7 and its first derivatives. Just like
the Galileon, generalized Galileons can give rise to cosmological acceleration and
to Vainshtein screening. However, as they lack the Galileon symmetry these theo-
ries are not protected from quantum corrections. The non-renormalization theorem
is lost and hence the technical naturalness. Even if the naive covariantization of the
Galileon interactions on non-flat backgrounds break the Galileon symmetry explic-
itly, one can successfully generalize the Galileon interactions to maximally symmetric
backgrounds (Burrage et al. 2011; Trodden and Hinterbichler 2011). It is also worth
mentioning that a given subclass of these Horndeski interactions can also be con-
structed within the context of massive gravity from covariantizing its decoupling limit
(de Rham and Heisenberg 2011). Many other theories can also be found within the
spectrum of generalized Galileon models, including k-essence. Recently, a new way
to maintain a generalized Galileon symmetry on curved spacetimes was proposed in
Gabadadze et al. (2012), Trodden (2012) by coupling massive gravity to a higher-
dimensional DBI Galileon as in de Rham and Tolley (2010). In Hinterbichler et al.
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(2013), it was shown that such a generalized covariant Galileon model can lead to
stable self-accelerating solutions.

Even if the scalar fields are by far the most extensively explored fields in cosmology,
there are also motivations for the exploration of the role of vector fields or higher
p-forms in general. Inspired by the Horndeski interactions of the scalar field, one
can construct the most general vector-tensor interactions with non-minimal coupling
giving rise to second order equations of motion (Jiménez et al. 2013).

Cascading gravity

Cascading gravity is an explicit realization of the idea of degravitation, where gravity
behaves as a high-pass filter, allowing sources with characteristic wavelength (in space
and in time) shorter than a characteristic scale . to behave as expected from GR, but
weakening the effect of sources with longer wavelengths. This could explain why a
large cosmological constant does not backreact as much as anticipated from standard
GR. Since the DGP model does not modify gravity enough in the IR, “cascading
gravity” relies on the presence of at least two infinite extra dimensions, while our world
is confined on a four-dimensional brane (de Rham et al. 2008b). Similarly as in DGP,
four-dimensional gravity is recovered at short distances thanks to an induced Einstein—
Hilbert term on the brane with associated Planck scale M4. The brane we live in is
then embedded in a five-dimensional brane, which bears a five-dimensional Planck
scale Ms, itself embedded in six dimensions (with Planck scale Mg). From a four-
dimensional perspective, the relevant scales are the 5d and 6d masses my = M53 / M‘%
and ms5 = Mg /M 3 which characterize the transition from the 4d—5d and 5d—6d
behavior respectively.

Such theories embedded in more-than-one extra dimensions involve at least one
additional scalar field that typically enters as a ghost. This ghost is independent of the
ghost present in the self-accelerating branch of DGP but is completely generic to any
codimension-two and higher framework with brane localized kinetic terms. However,
there are two ways to cure the ghost, both of which are natural when considering a
realistic higher codimensional scenario, namely smoothing out the brane, or including
a brane tension (de Rham et al. 2008a,b, 2010).

When properly taking into account the issue associated with the ghost, such models
give rise to a theory of massive gravity (soft mass graviton) composed of one helicity-2
mode, helicity-1 modes that decouple and 2 helicity-0 modes. In order for this theory
to be consistent with standard GR in four dimensions, both helicity-0 modes should
decouple from the theory. As in DGP, this decoupling does not happen in a trivial way,
and relies on a phenomenon of strong coupling. Close enough to any source, both
scalar modes are strongly coupled and therefore freeze.

The resulting theory appears as a theory of a massless spin-2 field in four-
dimensions, in other words as GR. If r <« ms and for mg < ms, the respective
Vainshtein scale or strong coupling scale, i.e., the distance from the source M within
which each mode is strongly coupled is ri3 =M/ m%Mf, where i = 5, 6. Around a
source M, one recovers four-dimensional gravity for r < rs, five-dimensional gravity
for rs < r < rg and finally six-dimensional gravity at larger distances r > rg.
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The extension of Cascading gravity to higher dimensions also show the presence
of solutions which allow for arbitrarily large cosmological constant without leading
to any cosmic acceleration of the 3 + 1 brane (de Rham et al. 2009), hence providing
a first ingredient towards tackling the cosmological constant problem.

1.5.5.3 Massive gravity and cosmological consequences

While laboratory experiments, solar systems tests and cosmological observations have
all been in complete agreement with GR for almost a century now, these bounds do not
eliminate the possibility for the graviton to bear a small hard mass m < 6.1073 eV
(Goldhaber and Nieto 2010). The question of whether or not gravity could be mediated
by a hard-mass graviton is not only a purely fundamental but could potentially have
interesting observational implications and help with the late-time acceleration of the
Universe and the original cosmological constant problem. Since the degravitation
mechanism is also expected to be present if the graviton bears a hard mass, such
models can play an important role for late-time cosmology, and more precisely when
the age of the universe becomes on the order of the graviton Compton wavelength.
See de Rham (2014) for a recent review on massive gravity and related models.

Lorentz invariant theories of hard massive gravity can be free of any ghost-like
pathologies in the decoupling limit where Mp; — oo and m — 0 keeping the scale
A% = Mp1m2 fixed (de Rham and Gabadadze 2010; de Rham et al. 2011b). The
decoupling limit provides a good framework to understand the implications of a small
graviton mass. Unlike a massless spin-2 field, which only bears two polarizations, a
massive one bears five of them, namely two helicity-2 modes, two helicity-1 modes
which decouple, and one helicity-0 mode (denoted as 7). As in the braneworld mod-
els presented previously, this helicity-0 mode behaves as a scalar field with specific
derivative interactions of the form

1 1
— My L x@ L 1 50
Ly =t (XW + A%XW + 18 XW> . (1.5.60)

Here, h;, denotes the canonically-normalized (rescaled by Mp) tensor field pertur-
bation (helicity-2 mode), while X ,(}3, X ;(12]))’ and X ,(33 are respectively, linear, quadratic
and cubic in the helicity-0 mode . Importantly, they are all transverse (for instance,
XI(B o« nuydm — 9,0,7). Not only do these interactions automatically satisfy the
Bianchi identity, as they should to preserve diffeomorphism invariance, but they are
also at most second order in time derivatives. Hence, the interactions (I1.5.60) are lin-
ear in the helicity-2 mode, and are free of any ghost-like pathologies. Therefore, such
interactions are very similar in spirit to the Galileon ones, and bear the same internal
symmetry (1.5.59), and present very similar physical properties. The stability of spher-
ically symmetric configurations forces the X ffv) term to be absent (Berezhiani et al.
2013b). This represents a tuning of the parameters of the original theory but since these
parameters are radiatively stable, this is not a self-tuning (de Rham et al. 2013a,b). In
that case one recovers an Einstein frame picture for which the interactions are specific
Galileon ones
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M? 3 38 B>
L=-"2/ZeR+ Zaln + = (07)*0r + ——07)? ((84057)> — (On)>
5 V—gR+ 3w 71+2A§(71) n+2Ag( ) (( B7T) (ﬂ))

+Lmat [V, guvl, (1.5.61)

where B is an arbitrary constant and matter fields ¥ do not couple to the metric g,
but to g,» = guv + TNy + A%Bﬂnaun. Here again, the recovery of GR in the UV

is possible via a strong coupling phenomena, where the interactions for 7 are already
important at the scale A3 < Mpj, well before the interactions for the usual helicity-2
mode. This strong coupling, as well as the peculiar coupling to matter sources, have
distinguishable features in cosmology as is explained below (Afshordi et al. 2009; Jain
and Khoury 2010).

Spherically symmetric solutions in the decoupling limit were considered in Berezhi-
ani et al. (2013a). Stability of this solutions requires the parameter 8 to be positive
definite which sets another constraint of the parameters of the original theory. Further-
more it was also shown that the solutions are asymptotic to a non-trivial FRW solution
which is independent of the source at infinity. Notice however that these solutions
are valid within the decoupling limit of massive gravity. At very large distances from
the source, the decoupling limit is no longer valid, as the graviton mass takes over. At
distances comparable to the graviton’s Compton wavelength one expects any solutions
to reach a Yukawa-like type of behaviour and so the space—time to be asymptotically
flat, although this has not been shown explicitly in any cosmological solution.

As in the studies of the spherically symmetric solutions mentioned above, a con-
siderable amount of insight into the cosmological solutions can be gained from the
decoupling limit analysis. Considering the de Sitter geometry as being a small perturba-
tion about Minkowski space—time, one can construct self-accelerating solutions which
are at leading order indistinguishable from a standard ACDM model. The helicity-0
degree of freedom of massive gravity forms a condensate whose energy density sources
self-acceleration (de Rham et al. 2011a). However, as mentioned above, the solutions
found in the decoupling limit could be considered just as a transient state of the full
solution. In addition, the specific cosmological solution found in the decoupling limit
suffers from pathologies since the vector fields lose their kinetic terms.

Beyond the decoupling limit, it has been shown that there is a no-go theorem against
the existence of flat and closed FRW solutions, i.e. if the reference metric is chosen to
be Minkowski then there is no flat/closed FRW solutions in the full theory beyond the
decoupling limit (D’ Amico et al. 201 1b). The constraint needed for the absence of the
Boulware—Deser ghost actually forbids the existence of homogeneous and isotropic
cosmological solutions. Despite this no-go, there still exists non-FRW solutions that
are approximately homogeneous and isotropic locally within domains of the size of
inverse graviton mass. These solutions can be used to put constraints on the magnitude
of the graviton mass coming from the consistency with known constraints on homo-
geneity and isotropy. This kind of solutions demands the successful implementation
of the Vainshtein mechanism in the cosmological evolution which so far has not been
investigated in detail in the literature.

The no-go theorem for the existence of flat/closed FRW solutions does not apply to
the case of open FRW solutions (Gumrukcuoglu et al. 2011). Unfortunately, non-linear
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perturbations around this open FRW background are unstable making these solutions
phenomenologically unviable.

A possible way out of these problems is to consider a more general reference metric.
Indeed, if one takes the reference metric to be de Sitter, then one can construct FRW
solutions. Nonetheless, these solutions bring other problems along due to the Higuchi
bound, which imposes the mass of the graviton to be m?> > H? which is in conflict with
observational constraints in our cosmological past. Promoting the reference metric to a
FRW metric leads to a generalized Higuchi bound and one encounters similar problems
(Fasiello and Tolley 2013).

Finally another more natural possibility is the presence of inhomogeneous and even
possibility anisotropies at large distance scales. Recently there has been a considerable
amount of work devoted to this studies and it is beyond the scope of this review to
detail them all. We simply refer to Volkov (2013) for a recent review and some of the
most general solutions.

Such inhomogeneities/anisotropies are indeed to be expected on distance scales
larger than the observable Universe. After all one of the main motivations of
inflation is to ensure that such inhomogeneities/anisotropies are diluted in our
observable Universe, but if inflation lasted a minimum number of e-folds such inho-
mogeneities/anisotropies would also be expected in General Relativity.

The first type of inhomogeneous solutions corresponds to the case where only the
Stiickelberg fields (or new degrees of freedom) carry order unity inhomogeneities
while the metric remains isotropic and homogeneous. The inhomogeneities are then
effectively unobservable since matter only couples to the metric and not directly to
the Stiickelberg fields.

Solutions where the metric itself carries explicit inhomogeneities while remaining
isotropic have also been explored. These solutions can be constructed in such a way
that the effective impact of the metric remains homogeneous and isotropic on short
distance scales. In some of these cases, the mass term effectively plays the role of a
cosmological constant leading to self-accelerating solutions.

Anisotropic solutions have been explored in Gumrukcuoglu et al. (2012) and sub-
sequent litterature, for which the observed anisotropy remains small at short distance
scales. The presence of the anisotropy also allow for stable self-accelerating solutions.

These represents special cases of exact solutions found in massive gravity although
itis understood that the most general solution is likely to differ from these exact cases by
carrying order one inhomogeneity or anisotropy or both at large distances which would
requires numerical methods to be solved. This is still very much work in progress.

1.5.6 Beyond massive gravity: non-local models and multigravity

Different extensions of massive gravity have been introduced which could lead to an
enriched phenomenology. First the mass can be promoted to a function of a new scalar
field (Huang et al. 2012a). This allows for more interesting cosmology and some sta-
ble self-accelerating solutions. In this model the graviton mass could be effectively
larger at earlier cosmological time, which implies that it can have an interesting phe-
nomenology both at early and late times.
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Another extension of massive gravity which also includes a new scalar field is the
quasi-dilaton (D’ Amico et al. 2013) and its extension (De Felice et al. 2013), where the
extra scalar field satisfies a specific symmetry and its interactions are thus radiatively
stable. In the original quasi-dilaton model the self-accelerating solution has a ghost
and is unstable, however this issue is avoided in the extended quasi-dilaton proposed
in De Felice et al. (2013). Moreover new types of stable self-accelerating solutions
were recently found in Gabadadze et al. (2014). Similarly as in massive gravity, the
decoupling limit solution must have a completion in the full theory although it might
require some level of inhomogeneity at large distance scales, which are screened at
small distance scales via the Vainshtein mechanism.

1.5.6.1 Non-local models

Different versions of massive gravity have been proposed in Maggiore (2014) and
Maggiore and Mancarella (2014) (see also a previous model, Deser and Woodard
2007), based on a non-local modification of Einstein’s gravity that avoids the intro-
duction of a second metric. In Maggiore and Mancarella (2014), in particular, the
action has the form

M?2 2 /7 1\2 M2 2 /R\?2
= Pel (2 - Pp_M (2
L= 5 R[l 6 <D> R} 5 {R 6 (D) , (1.5.62)

This model can produce a nonlocal form of dark energy able to fit the background
data while retaining a matter power spectrum compatible with observations (see, e.g.,
Foffa et al. 2014; Dirian et al. 2016). The (R/J)?-correction to GR has indeed been
obtained in an effective field theory for gravity at the second order curvature-expansion
(Codello and Jain 2015).

1.5.6.2 Bi- and multi-gravity

Unlike DGP or cascading gravity, models of massive gravity require the presence of
a reference metric. The dynamics of this reference metric can be included and leads
to a model of bi-gravity where two metrics, say g,,, and f},, with their own Einstein—
Hilbert kinetic terms respectively M(g%\/—_gR[gW] and MJZC V= FRI[f,v] in addition
to interactions between the two-metrics which takes precisely the same form as the
potential term in massive gravity (Hassan and Rosen 2012). In this form bi-gravity
was shown to be ghost free so long as different species of matter couple to either one
of both metrics. The absence of ghost when some species couple to both metrics f
and g at the same time has not been proven but is feasible.

Bi-gravity has two metrics and yet only one copy of diffeomorphism invariance.
The second copy of diffeomorphism can be restored by introducing three Stiickelberg
fields similarly as in massive gravity and can be thought of as the three additional
degrees of freedom in addition to the two degrees of freedom present in metric. This
leads to a total of seven degrees of freedom: two in an effectively massless spin-2 field
and five in an effectively massive spin-2 field. Notice that both the massive and the
massless modes are a combination of g, and f,,.
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Among these three additional degrees of freedom, one counts a helicity-0 mode
which satisfies the same properties as in massive gravity. In particular this helicity-
0 mode behaves as a Galileon in a similar decoupling limit and is screened via a
Vainshtein mechanism.

The cosmology of bi-gravity was investigated for instance in Volkov (2012), von
Strauss et al. (2012), Comelli et al. (2012a) and subsequent literature (see de Rham
2014 and Volkov 2013 for a review.) Unlike in massive gravity, both metrics can take
a FLRW form and lead to an interesting new cosmology. For instance, in Akrami
et al. (2013a,b) explicit self-accelerating solutions were provided in the absence of
a cosmological constant. These solutions were tested against ACDM solutions using
data from supernovae, CMB and large scale structure. For some parameters of the
theory the best-fit chi-square is competitive to that of ACDM. The explicit Friedman
equation for these parameters was derived in Fasiello and Tolley (2013)

: (15.63)

assuming that matter only couples to the metric g,,, and has an effective energy
density p. In this case the scale My is essentially the Planck scale. The scale m governs
the interactions between both metrics g, and f,,. In this case the self-accelerating
solution can be shown to be stable.

Recently it has also been shown that a simple form of bi-gravity that depends on
a single parameter (the minimal model) allows for stable self-accelerating solutions
with distinguishable features from ACDM and an effective equation of state for small
redshift w(z) ~ — 1.22&8‘202 — 0.64f8:82z/(1 + z) (Konnig and Amendola 2014). At
the linearly perturbed level, however, this model has been shown contain a gradient
instability, ultimately due to the violation of the Higuchi bound. Linear perturbations
in bimetric gravity have been studied extensively in Comelli et al. (2012b), Kénnig and
Amendola (2014), Solomon et al. (2014), Konnig et al. (2014), Lagos and Ferreira
(2014), Cusin et al. (2015), Yamashita and Tanaka (2014), De Felice et al. (2014),
Enander et al. (2015), Amendola et al. (2015), Johnson and Terrana (2015), and the
models have been shown to contain either ghost or gradient instabilities. Cosmologi-
cal solutions can be made stable back to arbitrarily early times by taking one Planck
mass to be much smaller than the other (Akrami et al. 2015), or by reintroducing
a cosmological constant which is much larger than the bimetric interaction parame-
ter (Konnig and Amendola 2014). It is also possible that the gradient instability in
bigravity is cured at the nonlinear level (Mortsell and Enander 2015) due to a ver-
sion of the Vainshtein screening mechanism (Vainshtein 1972; Babichev and Deffayet
2013).

Bi-gravity was also shown to be extendable to an arbitrary number of interacting
metrics in Hinterbichler and Rosen (2012), which would lead to multiple Galileon in
its decoupling limit. In Liiben et al. (2016), several non-trivial cosmological solutions
in a model with three metrics have been identified.
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1.5.7 Effective field theory of dark energy

One of the most productive recent ideas in dark-energy cosmology has been the
employing of effective field-theory methods originally developed for inflation (Crem-
inelli et al. 2006, 2009; Cheung et al. 2008a) to limit the space of possible
parameterisations of gravity to that obtainable from local actions with a fixed number
of degrees of freedom and also to describe the perturbation evolution in different mod-
els of modified gravity using a common approach (Gubitosi et al. 2013; Bloomfield
et al. 2013; Gleyzes et al. 2013).

We refer the reader to, e.g., the review by Gleyzes et al. (2015b) for details, here
mentioning only the rough principles. The EFT of DE approach depends on choosing
an FRW cosmological background as well as being able to pick one of the degrees
of freedom of the model to be used as a clock on this background. This means that
the approach is most directly applicable to models with at least one scalar degree of
freedom, where the background configuration of the scalar field evolves monotoni-
cally (i.e., does not oscillate during the evolution). When this is possible, the scalar
will play a role of a goldstone boson of the broken time symmetry in cosmology, its
field value will define a time slicing (a unitary gauge). The symmetries of the FRW
background must then also be the symmetries of the action which describes the evolu-
tion of fluctuations on the cosmological background: the action for perturbations must
obey time-reparameterisation invariance and the remaining unbroken diffeomorphism
invariance of the spatial slice.

The Arnowitt—Deser—Misner (ADM) 3 + 1 split is the natural choice to employ
in this approach. One forms from the full space-time metric g;,, a three-dimensional
spatial metric

hyy = uv T uylty
by projecting out a time direction defined by the timelike scalar field gradient, u, =

—0,0// —0,P3%p. With this choice of slicing, one can then use the ADM coordinates,
describing the metric through

ds? = —N2de? + by (da' + N'dr) (de/ + NTdr),

with N called the lapse and the vector N' the shift. In order to preserve the appropriate
symmetries, the action for gravity and the goldstone boson must then be a scalar formed
out of only these geometrical quantities and the spatial covariant derivative compatible
with h,, Dj,

Sg = /d4xv —gL (N, Kij, Rij, hij, Di; 1),

where K;; is the extrinsic curvature of the spatial slice and R;; its intrinsic curvature.
If other degrees of freedom are present in the problem, then terms mixing these ADM
geometrical quantities and the additional fields can also appear.
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One then writes down various operators for the FRW background, the quadratic
action for fluctuations and, in principle, higher-order actions, if non-linearities are of
interest. The symmetry of the cosmological background is such that the coefficients
of all these operators are allowed to be arbitrary functions of time ¢, but the resulting
scale dependence is given by the particular operators in a fixed manner. Note that
since the ADM curvatures do not contain time derivatives, but only spatial derivatives
D;, by using them, one does not introduce new degrees of freedom through higher
time-derivatives. Thus one avoids this complication of the usual covariant approach for
actions. However, higher-order spatial derivatives are generated through this approach.

The simplest application is to universally coupled scalar—tensor theories, modifi-
cations of gravity which contain no more than one extra scalar degree of freedom.
For the background, the end result is that an arbitrary expansion history H (¢) can
be generated, and thus the background should be thought of as an input of the EFT
approach (e.g., w = — 1 or any other such choice). The question of determining the
theory of gravity is then one of constraining the behaviour of perturbations and growth
of structure on this chosen background. Linear structure formation is then determined
by the quadratic action for fluctuations.

At quadratic order, one can write down multiple operators, thus a choice of basis
for them must be made. A particularly useful one is the one introduced in Bellini
and Sawicki (2014), so-called «-functions, since it uses operators most closely related
to physical properties of the dark energy. In this basis, the most general action for
perturbations in a scalar—tensor theory which does not contain derivatives higher than
second in the equation of motion for the propagating degrees of freedom can be written
(Gleyzes et al. 2015b)

M2 .
Sy = /dtdea37* [SK,'J'(SK” —§K? + (14 aT)§R
+agH2SN? + 4ag HSKSN + (1 + aH)sRaN] ,

where M, is the effective Planck mass and the «; are all dimensionless functions of
time that are in principle arbitrary and the §’s signify fluctuations of quantities away
from their background value. The GR limit can be recovered by taking all the o; — 0
and M, = const. Other operators can be added to the the quadratic action, but they
will invariably result in higher derivatives in the equations of motion.

The « functions play a role in modifying the properties of the perturbations and
growth of structure. In particular they can be divided into two classes:

1. Non-minimal coupling of gravity. These functions modify both the scalar and the

tensor propagation (Saltas et al. 2014):

(a) Mf (), the effective Planck mass. Mf is the normalisation of the kinetic term
for gravitons. It encodes the strength of the gravitational force/space—time cur-
vature produced by a fixed amount of energy. Large-scale structure is sensitive
only to the time variation of the Planck mass,

dlan
oM = ,
M= "dna

(1.5.64)
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(b)

or the Planck-mass run rate.

at(t), tensor speed excess. This parameter denotes the difference in the speed
propagation of gravitational waves compared to the speed of light, i.e., ot =
c% — 1. It applies to modes propagating on cosmological scales and is quite
weakly constrained despite the recent detection from LIGO (Abbott et al. 2016;
Blas et al. 2016; Creminelli and Vernizzi 2017; Ezquiaga and Zumalacarregui
2017; Crisostomi and Koyama 2017; Baker et al. 2017; Sakstein and Jain
2017).

2. Kinetic terms. The scalar mode is in addition affected by the following three
functions:

(a)

(b)

()

ax (1), kineticity. Coefficient of the kinetic term for the scalar d.o.f. before
demixing (see Bellini and Sawicki 2014). Increasing this function leads to
a relative increase of the kinetic terms compared to the gradient terms and
thus a lower sound speed for the scalar field. This creates a sound horizon
smaller than the cosmological horizon: super-sound-horizon the scalar does
not have pressure support and clusters similarly to dust. Inside, itis arrested and
eventually can enter a quasi-static configuration (Sawicki and Bellini 2015).
When looking only at the quasi-static scales, inside the sound horizon, this
function cannot be constrained (Gleyzes et al. 2016). This is the only term
present in the simplest DE models, e.g. quintessence and in perfect-fluid dark
energy.

ap(t), braiding. This operator gives rise to a new mixing of the scalar field and
the extrinsic curvature of the spatial metric, K. This leads to a modification
of the coupling of matter to the curvature, independent and additional to any
change in the Planck mass. This is typically interpreted as an additional fifth
force between massive particles and can be approximated as a modification of
the effective Newton’s constant for perturbations. It is present in archetypal
modified gravity models such as f(R) gravity (see (Bellini and Sawicki 2014)
for details). A purely conformal coupling of the scalar to gravity leads to the
universal property an + ap = 0.

af(t), beyond Horndeski. This term is generated by a kinetic mixing of the
scalar with the intrinsic curvature R. It results in third-order derivatives in the
equations of motion, but which cancel once all the constraints are solved for.
It produces a coupling of the gravitational field to the velocity of the matter.

Note that either apg, e or g must not vanish in order for gravitational slip to be
generated by perfect-fluid matter sources. such a case, the equation of motion for
the propagation of gravitational waves is also modified.

In order for the chosen background H (¢) to be stable in the model of gravity given
by the choice of « functions, certain algebraic conditions on the « functions must be
satisfied (the perturbations must not be ghosty and the sound speed squared needs to
be positive, for both scalars and tensors; see e.g., Bellini and Sawicki (2014), Gleyzes
et al. (2015b) for details).

In addition to providing a method for exploring new models of gravity, the EFT of
DE approach allows one to describe linear perturbations in a very efficient and unified
fashion. It is enough to obtain the appropriate functions H (¢) and «; for any particular
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model and structure formation in that model can be fully solved for. In particular,
Horndeski models of gravity (or the generalised galileon models) determined by the
four free functions of the scalar field G2 34 5 can be encoded in the EFT language
through (Bellini and Sawicki 2014)

M? =2(Gs —2XGax + XGsy — pHXGsyx) (L5.65)
H*MZax =2X (Kx +2XKxx — 2G3p — 2XG34x) (1.5.66)
+ 126X H (G3x + XG3xx — 3Gapx — 2XGapxx)
+ 12X H? (G4x +8XGaxx + 4X2G4XXX)

— 12X H? <G5¢ +5XGspx + 2X2G5¢Xx>

+ 49X H? <3G5X +7XGsxx + 2X2G5xxx)
HM?ap =2¢ (XGax — Gap — 2XGugx) + (1.5.67)
+ 8XH (Gax +2XGaxx — Gsp — XGspx)
+ 26X H? 3Gsx +2XGsxx)
M?at = 2X (2Gax —2Gsy — (¢ — dH) Gsx) (1.5.68)
ap =0 (1.5.69)

The operator ay only appears in the so-called beyond Horndeski models introduced
in Gleyzes et al. (2015a).

Since Horndeski theories include as subclasses the majority of the popular models
of modified gravity, including perfect-fluid dark energy, linear structure formation in
all these models can be solved for in a unified manner by obtaining these « functions.
This method is now employed in the publicly available Boltzmann codes EFTCAMB
(Hu et al. 2014), used also in the planck analysis on dark energy and modified gravity
(Planck Collaboration 2016¢), and hi_class (Zumalacdrregui et al. 2017).

1.5.8 Observations and screening mechanisms

All models of modified gravity presented in this section have in common the presence
of at least one additional helicity-0 degree of freedom that is not an arbitrary scalar,
but descends from a full-fledged spin-two field. As such it has no potential and enters
the Lagrangian via very specific derivative terms fixed by symmetries. However, tests
of gravity severely constrain the presence of additional scalar degrees of freedom.
Interestingly this degree of freedom would severly affect the behavior of voids and
could potentially help reducing the tension between Planck and supernovae. Euclid
could detect such an effect at the So confidence level (Spolyar et al. 2013). Outside
voids, as it is well known, in theories of massive gravity the helicity-0 mode can evade
fifth-force constraints in the vicinity of matter if the helicity-0 mode interactions are
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important enough to freeze out the field fluctuations (Vainshtein 1972). This Vainshtein
mechanism is similar in spirit but different in practice to the chameleon and symmetron
mechanisms presented in detail below. One key difference relies on the presence
of derivative interactions rather than a specific potential. So, rather than becoming
massive in dense regions, in the Vainshtein mechanism the helicity-0 mode becomes
weakly coupled to matter (and light, i.e., sources in general) at high energy. This
screening of scalar mode can yet have distinct signatures in cosmology and in particular
for structure formation.

Different classes of screening

While quintessence introduces a new degree of freedom to explain the late-time accel-
eration of the universe, the idea behind modified gravity is instead to tackle the core of
the cosmological constant problem and its tuning issues as well as screening any
fifth forces that would come from the introduction of extra degrees of freedom.
As mentioned in Sect. 1.5.3.1, the strength with which these new degrees of free-
dom can couple to the fields of the standard model is very tightly constrained by
searches for fifth forces and violations of the weak equivalence principle. Typically
the strength of the scalar mediated interaction is required to be orders of magnitude
weaker than gravity. It is possible to tune this coupling to be as small as is required,
leading however to additional naturalness problems. Here we discuss in more detail
a number of ways in which new scalar degrees of freedom can naturally couple to
standard model fields, whilst still being in agreement with observations, because a
dynamical mechanism ensures that their effects are screened in laboratory and solar
system tests of gravity. This is done by making some property of the field depen-
dent on the background environment under consideration. These models typically
fall into three classes; either the field becomes massive in a dense environment so
that the scalar force is suppressed because the Compton wavelength of the interac-
tion is small, or the coupling to matter becomes weaker in dense environments to
ensure that the effects of the scalar are suppressed. The latter can be achieved either
in regions of space—time where the coupling is dynamically driven to small values
(the Damour—Polyakov mechanism, Damour and Polyakov 1994) or the wave func-
tion normalisation of the field becomes large (the K-mouflage, Babichev et al. 2009,
or Vainshtein mechanisms). These types of behavior require the presence of nonlin-
earities. One can also see that the different types of screening mechanisms can be
differentiated by a screening criterion (Khoury 2013) which requires the potential
to be large (chameleon and Damour—Polyakov, Brax et al. 2012a), the gravitational
acceleration (K-mouflage, Brax and Valageas 2014) or the local spatial curvature
(Vainshtein).
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Density dependent masses: the chameleon

The chameleon (Khoury and Weltman 2004) is the archetypal model of a scalar field
with a mass that depends on its environment, becoming heavy in dense environments
and light in diffuse ones. The ingredients for construction of a chameleon model are
a conformal coupling between the scalar field and the matter fields of the standard
model, and a potential for the scalar field, which includes relevant self-interaction
terms.

In the presence of non-relativistic matter these two pieces conspire to give rise to
an effective potential for the scalar field

Ve (#) = V(@) + pA(¢), (1.5.70)

where V (¢) is the bare potential, p the local energy density and A(¢) the conformal
coupling function. For suitable choices of A(¢) and V (¢) the effective potential has
a minimum and the position of the minimum depends on p. Self-interaction terms in
V (¢) ensure that the mass of the field in this minimum also depends on p so that the
field becomes more massive in denser environments.

The environmental dependence of the mass of the field allows the chameleon to
avoid the constraints of fifth-force experiments through what is known as the thin-shell
effect. If a dense object is embedded in a diffuse background the chameleon is massive
inside the object. There, its Compton wavelength is small. If the Compton wavelength
is smaller than the size of the object, then the scalar mediated force felt by an observer
at infinity is sourced, not by the entire object, but instead only by a thin shell of matter
(of depth the Compton wavelength) at the surface. This leads to a natural suppression
of the force without the need to fine tune the coupling constant.

The Vainshtein mechanism

In models such as DGP, the Galileon, Cascading gravity, massive gravity and bi- or
multi-gravity, the effects of the scalar field(s) are screened by the Vainshtein mecha-
nism (Vainshtein 1972; Deffayet et al. 2002b), see also Babichev and Deffayet (2013)
for a recent review on the Vainshtein mechanism. This occurs when nonlinear, higher-
derivative operators are present in the Lagrangian for a scalar field, arranged in such
a way that the equations of motion for the field are still second order, such as the
interactions presented in Eq. (1.5.57).

In the presence of a massive source the nonlinear terms force the suppression of
the scalar force in the vicinity of a massive object. The radius within which the scalar
force is suppressed is known as the Vainshtein radius. As an example in the DGP
model the Vainshtein radius around a massive object of mass M is

M 1739
~ — 1.5.71
T <4JTMP1> A ( )

where A is the strong coupling scale introduced in Sect. 1.5.5.2. For the Sun, if m ~
10733 eV, or in other words, A~! = 1000 km, then the Vainshtein radius is r, ~
102 pc.
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Inside the Vainshtein radius, when the nonlinear, higher-derivative terms become
important they cause the kinetic terms for scalar fluctuations to become large. This
can be interpreted as a relative weakening of the coupling between the scalar field
and matter. In this way the strength of the interaction is suppressed in the vicinity of
massive objects.

Related to the Vainshtein mechanism but slight more general is the screening via a
disformal coupling between the scalar field and the stress—energy tensor 9,77 8, 7w T#"
(Koivisto et al. 2012) as is present in DBI-braneworld types of models (de Rham and
Tolley 2010) and massive gravity (de Rham and Gabadadze 2010).

The Symmetron

The symmetron model (Hinterbichler and Khoury 2010) is in many ways similar to
the chameleon model discussed above. It requires a conformal coupling between the
scalar field and the standard model and a potential of a certain form. In the presence
of non-relativistic matter this leads to an effective potential for the scalar field

Ver@) =~ (23 ) 9 + 120 (15.72)
where M, ;v and A are parameters of the model, and p is the local energy density.

In sufficiently dense environments, p > MZM 2. the field sits in a minimum at
the origin. As the local density drops the symmetry of the field is spontaneously
broken and the field falls into one of the two new minima with a non-zero vacuum
expectation value. In high-density symmetry-restoring environments, the scalar field
vacuum expectation value should be near zero and fluctuations of the field should
not couple to matter. Thus, the symmetron force in the exterior of a massive object
is suppressed because the field does not couple to the core of the object. This is an

example of Damour—Polyakov mechanism.

The Olive—Pospelov model

The Olive—Pospelov model (Olive and Pospelov 2008) again uses a scalar conformally
coupled to matter. In this construction both the coupling function and the scalar field
potential are chosen to have quadratic minima. If the background field takes the value
that minimizes the coupling function, then fluctuations of the scalar field decouple
from matter. In non-relativistic environments the scalar field feels an effective potential,
which is a combinations of these two functions. In high-density environments the field
is very close to the value that minimizes the form of the coupling function. In low-
density environments the field relaxes to the minimum of the bare potential. Thus, the
interactions of the scalar field are suppressed in dense environments. This is another
example of Damour-Polyakov mechanism.

1.5.9 Einstein Aether and its generalizations

Milgrom (1983) suggested that the emerging evidence for the presence of dark matter in
galaxies could follow from a modification either to how ‘baryonic’ matter responded to
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the Newtonian gravitational field it created or to how the gravitational field was related
to the baryonic matter density. Collectively these ideas are referred to as modified
Newtonian dynamics (MOND). By way of illustration, MOND may be considered as
a modification to the non-relativistic Poisson equation:

V. (M <|le|> Vlll) =47 Gp, (1.5.73)

ao

where ¥ is the gravitational potential, ag is a number with dimensions Length~! and p
is the baryonic matter density. The number a is determined by looking at the dynamics
of visible matter in galaxies (Sanders and McGaugh 2002). The function w(x) would
simply be equal to unity in Newtonian gravity. In MOND, the functional form is only
fixed at its limits: 4 — 1 asx — ooand u — x as x — 0.

We are naturally interested in a relativistic version of such a proposal. The building
block is the perturbed spacetime metric already introduced in Eq. (1.3.8)

ds? = — (1 +2¥)dt> + (1 — 2@) a*(1) (dR2 + R? d:22) . (15.74)

A simple approach is to introduce a dynamical clock field, which we will call A*.
If it has solutions aligned with the time-like coordinate # then it will be sensitive to
V. The dynamical nature of the field implies that it should have an action that will
contain gradients of the field and thus potentially scalars formed from gradients of
v, as we seek. A family of covariant actions for the clock field is as follows (Zlosnik
et al. 2007):

I[g”b,A“, == G/ J_[ F(K)+ 2 (A“A, +1)}
where
K = K"V, AV, As (15.75)
with
KM = 1" g" + c2g"g?’ + ¢3g"0g". (15.76)

The quantity ¢ is a number with dimensions of length, the c4 are dimensionless
constants, the Lagrange multiplier field A enforces the unit-timelike constraint on
A%, and F is a function. These models have been termed generalized Einstein-aether
(GEA) theories, emphasizing the coexistence of general covariance and a ‘preferred’
state of rest in the model, i.e., keeping time with A*.

Indeed, when the geometry is of the form (1.5.74), anisotropic stresses are negligible
and A" is aligned with the flow of time ##, then one can find appropriate values of the
ca and ¢ such that K is dominated by a term equal to |V¥|? /ag. This influence then
leads to a modification to the time-time component of Einstein’s equations: instead
of reducing to Poisson’s equation, one recovers an equation of the form (I.5.73).
Therefore the models are successful covariant realizations of MOND.
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Interestingly, in the FLRW limit @, ¥ — 0, the time-time component of Einstein’s
equations in the GEA model becomes a modified Friedmann equation:

H? 87 G
B (—2> H> = 22 (15.77)
ag 3

where the function g is related to F and its derivatives with respect to K. The dynamics
in galaxies prefer a value a( on the order the Hubble parameter today Hy (Sanders and
McGaugh 2002) and so one typically gets a modification to the background expansion
with a characteristic scale Hy, i.e., the scale associated with modified gravity models
that produce dark-energy effects. Ultimately the GEA model is a phenomenological
one and as such there currently lack deeper reasons to favor any particular form of
F. However, one may gain insight into the possible solutions of (1.5.77) by looking
at simple forms for F. In Zuntz et al. (2010), the monomial case F o« K™ was
considered where the kinetic index n,, was allowed to vary. Solutions with accelerated
expansion were found that could mimic dark energy.

Returning to the original motivation behind the theory, the next step is to look
at the theory on cosmological scales and see whether the GEA models are realistic
alternatives to dark matter. As emphasized, the additional structure in spacetime is
dynamical and so possesses independent degrees of freedom. As the model is assumed
to be uncoupled to other matter, the gravitational field equations would regard the
influence of these degrees of freedom as a type of dark matter (possibly coupled
non-minimally to gravity, and not necessarily ‘cold’).

The possibility that the model may then be a viable alternative to the dark sector
in background cosmology and linear cosmological perturbations has been explored in
depth in Zlosnik et al. (2008), Li et al. (2008a) and Zuntz et al. (2010). As an alter-
native to dark matter, it was found that the GEA models could replicate some but not
all of the following features of cold dark matter: influence on background dynamics
of the universe; negligible sound speed of perturbations; growth rate of dark matter
‘overdensity’; absence of anisotropic stress and contribution to the cosmological Pois-
son equation; effective minimal coupling to the gravitational field. When compared
to the data from large scale structure and the CMB, the model fared significantly less
well than the concordance model and so is excluded. If one relaxes the requirement
that the vector field be responsible for the effects of cosmological dark matter, one
can look at the model as one responsible only for the effects of dark energy. It was
found (Zuntz et al. 2010) that the current most stringent constraints on the model’s suc-
cess as dark energy were from constraints on the size of large scale CMB anisotropy.
Specifically, possible variation in w(z) of the ‘dark energy’ along with new degrees
of freedom sourcing anisotropic stress in the perturbations was found to lead to new,
non-standard time variation of the potentials @ and ¥. These time variations source
large scale anisotropies via the integrated Sachs—Wolfe effect, and the parameter space
of the model is constrained in avoiding the effect becoming too pronounced.

In spite of this, given the status of current experimental bounds it is conceivable
that a more successful alternative to the dark sector may share some of these points of
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departure from the Concordance Model and yet fare significantly better at the level of
the background and linear perturbations.

1.5.10 The tensor—vector—scalar theory of gravity

Another proposal for a theory of modified gravity arising from Milgrom’s observa-
tion is the tensor—vector—scalar theory of gravity, or TeVeS. TeVeS theory is bimetric
with two frames: the “geometric frame” for the gravitational fields, and the “phys-
ical frame”, for the matter fields. The three gravitational fields are the metric g,
(with connection @a) that we refer to as the geometric metric, the vector field A, and
the scalar field ¢. The action for all matter fields, uses a single physical metric g,
(with connection V,). The two metrics are related via an algebraic, disformal relation
(Bekenstein 1993) as

Sab = € 2934, — 2sinh(2) A, Ap. (15.78)

Justlike in the generalized Einstein-Aether theories, the vector field is further enforced
to be unit-timelike with respect to the geometric metric, i.e.,

8P AAy = A%A, = — 1. (1.5.79)

The theory is based on an action S, which is splitas § = Sz + Sa + Sy + Sy, where

1 .
S; = —— | d*x /=% R, 1.5.80
CRRTETeN B (1>.80)

where g and R are the determinant and scalar curvature of 8uv respectively and G is
the bare gravitational constant,

1
32nG

Sy =

/d4x J=3 [KF“bFab — 20 (A, AY + 1)] , (1.5.81)

where F,, = V,Ap — Vp A, leads to a Maxwellian kinetic term and A is a Lagrange
multiplier ensuring the unit-timelike constraint on A, and K is a dimensionless con-
stant (note that indices on F;j, are raised using the geometric metric, i.e., F' “b = g%Fp)

and
1

Sy = —
¢ 167G

f d*xy/—g [u 8V, Vi + V(m] , (15.82)

where y is a non-dynamical dimensionless scalar field, 397 = §** — A% A? and V (n) is
an arbitrary function that typically depends on a scale £ . The matter is coupled only
to the physical metric g, and defines the matter stress—energy tensor 7y, through
88, = —% [d*x/=g Tu» 8g°°. The TeVeS action can be written entirely in the
physical frame (Zlosnik et al. 2006; Skordis 2009) or in a diagonal frame (Skordis
2009) where the scalar and vector fields decouple.
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In a Friedmann universe, the cosmological evolution is governed by the Friedmann
equation 3
3H? = 87Ge™ (py + p) , (1.5.83)

where H is the Hubble rate in terms of the geometric scale factor, p is the physical
matter density that obeys the energy conservation equation with respect to the physical
metric and where the scalar field energy density is

=Wy (15.84)
P9 = ToxG \Mau >

Exact analytical and numerical solutions with the Bekenstein free function have been
found in Skordis et al. (2006) and Dodelson and Liguori (2006). It turns out that energy
density tracks the matter fluid energy density. The ratio of the energy density of the
scalar field to that of ordinary matter is approximately constant, so that the scalar field
exactly tracks the matter dynamics. In realistic situations, the radiation era tracker is
almost never realized, as has been noted by Dodelson and Liguori, but rather py is
subdominant and slowly-rolling and ¢ o a*/. Bourliot et al. (2007) studied more
general free functions which have the Bekenstein function as a special case and found
a whole range of behavior, from tracking and accelerated expansion to finite time
singularities. Diaz-Rivera et al. (2006) have studied cases where the cosmological
TeVeS equations lead to inflationary/accelerated expansion solutions.

Although no further studies of accelerated expansion in TeVeS have been performed,
it is very plausible that certain choices of function will inevitably lead to acceleration.
It is easy to see that the scalar field action has the same form as a k-essence/k-inflation
(Armendariz-Picon et al. 2000) action which has been considered as a candidate theory
for acceleration. It is unknown in general whether this has similar features as the
uncoupled k-essence, although Zhao’s study indicates that this a promising research
direction (Zhao 2008).

In TeVeS, cold dark matter is absent. Therefore, in order to get acceptable values
for the physical Hubble constant today (i.e., around Hy ~ 70 km/s/Mpc), we have
to supplement the absence of CDM with something else. Possibilities include the
scalar field itself, massive neutrinos (Skordis et al. 2006; Ferreira et al. 2008) and a
cosmological constant. At the same time, one has to get the right angular diameter
distance to recombination (Ferreira et al. 2008). These two requirements can place
severe constraints on the allowed free functions.

Until TeVeS was proposed and studied in detail, MOND-type theories were assumed
to be fatally flawed: their lack of a dark matter component would necessarily prevent
the formation of large-scale structure compatible with current observational data. In the
case of an Einstein universe, it is well known that, since baryons are coupled to photons
before recombination they do not have enough time to grow into structures on their
own. In particular, on scales smaller than the diffusion damping scale perturbations
in such a universe are exponentially damped due to the Silk-damping effect. CDM
solves all of these problems because it does not couple to photons and therefore can
start creating potential wells early on, into which the baryons fall.
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Fig. 4 Left: the cosmic microwave background angular power spectrum /(I +1)C; /(27r) for TeVeS (solid)
and ACDM (dotted) with WMAP 5-year data (Nolta et al. 2009). Right: the matter power spectrum P (k)
for TeVeS (solid) and ACDM (dotted) plotted with SDSS data

TeVeS contains two additional fields, which change the structure of the equations
significantly. The first study of TeVeS predictions for large-scale structure observations
was conducted in Skordis et al. (2006). They found that TeVeS can indeed form
large-scale structure compatible with observations depending on the choice of TeVeS
parameters in the free function. In fact the form of the matter power spectrum P (k) in
TeVeS looks quite similar to that in ACDM. Thus TeVeS can produce matter power
spectra that cannot be distinguished from ACDM by current observations. One would
have to turn to other observables to distinguish the two models. The power spectra
for TeVeS and ACDM are plotted on the right panel of Fig. 4. Dodelson and Liguori
(2006) provided an analytical explanation of the growth of structure seen numerically
by Skordis et al. (2006) and found that the growth in TeVeS is due to the vector field
perturbation.

It is premature to claim (as in Slosar et al. 2005; Spergel et al. 2007) that only a
theory with CDM can fit CMB observations; a prime example to the contrary is the
EBI theory (Bafiados et al. 2009). Nevertheless, in the case of TeVeS (Skordis et al.
2006) numerically solved the linear Boltzmann equation in the case of TeVeS and
calculated the CMB angular power spectrum for TeVeS. By using initial conditions
close to adiabatic the spectrum thus found provides very poor fit as compared to
the ACDM model (see the left panel of Fig. 4). The CMB seems to put TeVeS into
trouble, at least for the Bekenstein free function. The result of Dodelson and Liguori
(2006) has a further direct consequence. The difference @ — ¥, sometimes named
the gravitational slip (see Sect. 1.3.2), has additional contributions coming from the
perturbed vector field «. Since the vector field is required to grow in order to drive
structure formation, it will inevitably lead to a growing @ — ¥. The difference @ — ¥
will be measured by Euclid, and therefore, when the data is available, one will be able
to provide a substantial test that can distinguish TeVeS from ACDM.
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1.5.11 Other models of interest

15.11.1 Models of varying alpha

Whenever a dynamical scalar field is added to a theory, the field will naturally couple
to all other fields present, unless a (still unknown) symmetry is postulated to sup-
press such couplings (Carroll 1998). A coupling to the electromagnetic sector leads to
spacetime variations of Nature’s fundamental constants, which are constrained both
by local atomic clock experiments and by astrophysical observations (Uzan 2011).
Joint constraints on dynamical dark energy model parametrizations and on the cou-
pling with electromagnetism were obtained in Calabrese et al. (2014), combining weak
lensing and supernova measurements from Euclid with high-resolution spectroscopy
measurements from the European extremely large telescope (Martins 2015). These
forecasts suggest that in the CPL parametrization of these models, the addition of
spectroscopic data (which spans the range 0 < z < 4) improves constraints from
Euclid observables by a factor of 2 for wg and by one order of magnitude for w,.

15.11.2 f(T) gravity

f(T) gravity is a generalization of teleparallel gravity, where the torsion scalar T,
instead of curvature, is responsible for gravitational interactions. In this theory, space-
time is endowed with a curvature-free Weitzenbock connection. Thus, torsion acts as
a force, allowing for the interpretation of gravity as a gauge theory of the translation
group (Arcos and Pereira 2004). Teleparallel gravity and GR yield completely equiva-
lent dynamics for f(7') = T, but differ for any other choice f(7") (Ferraro and Fiorini
2008; Fiorini and Ferraro 2009). Unlike analogous approach of f(R) theories, f(T)
gravity yields equations that remain at second order in field derivatives; however, local
Lorentz invariance is lost.

In f(T) cosmology, structure formation is modified because of a time dependent
effective gravitational constant. Cardone et al. (2012) analysed two viable f(7") grav-
ity models and showed that both are in very good agreement with a wide set of
data, including SNIa and GRB Hubble diagrams, BAOs at different redshifts, Hubble
expansion rate measurements and the WMAP?7 distance priors. Yet, that wide dataset
is unable to constrain the model parameters enough to discriminate among the consid-
ered f(T) models and the standard ACDM scenario. Therefore, Camera et al. (2014)
investigated the imprints of f(7") gravity on galaxy clustering and weak gravitational
lensing in the context of Euclid.

In particular, by studying weak lensing tomographic cosmic shear and both 2D and
3D clustering of Euclid H-o galaxies. They found that with such a combination of
probes it will indeed be possible to tightly constrain f(7") model parameters. Again, it
is the combination of clustering and lensing that yields the tighest constraints, thanks
to the high complementarity of the two probes when it comes to tracking the different
behaviour of the metric potentials. By such probe combination, bounds on the two
modified f(7) models get more constraining by more than an order of magnitude,
thus allowing us to rule out the models with more than 30 confidence.
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1.6 Nonlinear aspects

In this section, we discuss how the nonlinear evolution of cosmic structures in the
context of different non-standard cosmological models can be studied by means of
numerical simulations based on N-body algorithms and of analytical approaches based
on the spherical collapse model.

1.6.1 N-body simulations of dark energy and modified gravity

Here we discuss the numerical methods presently available for this type of analyses,
and we review the main results obtained so far for different classes of alternative cos-
mologies. These can be grouped into models where structure formation is affected only
through a modified expansion history (such as quintessence and early dark-energy
models, Sect. 1.5.1) and models where particles experience modified gravitational
forces, either for individual particle species (interacting dark-energy models and grow-
ing neutrino models, Sect. 1.5.3 or for all types of particles in the universe (modified
gravity models). A general overview on the recent developments in the field of dark
energy and modified gravity N-body simulations can be found in Baldi (2012a).

1.6.1.1 Quintessence and early dark-energy models

In general, in the context of flat FLRW cosmologies, any dynamical evolution of the
dark-energy density (ppg 7# const. = p,) determines a modification of the cosmic
expansion history with respect to the standard ACDM cosmology. In other words, if
the dark energy is a dynamical quantity, i.e., if its equation of state parameter w 7# —1
exactly, for any given set of cosmological parameters (Hy, £2cpM, £2b, §2DE, §2rad), the
redshift evolution of the Hubble function H (z) will differ from the standard ACDM
case Hy(2).

Quintessence models of dark energy (Wetterich 1988; Ratra and Peebles 1988)
based on a classical scalar field ¢ subject to a self-interaction potential V (¢) have an
energy density py = $2/2 + V() that evolves in time according to the dynamical
evolution of the scalar field, which is governed by the homogeneous Klein—Gordon
equation:

b 3H¢'>+d—v—o (L6.1)
¢+ ap 6.
Here the dot denotes derivation w.r.t. ordinary time 7.

For a canonical scalar field, the equation of state parameter wy = ¢/ py, Where
Dy = $%/2 — V(¢), will in general be larger than — I, and the density of dark
energy ps will consequently be larger than p 4 at any redshift z > 0. Furthermore, for
some simple choices of the potential function such as those discussed in Sect. 1.5.1
(e.g., an exponential potential V o exp(—a¢/Mp)) or an inverse-power potential
V o (¢p/Mp1)~%), scaling solutions for the evolution of the system can be analytically
derived. In particular, for an exponential potential, a scaling solution exists where
the dark energy scales as the dominant cosmic component, with a fractional energy
density
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8w Gpy n

3H?2 o2’
with n = 3 for matter domination and n = 4 for radiation domination. This corre-
sponds to a relative fraction of dark energy at high redshifts, which is in general not
negligible, whereas during matter and radiation domination 24 ~ 0 and, therefore,
represents a phenomenon of an early emergence of dark energy as compared to ACDM
where dark energy is for all purposes negligible until z ~ 1.

Early dark energy (EDE) is, therefore, a common prediction of scalar field models
of dark energy, and observational constraints put firm bounds on the allowed range of
£2pE at early times, and consequently on the potential slope «.

As we have seen in Sect. 1.2.1, a completely phenomenological parametrization
of EDE, independent from any specific model of dynamical dark energy has been
proposed by Wetterich (2004) as a function of the present dark-energy density $2pg,
its value at early times 2., and the present value of the equation of state parameter
wo. From Eq. 1.2.4, the full expansion history of the corresponding EDE model can
be derived.

A modification of the expansion history indirectly influences also the growth of
density perturbations and ultimately the formation of cosmic structures. While this
effect can be investigated analytically for the linear regime, N-body simulations are
required to extend the analysis to the nonlinear stages of structure formation. For
standard Quintessence and EDE models, the only modification that is necessary to
implement into standard N-body algorithms is the computation of the correct Hubble
function H (z) for the specific model under investigation, since this is the only way in
which these non standard cosmological models can alter structure formation processes.

This has been done by the independent studies of Grossi and Springel (2009) and
Francis et al. (2008a), where a modified expansion history consistent with EDE models
described by the parametrization of Eq. I.2.4 has been implemented in the widely used
N-body code GADGET- 2 (Springel 2005) and the properties of nonlinear structures
forming in these EDE cosmologies have been analyzed. Both studies have shown that
the standard formalism for the computation of the halo mass function still holds for
EDE models at z = 0. In other words, both the standard fitting formulae for the number
density of collapsed objects as a function of mass, and their key parameter §, = 1.686
representing the linear overdensity at collapse for a spherical density perturbation,
remain unchanged also for EDE cosmologies.

The work of Grossi and Springel (2009), however, investigated also the internal
properties of collapsed halos in EDE models, finding a slight increase of halo con-
centrations due to the earlier onset of structure formation and most importantly a
significant increment of the line-of-sight velocity dispersion of massive halos. The
latter effect could mimic a higher og normalization for cluster mass estimates based
on galaxy velocity dispersion measurements and, therefore, represents a potentially
detectable signature of EDE models.

Besides determining a different expansion history with respect to the standard
ACDM cosmology due to the presence of an EDE component, scalar-field DE cos-
mologies also predict the existence of spatial perturbations of the DE density, resulting
in a modification of the shape of the matter power spectrum. Even though such density
perturbations are suppressed by free-streaming at sub-horizon scales (thereby allow-

Q4 = (1.6.2)
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ing to discard the effect of DE fluctuations on the dynamical evolution of cosmic
structures), they remain frozen to a constant value at super-horizon scales. Therefore,
as new large scales continuously enter the causal horizon, they will be affected by the
presence of DE perturbations before these are eventually damped by free-streaming.
Consequently, DE perturbations are expected to slightly change the large-scale shape
of the linear power spectrum, thereby affecting the initial conditions of structure for-
mation (Ma et al. 1999; Alimi et al. 2010). This has motivated the development of
DE N-body simulations with extremely large volumes, comparable or larger to the
comoving size of the cosmic horizon, in order to investigate the nonlinear signatures
of the large-scale DE perturbations (Alimi et al. 2010, 2012; Rasera et al. 2010).
Such studies have highlighted that the nonlinear regime of structure formation carries
information on the initial conditions of the Universe and keeps memory of the growth
history of density perturbations even for the case of perfectly degenerate linear mat-
ter power spectra and og values. Therefore, nonlinear structure formation processes
represent a precious source of information for the highly demanding requirements of
precision cosmology.

1.6.1.2 Interacting dark-energy models

Another interesting class of non standard dark-energy models, as introduced in
Sect. 1.5.3, is given by coupled dark energy where a direct interaction is present
between a Quintessence scalar field ¢ and other cosmic components, in the form of a
source term in the background continuity equations:

d d

d%” = —3H( + wg)pp + ﬁ((b)f(l — 3wWey) Pa, (1.6.3)

dpy d

di = —3H + we) pa — ﬂ(¢>)—¢(1 — 3wy) Pa, (1.6.4)
n dn

where o represents a single cosmic fluid coupled to ¢.

While such direct interaction with baryonic particles (¢ = b) is tightly constrained
by observational bounds, and while it is suppressed for relativistic particles (¢ = r) by
symmetry reasons (1 — 3w, = 0), a selective interaction with cold dark matter (CDM
hereafter) or with massive neutrinos is still observationally viable (see Sect. 1.5.3).

Since the details of interacting dark-energy models have been discussed in
Sect. 1.5.3, here we simply recall the main features of these models that have a
direct relevance for nonlinear structure formation studies. For the case of interact-
ing dark energy, in fact, the situation is much more complicated than for the simple
EDE scenario discussed above. The mass of a coupled particle changes in time
due to the energy exchange with the dark-energy scalar field ¢ according to the
equation:

m(p) = moe™ | F(#) ¢’ (1.6.5)

where my is the mass at z = 0. Furthermore, the Newtonian acceleration of a coupled
particle (subscript ¢) gets modified as:
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Ve=—Hv,— V&, - V,.. (1.6.6)

where H contains a new velocity-dependent acceleration:

. ¢
Hv.=H <1 — ﬁd)ﬁ) Ve, 1.6.7)
and where a fifth-force acts only between coupled particles as
& = (1+28%) 0, (16.8)

while @, represents the gravitational potential due to all massive particles with no
coupling to the dark energy that exert a standard gravitational pull.

As a consequence of these new terms in the Newtonian acceleration equation the
growth of density perturbations will be affected, in interacting dark-energy models, not
only by the different Hubble expansion due to the dynamical nature of dark energy, but
also by a direct modification of the effective gravitational interactions at subhorizon
scales. Therefore, linear perturbations of coupled species will grow with a higher rate
in these cosmologies In particular, for the case of a coupling to CDM, a different
amplitude of the matter power spectrum will be reached at z = 0 with respect to
ACDM if a normalization in accordance with CMB measurements at high redshifts
is assumed.

Clearly, the new acceleration Eq. (1.6.6) will have an influence also on the formation
and evolution of nonlinear structures, and a consistent implementation of all the above
mentioned effects into an N-body algorithm is required in order to investigate this
regime.

For the case of a coupling to CDM (a coupling with neutrinos will be discussed in
the next section) this has been done, e.g., by Maccio et al. (2004) and Sutter and Ricker
(2008) with 1D or 3D grid-based field solvers, and more recently by means of suitable
modifications (by Baldi et al. 2010; Carlesi et al. 2014a) of the TreePM hydrodynamic
N-body code GADGET- 2 (Springel 2005), and similarly through a modified version
(by Li and Barrow 2011a) of the adaptive mesh refinements code RAMSES (Teyssier
2002).

Nonlinear evolution within coupled quintessence cosmologies has been addressed
using various methods of investigation, such as spherical collapse (Mainini and
Bonometto 2006; Wintergerst and Pettorino 2010; Manera and Mota 2006; Koivisto
2005; Sutter and Ricker 2008; Abdalla et al. 2009; Bertolami et al. 2009) and alter-
native semi-analytic methods (Saracco et al. 2010; Amendola and Quercellini 2004).
N-body and hydro-simulations have also been done (Maccio et al. 2004; Baldi et al.
2010; Baldi 2011b; Baldi and Pettorino 2011; Baldi and Viel 2010; Li et al. 2011;
Baldi 2011a; Li and Barrow 2011b; Zhao et al. 2010). We list here briefly the main
observable features typical of this class of models:

e The suppression of power at small scales in the power spectrum of interacting
dark-energy models as compared to ACDM (see, e.g., Baldi 2011a);

e An enhanced lensing power spectrum as compared to ACDM (see e.g. Beynon
et al. 2012);
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e The development of a gravitational bias in the amplitude of density perturbations
of uncoupled baryons and coupled CDM particles defined as Py (k)/P.(k) < 1,
which determines a significant decrease of the baryonic content of massive halos
at low redshifts in accordance with a large number of observations (Baldi et al.
2010; Baldi 2011a);

e The increase of the number density of high-mass objects at any redshift as com-
pared to ACDM (see, e.g., Baldi and Pettorino 2011; Baldi 2012b; Cui et al.
2012);

e An enhanced ISW effect (Amendola 2000a, 2004; Mainini and Mota 2012);
such effects may be partially reduced when taking into account nonlinearities,
as described in Pettorino et al. (2010);

e A modification in the shape of z-space distortions (Marulli et al. 2012) and an
enhanced pairwise infall velocity of colliding massive clusters (Lee and Baldi
2012);

e A less steep inner core halo profiles (depending on the interplay between fifth
force and velocity-dependent terms) (Baldi et al. 2010; Baldi 2011a,b; Li et al.
2011; Li and Barrow 2011b);

e A lower concentration of the halos (Baldi et al. 2010; Baldi 2011b; Li and Barrow
2011b);

e CDM voids are larger and more underdense when a coupling is active (Baldi and
Viel 2010; Sutter et al. 2015).

e A modified amplitude and time evolution of the halo bias (see, e.g., Marulli et al.
2012; Moresco et al. 2014), which might determine a counterintuitive behaviour
in the connection between CDM and halo populations statistics in the context of
interacting dark energy cosmologies.

The analysis has been extended to the case of non-constant coupling functions
B(¢) by Baldi (2011b). As discussed in Sect. 1.6.1, when a variable coupling S(¢) is
active the relative balance of the fifth-force and other dynamical effects depends on
the specific time evolution of the coupling strength. Under such conditions, some of
the above mentioned results no longer hold. In particular, the CODECS simulations
series (Baldi 2012d) has provided evidence that for various combinations of coupling
and self-interaction potential functions—V (¢) and f¢—some of the following effects
might arise:

e Small scale power can be both suppressed and enhanced when a growing coupling
function is considered, depending on the magnitude of the coupling time derivative
dB(¢)/d¢

e The inner overdensity of CDM halos, and consequently the halo concentrations,
can both decrease (as always happens for the case of constant couplings) or
increase, again depending on the rate of change of the coupling strength (Cui
et al. 2012);

e The abundance of halo substructures (see Giocoli et al. 2013) as well as the CMB
lensing power spectrum (see Carbone et al. 2013) might show both an enhancement
or a suppression with respect to ACDM depending on the specific model under
exam.
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More recently, Carlesi et al. (2014a,b) have employed a specific suite of high-
resolution N-body simulations to investigate how some of the above mentioned effects
depend on the cosmic environment in which CDM halos reside, showing that most
of the characteristic observational features of interacting dark energy are significantly
enhanced for halo populations residing in underdense regions of the Universe. Fur-
thermore, Carlesi et al. (2014a) also highlighted a positive correlation between the
average spin parameter of CDM halos and the coupling constant.

All these effects represent characteristic features of interacting dark-energy models
and could provide a direct way to observationally test these scenarios.

A slightly more complex realisation of the interacting dark energy scenario has
been recently proposed by Baldi (2012c¢), and termed the “Multi-coupled dark energy”
model. The latter is characterised by two distinct CDM particle species featuring an
opposite constant coupling to a single classical dark energy scalar field, and represents
the simplest possible realisation of the general multiple-interaction scenario proposed
by Gubser and Peebles (2004a, b) and Brookfield et al. (2008). The most noticeable fea-
ture of such model is the dynamical screening that effectively suppresses the coupling
at the level of the background and linear perturbations evolution, although leaving
room for a possible interesting phenomenology at nonlinear scales (see, e.g., Piloyan
et al. 2013, 2014). Some first N-body simulations of the multi-coupled dark energy
scenario have been performed by Baldi (2013, 2014), showing for the first time the
halo fragmentation process occurring in these cosmologies as a consequence of the
repulsive long-range fifth-force between CDM particles of different types. Higher res-
olution simulations will be required in order to investigate possible observable effects
of this new phenomenon on the shape and abundance of CDM halos at very small
scales.

Alternatively, the coupling can be introduced by choosing directly a covariant
stress—energy tensor, treating dark energy as a fluid in the absence of a starting action
(Mangano et al. 2003; Viliviita et al. 2008, 2010; Caldera-Cabral et al. 2009b; Schae-
fer et al. 2008; Majerotto et al. 2010; Gavela et al. 2009, 2010; Caldera-Cabral et al.
2009a).

1.6.1.3 Growing neutrinos

In case of a coupling between the dark-energy scalar field ¢ and the relic fraction of
massive neutrinos, all the above basic Egs. (I1.6.5)—(1.6.8) still hold. However, such
models are found to be cosmologically viable only for large negative values of the
coupling B (as shown by Amendola et al. 2008a), that according to Eq. 1.6.5 deter-
mines a neutrino mass that grows in time (from which these models have been dubbed
“growing neutrinos”). An exponential growth of the neutrino mass implies that cosmo-
logical bounds on the neutrino mass are no longer applicable and that neutrinos remain
relativistic much longer than in the standard scenario, which keeps them effectively
uncoupled until recent epochs, according to Eqgs. (1.6.3 and 1.6.4). However, as soon
as neutrinos become non-relativistic at redshift z,, due to the exponential growth of
their mass, the pressure terms 1 — 3w, in Egs. (1.6.3 and 1.6.4) no longer vanish and
the coupling with the DE scalar field ¢ becomes active.
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Therefore, while before z;,; the model behaves as a standard ACDM scenario, after
Znr the non-relativistic massive neutrinos obey the modified Newtonian Eq. (1.6.6) and
a fast growth of neutrino density perturbation takes place due to the strong fifth force
described by Eq. (1.6.8).

The growth of neutrino overdensities in the context of growing neutrinos models
has been studied in the linear regime by Mota et al. (2008), predicting the formation
of very large neutrino lumps at the scale of superclusters and above (10—100 Mpc/h)
at redshift z ~ 1.

The analysis has been extended to the nonlinear regime in Wintergerst et al. (2010)
by following the spherical collapse of a neutrino lump in the context of growing
neutrino cosmologies. This study has witnessed the onset of virialization processes in
the nonlinear evolution of the neutrino halo at z &~ 1.3, and provided a first estimate of
the associated gravitational potential at virialization being of the order of @, ~ 107°
for a neutrino lump with radius R ~ 15 Mpc.

An estimate of the potential impact of such very large nonlinear structures onto
the CMB angular power spectrum through the integrated Sachs—Wolfe effect has been
attempted by Pettorino et al. (2010). This study has shown that the linear approxima-
tion fails in predicting the global impact of the model on CMB anisotropies at low
multipoles, and that the effects under consideration are very sensitive to the details
of the transition between the linear and nonlinear regimes and of the virialization
processes of nonlinear neutrino lumps, and that also significantly depend on possible
backreaction effects of the evolved neutrino density field onto the local scalar filed
evolution.

A full nonlinear treatment by means of specifically designed N-body simulations is,
therefore, required in order to follow in further detail the evolution of a cosmological
sample of neutrino lumps beyond virialization, and to assess the impact of growing
neutrinos models onto potentially observable quantities as the low-multipoles CMB
power spectrum or the statistical properties of CDM large scale structures. Simula-
tions of the growing neutrino scenario have been performed for the first time by Baldi
et al. (2011) by means of a modified version of the GADGET- 2 code which assumed
the linearity of the scalar field spatial perturbations (and consequently of the neutrino
mass) and no backreaction of the growth of neutrino lumps on the overall background
cosmic expansions. Although such approximations are quite restrictive, the simula-
tions performed by Baldi et al. (2011) allowed to follow the evolution of the formation
of a few large neutrino structures down to z ~ 1, after which neutrino particles start to
become relativistic thereby breaking the Newtonian implementation of gravitational
dynamics implemented in standard N-body algorithms. Such restrictions and approxi-
mations have been subsequently removed by the specific N-body algorithm developed
by Ayaita et al. (2012) which self-consistently implements both the relativistic evolu-
tion of neutrino particles and the backreaction effect on the background cosmology,
and which employs a Newton—Gauss—Seidel relaxation scheme to solve for nonlinear
spatial fluctuations of the scalar field. Nonetheless, even this more accurate numerical
treatment has been so far successfully employed only down to z ~ 1 due to its high
computational cost.
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1.6.1.4 Modified gravity

Modified gravity models, presented in Sect. L.5, represent a different perspective to
account for the nature of the dark components of the universe. Although most of the
viable modifications of GR are constructed in order to provide an identical cosmic
expansion history to the standard ACDM model, their effects on the growth of density
perturbations could lead to observationally testable predictions capable of distinguish-
ing modified gravity models from standard GR plus a cosmological constant.

Since a modification of the theory of gravity would affect all test masses in the
universe, i.e., including the standard baryonic matter, an asymptotic recovery of GR
for solar system environments, where deviations from GR are tightly constrained, is
required for all viable modified gravity models. Such “screening mechanism” rep-
resents the main difference between modified gravity models and the interacting
dark-energy scenarios discussed above, by determining a local dependence of the
modified gravitational laws in the Newtonian limit. Different modifications of the GR
Action integral might feature different types of screening mechanisms (see Sect. 1.5
for an introduction to modified gravity theories and screening mechanisms)—as,
e.g., the “Chameleon” (Khoury and Weltman 2004), the “Symmetron” (Hinterbichler
and Khoury 2010), the “Dilaton” (Damour and Polyakov 1994) or the “Vainshtein”
(Vainshtein 1972) mechanisms—which in turn might require different numerical
implementations in order to solve for the fully nonlinear evolution of the additional
degrees of freedom associated to the modifications of gravity.

While the linear growth of density perturbations in the context of modified grav-
ity theories can be studied (see, e.g., Hu and Sawicki 2007a; Motohashi et al. 2010b;
Amarzguioui et al. 2006; Appleby and Weller 2010) by parametrizing the scale depen-
dence of the modified Poisson and Euler equations in Fourier space (see the discussion
in Sect. 1.3), the nonlinear evolution of the additional degrees of freedom of any viable
modified gravity scenario makes the implementation of these theories into nonlinear
N-body algorithms much more challenging. Nonetheless, enormous progress has been
made over the past few years in the development of specific N-body codes for vari-
ous classes of modified gravity cosmologies, such that the investigation of nonlinear
structure formation for (at least some) alternative gravitational theories by means of
dedicated N-body simulations is becoming a mature field of investigation in com-
putational cosmology. The first simulations of modified gravity cosmologies, limited
to the “Chameleon” screening mechanism featured by f(R) theories, have been per-
formed by means of mesh-based iterative relaxation schemes (Oyaizu 2008; Oyaizu
et al. 2008; Schmidt et al. 2009; Khoury and Wyman 2009; Zhao et al. 2011; Davis
et al. 2012a; Winther et al. 2012) and showed an enhancement of the power spectrum
amplitude at intermediate and small scales. These studies also showed that this non-
linear enhancement of small scale power cannot be accurately reproduced by applying
the linear perturbed equations of each specific modified gravity theory to the standard
nonlinear fitting formulae (as, e.g., Smith et al. 2003).

After these first pioneering studies, a very significant amount of work has been done
in both extending the numerical implementation of modified gravity models within
N-body algorithms and in using high-resolution N-body simulations to investigate
the impact of various modifications of gravity on possible observable quantities.
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Concerning the former aspect, the main advancements have been obtained by
extending the range of possible screening mechanisms implemented in the modi-
fied gravity nonlinear solvers, in order to include “Symmetron” (see, e.g., Davis et al.
2012a), “Dilaton” (see, e.g., Brax et al. 2012b), and Vainshtein-like (see, e.g., Li
et al. 2013a,b; Barreira et al. 2013, for the cases of general Vainshtein as well as
for cubic and quartic Galileon models) mechanisms, and by optimising the nonlin-
ear Poisson solvers. Presently, three main parallel codes for modified gravity models
have been developed by independent groups, based on different underlying N-body
numerical schemes and procedures, namely the ECOSMOG (Li et al. 2012c), the MG-
GADGET (Puchwein et al. 2013), and the ISIS (Llinares et al. 2014) codes. The latter
has also recently provided the first implementation of Chameleon and Symmetron
modified gravity theories beyond the quasi-static approximation (Llinares and Mota
2013, 2014).

Concerning the latter aspect, a wide range of results about the impact of various
modified gravity theories on several observable quantities have been obtained with
the above-mentioned N-body codes, generally finding a good agreement between
the different algorithms even though a properly controlled code-comparison study
has yet to be performed. Among the most relevant results it is worth mentioning
the identification of modified gravity signatures in the large-scale structure statistics
(see, e.g., Li et al. 2012b; Lombriser et al. 2013, 2014; Arnold et al. 2014), in the
environmental dependence of CDM halo properties (Winther et al. 2012), on the
large-scale velocity field (see, e.g., Li et al. 2012a; Jennings et al. 2012; Hellwing
et al. 2014), and on the ISW effect (see, e.g., Cai et al. 2013). Furthermore, a recent
study (Baldi et al. 2014) performed with the MG- GADGET code has highlighted the
issue of a severe observational degeneracy between the effects of an f (R) modification
of gravity and a cosmological background of massive neutrinos

Despite the huge advancements in the field of nonlinear simulations of modified
gravity models achieved in recent years,

higher resolution simulations and new numerical approaches will be necessary in
order to extend these results to smaller scales and to accurately evaluate the deviations
of specific models of modified gravity from the standard GR predictions to a potentially
detectable precision level.

1.6.2 The spherical collapse model

A popular analytical approach to study nonlinear clustering of dark matter without
recurring to N-body simulations is the spherical collapse model, first studied by Gunn
and Gott (1972). In this approach, one studies the collapse of a spherical overdensity
and determines its critical overdensity for collapse as a function of redshift. Combin-
ing this information with the extended Press—Schechter theory (Press and Schechter
1974; Bond et al. 1991; see Zentner et al. 2008 for a review) one can provide a statis-
tical model for the formation of structures which allows to predict the abundance of
virialized objects as a function of their mass. Although it fails to match the details of
N-body simulations, this simple model works surprisingly well and can give useful
insigths into the physics of structure formation. Improved models accounting for the
complexity of the collapse exist in the literature and offer a better fit to numerical simu-
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lations. For instance, Sheth and Tormen (1999) showed that a significant improvement
can be obtained by considering an ellipsoidal collapse model. Furthermore, recent the-
oretical developments and new improvements in the excursion set theory have been
undertaken by Maggiore and Riotto (2010) and other authors (see, e.g., Shaw and
Mota 2008).

The spherical collapse model has been generalized to include a cosmological con-
stant by Peebles (1984) and Weinberg (1987). Lahav et al. (1991) have used it to
study the observational consequences of a cosmological constant on the growth of
perturbations. The case of standard quintessence, with speed of sound ¢; = 1, have
been studied by Wang and Steinhardt (1998). In this case, scalar fluctuations propa-
gate at the speed of light and sound waves maintain quintessence homogeneous on
scales smaller than the horizon scale. In the spherical collapse pressure gradients
maintain the same energy density of quintessence between the inner and outer part of
the spherical overdensity, so that the evolution of the overdensity radius is described
by

A G

i L
= =3 (om+h0o+3p0). (L.6.9)

where p,, denotes the energy density of dark matter while pp and py denote the
homogeneous energy density and pressure of the quintessence field. Note that, although
this equation looks like one of the Friedmann equations, the dynamics of R is not
the same as for a FLRW universe. Indeed, p,, evolves following the scale factor R,
while the quintessence follows the external scale factor a, according to the continuity
equation pg + 3(a/a)(pg + po) = 0.

In the following we will discuss the spherical collapse model in the contest of other
dark energy and modified gravity models.

1.6.2.1 Clustering dark energy

In its standard version, quintessence is described by a minimally-coupled canonical
field, with speed of sound ¢; = 1. As mentioned above, in this case clustering can
only take place on scales larger than the horizon, where sound waves have no time to
propagate. However, observations on such large scales are strongly limited by cosmic
variance and this effect is difficult to observe. A minimally-coupled scalar field with
fluctuations characterized by a practically zero speed of sound can cluster on all
observable scales. There are several theoretical motivations to consider this case. In
the limit of zero sound speed one recovers the Ghost Condensate theory proposed
by Arkani-Hamed et al. (2004b) in the context of modification of gravity, which is
invariant under shift symmetry of the field ¢ — ¢ + constant. Thus, there is no
fine tuning in assuming that the speed of sound is very small: quintessence models
with vanishing speed of sound should be thought of as deformations of this particular
limit where shift symmetry is recovered. Moreover, it has been shown that minimally-
coupled quintessence with an equation of state w < — 1 can be free from ghosts and
gradient instabilities only if the speed of sound is very tiny, |c;| < 10713. Stability can
be guaranteed by the presence of higher derivative operators, although their effect is
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absent on cosmologically relevant scales (Creminelli et al. 2006, 2009; Cheung et al.
2008c).

The fact that the speed of sound of quintessence may vanish opens up new obser-
vational consequences. Indeed, the absence of quintessence pressure gradients allows
instabilities to develop on all scales, also on scales where dark matter perturbations
become nonlinear. Thus, we expect quintessence to modify the growth history of dark
matter not only through its different background evolution but also by actively partic-
ipating to the structure formation mechanism, in the linear and nonlinear regime, and
by contributing to the total mass of virialized halos.

Following Creminelli et al. (2010), in the limit of zero sound speed pressure gra-
dients are negligible and, as long as the fluid approximation is valid, quintessence
follows geodesics remaining comoving with the dark matter (see also Lim et al. 2010
for a more recent model with identical phenomenology). In particular, one can study
the effect of quintessence with vanishing sound speed on the structure formation in
the nonlinear regime, in the context of the spherical collapse model. The zero speed
of sound limit represents the natural counterpart of the opposite case c¢; = 1. Indeed,
in both cases there are no characteristic length scales associated with the quintessence
clustering and the spherical collapse remains independent of the size of the object (see
Basse et al. 2011; Mota and van de Bruck 2004; Nunes and Mota 2006 for a study of
the spherical collapse when ¢ of quintessence is small but finite).

Due to the absence of pressure gradients quintessence follows dark matter in the
collapse and the evolution of the overdensity radius is described by

R dn G

where the energy density of quintessence pp has now a different value inside and
outside the overdensity, while the pressure remains unperturbed. In this case the
quintessence inside the overdensity evolves following the internal scale factor R,
oo + B(R/R)(,oQ + po) = 0 and the comoving regions behave as closed FLRW
universes. R satisfies the Friedmann equation and the spherical collapse can be solved
exactly (Creminelli et al. 2010).

Quintessence with zero speed of sound modifies dark matter clustering with respect
to the smooth quintessence case through the linear growth function and the linear
threshold for collapse. Indeed, for w > — 1 (w < — 1), it enhances (diminishes) the
clustering of dark matter, the effect being proportional to 1 + w. The modifications
to the critical threshold of collapse are small and the effects on the dark matter mass
function are dominated by the modification on the linear dark matter growth function.
Besides these conventional effects there is a more important and qualitatively new
phenomenon: quintessence mass adds to the one of dark matter, contributing to the
halo mass by a fraction of order ~ (1 4+ w)$2¢/$2,,. Importantly, it is possible to
show that the mass associated with quintessence stays constant inside the virialized
object, independently of the details of virialization. Moreover,the ratio between the
virialization and the turn-around radii is approximately the same as the one for ACDM
computed by Lahav et al. (1991). In Fig. 5, we plot the ratio of the mass function
including the quintessence mass contribution, for the ¢, = 0 case to the smooth
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Fig. 5 Ratio of the total mass functions, which include the quintessence contribution, for ¢y = 0 and
cs = latz = 0 (above) and z = 1 (below). Image reproduced by permission from Creminelli et al. (2010);
copyright by IOP and SISSA

¢s = 1 case. The sum of the two effects is rather large: for values of w still compatible
with the present data and for large masses the difference between the predictions of
the ¢; = 0 and the ¢; = 1 cases is of order one.

1.6.2.2 Coupled dark energy

We now consider spherical collapse within coupled dark-energy cosmologies. The
presence of an interaction that couples the cosmon dynamics to another species
introduces a new force acting between particles (CDM or neutrinos in the examples
mentioned in Sect. 1.5.3) and mediated by dark-energy fluctuations. Whenever such
a coupling is active, spherical collapse, whose concept is intrinsically based on grav-
itational attraction via the Friedmann equations, has to be suitably modified in order
to account for other external forces. As shown in Wintergerst and Pettorino (2010),
the inclusion of the fifth force within the spherical collapse picture deserves particular
caution. Here we summarize the main results on this topic and we refer to Wintergerst
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and Pettorino (2010) for a detailed illustration of spherical collapse in presence of a
fifth force.

If CDM is coupled to a quintessence scalar field as described in Sects. 1.5.3 and I1.10
of the present document, the full nonlinear evolution equations within the Newtonian
limit read:

Sm =~V Vom — (1 +8) V-V (L6.11)
Vi = — (21:1 —,BQE) Vin — (Vi V) Vi
—a 2V (D — BSg) (L6.12)
ASP = —B a’ Spm (1.6.13)
2
a
AP =—= ;3,00[ (1.6.14)

These equations can be derived from the non-relativistic Navier—Stokes equations and
from the Bianchi identities written in presence of an external source of the type:

VyT = Qu=—BT) . (16.15)

where T,f is the stress energy tensor of the dark matter fluid and we are using comoving
spatial coordinates x and cosmic time ¢. Note that v,, is the comoving velocity, related
to the peculiar velocities by v,;, = Vpec/a. They are valid for arbitrary quintessence
potentials as long as the scalar field is sufficiently light, i.e., mé8¢> = V"()sp K Ad¢
for the scales under consideration. For a more detailed discussion see Wintergerst and

Pettorino (2010). Combining the above equations yields to the following expression
for the evolution of the matter perturbation &,,:

. - E 4 §2 146,
5 =—(2H— )a T N LV Y 16.16
m ﬂd’ m + 31+ 5m + a2 eff ( )
Linearization leads to:
— (2H - ﬁq?) B + a2 Ader. (1.6.17)

where the effective gravitational potential follows the modified Poisson equation:

a2 _ 2
Adeit = — = pubn (1 +28 ) . (16.18)

Equations (1.6.16) and (1.6.17) are the two main equations which correctly describe
the nonlinear and linear evolution for a coupled dark-energy model. They can be used,
among other things, for estimating the extrapolated linear density contrast at collapse
. in the presence of a fifth force. It is possible to reformulate Egs. (1.6.16) and (1.6.17)
into an effective spherical collapse:

@ Springer



Cosmology and fundamental physics with the Euclid satellite Page 97 of 345 2

5——/345(}1—5)—12[ (14 3u)] - £ 425 (1.6.19)
i R 62 Pa o)1= 5 87 3pm. 6.
Equation (1.6.19) (Mainini and Bonometto 2006; Wintergerst and Pettorino 2010),
describes the general evolution of the radius of a spherical overdense region within
coupled quintessence. Comparing with the standard case (1.6.9) we notice the presence
of two additional terms: a ‘friction’ term and the coupling term B2 8p,,, the latter
being responsible for the additional attractive fifth force. Note that the ‘friction’ term
is actually velocity dependent and its effects on collapse depend, more realistically,
on the direction of the velocity, information which is not contained within a spherical
collapse picture and can be treated within simulations (Baldi and Pettorino 2011; Li
etal.2011; Baldi 2011a, b; Li and Barrow 201 1b). We stress that it is crucial to include
these additional terms in the equations, as derived from the nonlinear equations, in
order to correctly account for the presence of a fifth force. The outlined procedure
can easily be generalized to include uncoupled components, for example baryons. In
this case, the corresponding evolution equation for &, will be fed by @ = @. This
yields an evolution equation for the uncoupled scale factor R, that is equivalent to the
standard Friedmann equation. In Fig. 6, we show the linear density contrast at collapse
8¢(z¢) for three coupled quintessence models with « = 0.1 and 8 = 0.05, 0.1, 0.15.

An increase of B results in an increase of §.. As shown in Wintergerst and Pettorino
(2010), 6.(B) is well described by a simple quadratic fitting formula,

5.(8) = 1.686 (1 + aﬁ2) .a = 0.556, (1.6.20)

valid for small 8 < 0.4 and z. > 5. We recall that a nonlinear analysis beyond the
spherical collapse method can be addressed by means of the time-renormalization-
group method, extended to the case of couple quintessence in Saracco et al. (2010).

1.71

1705 | 1

1605 | 7

160 | ]

1.68

1.675

Fig. 6 Extrapolated linear density contrast at collapse for coupled quintessence models with different
coupling strength B. For all plots we use a constant « = 0.1. We also depict 8. for reference ACDM
(dotted, pink) and EdS (double-dashed, black) models. Image reproduced by permission from Wintergerst
and Pettorino (2010); copyright by APS

@ Springer



2 Page 98 of 345 L. Amendola et al. (The Euclid Theory Working Group)

drowing vl B=-52 —
growing v, B =-112
growing v, 3 = -560

0 0.2 0.4 0.6 0.8 1 1.2

Fig. 7 Extrapolated linear density contrast at collapse 8. versus collapse redshift z. for growing neutrinos
with 8 = — 52 (solid, red), B = — 112 (long-dashed, green) and § = — 560 (short-dashed, blue). A refer-
ence EdS model (double-dashed. black) is also shown. Image reproduced by permission from Wintergerst
and Pettorino (2010); copyright by APS

If a coupling between dark energy and neutrinos is present, as described in
Sects. 1.5.3 and I1.8, bound neutrino structures may form within these models (Brouza-
kis et al. 2008). It was shown in Mota et al. (2008) that their formation will only
start after neutrinos become non-relativistic. A nonlinear treatment of the evolution
of neutrino densities is thus only required for very late times, and one may safely
neglect neutrino pressure as compared to their density. The evolution Egs. (1.6.16) and
(1.6.17) can then also be applied for the nonlinear and linear neutrino density con-
trast. The extrapolated linear density at collapse 8. for growing neutrino quintessence
reflects in all respects the characteristic features of this model and results in a §.
which looks quite different from standard dark-energy cosmologies. We have plot-
ted the dependence of &, on the collapse redshift z. in Fig. 7 for three values of the
coupling. The oscillations seen are the result of the oscillations of the neutrino mass
caused by the coupling to the scalar field: the latter has characteristic oscillations
as it approaches the minimum of the effective potential in which it rolls, given by
a combination of the self-interaction potential U(¢) and the coupling contribution
B(1 — 3w,)p,. Furthermore, due to the strong coupling 8, the average value of &, is
found to be substantially higher than 1.686, corresponding to the Einstein de Sitter
value, shown in black (double-dashed) in Fig. 7. Such an effect can have a strong
impact on structure formation and on CMB (Pettorino et al. 2010). For the strongly
coupled models, corresponding to a low present day neutrino mass m,, (fy), the crit-
ical density at collapse is only available for z. < 0.2, 1 for § = —560, — 112,
respectively. This is again a reflection of the late transition to the non-relativistic
regime. Nonlinear investigations of single lumps beyond the spherical collapse pic-
ture was performed in Wintergerst et al. (2010) and Brouzakis et al. (2011), the
latter showing the influence of the gravitational potentials induced by the neutrino
inhomogeneities on the acoustic oscillations in the baryonic and dark-matter spec-
tra.
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Fig. 8 Extrapolated linear density contrast at collapse 8. versus collapse redshift z. for EDE models I
(solid, red) and II (long-dashed, green), as well as ACDM (double-dashed, black). Image reproduced by
permission from Wintergerst and Pettorino (2010); copyright by APS

1.6.2.3 Early dark energy

A convenient way to parametrize the presence of a nonnegligible homogeneous dark-
energy component at early times was presented in Wetterich (2004) and has been
illustrated in Sect. 1.2.1 of the present review. If we specify the spherical collapse
equations for this case, the nonlinear evolution of the density contrast follows the
evolution Eqs. (1.6.16) and (I1.6.17) without the terms related to the coupling. As
before, we assume relativistic components to remain homogeneous. In Fig. 8, we
show &, for two models of early dark energy, namely models I and II, corresponding
to the choices (2,0 = 0.332, wgp = —0.93, 2pg, = 2 X 10_4) and (£2,0 =
0.314, wp = —0.99, 2pg, = 8 x 10_4) respectively. Results show §.(z, = 5) ~
1.685 (~ 5 x 1072%) (Francis et al. 2008b; Wintergerst and Pettorino 2010).

1.6.2.4 Universal couplings

In Kopp et al. (2013), the authors compute the critical density of collapse for spherically
symmetric overdensities in a class of f(R) modified gravity models. They evolve the
Einstein, scalar field and non-linear fluid equations,under the assumptions that system
remains quasi-static throughout the collapse. The result of this analysis is a fitting
function for the spherical collapse §. as a function of collapse redshift, mass of the
overdensity and fro

5c (2. M, fro) = 8?(@{1 +by(1+2)7 <mb —Jm2+ 1)

+ b3(tanhmy — 1)}

my(@. M, fro) = (1 +2) (logio | M/ (Moh™") | = mi(1 +2)7)
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Fig.9 §. as a function of mass. In each panel we show the results from the numerical analysis (points) and
from the fitting function (lines). Image reproduced with permission from Kopp et al. (2013), copyright by
APS

m1 (fro) = 1.991og;q fro +26.21
by =0.0166

b3 (fro) = 0.0027 - (2.41 — log, fio)
a3 (fro) = 1 +0.99 exp [— 2.08 (logo fro + 5.57)2]
as (fro) = (tanh [0.69 - (log,o firo + 6.65)] + 1) 0.11. 16.21)

The results of the numerical collapse simulation and the fitting function are shown
in Fig. 9.

In Kopp et al. (2013), Achitouv et al. (2016), the authors extend §. into drifting
and diffusing barrier within the context of excursion set theory. With this procedure
they obtain an ‘analytical’ mass function for f(R) models. The analytic formula for
the halo mass function is tested against Monte Carlo random walks for a wide class
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Fig. 10 Mass function for 0 I
fro = — 1072 at redshifts i ]
z = 0—1.5. The solid lines are - E
theoretical predictions, squares 2 ]
with errorbars are from L z=0 E
simulations. The lower panel E _aL 2=0.5 N
shows the relative difference. = L |
The black solid lines show £ 5% ? r 7=l 1
differences. Image reproduced - gl z=15 ]
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of moving barriers and can therefore be applied to other modified gravity theories. In
addition the results are compared to the results from N-body simulations obtained by
the method described in Puchwein et al. (2013)

In Fig. 10, we show an example of the derived mass function computed for f(Rg) =
107 for different redshits (solid lines). The comparison to the simulations (points),
shows good agreement, but not high-precision agreement as would be required for a
detailed cosmological data analysis using the mass function.

1.7 Observational properties of dark energy and modified gravity

Both scalar field dark-energy models and modifications of gravity can in principle lead
to any desired expansion history H(z), or equivalently any evolution of the effective
dark-energy equation of state parameter w(z). For canonical scalar fields, this can be
achieved by selecting the appropriate potential V (¢) along the evolution of the scalar
field ¢(7), as was done, e.g., in Bassett et al. (2002). For modified gravity models, the
same procedure can be followed for example for f(R) type models (e.g., Pogosian and
Silvestri 2008). The evolution history on its own can thus not tell us very much about
the physical nature of the mechanism behind the accelerated expansion (although of
course a clear measurement showing that w # —1 would be a sensational discovery).
A smoking gun for modifications of gravity can thus only appear at perturbation level.

In the next subsections, we explore how dark energy or modified gravity effects
can be detected through weak lensing and redshift surveys.

1.7.1 General remarks
Quite generally, cosmological observations fall into two categories: geometrical probes

and structure formation probes. While the former provide a measurement of the Hubble
function, the latter are a test of the gravitational theory in an almost Newtonian limit on
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subhorizon scales. Furthermore, possible effects on the geodesics of test particles need
to be derived: naturally, photons follow null-geodesics while massive particles, which
constitute the cosmic large-scale structure, move along geodesics for non-relativistic
particles.

In some special cases, modified gravity models predict a strong deviation from the
standard Friedmann equation as in, e.g., DGP, (1.5.58). While the Friedmann equation
is not known explicitly in more general models of massive gravity (cascading gravity
or hard mass gravity), similar modifications are expected to arise and provide char-
acteristic features, (see, e.g., Afshordi et al. 2009; Jain and Khoury 2010) that could
distinguish these models from other scenarios of modified gravity or with additional
dynamical degrees of freedom.

In general, however, the most interesting signatures of modified gravity models are
to be found in the perturbation sector. For instance, in DGP, growth functions differ
from those in dark-energy models by a few percent for identical Hubble functions,
and for that reason, an observation of both the Hubble and the growth function gives a
handle on constraining the gravitational theory (Lue et al. 2004). The growth function
can be estimated both through weak lensing and through galaxy clustering and redshift
distortions.

Concerning the interactions of light with the cosmic large-scale structure, one sees
a modified coupling in general models and a difference between the metric potentials.
These effects are present in the anisotropy pattern of the CMB, as shown in Sawicki
and Carroll (2005), where smaller fluctuations were found on large angular scales,
which can possibly alleviate the tension between the CMB and the ACDM model
on small multipoles where the CMB spectrum acquires smaller amplitudes due to
the ISW-effect on the last-scattering surface, but provides a worse fit to supernova
data. An interesting effect inexplicable in GR is the anticorrelation between the CMB
temperature and the density of galaxies at high redshift due to a sign change in the
integrated Sachs—Wolfe effect. Interestingly, this behavior is very common in modified
gravity theories.

A very powerful probe of structure growth is of course weak lensing, but to eval-
uate the lensing effect it is important to understand the nonlinear structure formation
dynamics as a good part of the total signal is generated by small structures. Only
recently has it been possible to perform structure formation simulations in modified
gravity models, although still without a mechanism in which GR is recovered on very
small scales, necessary to be in accordance with local tests of gravity.

In contrast, the number density of collapsed objects relies only little on nonlinear
physics and can be used to investigate modified gravity cosmologies. One needs to
solve the dynamical equations for a spherically symmetric matter distribution. Mod-
ified gravity theories show the feature of lowering the collapse threshold for density
fluctuations in the large-scale structure, leading to a higher comoving number den-
sity of galaxies and clusters of galaxies. This probe is degenerate with respect to
dark-energy cosmologies, which generically give the same trends.

Finally, supernova observations—able of accurately mapping the expansion his-
tory of the universe—are themselves lensed by foreground matter structures. This
extra spread in the Hubble diagram caused by lensing contains precious clustering
information, which is encoded in the one-point lensing PDF and can be used to con-
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strain parameters such as the power spectrum normalization og or the growth index
y . Therefore, forthcoming supernova catalogs can be seen as both geometrical and
structure formation probes. It is important to point out that the one-point statistics is
independent of and complementary to the methods based on cosmic shear and cluster
abundance observables. See Marra et al. (2013c) and Quartin et al. (2014) for more
details and references therein.

1.7.2 Observing modified gravity with weak lensing

The magnification matrix is a 2 x 2 matrix that relates the true shape of a galaxy to its
image. It contains two distinct parts: the convergence, defined as the trace of the matrix,
modifies the size of the image, whereas the shear, defined as the symmetric traceless
part, distorts the shape of the image. At small scales the shear and the convergence
are not independent. They satisfy a consistency relation, and they contain therefore
the same information on matter density perturbations. More precisely, the shear and
the convergence are both related to the sum of the two Bardeen potentials, @ + ¥,
integrated along the photon trajectory. At large scales however, this consistency rela-
tion does not hold anymore. Various relativistic effects contribute to the convergence,
see Bonvin (2008). Some of these effects are generated along the photon trajectory,
whereas others are due to the perturbations of the galaxies redshift. These relativis-
tic effects provide independent information on the two Bardeen potentials, breaking
their degeneracy. The convergence is therefore a useful quantity that can increase the
discriminatory power of weak lensing.

The convergence can be measured through its effect on the galaxy number density,
see e.g., Broadhurst et al. (1995). The standard method extracts the magnification from
correlations of distant quasars with foreground clusters, see Scranton et al. (2005),
Menard et al. (2010). Recently, Zhang and Pen (2005, 2006) designed a new method
that permits to accurately measure auto-correlations of the magnification, as a function
of the galaxies redshift. This method potentially allows measurements of the relativistic
effects in the convergence.

1.7.2.1 Magnification matrix

We are interested in computing the magnification matrix D, in a perturbed Friedmann
universe. The magnification matrix relates the true shape of a galaxy to its image, and
describes therefore the deformations encountered by a light bundle along its trajectory.
Dgp can be computed by solving Sachs equation, see Sachs (1961), that governs
propagation of light in a generic geometry. The convergence x and the shear y = y; +
iy» are then defined respectively as the trace and the symmetric traceless part of D,y

Xs l—k—n —»
Dap = ) 1.7.1
ab 1+ZS<—V2 1—x+y1> @70

Here zg is the redshift of the source and yg is a time coordinate related to conformal
time ng through x5 = no — ns.
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In this section we consider a spatially flat (K = 0) Friedmann universe with scalar
perturbations. We start from the usual longitudinal (or Newtonian) gauge where the
metric is given by

gy A dx” = a? [—(1 +2W)dn? + (1 — 20)5;; dx! dxj] . (17.2)

We compute D, at linear order in @ and ¥ and then we extract the shear and the
convergence. We find, see Bonvin (2008) and Bernardeau et al. (2010)

1 [xs _

y = —f B2 +w), (1.7.3)
2 Jo XXS
1 [xs oy xs d

K:—f dXMM(q>+W)+q>S—f Lo+ (1.7.4)
2 Jo X XS 0 XS

1 XS . .
+( —1><‘1’s+n-Vs—/ dx(¢+‘1/)),
Hsxs 0

where n is the direction of observation and vy is the peculiar velocity of the source.
Here we are making use of the angular spin raising @ and lowering @ operators (see
e.g., Lewis et al. 2002 for a review of the properties of these operators) defined as

d X = —sin"0(dg +icschiy)(sin* 0) (X, 1.7.5)
d X = —sin" 03 — i cscHd,)(sin® 0) (X,
where ¢ X is an arbitrary field of spin s and 6 and ¢ are spherical coordinates.

Eq. (I.7.3) and the first term in Eq. (I.7.4) are the standard contributions of the shear
and the convergence, but expressed here with the full-sky transverse operators

Lo L (2 cotan L (a 9 t08> (17.6)
— 0" =— —co - —— —co , .
X2 X2 0 o sin26 x2sin6 0% 0

1 -1 1
— 38 =— (92 +cotody + a). 1.7.7
X2 X2 < 0 v sinZ 9 ¢ ( )

In the flat-sky approximation, where 6 is very small, -5 @ @ reduces to the 2D Laplacian
X

8)% + 8y2 and one recovers the standard expression for the convergence. Similarly, the

real part of Lz #? that corresponds to y; reduces to 8)2,

- 8}% and the imaginary part
that corresponds to y, becomes 9, dy.

The other terms in Eq. (I.7.4) are relativistic corrections to the convergence, that
are negligible at small scales but may become relevant at large scales. The terms in the
first line are intrinsic corrections, generated respectively by the curvature perturbation
at the source position and the Shapiro time-delay. The terms in the second line are due
to the fact that we measure the convergence at a fixed redshift of the source zg rather
that at a fixed conformal time 1. Since in a perturbed universe, the observable redshift

is itself a perturbed quantity, this transformation generates additional contribution to
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the convergence. Those are respectively the Sachs—Wolfe contribution, the Doppler
contribution and the integrated Sachs—Wolfe contribution. Note that we have neglected
the contributions at the observer position since they only give rise to a monopole or
dipole term. The dominant correction to the convergence is due to the Doppler term.
Therefore in the following we are interested in comparing its amplitude with the
amplitude of the standard contribution. To that end we define xy and ke as

xs _ _
Kst =/ dxX;—X 3@+ ), (17.8)
0

XXS

1
= —1 - Vg. 1.7.9
Kvel ( Hsxs ) n-vg ( )

1.7.2.2 Observable quantities

The convergence is not directly observable. However it can be measured through
the modifications that it induces on the galaxy number density. Let us introduce the
magnification

1
w= It D ~1+2k, when |«|,|y|<K]1. (I.7.10)

The magnification modifies the size of a source: d$29 = pudS$2s, where d§2g is the
true angular size of the source and d 2 is the solid angle measured by the observer,
i.e. the size of the image. The magnification has therefore an impact on the observed
galaxy number density. Let us call n(f)df the number of unlensed galaxies per unit
solid angle, at a redshift zg, and with a flux in the range [ f, f +df]. The magnification
n modifies the flux measured by the observer, since it modifies the observed galaxy
surface. It affects also the solid angle of observation and hence the number of galaxies
per unit of solid angle. These two effects combine to give a galaxy number overdensity,
see Broadhurst et al. (1995) and Scranton et al. (2005)

n(f) —n(f)
n(f)

s = > 1+ 2(0 — 1) (kgt + Kvel). (1.7.11)

Here o« = —N'(> f.) fe/N(f.), where N(> f.) is the number of galaxies brighter
than f. and f. is the flux limit adopted. Hence « is an observable quantity, see e.g.,
Zhang and Pen (2005) and Scranton et al. (2005). Recent measurements of the galaxy
number overdensity § éf are reported in Scranton et al. (2005) and Menard et al. (2010).
The challenge in those measurements is to eliminate intrinsic clustering of galaxies,
which induces an overdensity 8? much larger than 8?. One possibility to separate these
two effects is to correlate galaxy number overdensities at widely separated redshifts.
One can then measure ((Séf (zs)8§’ (zs7)), where zg is the redshift of the sources and
zsr < zs is the redshift of the lenses. Another possibility, proposed by Zhang and
Pen (2005, 2006), is to use the unique dependence of S[f’f on galaxy flux (i.e., on «)
to disentangle 8? from 82,1. This method, combined with precise measurements of

the galaxies redshift, allows to measure auto-correlations of 8K ie., (6? (z S)Sfof (zs)),
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either for zg # zg or for zg = zg. The velocity contribution, k|, has only an effect
on (6? (15)85 (zs7)). The correlations between 8;1 (zs/) and vg are indeed completely
negligible and hence the source peculiar velocity does not affect (85 (zg)égl (zg)). In
the following we study in detail the contribution of peculiar motion to (8 g (zs5)6 fgf (zs))-

The two components of the convergence kg and k) (and consequently the galaxy
number overdensity) are functions of redshift zg and direction of observation n. We
can therefore determine the angular power spectrum

1 I
Ce(zs)Py (n-m'). (1.7.12)

(3t cs.m st as. ) = 30 27

12

The angular power spectrum Cy (z5) contains two contributions, generated respectively
by (ksiise) and (kyelkvel). The cross-term (kvelkst) 1S negligible since «g contains only
Fourier modes with a wave vector k| perpendicular to the line of sight [see Eq. (1.7.8)],
whereas ke selects modes with wave vector along the line of sight [Eq. (1.7.9)].

So far the derivation has been completely generic. Eqs. (I.7.3) and (I1.7.4) are valid
in any theory of gravity whose metric can be written as in Eq. (I.7.2). To evaluate
the angular power spectrum we now have to be more specific. In the following we
assume GR, with no anisotropic stress such that @ = ¥ . We use the Fourier transform
convention

V(x, x) = / Arvk, x)e™*. (1.7.13)

)3

The continuity equation, see e.g., Dodelson (2003), allows us to express the peculiar
velocity as

__Gwk
vk, ) = ) 29k, a). (1.7.14)

where 6 (K, a) is the density contrast, G (a) is the growth function, and G(a) its deriva-
tive with respect to x. With this we can express the angular power spectrum as

167 82 — 12G(ay)? 1
CZCI(ZS)Z w8y (as — 1)*Glas) <

2
—1 dk kT (k) jj (kxs)>.
HiGa=1)  \Msxs ) [ auir s
(I.7.15)
Here &y is the density contrast at horizon and 7 (k) is the transfer function defined

through, see e.g., Dodelson (2003)

G(a)

a

Uk, a) = 19—0l1/p(k)T(k) (1.7.16)

We assume a flat power spectrum, ny = 1, for the primordial potential ¥, (k). We
want to compare this contribution with the standard contribution
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Fig. 11 Left: The velocity contribution Czel as a function of ¢ for various redshifts. Right: The standard
contribution CZ‘ as a function of ¢ for various redshifts

Ci'(zs) =

36763 (as — D222 02 + 1)2 / dk

2
G2(a=1) k r"®

2
§ [/xs d xs — x G(a) jz(kX):| ) 1.7.17)
0 XXS a

We evaluate CZCI and Cjt in a ACDM universe with £2,, = 0.25, 24 = 0.75 and
8y = 5.7 x 1073, We approximate the transfer function with the BBKS formula, see
Bardeen et al. (1986). In Fig. 11, we plot CZEI and C}' for various source redshifts.
The amplitude of C,}’el and C}' depends on (o — 1)2, which varies with the redshift of
the source, the flux threshold adopted, and the sky coverage of the experiment. Since
(¢ — 1) influences CLYe] and C}' in the same way we do not include it in our plot.
Generally, at small redshifts, (o — 1) is smaller than 1 and consequently the amplitude
of both CZel and C}' is slightly reduced, whereas at large redshifts (o — 1) tends to be
larger than 1 and to amplify CZ"’] and C}', see e.g., Zhang and Pen (2006). However,
the general features of the curves and more importantly the ratio between C Zel and C}!
are not affected by (o — 1).

Figure 11 shows that CZel peaks at rather small ¢, between 30 and 120 depending
on the redshift. This corresponds to rather large angle 6 ~ 90-360 arcmin. This
behavior differs from the standard term (Fig. 11) that peaks at large £. Therefore, it
is important to have large sky surveys to detect the velocity contribution. The relative
importance of CZel and C}' depends strongly on the redshift of the source. At small
redshift, zg = 0.2, the velocity contribution is about 4 x 1075 and is hence larger
than the standard contribution which reaches 107°. At redshift zg = 0.5, CZCI is
about 20% of CZ‘, whereas at redshift zg = 1, it is about 1% of Czt. Then at redshift
zs = 1.5and above, C} becomes very small withrespect to C§': C}®! < 107 C§'. The
enhancement of CZel at small redshift together with its fast decrease at large redshift

2
are due to the prefactor (ﬁ - 1) in Eq. (I.7.15). Thanks to this enhancement
we see that if the magnification can be measured with an accuracy of 10%, then the
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velocity contribution is observable up to redshifts z < 0.6. If the accuracy reaches 1%
then the velocity contribution becomes interesting up to redshifts of order 1.

The shear and the standard contribution in the convergence are not independent.
One can easily show that their angular power spectra satisfy the consistency relation,
see Hu (2000)

L +1
st — et h 7. (17.18)
€+2)—-1)
This relation is clearly modified by the velocity contribution. Using that the cross-
correlation between the standard term and the velocity term is negligible, we can write
a new consistency relation that relates the observed convergence Cj ! to the shear

K(E + 1) Y _ thot o C/cvel (I 7 19)
€+e—-1n*° c .
Consequently, if one measures both the shear C g and the magnification Cj ot as
functions of the redshift, Eq. (I.7.19) allows to extract the peculiar velocity contribution
Cy vel This provides a new way to measure peculiar velocities of galaxies.

Note that in practice, in weak lensing tomography, the angular power spectrum is
computed in redshift bins and therefore the square bracket in Eq. (I.7.17) has to be
integrated over the bin

00 X — ' G(y
/ dyni () / P (X,)je(kx/), (1.7.20)
0 0 xx' a(x’)

where n; is the galaxy density for the i-th bin, convolved with a Gaussian around
the mean redshift of the bin. The integral over x’ is then simplified using Limber
approximation, i.e.,

x 1 (¢
/O dx'F (x') Je (kx') ~ oF (§> Okx —0), 1.7.21)

where Jy is the Bessel function of order £. The accuracy of Limber approximation
increases with £. Performing a change of coordinate such that k = ¢/, Eq. (1.7.17)
can be recast in the usual form used in weak lensing tomography, see e.g., Eq. (1.8.4).

1.7.3 Observing modified gravity with redshift surveys

Wide-deep galaxy redshift surveys have the power to yield information on both H (z)
and f,(z) through measurements of baryon acoustic oscillations (BAO) and redshift-
space distortions. In particular, if gravity is not modified and matter is not interacting
other than gravitationally, then a detection of the expansion rate is directly linked to
a unique prediction of the growth rate. Otherwise galaxy redshift surveys provide a
unique and crucial way to make a combined analysis of H (z) and f(z) to test gravity.
As a wide-deep survey, Euclid allows us to measure H (z) directly from BAO, but also
indirectly through the angular diameter distance D4 (z) (and possibly distance ratios
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from weak lensing). Most importantly, Euclid survey enables us to measure the cosmic
growth history using two independent methods: f (z) from galaxy clustering, and G(z)
from weak lensing. In the following we discuss the estimation of [H (z), D4(z) and
f¢(z)] from galaxy clustering.

From the measure of BAO in the matter power spectrum or in the 2-point correlation
function one can infer information on the expansion rate of the universe. In fact, the
sound waves imprinted in the CMB can be also detected in the clustering of galaxies,
thereby completing an important test of our theory of gravitational structure formation.

The BAO in the radial and tangential directions offer a way to measure the Hubble
parameter and angular diameter distance, respectively. In the simplest FLRW universe
the basis to define distances is the dimensionless, radial, comoving distance:

T 47
) = . 1.7.22
x(2) /o E@) ( )

The dimensionless version of the Hubble parameter is:
301 +w®@) .
E ) =200+ + 21+ 2% + (Qk - 9,51‘))) exp U % dz} .
0
1.7.23)

The standard cosmological distances are related to x (z) via

J=2ix (z)) (1.7.24)

c .
DA(Z) = m sSin (

where the luminosity distance, Dy (z), is given by the distance duality:
D) = (1 +2)’Da(2). (17.25)

The coupling between D 4 (z) and Dy (z) persists in any metric theory of gravity as long
as photon number is conserved (see Sect. IV.2 for cases in which the duality relation
is violated). BAO yield both D4(z) and H(z) making use of an almost completely
linear physics (unlike for example SN Ia, demanding complex and poorly understood
mechanisms of explosions). Furthermore, they provide the chance of constraining the
growth rate through the change in the amplitude of the power spectrum.

The characteristic scale of the BAO is set by the sound horizon at decoupling.
Consequently, one can attain the angular diameter distance and Hubble parame-
ter separately. This scale along the line of sight (s)(z)) measures H(z) through
H(z) = cAz/s)(z), while the tangential mode measures the angular diameter dis-
tance D (z) = 51 /A460(1 + 7).

One can then use the power spectrum to derive predictions on the parameter con-
straining power of the survey (see, e.g., Amendola et al. 2005a; Guzzo et al. 2008;
Wang 2008a; Wang et al. 2010; Di Porto et al. 2012).

In order to explore the cosmological parameter constraints from a given redshift
survey, one needs to specify the measurement uncertainties of the galaxy power spec-

@ Springer



2 Page 110 of 345 L. Amendola et al. (The Euclid Theory Working Group)

trum. In general, the statistical error on the measurement of the galaxy power spectrum
Py (k) at a given wave-number bin is (Feldman et al. 1994)

AP, 7P 2(27)2 177
= - 1+ , (1.7.26)
Py Vsurveyk= Ak A ng Py

where ng is the mean number density of galaxies, Vsurvey is the comoving survey
volume of the galaxy survey, and p is the cosine of the angle between k and the
line-of-sight direction u = k - 7/ k.

In general, the observed galaxy power spectrum is different from the frue spectrum,
and it can be reconstructed approximately assuming a reference cosmology (which
we consider to be our fiducial cosmology) as (e.g., Seo and Eisenstein 2003)

DAz H (2)
Pobs (krefLa ket Z) = Wj‘fl(z)mfpg (krefL, ket Z) + Pshots (L7.27)
where
K2 2
2 ref ||
Pg (krefj_s krefH, Z) =b(2) |:1 + IB(Z)ﬁ} X Pratter (k, 2). (1.7.28)
kiep 1 + ke

InEq. (I.7.27), H(z) and D 4 (z) are the Hubble parameter and the angular diameter dis-
tance, respectively, and the prefactor (Dy (Z)fefH (2))/(Da(2)*H (2)ref) encapsulates
the geometrical distortions due to the Alcock—Paczynski effect (Seo and Eisenstein
2003; Ballinger et al. 1996). Their values in the reference cosmology are distinguished
by the subscript ‘ref’, while those in the true cosmology have no subscript. k| and kj
are the wave-numbers across and along the line of sight in the true cosmology, and
they are related to the wave-numbers calculated assuming the reference cosmology
by kref1 = k1 Da(2)/Da(Dret and ket = kyH (2)ref/ H (z). Penot is the unknown
white shot noise that remains even after the conventional shot noise of inverse number
density has been subtracted (Seo and Eisenstein 2003). In Eq. (1.7.28), b(z) is the
linear bias factor between galaxy and matter density distributions, f,(z) is the linear
growth rate,” and B(z) = fg(2)/b(2) is the linear redshift-space distortion parameter
(Kaiser 1987). The linear matter power spectrum Ppayer(k, 2) in Eq. (I1.7.27) takes the
form

87 2c*ko A2 (ko) G(@2) O\ e
Poater(k, 7) = ———— RV 2y | T | (D) ke (1709
matter (K, 2) ZSHSQ% ) |:G(Z = 0)i| <k0> ‘ ( :

where G(z) is the usual scale independent linear growth-factor in the absence of
massive neutrino free-streaming (see Eq. (25) in Eisenstein and Hu 1999), whose
fiducial value in each redshift bin is computed through numerical integration of the
differential equations governing the growth of linear perturbations in presence of dark

7 In presence of massive neutrinos fg depends also on the scale k (Kiakotou et al. 2008).
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energy (Linder and Jenkins 2003) or employing the approximation of Eq. (I1.3.22).
T (k) depends on matter and baryon densities® (neglecting dark energy at early times),
and is computed in each redshift bin using a Boltzmann code like CAMB® (Lewis et al.
2000b) or CMBFAST.

In Eq. (I.7.29) a damping factor ¢~1?97 has been added, due to redshift uncer-
tainties, where o, = (dr/dz)o;, r(z) being the comoving distance (Wang 2010; Seo
and Eisenstein 2003), and assumed that the power spectrum of primordial curvature
perturbations, P (k), is

k3 Pr (k) k"™
AL (k) = g = A% (ko) <g> : (1.7.30)

where ko = 0.002/Mpc, A2 (ko)|ﬁd = 2.45 x 1072 is the dimensionless amplitude
of the primordial curvature perturbatlons evaluated at a pivot scale ko, and n; is the
scalar spectral index (Larson et al. 2011).

In the limit where the survey volume is much larger than the scale of any features
in Popg(k), it has been shown that the redshift survey Fisher matrix for a given redshift
bin can be approximated as (Tegmark 1997)

k, 2
max g In Popg(k, 1) 0 In Pops(k, 2mk”dkd
FLSS / / n obs( w) 9 In Pobs (k, ) Viir (k. 11) v 12

>y San 1.7.31)

mm

where the derivatives are evaluated at the parameter values p; of the fiducial model,
and Vg is the effective volume of the survey:

ng Py(k, 1) T
5 7 N1 survey »

Ve (k, 1) =
etr (k. ) [nng(k,M)-i-l

(1.7.32)

where the comoving number density ng(z) is assumed to be spatially constant. Due
to azimuthal symmetry around the line of sight, the three-dimensional galaxy redshift
power spectrum Pops(K) depends only on k and pu, i.e., is reduced to two dimensions
by symmetry (Seo and Eisenstein 2003). The total Fisher matrix can be obtained by
summing over the redshift bins.

To minimize nonlinear effects, one should restrict wave-numbers to the quasi-
linear regime, e.g., imposing that kpx is given by requiring that the variance of matter
fluctuations in a sphere of radius R is, for instance, o2(R) = 0.25for R = 7/ kmax)-
Or one could model the nonlinear distortions as in Eisenstein et al. (2007). On scales
larger than (~ 1004~ Mpc) where we focus our analysis, nonlinear effects can
be represented in fact as a displacement field in Lagrangian space modeled by an
elliptical Gaussian function. Therefore, following Eisenstein et al. (2007) and Seo and
Eisenstein (2007), to model nonlinear effect we multiply P (k) by the factor

8 If we assume that neutrinos have a non-vanishing mass, then the transfer function is also redshift-
dependent.

9 http://camb.info/.
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2 2 222
exp{—k2|:(1 ’;)ELJF“Z'“, (17.33)

where X'| and X represent the displacement across and along the line of sight,
respectively. They are related to the growth factor G and to the growth rate f; through
Y| =XyGand ¥ = ZoG(1 + f,). The value of X is proportional to og. For a ref-
erence cosmology where oy = 0.8 (Komatsu et al. 2011), we have o = 11 2~! Mpc.

Finally, we note that when actual data are available, the usual way to measure
B = fg/bisby fitting the measured galaxy redshift-space correlation function & (o, )
to a model (Peebles 1980):

E(o,m) = /00 dv f(v)é(a, T —v/Hp), (1.7.34)

—00

where f(v) describes the small-scale random motion (usually modeled by a Gaussian
that depends on the galaxy pairwise peculiar velocity dispersion), and & (o, ) is the
model accounting for coherent infall velocities'”:

E(0,m) = E0(s) Po(1) + E2(s) Pa(1s) + E4(s) Pa(p0). (1.7.35)

P;() are Legendre polynomials; ;1 = cos 6, where 6 denotes the angle between r and
7; &0(s), &2(s), and &4(s) depend on B and the real-space correlation function & (r).
The bias between galaxy and matter distributions can be estimated from either
galaxy clustering, or weak lensing. To determine bias, we can assume that the galaxy
density perturbation d, is related to the matter density perturbation §,, (x) as (Fry and
Gaztanaga 1993):
8 = bdy (X) + bQSi (x)/2. 1.7.36)

Bias can be derived from galaxy clustering by measuring the galaxy bispectrum:
(S Sadre) = ) [ Pk P (ko) [J (K1 ko) /b + b2/

+ cyc.] 52 (k) + ko + k3), (1.7.37)

where J is a function that depends on the shape of the triangle formed by (ky, k», k3)
in k space, but only depends very weakly on cosmology (Matarrese et al. 1997; Verde
et al. 2002).

In general, bias can be measured from weak lensing through the comparison of
the shear-shear and shear-galaxy correlations functions. A combined constraint on
bias and the growth factor G(z) can be derived from weak lensing by comparing the
cross-correlations of multiple redshift slices.

Of course, if bias is assumed to be linear (b, = 0) and scale independent, or is
parametrized in some simple way, e.g., with a power law scale dependence, then it
is possible to estimate it even from linear galaxy clustering alone, as we will see in
Sect. 1.8.3.

10 See Hamilton (1992). & (o, 1) is the Fourier transform of Py (k) = (1 4+ Bu?)? P (k) (Kaiser 1987).
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1.7.4 Constraining modified gravity with galaxy—CMB correlations

Two of the above-mentioned observable signatures of dark energy and modified gravity
are especially suitable to study the time evolution of dark energy at the perturbative
level: the ISW effect and CMB lensing. Both effects produce sub-dominant secondary
anisotropies imprinted on the CMB at late times, and can be measured as a function of
redshift by cross-correlating CMB temperature and lensing maps with galaxy surveys,
thus allowing a tomographic analysis of the dark energy properties.

1.7.4.1 The ISW effect

The CMB photons freely streaming in the late universe encounter over- and under-
densities; their energy will thus change as a function of time as the photons climb in
and out of potential wells, but the average net energy gain will be null as long as the
potentials are globally constant in time. Since the potentials decay in the presence of
cosmic acceleration, a non-zero ISW effect will be produced in this case, corresponding
to a temperature anisotropy in the direction n

AT . .
T(ﬁ) = /dn e T (CD + lI/) [n, n(ny — r))] , (1.7.38)

where dots indicate derivatives with respect to the conformal time 7, 7 is the optical
depth, and @, ¥ are the Newtonian gauge potentials describing the time and space
metric perturbations, respectively. This effect is subdominant with respect to the pri-
mary CMB temperature anisotropies produced at primordial times, from which it can
however be extracted by cross-correlating the full CMB maps with galaxy catalogues,
which are correlated with the ISW signal since the galaxy overdensities also trace the
same gravitational potentials (Crittenden and Turok 1996).

The ISW has been detected, in agreement with the ACDM predictions, at the ~ 4 o
significance level by cross-correlating WMAP and Planck CMB data with numerous
galaxy catalogues: see Ho et al. (2008), Giannantonio et al. (2008), Giannantonio et al.
(2012a) and references therein.

Future galaxy surveys including the Euclid satellite are expected to improve current
ISW measurements by increasing redshift depth and survey volume, thus allowing a
consistent tomographic study from one galaxy survey, as well as by improving the
control of systematics; the total signal-to-noise is however not expected to exceed the
~ 8o level (Crittenden and Turok 1996) in the ACDM scenario, since the ISW signal
peaks on the largest scales, which are dominated by cosmic variance. The measurement
of ISW at high redshift has however a significant discovery potential, as in case exotic
dark energy models are correct, the actual level of ISW may be significantly higher.

1.7.4.2 CMB lensing

An additional, complementary observable is provided by CMB lensing (Lewis and
Challinor 2006). This is a special case of the weak gravitational lensing described
above, where the sources are set to the CMB last-scattering surface at redshift z, ~
1100. In this case, the primary CMB lensing map is deflected by the intervening large-
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scale structure by small angles of the order ~ 2.5 arcmin, by the effect of a lensing
potential ¢ in a direction f given by

p(h) = —/dx X" X+ w) [x, no — x]. (1.7.39)

*

where y is the conformal distance. This potential is simply related to the convergence
k used above in multipole space by k7, = (I + 1)@y, /2. The effect of lensing on the
CMB temperature anisotropies is a smoothing of the peaks an troughs in the angular
power spectrum.

Maps of the CMB lensing potential have been reconstructed from higher-order
statistics of the CMB temperature maps by the Planck (Planck Collaboration 2014b),
south pole telescope (van Engelen et al. 2012) and atacama cosmology telescope
(Das et al. 2011b) surveys; cross-correlations between these lensing maps and galaxy
surveys have also been confirmed with these three data sets (see, e.g., Giannantonio
and Percival 2014): such cross-correlations allow once again to study the redshift
evolution of the gravitational potentials, and thus the physical properties of the dark
sector.

Upcoming and future galaxy surveys leading up to the Euclid satellite mission,
combined with rapidly improving CMB data, will increase the signal-to-noise of the
CMB lensing cross-correlations well beyond the current levels, since the CMB lensing
signal is maximum on smaller scales, which are currently dominated by statistical and
systematic errors, but not by cosmic variance.

1.7.5 Cosmological bulk flows

As we have seen, the additional redshift induced by the galaxy peculiar velocity field
generates the redshift distortion in the power spectrum. In this section we discuss a
related effect on the luminosity of the galaxies and on its use to measure the peculiar
velocity in large volumes, the so-called bulk flow.

In the gravitational instability framework, inhomogeneities in the matter distribution
induce gravitational accelerations g, which result in galaxies having peculiar velocities
v that add to the Hubble flow. In linear theory the peculiar velocity field is proportional
to the peculiar acceleration

2 H =
v(r) = 3H{§2mg(r) - ;’f’ / S (r’)%d%’, (17.40)

and the bulk flow of a spherical region is solely determined by the gravitational pull
of the dipole of the external mass distribution. For this reason, bulk flows are reliable
indicators to deviations from homogeneity and isotropy on large scale, should they
exist.

Constraints on the power spectrum and growth rate can be obtained by comparing
the bulk flow estimated from the volume-averaged motion of the sphere of radius R:
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_ [v(x)W(x/R)d*x 1741
R="Twa/Rdx -
with expected variance:
H2 2
T 62:}’ / P(k)W(kR)* (k) dk, (1.7.42)

where the window function W (x/R) and its Fourier transform YW (kR) describe the
spatial distribution of the dataset.

Over the years the bulk flows has been estimated from the measured peculiar veloc-
ities of a large variety of objects ranging from galaxies (Giovanelli et al. 1998a,b;
Dekel et al. 1999; Courteau et al. 2000; da Costa et al. 2000; Sarkar et al. 2007) clus-
ters of galaxies (Lauer and Postman 1994; Branchini et al. 1996; Hudson et al. 2004)
and SN Ia (Riess et al. 1995). Conflicting results triggered by the use of error-prone
distance indicators have fueled a long lasting controversy on the amplitude and con-
vergence of the bulk flow, that is still ongoing. For example, the recent claim of a bulk
flow of 407 & 81 km s~! within R = 50h~! Mpc (Watkins et al. 2009), inconsis-
tent with expectation from the ACDM model, has been seriously challenged by the
re-analysis of the same data by Nusser and Davis (2011) who found a bulk flow ampli-
tude consistent with ACDM expectations and from which they were able to set the
strongest constraints on modified gravity models so far. On larger scales, Kashlinsky
et al. (2010) claimed the detection of a dipole anisotropy attributed to the kinetic SZ
decrement in the WMAP temperature map at the position of X-ray galaxy clusters.
When interpreted as a coherent motion, this signal would indicate a gigantic bulk flow
of 1028 4265 km s~ ! within R = 528 h~! Mpc. This highly debated result has been
seriously questioned by independent analyses of WMAP data (see, e.g., Osborne et al.
2011)

The large, homogeneous dataset expected from Euclid has the potential to settle
these issues. The idea is to measure bulk flows in large redshift surveys, based on the
apparent, dimming or brightening of galaxies due to their peculiar motion. The method,
originally proposed by Tammann et al. (1979), has been recently extended by Nusser
etal. (2011) who propose to estimate the bulk flow by minimizing systematic variations
in galaxy luminosities with respect to a reference luminosity function measured from
the whole survey. It turns out that, if applied to the photo-z catalog expected from
Euclid, this method would be able to detect at 5o significance a bulk flow like the one
of Watkins et al. (2009) over ~ 50 independent spherical volumes at z > 0.2, provided
that the systematic magnitude offset over the corresponding areas in the sky does not
exceed the expected random magnitude errors of 0.02—-0.04 mag. Additionally, photo-z
or spectral-z could be used to validate or disproof with very large (> 7o) significance
the claimed bulk flow detection of Kashlinsky et al. (2010) at z = 0.5.

Closely related to the bulk flow is the local group peculiar velocity inferred from
the observed CMB dipole (Juszkiewicz et al. 1990)

HOfg

VCMB = VLG,R — Xem. + Bg, (1.7.43)
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where viG r is the local group velocity resulting from the gravitational pull of all
objects in the sample within the radius R, X¢ . is the position of the center of mass
of the sample and vy is the LG velocity inferred from the CMB dipole (Bennett
et al. 2003). The convergence of vig g with the radius and its alignment with the
CMB dipole direction indicates a crossover to homogeneity (Scaramella et al. 1991)
and allows to constrain the growth rate by comparing vcmp with vig, g. The latter
can be estimated from the dipole in the distribution of objects either using a number-
weighting scheme if redshifts are available for all objects of the sample, or using a
flux-weighting scheme. In this second case the fact that both gravitational acceleration
and flux are inversely proportional to the distance allows to compute the dipole from
photometric catalogs with no need to measure redshifts. The drawback is that the
information on the convergence scale is lost.

As for the bulk flow case, despite the many measurements of cosmological dipoles
using galaxies (Yahil et al. 1980; Davis and Huchra 1982; Meiksin and Davis 1986;
Strauss et al. 1992; Schmoldt et al. 1999; Kocevski and Ebeling 2006), there is still
no general consensus on the scale of convergence and even on the convergence itself.
Even the recent analyses of measuring the acceleration of the local group from the
2MASS redshift catalogs provided conflicting results. Erdogdu et al. (2006) found
that the galaxy dipole seems to converge beyond R = 60 2~! Mpc, whereas (Lavaux
et al. 2010) find no convergence within R = 120 2! Mpc.

Once again, Euclid will be in the position to solve this controversy by measuring
the galaxy and cluster dipoles not only at the LG position and out to very large radii,
but also in several independent ad truly all-sky spherical samples carved out from the
the observed areas with || > 20°. In particular, coupling photometry with photo-z
one expects to be able to estimate the convergence scale of the flux-weighted dipole
over about 100 independent spheres of radius 200 2~ Mpc out to z = 0.5 and, beyond
that, to compare number-weighted and flux-weighted dipoles over a larger number of
similar volumes using spectroscopic redshifts.

Similarly, the growth rate can be constrained by studying the possibility of a Hubble
bubble, a local region of space with a (slightly) different Hubble rate. This study was
triggered by the fact that global observables such as Planck and BAO (Planck Col-
laboration 2014a, Table 5) yield a present-day Hubble constant 9% lower than local
measurements performed by considering recession velocities of objects around us
(Riess et al. 2011). This 2.40 tension could be relieved if the effect of a local Hub-
ble bubble is taken into account, see Marra et al. (2013a) and references therein. With
Euclid one will of course use the data the other way around, using observations to con-
strain the Hubble bubbles (velocity monopoles) at different radii, and so the growth
rate of matter structures, similarly to what discussed regarding the bulk flow.

1.7.6 Model independent observations
As discussed, one of the most powerful statistical tools that can be used to describe
the distribution of matter in the Universe is the power spectrum P (k), or its Fourier

transform &(r), the two-point correlation function. However, comoving distances r
and the corresponding wavenumbers k are not observationally accessible (Fig. 12).
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Fig. 12 Matter power spectrum form measured from SDSS (Percival et al. 2007)

When observing galaxies we measure their redshift and angular position. To convert
this into a three-dimensional galaxy catalog we must make model assumptions in order
to relate the observed redshift to a distance. For small redshift, z < 1, the simple
relation r(z) = z/ Ho can be used. When expressing distances in units of 2~! Mpc the
uncertainty in the measurement of Hj is then absorbed in 7 = Hp/(100 Mpc/(km/s).
However, when z =~ 1 the distance r(z) = x(z)/Ho depends on the full cosmic
expansion history, i.e., on the parameters £2,,, 2, 2pg = 1 — 2, — §2x and wpE,
see Eq. (I.7.22), and wrong assumptions about the distance redshift relation will bias
the entire catalog in a non-trivial way.

Assuming an incorrect cosmology causes geometric redshift-distortions, in addi-
tion to the dynamical redshift distortions due to the peculiar velocities of galaxies.
In Fig. 13 we show the effect of assuming a wrong cosmology. To illustrate this, we
consider a ACDM universe with the cosmological parameters given in Komatsu et al.
(2011). To reconstruct the comoving separation between two galaxies with redshift
z1 and zo, respectively, and separated by the angle 6, an observer must assume a
model to reconstruct the relation (6, z1, z2) which for vanishing curvature, is given
by r(z1,22,60) = Vr(z1)2 +r(z2)> — 2r(z1)r(z2) cos 8, where the comoving dis-
tance r(z) = foz d7'/H (z") depends on the cosmological model. Iterative methods are
usually applied to converge to the correct cosmology. The inferred galaxy clustering in
a different cosmological model can also be approximately obtained from the fiducial
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Fig. 13 Effect of wrong cosmological parameters on the power spectrum. The true one (solid line) assumes
the cosmological parameters of Komatsu et al. (2011) (in particular £2,, = 0.27) and takes into account
redshift space distortions. The wrong assumptions 2y, = 0.3, 0.5 (dashed and dotted line, respectively)
rescale the correlation function (on the left, multiplied by 62 to enhance the BAOs) and the dimensionless
power spectrum (on the right, divided by & to enhance the BAOs)

one by a rescaling of the transverse and parallel separations (Percival et al. 2010; Reid
et al. 2012), so that an Alcock—Paczynski test (Alcock and Paczyriski 1979) can be
performed to select the best fit cosmological model. Nevertheless, these procedures
rely on the assumption of a fiducial cosmology and are not very well suited to measure
cosmological parameters, especially error estimates are not straight forward.

Together with the standard analysis, it is therefore important to determine the
truly observed two-point statistics from observations, either in terms of the redshift
dependent angular power spectra, C¢(z1, 22), or in terms of the redshift dependent
angular correlations functions £(6, z1, z2), which are related to the power spectra by
Eq. (I1.7.12), and to compare them directly with their theoretically obtained coun-
terparts. The full expression for Cy(z1, z2) are found in Bonvin and Durrer (2011),
Asorey et al. (2012), Di Dio et al. (2013), see also Challinor and Lewis (2011), Yoo
et al. (2009) and Yoo (2010). The angular correlation function has been studied in
Montanari and Durrer (2012) and Bertacca et al. (2012), while the role of the lens-
ing magnification, x, which dominates the cross-correlations of different redshifts has
been investigated in Montanari and Durrer (2015).

The power spectra for z; = zo = 0.1, 0.5, 1 and 3 are shown on Fig. 14, lower,
left panel, and C»o(1, z2) is plotted as a function of z; in Fig. 14, lower, right panel.

These directly observed quantities are functions of three variables, 6, z1 and z».
Therefore, they are harder to infer from observations than a function of only one
variable. Especially, the shot noise problem is much more severe. However, they also
contain more information. They combine in a non-trivial way clustering information
given by &(r) and geometrical information about the evolution of distances in the
Universe via (6, z1, z2). The Euclid galaxy survey will be sufficiently big to beat
down the significant shot noise problem and profit maximally from this cleaner cut
between observations and modeling, see Sect. .8.11 for forecasts.
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Fig. 14 Top panel: transverse (on the left) and radial (on the right) correlation functionatz = 0.3,0.7, 1, 3
from top to bottom, respectively. Bottom panel: the transverse power spectra at z = 0.1,0.5, 1, 3 from
top to bottom, respectively (on the left), and the radial one for £ = 20 and z; = 1 as function of z (on
the right). The standard, non-relativistic terms in blue, the relativistic corrections from lensing in magenta.
Images reproduced with permission from [top] (Montanari and Durrer 2012), and [bottom] from Bonvin
and Durrer (2011), copyright by APS

As an illustration of what can be done with this correlation function, we briefly
consider the baryon acoustic oscillations (BAOs). The transverse BAOs at fixed redshift
zin &€(0, z, z) are shown in Fig. 14, top left panel.

The radial BAO, the correlation along the line of sight, £ (0 = 0, z— Az/2, 7+ Az/2)
as a function of the redshift separation Az of galaxy pairs around the reference value
z are shown in Fig. 14, top right panel. To measure the radial correlation function,
a spectroscopic determination of the redshift is required to resolve the BAO feature.
The transverse and radial correlation functions can be used to determine the angular
and redshift extension (9gao(z) and Azpao(z), respectively) of the BAOs as function
of redshift, which determine

F)=(+0)HE@Da) = % _ pAP (), (17.44)

where H (z) is the Hubble parameter and D4 (z) is the angular diameter distance. Com-
bining this with a measurement of the luminosity distance Dy (z) = (1 + z)?Da(z),
e.g., from supernova type la data (Suzuki et al. 2012), we can break the degeneracy
between H (z) and D4 (z). This allows us to test the relation

Z dz/
z+1Jo H()

H(z)

Dy(2) = )

Z
or F(z)=/ d7
0
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which must be valid, if the geometry of our Universe is close to a flat Friedmann—
Lemaitre metric.

1.8 Forecasts for Euclid

Here!! we describe forecasts for the constraints on modified gravity parameters which
Euclid observations should be able to achieve. We begin with reviewing the relevant
works in literature. Then, after we define our “Euclid model”, i.e., the main specifics
of the redshift and weak lensing survey, we illustrate a number of Euclid forecasts
obtained through a Fisher matrix approach.

1.8.1 A review of forecasts for parametrized modified gravity with Euclid

Heavens et al. (2007) have used Bayesian evidence to distinguish between models,
using the Fisher matrices for the parameters of interest. This study calculates the ratio
of evidences B for a 3D weak lensing analysis of the full Euclid survey, for a dark-
energy model with varying equation of state, and modified gravity with additionally
varying growth parameter y . They find that Euclid can decisively distinguish between,
e.g., DGP and dark energy, with |In B| >~ 50. In addition, they find that it will be
possible to distinguish any departure from GR which has a difference in y greater
than >~ 0.03. A phenomenological extension of the DGP model (Dvali and Turner
2003; Afshordi et al. 2009) has also been tested with Euclid. Specifically, Camera
et al. (2011a) found that it will be possible to discriminate between this modification
to gravity from ACDM at the 3o level in a wide range of angular scale, approximately
1000 < ¢ < 4000.

Thomas et al. (2009) construct Fisher matrix forecasts for the Euclid weak lens-
ing survey, shown in Fig. 15. The constraints obtained depend on the maximum
wavenumber which we are confident in using; €max = 500 is relatively conserva-
tive as it probes the linear regime where we can hope to analytically track the growth
of structure; £max = 10,000 is more ambitious as it includes nonlinear power, using
the Smith et al. (2003) fitting function. This will not be strictly correct, as the fit-
ting function was determined in a GR context. Note that y is not very sensitive to
Lmax, While X, defined in Amendola et al. (2008b) as X = 1 + Xpa [and where
XY is defined in Eq. (I.3.28)] is measured much more accurately in the nonlinear
regime.

Amendola et al. (2008b) find Euclid weak lensing constraints for a more general
parameterization that includes evolution. In particular, X' (z) is investigated by dividing
the Euclid weak lensing survey into three redshift bins with equal numbers of galaxies
in each bin, and approximating that ¥ is constant within that bin. Since X, i.e., the
value of ¥ in the a = 1 bin (present-day) is degenerate with the amplitude of matter
fluctuations, it is set to unity. The study finds that a deviation from unit X' (i.e., GR) of
3% can be detected in the second redshift bin, and a deviation of 10% is still detected
in the furthest redshift bin.

1 Forecasts are not updated in this version with respect to 2012.
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Fig. 15 Marginalized y — X forecast for weak lensing only analysis with Euclid. Here, X is defined from
Y =1+ Xpa and ¥, defined via Eq. (1.3.28), is related to the WL potential. Black contours correspond
to max = 5000, demonstrating an error of 0.089(1co) on X, whereas the red contours correspond to

£Lmax = 500 giving an error of 0.034. In both cases, the inner and outer contours are 1o and 20 respectively.
GR resides at [0.55, 0], while DGP resides at [0.68, 0]

Beynon et al. (2010) make forecasts for modified gravity with Euclid weak lensing
including (Hu and Sawicki 2007b) in interpolating between the linear spectrum pre-
dicted by modified gravity, and GR on small scales as required by solar system tests.
This requires parameters A (a measure of the abruptness of transitioning between these
two regimes), o1 (controlling the k-dependence of the transition) and «» (controlling
the z-dependence of the transition).

The forecasts for modified gravity parameters are shown in Fig. 16 for the Euclid
lensing data. Even with this larger range of parameters to fit, Euclid provides a mea-
surement of the growth factor y to within 10%, and also allows some constraint on
the o1 parameter, probing the physics of nonlinear collapse in the modified gravity
model.

Finally, Song et al. (2010) have shown forecasts for measuring X and p using both
imaging and spectroscopic surveys. They combine 15,000 square-degree lensing data
(corresponding to Laureijs et al. 2009 rather than to the updated Laureijs et al. 2011)
with the peculiar velocity dispersion measured from redshift space distortions in the
spectroscopic survey, together with stringent background expansion measurements
from the CMB and supernovae. They find that for simple models for the redshift
evolution of X' and p, both quantities can be measured to 20% accuracy.
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Fig. 16 Constraints on y, a1, o and A from Euclid, using a DGP fiducial model and 0.4 redshift bins
between 0.3 and 1.5 for the central cosmological parameter values fitting WMAP + BAO + SNe

1.8.2 Euclid surveys

The Euclid mission will produce a catalog of up to 30 million galaxy redshifts with
fH, >3 x 1076 and 50 million with fH, > 2 X% 10~'© and an imaging survey that
should allow to estimate the galaxy ellipticity of up to 1.5 billion galaxy images with
photometric redshifts. Here we discuss these surveys and fix their main properties into
a “Euclid model”, i.e., an approximation to the real Euclid survey that will be used as
reference mission in the following.

Modeling the Redshift Survey.

The main goals of next generation redshift surveys will be to constrain the dark-energy
parameters and to explore models alternative to standard Einstein gravity. For these
purposes they will need to consider very large volumes that encompass z ~ 1, i.e., the
epoch at which dark energy started dominating the energy budget, spanning a range of
epochs large enough to provide a sufficient leverage to discriminate among competing
models at different redshifts.

Here we consider a survey covering a large fraction of the extragalactic correspond-
ing to ~ 15,000 deg” capable to measure a large number of galaxy redshifts out to
z ~ 2. A promising observational strategy is to target Ho emitters at near-infrared
wavelengths (which implies z > 0.5) since they guarantee both relatively dense sam-
pling (the space density of this population is expected to increase out to z ~ 2) and an
efficient method to measure the redshift of the object. The limiting flux of the survey
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should be the tradeoff between the requirement of minimizing the shot noise, the con-
tamination by other lines (chiefly among them the [O11] line), and that of maximizing
the so-called efficiency ¢, i.e., the fraction of successfully measured redshifts. To min-
imize shot noise one should obviously strive for a low flux. Indeed, Geach et al. (2010)
found that a limiting flux fje > 1 x 107'% erg cm™2 s~! would be able to balance
shot noise and cosmic variance out to z = 1.5. However, simulated observations of
mock Ha galaxy spectra have shown that ¢ ranges between 30 and 60% (depending on
the redshift) for a limiting flux fjz, > 3 x 10710 erg cm™2 s~! (Laureijs et al. 2011).
Moreover, contamination from [O11] line drops from 12 to 1% when the limiting flux
increases from 1 x 10710 to 5 x 10716 erg em~2 s~ (Geach et al. 2010).

Taking all this into account, in order to reach the top-level science requirement
on the number density of Ho galaxies, the average effective Ho line flux limit from
a 1-arcsec diameter source shall be lower than or equal to 3 x 1076 ergcm =2 s,
However, a slitless spectroscopic survey has a success rate in measuring redshifts thatis
a function of the emission line flux. As such, the Euclid survey cannot be characterized
by a single flux limit, as in conventional slit spectroscopy.

We use the number density of Ho galaxies at a given redshift, n(z), estimated
using the latest empirical data (see Figure 3.2 of Laureijs et al. 2011), where the
values account for redshift—and flux—success rate, to which we refer as our reference
efficiency ¢, .

However, in an attempt to bracket current uncertainties in modeling galaxy surveys,
we consider two further scenarios, one where the efficiency is only the half of ¢, and
one where it is increased by a factor of 40%. Then we define the following cases:

e Reference case (ref.). Galaxy number density n(z) which include efficiency &,
(column n5(z) in Table 3).

e Pessimistic case (pess.). Galaxy number density n(z) -0.5, i.e., efficiency is &, - 0.5
(column n3(z) in Table 3).

e Optimistic case (opt.). Galaxy number density n(z) - 1.4, i.e., efficiency is &, - 1.4
(column n1(z) in Table 3).

The total number of observed galaxies ranges from 2 x 107 (pess.) to 5 x 107 (opt.)
with a central value at 3 x 107 . For all cases we assume that the error on the measured
redshift is Az = 0.001(1 + z), independent of the limiting flux of the survey.

Modeling the weak lensing survey. For the weak lensing survey, we assume again a
sky coverage of 15,000 square degrees. For the number density we use the common
parameterization

n(z) = 2> exp (— (Z/Zo)3/2> : (18.1)

where 7o = Zmean/1.412 is the peak of n(z) and zmean the median and typically
we assume Zmean = 0.9 and a surface density of valid images of n, = 30 per
arcmin® (Laureijs et al. 2011). We also assume that the photometric redshifts give
an error of Az = 0.05(1 + z). Other specifications will be presented in the relevant
sections.
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Table 3 Expected galaxy number densities in units of (& /Mpc)3 for Euclid survey

z ny(z) x 1073 ny(z) x 1073 n3(z) x 1073
0.65-0.75 1.75 1.25 0.63
0.75-0.85 2.68 1.92 0.96
0.85-0.95 2.56 1.83 0.91
0.95-1.05 2.35 1.68 0.84
1.05-1.15 2.12 1.51 0.76
1.15-1.25 1.88 135 0.67
1.25-1.35 1.68 1.20 0.60
1.35-1.45 1.40 1.00 0.50
1.45-1.55 1.12 0.80 0.40
1.55-1.65 0.81 0.58 0.29
1.65-1.75 0.53 0.38 0.19
1.75-1.85 0.49 0.35 0.18
1.85-1.95 0.29 0.21 0.10
1.95-2.05 0.16 0.11 0.06

Let us notice that the galaxy number densities n(z) depend on the fiducial cosmology adopted in the
computation of the survey volume, needed for the conversion from the galaxy numbers d N /dz to n(z)

1.8.3 Forecasts for the growth rate from the redshift survey

In this section, we forecast the constraints that future observations can put on the growth
rate and on a scale-independent bias, employing the Fisher matrix method presented
in Sect. 1.7.3. We use the representative Euclid survey presented in Sect. 1.8.2. We
assess how well one can constrain the bias function from the analysis of the power
spectrum itself and evaluate the impact that treating bias as a free parameter has on the
estimates of the growth factor. We estimate how errors depend on the parametrization
of the growth factor and on the number and type of degrees of freedom in the analysis.
Finally, we explicitly explore the case of coupling between dark energy and dark
matter and assess the ability of measuring the coupling constant. Our parametrization
is defined as follows. More details can be found in Di Porto et al. (2012).

Equation of state

In order to represent the evolution of the equation of state parameter w, we use the
popular CPL parameterization (Chevallier and Polarski 2001; Linder 2003)

w(z) = wo + wy (1.8.2)

z
l1+z
As a special case, we will also consider the case of a constant w. We refer to this as
the w-parametrization.
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Growth rate

Here, we assume that the growth rate, fg, is a function of time but not of scale. As
usual, we use the simple prescription (Peebles 1976; Lahav et al. 1991; Polarski and
Gannouji 2008; Linder 2005; Wang and Steinhardt 1998)

fo =2, (1.8.3)

where £2,,(z) is the matter density in units of the critical density as a function of
redshift. A value y ~ 0.545 reproduces well the ACDM behavior while departures
from this value characterize different models. Here we explore three different param-
eterizations of fg:

e f-parameterization. This is in fact a non-parametric model in which the growth
rate itself is modeled as a step-wise function f,(z) = f;, specified in different
redshift bins. The errors are derived on f; in each i-th redshift bin of the survey.

e y-parameterization. As a second case we assume

fo = 2u(2)"?. (1.8.4)

where the y (z) function is parametrized as

Z

Y@ =y+n s (1.8.5)
As shown by Wu et al. (2009) and Fu et al. (2009), this parameterization is more
accurate than that of Eq. (1.8.3) for both ACDM and DGP models. Furthermore,
this parameterization is especially effective to distinguish between a wCDM model
(i.e., a dark-energy model with a constant equation of state) that has a negative
y1 (=0.020 < y1 < —0.016) and a DGP model that instead, has a positive y;
(0.035 < y1 < 0.042). In addition, modified gravity models show a strongly
evolving y(z) (Gannouji et al. 2009; Motohashi et al. 2010a; Fu et al. 2009), in
contrast with conventional dark-energy models. As a special case we also consider
y = constant (only when w also is assumed constant), to compare our results with
those of previous works.

e 1n-parameterization. To explore models in which perturbations grow faster than
in the ACDM case, like in the case of a coupling between dark energy and dark
matter (Di Porto and Amendola 2008), we consider a model in which y is constant
and the growth rate varies as

foe= 2,70 +1n), (1.8.6)

where 1 quantifies the strength of the coupling. The example of the coupled
quintessence model worked out by Di Porto and Amendola (2008) illustrates this
point. In that model, the numerical solution for the growth rate can be fitted by the
formula (I.8.6), with n = cﬂg, where S, is the dark energy-dark matter coupling
constant and best fit values y = 0.56 and ¢ = 2.1. In this simple case, observa-
tional constraints over 7 can be readily transformed into constraints over f,.
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Reference cosmological models

We assume as reference model a “pseudo” ACDM, where the growth rate values
are obtained from Eq. (I.8.3) with y = 0.545 and £2,,(z) is given by the standard
evolution. Then £2,,(z) is completely specified by setting £2,,,0 = 0.271, £ = 0,
wo = —0.95, w; = 0. When the corresponding parameterizations are employed,
we choose as fiducial values y; = 0 and n = 0, We also assume a primordial slope
ns = 0.966 and a present normalization og = 0.809.

One of the goals of this work is to assess whether the analysis of the power spectrum
in redshift-space can distinguish the fiducial model from alternative cosmologies,
characterized by their own set of parameters (apart from £2,, o which is set equal to
0.27 for all of them). The alternative models that we consider in this work are:

e DGP model. We consider the flat space case studied in Maartens and Majerotto
(2006). When we adopt this model then we set Yy = 0.663, y; = 0.041 (Fu et al.
2009) or y = 0.68 (Linder and Cahn 2007) and w = — 0.8 when y and w are
assumed constant.

e f(R) model. Here we consider different classes of f(R) models: (i) the one pro-
posed in Hu and Sawicki (2007a), depending on two parameters, n and u in
Eq. (1.5.36), which we fix ton = 0.5, 1,2 and u = 3. For the model with n = 2
we assume yy = 0.43, y; = — 0.2, values that apply quite generally in the limit of
small scales [provided they are still linear, see Gannouji et al. (2009)] or y = 0.4
and w = —0.99. Unless differently specified, we will always refer to this specific
model when we mention comparisons to a single f(R) model. (ii) The model of
Eq. (I.5.37), proposed in Starobinsky (2007), where we fix 4 = 3 and n = 2,
which shows a very similar behavior to the previous one. (iii) The one proposed
in Tsujikawa (2008), Eq. (I1.5.38), fixing u = 1.

e Coupled dark-energy (CDE) model. This is the coupled model proposed by Amen-
dola (2000a) and Wetterich (1995). In this case we assume yy = 0.56, n = 0.056
(this value comes from putting 8. = 0.16 as coupling, which is of the order of the
maximal value allowed by CMB constraints) (Amendola and Quercellini 2003).
As already explained, this model cannot be reproduced by a constant y . Forecasts
on coupled quintessence based on Amendola et al. (2011), Amendola (2000a),
Pettorino and Baccigalupi (2008) are discussed in more detail in Sect. 1.8.8.

For the fiducial values of the bias parameters in every bin, we assume b(z) = /1 + z
(already used in Rassat et al. 2008) since this function provides a good fit to Ho line
galaxies with luminosity Ly, = 10*? erg~! s7! h™2 modeled by Orsi et al. (2010)
using the semi-analytic GALFORM models of Baugh et al. (2005). For the sake of
comparison, we will also consider the case of constant b = 1 corresponding to the
rather unphysical case of a redshift-independent population of unbiased mass tracers.

The fiducial values for § are computed through

_oFe" ff

B (2) = P = BF (1.8.7)

Now we express the growth function G(z) and the redshift distortion parameter
B(z) in terms of the growth rate f, [see Eqgs. (1.8.8), (1.8.7)]. When we compute the
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derivatives of the spectrum in the Fisher matrix b(z) and f,(z) are considered as
independent parameters in each redshift bin. In this way we can compute the errors
on b (and f,) self consistently by marginalizing over all other parameters.

Now we are ready to present the main result of the Fisher matrix analysis. We note
that in all tables below we always quote errors at 68% probability level and draw in
the plots the probability regions at 68 and/or 95% (denoted for shortness as 1 and
20 values). Moreover, in all figures, all the parameters that are not shown have been
marginalized over or fixed to a fiducial value when so indicated.

Results for the f-parameterization

The total number of parameters that enter in the Fisher matrix analysis is 45: 5
parameters that describe the background cosmology (.Qm,ohz, Qb,ohz, h, n, )
plus 5 z-dependent parameters specified in 8 redshift bins evenly spaced in the range
z = [0.5,2.1]. They are Ps(z), D(z), H(z), f,(z), b(z). However, since we are not
interested in constraining D(z) and H (z), we always project them to the set of parame-
ters they depend on (as explained in Seo and Eisenstein 2003) instead of marginalizing
over, so extracting more information on the background parameters.

The fiducial growth function G(z) in the (i + 1)-th redshift bin is evaluated from
a step-wise, constant growth rate f,(z) as

< dz l4+z \ /i f1+7\ i
G(Z)Zexp{—/o fg(z)lﬂ}:]?[(m) <1+Zi> . (1.8.8)

To obtain the errors on s; and b; we compute the elements of the Fisher matrix
and marginalize over all other parameters. In this case one is able to obtain, self-
consistently, the error on the bias and on the growth factor at different redshifts, as
detailed in Table 4. In Fig. 17, we show the contour plots at 68 and 95% of probability
for all the pairs s(z;) — b(z;) in several redshift bins (with b = /1 + z), where z;’s
are the central values of the bins. We do not show the ellipses for all the 14 bins to
avoid overcrowding.

Table 4 illustrates one important result: through the analysis of the redshift-space
galaxy power spectrum in a next-generation Euclid-like survey, it will be possible to
measure galaxy biasing in Az = 0.1 redshift bins with less than 1.6% error, provided
that the bias function is independent of scale. We also tested a different choice for the
fiducial form of the bias: b(z) = 1 finding that the precision in measuring the bias as
well as the other parameters has a very little dependence on the b(z) form. Given the
robustness of the results on the choice of b(z) in the following we only consider the
b(z) = /1 + z case.

In Figs. 18 and 19, we show the errors on the growth rate f, as a function of
redshift, overplotted to our fiducial ACDM (green solid curve). The three sets of
error bars are plotted in correspondence of the 14 redshift bins and refer (from left
to right) to the Optimistic, Reference and Pessimistic cases, respectively. The other
curves show the expected growth rate in three alternative cosmological models: flat
DGP (red, longdashed curve), CDE (purple, dot-dashed curve) and different f(R)
models (see description in the figure captions). This plot clearly illustrates the ability

@ Springer



2 Page 128 of 345 L. Amendola et al. (The Euclid Theory Working Group)

Table 4 1o marginalized errors for the bias and the growth rates in each redshift bin

z op bF z ng Oy

Ref. Opt. Pess. Ref. Opt. Pess.
0.7 0.016 0.015 0.019 1.30 0.7 0.76 0.011 0.010 0.012
0.8 0.014 0.014 0.017 1.34 0.8 0.80 0.010 0.009 0.011
0.9 0.014 0.013 0.017 1.38 0.9 0.82 0.009 0.009 0.011
1.0 0.013 0.012 0.016 1.41 1.0 0.84 0.009 0.008 0.011
1.1 0.013 0.012 0.016 1.45 1.1 0.86 0.009 0.008 0.011
1.2 0.013 0.012 0.016 1.48 1.2 0.87 0.009 0.009 0.011
1.3 0.013 0.012 0.016 1.52 1.3 0.88 0.010 0.009 0.012
1.4 0.013 0.012 0.016 1.55 1.4 0.89 0.010 0.009 0.013
1.5 0.013 0.012 0.016 1.58 1.5 0.91 0.011 0.010 0.014
1.6 0.013 0.012 0.016 1.61 1.6 0.91 0.012 0.011 0.016
1.7 0.014 0.013 0.017 1.64 1.7 0.92 0.014 0.012 0.018
1.8 0.014 0.013 0.018 1.67 1.8 0.93 0.014 0.013 0.019
1.9 0.016 0.014 0.021 1.70 1.9 0.93 0.017 0.015 0.025
2.0 0.019 0.016 0.028 1.73 2.0 0.94 0.023 0.019 0.037

1.8

18 (o.)

"M
z=12
1.4 i=1

1870 0.75 0.80 0.85 0.90 0.95 1.00
e

Fig. 17 Contour plots at 68 and 98% of probability for the pairs s(z;) — b(z;) in 7 redshift bins (with
b = /1 +z). The ellipses are centered on the fiducial values of the growth rate and bias parameters,
computed in the central values of the bins, z;
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Fig. 18 Expected constraints on the growth rates in each redshift bin. For each z the central error bars
refer to the Reference case while those referring to the Optimistic and Pessimistic case have been shifted
by —0.015 and +0.015 respectively. The growth rates for different models are also plotted: ACDM (green
tight shortdashed curve), flat DGP (red longdashed curve) and a model with coupling between dark energy
and dark matter (purple, dot-dashed curve). The blue curves (shortdashed, dotted and solid) represent the
f(R) model by Hu and Sawicki (2007a), Eq. (1.5.36) with n = 0.5, 1, 2 respectively and ; = 3. The plot
shows that it will be possible to distinguish these models with next generation data

of next generation surveys to distinguish between alternative models, even in the less

favorable choice of survey parameters.

The main results can be summarized as follows.

1. The ability of measuring the biasing function is not too sensitive to the character-
istic of the survey (b(z) can be constrained to within 1% in the Optimistic scenario
and up to 1.6% in the Pessimistic one) provided that the bias function is indepen-
dent of scale. Moreover, we checked that the precision in measuring the bias has

a very little dependence on the b(z) form.

2. The growthrate f, can be estimated to within 1-2.5% in each bin for the Reference
case survey with no need of estimating the bias function b(z) from some dedicated,
independent analysis using higher order statistics (Verde et al. 2002) or full-PDF

analysis (Sigad et al. 2000).

3. The estimated errors on f, depend weakly on the fiducial model of b(z).

Next, we focus on the ability of determining yo and y, in the context of the y-
parameterization and y, n in the n-parameterization. In both cases the Fisher matrix
elements have been estimated by expressing the growth factor as

G(2) = doexp [(Hn)/rzm(
0

Z/)y(z)

d7’
1+z ]|’

1.8.9)
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Fig. 19 Expected constraints on the growth rates in each redshift bin. For each z the central error bars
refer to the Reference case while those referring to the Optimistic and Pessimistic case have been shifted
by —0.015 and + 0.015 respectively. The growth rates for different models are also plotted: ACDM (green
tight shortdashed curve), flat DGP (red longdashed curve) and a model with coupling between dark energy
and dark matter (purple, dot-dashed curve). Here we plot again the f(R) model by Hu and Sawicki (2007a),
Eq. (1.5.36), with n = 2 and « = 3 (blue shortdashed curve) together with the model by Starobinsky (2007),
Eq. (1.5.37), with n = 2 and & = 3 (cyan solid curve) and the one by Tsujikawa (2008), Eq. (1.5.38), with
n = 1 (black dotted curve). Also in this case it will be possible to distinguish these models with next
generation data

where for the y-parameterization we fix n = 0.

e y-parameterization. We start by considering the case of constant y and w in which
wesety = yf =0.545 and w = w’ = —0.95. As we will discuss in the next
Section, this simple case will allow us to cross-check our results with those in
the literature. In Fig. 20, we show the marginalized probability regions, at 1 and
20 levels, for y and w. The regions with different shades of green illustrate the
Reference case for the survey whereas the blue long-dashed and the black short-
dashed ellipses refer to the Optimistic and Pessimistic cases, respectively. Errors on
y and w are listed in Table 5 together with the corresponding figures of merit [FoM]
defined to be the squared inverse of the Fisher matrix determinant and therefore
equal to the inverse of the product of the errors in the pivot point, see Albrecht et al.
(2006). Contours are centered on the fiducial model. The blue triangle and the blue
square represent the flat DGP and the f(R) models’ predictions, respectively. It
is clear that, in the case of constant y and w, the measurement of the growth rate
in a Euclid-like survey will allow us to discriminate among these models. These
results have been obtained by fixing the curvature to its fiducial value 2, = 0.
If instead, we consider curvature as a free parameter and marginalize over, the
errors on y and w increase significantly, as shown in Table 6, and yet the precision
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Fig. 20 y-parameterization. Left panel: 1 and 20 marginalized probability regions for constant y and w:
the green (shaded) regions are relative to the Reference case, the blue long-dashed ellipses to the Optimistic
case, while the black short-dashed ellipses are the probability regions for the Pessimistic case. The red dot
marks the fiducial model; two alternative models are also indicated for comparison. Right panel: 1 and
20 marginalized probability regions for the parameters ) and y1, relative to the Reference case (shaded
yellow regions), to the Optimistic case (green long-dashed ellipses), and to the Pessimistic case (black
dotted ellipses). Red dots represent the fiducial model, blue squares mark the DGP while triangles stand
for the f(R) model. Then, in the case of y-parameterization, one could distinguish these three models (at
95% probability)

Table 5 Numerical values for 1o constraints on parameters in Fig. 20 and figures of merit

Case oy ow FoM
b=J1+z Ref. 0.02 0.017 3052
With Opt. 0.02 0.016 3509
2y, fixed Pess. 0.026 0.02 2106

Here we have fixed §2;, to its fiducial value, 2 = 0

Table 6 Numerical values for 1o constraints on parameters y and w (assumed constant), relative to the
red ellipses in Figs. 21, 22 and figures of merit

Bias Case oy FoM

b=41+4z Ref. 0.03 0.04 1342
Opt. 0.03 0.03 1589
Pess. 0.04 0.05 864

Here we have marginalized over £2;

is good enough to distinguish the different models. For completeness, we also
computed the fully marginalized errors over the other cosmological parameters
for the reference survey, given in Table 7.

As a second step we considered the case in which y and w evolve with redshift
according to Egs. (I.8.5) and (1.8.2) and then we marginalized over the parameters
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Table 7 Numerical values for marginalized 1o constraints on cosmological parameters using constant y

and w
Case op T2 Uﬂbhz o2 Ong Ooyg
b=J1+z Ref. 0.007 0.002 0.0004 0.008 0.03 0.006
reference optimistic pessimistic
-0.6 b@=VT+z 1 -0.6f b@=VT+z -0.6 b@=VT+z
-08 ~0.8 -0.8
w -10 w -1.0 w -10
-12 -1.2F -12
-4 — . constant 1 —Lar — y,w constant -4 — ¥,W constant
—— margin. over y;,w; —— margin. over y;,w —— margin. over y;,w;
.0 0.2 0.4 0.6 0.8 1. .0 0.2 0.4 0.6 0.8 1. .0 0.2 0.4 0.6 0.8 1.
Y Y Y

Fig. 21 y-parameterization. 1 and 20 marginalized probability regions obtained assuming constant y and
w (red solid curves) or assuming the parameterizations (1.8.5) and (I.8.2) and marginalizing over y; and
w (black dashed curves); marginalized error values are in columns %Ymarg,1* “Wmarg, 1 of Table 8. Yellow
dots represent the fiducial model, the triangles a f(R) model and the squares mark t%e flat DGP

Table 8 1o marginalized errors for parameters y and w expressed through y and n parameterizations

Bias Case O Ymarg, 1 r— FoM % Vimarg,2 TWmarg,2 FoM

b=+1+4z Ref. 0.15 0.07 97 0.07 0.07 216
Opt. 0.14 0.06 112 0.07 0.06 249
Pess. 0.18 0.09 66 0.09 0.09 147

Columns y0 margl, W0,margl refer to marginalization over y;, wy (Fig. 21) while columns y( marg2,
w0, marg2 refer to marginalization over n, wy (Fig. 22)

y1, w1 and £2;. The marginalized probability contours are shown in Fig. 21 in
which we have shown the three survey setups in three different panels to avoid
overcrowding. Dashed contours refer to the z-dependent parameterizations while
red, continuous contours refer to the case of constant y and w obtained after
marginalizing over §2;. Allowing for time dependency increases the size of the
confidence ellipses since the Fisher matrix analysis now accounts for the additional
uncertainties in the extra-parameters y; and wi; marginalized error values are in
columns o7, 1, Owgpy, Of Table 8. The uncertainty ellipses are now larger and
show that DGP and fiducial models could be distinguished at > 20 level only if
the redshift survey parameter will be more favorable than in the Reference case.

We have also projected the marginalized ellipses for the parameters yp and y; and
calculated their marginalized errors and figures of merit, which are reported in
Table 9. The corresponding uncertainties contours are shown in the right panel
of Fig. 20. Once again we overplot the expected values in the f(R) and DGP
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Table 9 Numerical values for

. . Bias Case oy, oy, FoM

lo constraints on parameters in

right panel of Fig. 20 and figures b=Vitz Ref 0.15 0.4 87

of merit ' ' ’
Opt. 0.14 0.36 102
Pess. 0.18 0.48 58

reference
—0.6F b@=NGT+z 1 —0.6F b@=VT+z —0.6F b@=VT+z

w -10] w 10| w -10]
-12] ~12F -1.2]
-14 ——  y,w constant 1 —lar ——  y.w constant —14 ——  y.w constant
———- margin. over 7w, ———- margin. over 7, ———- margin. over
3 0.4 0.5 0.6 0.7 0. 3 0.4 05 0.6 0.7 0. 3 0.4 05 0.6 0.7 0.
Y Y Y

Fig. 22 n-parameterization. 1 and 20 marginalized probability regions obtained assuming constant y and
w (red solid curves) or assuming the parameterizations (I.8.6) and (I.8.2) and marginalizing over n and w
(black dashed curves); marginalized error values are in columns OYmarg,2* TWmarg,2 of Table 9. Yellow dots
represent the fiducial model, the triangles stand for a f(R) model and the squares mark the flat DGP

Table 10 Numerical values for

. . Bias Case oy oy FoM
lo constraints on parameters in
Fig. 23 and figures of merit b=tz Ref 0.07 0.06 554
Opt. 0.07 0.06 650
Pess. 0.09 0.08 362

scenarios to stress the fact that one is expected to be able to distinguish among
competing models, irrespective on the survey’s precise characteristics.
e 1n-parameterization.

We have repeated the same analysis as for the y-parameterization taking into
account the possibility of coupling between DE and DM, i.e., we have modeled
the growth factor according to Eq. (I.8.6) and the dark-energy equation of state as
in Eq. (I.8.2) and marginalized over all parameters, including §2;. The marginal-
ized errors are shown in columns o7, »» Owyu, 2 Of Table 8 and the significance
contours are shown in the three panels of Fig. 22 which is analogous to Fig. 21.
Even if the ellipses are now larger we note that errors are still small enough to
distinguish the fiducial model from the f(R) and DGP scenarios at > 1o and
> 20 level respectively.

Marginalizing over all other parameters we can compute the uncertainties in the y
and n parameters, as listed in Table 10. The relative confidence ellipses are shown
in the left panel of Fig. 23. This plot shows that next generation Euclid-like surveys
will be able to distinguish the reference model with no coupling (central, red dot)
to the CDE model proposed by Amendola and Quercellini (2003) (white square)
only at the 1-1.50 level.
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Fig. 23 n-parameterization. Left panel: 1 and 20 marginalized probability regions for the parameters y
and n in Eq. (I.8.6) relative to the reference case (shaded blue regions), to the optimistic case (yellow long-
dashed ellipses) and to the pessimistic case (black short-dashed ellipses). The red dot marks the fiducial
model while the square represents the coupling model. Right panel: present constraints on y and n computed
through a full likelihood method (here the red dot marks the likelihood peak) (Di Porto and Amendola 2008)

Finally, in order to explore the dependence on the number of parameters and to
compare our results to previous works, we also draw the confidence ellipses for wy,
w1 with three different methods: (i) fixing yp, y1 and $2 to their fiducial values and
marginalizing over all the other parameters; (ii) fixing only yp and y;; (iii) marginal-
izing over all parameters but wg, wi. As one can see in Fig. 24 and Table 11 this
progressive increase in the number of marginalized parameters reflects in a widening
of the ellipses with a consequent decrease in the figures of merit. These results are in
agreement with those of other authors (e.g., Wang et al. 2010).

The results obtained in this section can be summarized as follows.

1. If both y and w are assumed to be constant and setting £2; = 0, then a redshift
survey described by our Reference case will be able to constrain these parameters
to within 4 and 2%, respectively.

2. Marginalizing over §2; degrades these constraints to 5.3 and 4% respectively.

3. If w and y are considered redshift-dependent and parametrized according to
Egs. (1.8.5) and (I1.8.2) then the errors on yp and wq obtained after marginaliz-
ing over y; and w; increase by a factor ~7, 5. However, with this precision we
will be able to distinguish the fiducial model from the DGP and f(R) scenarios
with more than 20 and 1o significance, respectively.

4. The ability to discriminate these models with a significance above 20 is confirmed
by the confidence contours drawn in the yp—y) plane, obtained after marginalizing
over all other parameters.

5. If we allow for a coupling between dark matter and dark energy, and we marginalize
over n rather than over yp, then the errors on wg are almost identical to those
obtained in the case of the y-parameterization, while the errors on y( decrease
significantly.
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Fig. 24 Errors on the equation of state. 1 and 20 marginalized probability regions for the parameters
wo and w, relative to the reference case and bias b = /(1 + z). The blue dashed ellipses are obtained
fixing yp, y1 and £2; = 0 to their fiducial values and marginalizing over all the other parameters; for the
red shaded ellipses instead, we also marginalize over £2; = 0 but we fix ), y;. Finally, the black dotted
ellipses are obtained marginalizing over all parameters but wg and w. The progressive increase in the
number of parameters reflects in a widening of the ellipses with a consequent decrease in the figures of
merit (see Table 11)

Table 11 1o marginalized errors for the parameters wy and wy, obtained with three different methods
(reference case, see Fig. 24)

Oy ow| FoM
Y0, V1, £ fixed 0.05 0.16 430
Yo, 1 fixed 0.06 0.26 148
Marginalization over all other parameters 0.07 0.3 87

However, our ability in separating the fiducial model from the CDE model is sig-
nificantly hampered: the confidence contours plotted in the y—n plane show that
discrimination can only be performed wit 1-1.5¢ significance. Yet, this is still a
remarkable improvement over the present situation, as can be appreciated from Fig. 23
where we compare the constraints expected by next generation data to the present ones.
Moreover, the Reference survey will be able to constrain the parameter 1 to within
0.06. Reminding that we can write n = 2.1 /362 (Di Porto and Amendola 2008), this
means that the coupling parameter B, between dark energy and dark matter can be
constrained to within 0.14, solely employing the growth rate information. This is com-
parable to existing constraints from the CMB but is complementary since obviously it
is obtained at much smaller redshifts. A variable coupling could therefore be detected
by comparing the redshift survey results with the CMB ones.
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It is worth pointing out that, whenever we have performed statistical tests similar
to those already discussed by other authors in the context of a Euclid-like survey, we
did find consistent results. Examples of this are the values of FoM and errors for wy,
wi, similar to those in Wang et al. (2010), Majerotto et al. (2012) and the errors on
constant y and w (Majerotto et al. 2012). However, let us notice that all these values
strictly depend on the parametrizations adopted and on the numbers of parameters
fixed or marginalized over (see, e.g., Rassat et al. 2008).

1.8.4 Weak lensing non-parametric measurement of expansion and growth rate

In this section, we apply power-spectrum tomography (Hu 1999) to the Euclid weak
lensing survey without using any parameterization of the Hubble parameter H (z)
as well as the growth function G(z). Instead, we add the fiducial values of those
functions at the center of some redshift bins of our choice to the list of cosmological
parameters. Using the Fisher matrix formalism, we can forecast the constraints that
future surveys can puton H (z) and G (z). Although such a non-parametric approach is
quite common for as concerns the equation-of-state ratio w(z) in supernovae surveys
(see, e.g., Albrecht et al. 2009) and also in redshift surveys (Seo and Eisenstein 2003),
it has not been investigated for weak lensing surveys.
The Fisher matrix is given by (Hu and Tegmark 1999)

(1.8.10)

U+ 1DALIP; (L) | 0Pm (L)
Fop = fsk C; Coni -

where fky is the observed fraction of the sky, C is the covariance matrix, P({) is
the convergence power spectrum and p is the vector of the parameters defining our
cosmological model. Repeated indices are being summed over from 1 to N, the number
of redshift bins. The covariance matrix is defined as (no summation over j)

Cii = Pji +8jcvdni ", 18.11)

where yjy is the intrinsic galaxy shear and 7 is the fraction of galaxies per steradian
belonging to the j-th redshift bin:

180\> [
n; = 3600 (7> n@/(; nj(z)dz (1.8.12)

where ny is the galaxy density per arc minute and n;(z) the galaxy density for the
Jj-th bin, convolved with a gaussian around 2./, the center of that bin, with a width of
o,(1 + z;) in order to account for errors in the redshift measurement.

For the matter power spectrum we use the fitting formulae from Eisenstein and Hu
(1999) and for its nonlinear corrections the results from Smith et al. (2003). Note that
this is where the growth function enters. The convergence power spectrum for the i-th
and j-th bin can then be written as
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9HZ [ Wi(2)W;(2)E3(2)22(2) [/
P — 0 J m 1.8.1
i 4 /0 (1+2)* on (nr(z)) dz (18.13)
Here we make use of the window function
°° dz r(z) -
Wi(z) = — |1 = —|n; 1.8.14
(2) "G [ r(z)} ni[r(z)] ( )

(with r(z) being the comoving distance) and the dimensionless Hubble parameter

(1.8.15)

E%(z) = .Qr(no)(l +2%+01 - Q,S?)) exp [/2 ?)(1+—u)(z~))d2:| .
0

1+2

For the equation-of-state ratio, finally, we use the usual CPL parameterization.
We determine N intervals in redshift space such that each interval contains the same
amount of galaxies. For this we use the common parameterization

n(z) = 7> exp (— (z/zo)3/2> , (1.8.16)

where zo = Zmean/1.412 is the peak of n(z) and zmean the median. Now we can
define Z; as the center of the i-th redshift bin and add »; = log (H (z:)/ Ho) as well as
gi =log G(Z;) to the list of cosmological parameters. The Hubble parameter and the
growth function now become functions of the /; and g; respectively:

H(z: 29, wo, w)) = H(z: hy, ... hy) (1.8.17)
Gz 20, y) > Gigl,....gn) (1.8.18)

This is being done by linearly interpolating the functions through their supporting
points, e.g., (Z;, exp(h;)) for H(z). Any function that depends on either H(z) or G(z)
hence becomes a function of the 4; and g; as well.

The values for our fiducial model (taken from WMAP 7-year data, Komatsu et al.
2011) and the survey parameters that we chose for our computation can be found in
Table 12.

Table 12 Values used in our

computation @m 0.1341 fsky 0.375
wp 0.02258 Zmean 0.9
T 0.088 oz 0.05
ns 0.963 1 30
Q2m 0.266 Yint 0.22
wo -1 fimax 5x 103
wi 0 Alogigt 0.02

The values of the fiducial model 4 0.547
(WMAP?7, on the left) and the Yppn 0
survey parameters (on the right) o3 0.801
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Fig. 25 Error bars on the Hubble parameter H (z) with five redshift bins. The exact height of the error bars
respectively are (0.23, 0.072, 0.089, 0.064, 0.76)

As for the sum in Eq. (I.8.10), we generally found that with a realistic upper limit
of £max = 5 x 103 and a step size of Alg ¢ = 0.2 we get the best result in terms of a
figure of merit (FoM), that we defined as

FoM = "0, (1.8.19)

Note that this is a fundamentally different FoM than the one defined by the Dark
Energy Task Force. Our definition allows for a single large error without influencing
the FoM significantly and should stay almost constant after dividing a bin arbitrarily
in two bins, assuming the error scales roughly as the inverse of the root of the number
of galaxies in a given bin.

We first did the computation with just binning H (z) and using the common fit for
the growth function slope (Wang and Steinhardt 1998)

dlog G
L(Z) = 2,7, (1.8.20)
dloga

yielding the result in Fig. 25. Binning both H (z) and G (z) and marginalizing over the
h;s yields the plot for G(z) seen in Fig. 26.

Notice that here we assumed no prior information. Of course one could improve
the FoM by taking into account some external constraints due to other experiments.

1.8.5 Testing the non-linear corrections for weak lensing forecasts
In order to fully exploit the scientific potential of the next generation of weak lensing

surveys, accurate predictions of the matter power spectrum are required. The signal-to-
noise ratio of the cosmic shear signal is highest on angular scales of 5-10 arcminutes,
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Fig. 26 Error bars on the growth function G(z) with three redshift bins while marginalizing over the £;s.
The exact height of the error bars respectively are (0.029, 0.033, 0.25)

which correspond to physical scales of ~ 1 Mpc. Restricting the analysis to larger
scales does not necessarily solve the problem, because the observed two-point ellip-
ticity correlation functions are still sensitive to small scale structures projected along
the line-of-sight. This may be avoided using a full 3D shear analysis (see Castro et al.
2005; Kitching et al. 2011, for details), but using only the larger scales increases the
statistical uncertainties due to cosmic variance.

Currently only N-body simulations allow us to capture the non-linear structure
formation, but for a survey such as Euclid an accuracy of ~ 1% is needed (Huterer
2002; Huterer and Takada 2005). This accuracy goes beyond the claimed =+ 3% uncer-
tainty of the popular HALOFIT code (Smith et al. 2003). However, the accuracy can
be improved provided the simulations are started with adequate initial conditions,
with a large volume, sufficient time stepping and high mass resolution. For instance
(Heitmann et al. 2010) obtained an accuracy of ~ 1% out to k ~ 1hMpc~! for a
gravity-only simulation.

It is important to distinguish between gravity-only simulations, which are used
to make the forecasts, and hydrodynamical simulations that attempt to capture the
modifications to the matter power spectrum due to baryon physics. Although most of
the matter in the Universe is indeed believed to be in the form of collissionless cold
dark matter, baryons represent a non-negligible fraction of the total matter content. The
distribution of baryons traces that of the underlying dark matter density field and thus
gravity-only simulations should capture most of the structure formation. Nonetheless,
differences in the spatial distribution of baryons with respect to the dark matter is
expected to lead to changes that exceed the required accuracy of 1 per cent.

Various processes, which include radiative cooling, star formation and energy injec-
tion from supernovae and active galactic nuclei, affect the distribution of baryons.
Implementing these processes correctly is difficult, and as a consequence the accu-
racy of hydrodynamic simulations is under discussion. That baryon physics cannot be
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ignored was perhaps most clearly shown in van Daalen et al. (2011) who looked at
the changes in the matter power spectra when different processes are included. This
was used by Semboloni et al. (2011) to examine the impact on cosmic shear studies.
The results suggest that AGN feedback may lead to a suppression of the power by as
much as 10% at k ~ 1h Mpc™!.

Semboloni et al. (2011) showed that ignoring the baryonic physics leads to biases in
the cosmological parameter estimates that are much larger than the precision of Euclid.
In the case of the AGN model, the bias in w is as much as 40%. Unfortunately our
knowledge of the various feedback processes is still incomplete and we cannot use the
simulations to interpret cosmic shear signal. Furthermore, hydrodynamic simulations
are too expensive to simulate large volumes for a range of cosmological parameters.
To circumvent this problem several approaches have been suggested. For instance,
Bernstein (2009) proposed to describe the changes in the power spectrum by Legendre
polynomials, and to marginalise over the nuisance parameters (also see Kitching and
Taylor 2011, for a similar approach). Although this leads to unbiased estimates for
cosmological parameters, the precision decreases significantly, by as much as 30%
(Zentner et al. 2008).

Instead Semboloni et al. (2011) and Semboloni et al. (2013) examined whether it
is possible to model the effects of baryon physics using a halo model approach, in
which the baryons and stars are treated separately from the dark matter distribution.
The model parameters, rather than being mere nuisance parameters, correspond to
physical quantities that can be constrained observationally. These works showed that
even with this still rather simple approach it is possible to reduce the biases in the
cosmological parameters to acceptable levels, without a large loss in precision.

The forecasts do not include the uncertainty due to baryon physics, hence the results
implicitly assume that this can be understood sufficiently well that no loss in precision
occurs. This may be somewhat optimistic, as more work is needed in the coming
years to accurately quantify the impact of baryon physics on the modelling of the
matter power spectrum, but we note that the initial results are very encouraging. In
particular, Semboloni et al. (2013) found that requiring consistency between the two-
and three-point statistics can be used to self-calibrate feedback models.

Another complication for the forecasts is the performance of the prescriptions for
the non-linear power spectrum for non- ACDM models. For instance, McDonald et al.
(2006) showed that, using HALOFIT for non- ACDM models, requires suitable correc-
tions. In spite of that, HALOFIT has been often used to calculate the spectra of models
with non-constant DE state parameter w(z). This procedure was dictated by the lack
of appropriate extensions of HALOFIT to non- ACDM cosmologies.

In this paragraph we quantify the effects of using the HALOFIT code instead of
N-body outputs for nonlinear corrections for DE spectra, when the nature of DE
is investigated through weak lensing surveys. Using a Fisher-matrix approach, we
evaluate the discrepancies in error forecasts for wg, w, and £2,, and compare the
related confidence ellipses. See Casarini et al. (2011) for further details.

The weak lensing survey is as specified in Sect. 1.8.2. Tests are performed assum-
ing three different fiducial cosmologies: ACDM model (w9 = — 1, w, = 0) and
two dynamical DE models, still consistent with the WMAP+BAO+SN combination
(Komatsu etal. 2011) at 95% C.L. They will be dubbed M1 (wg = — 0.67, w, = 2.28)
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and M3 (wg = — 1.18, w, = 0.89). In this way we explore the dependence of our
results on the assumed fiducial model. For the other parameters we adopt the fiducial
cosmology of Sect. [.8.2.

The derivatives needed to calculate the Fisher matrix are evaluated by extracting
the power spectra from the N-body simulations of models close to the fiducial ones,
obtained by considering parameter increments + 5%. For the ACDM case, two dif-
ferent initial seeds were also considered, to test the dependence on initial conditions,
finding that Fisher matrix results are almost insensitive to it. For the other fiducial
models, only one seed is used.

N-body simulations are performed by using a modified version of PKDGRAV (Stadel
2001) able to handle any DE state equation w(a), with N 3 =12563 particles in a box
with side L = 256 h~! Mpc. Transfer functions generated using the CAMB package
are employed to create initial conditions, with a modified version of the PM software
by Klypin and Holtzman (1997), also able to handle suitable parameterizations of DE.

Matter power spectra are obtained by performing a fast Fourier transform (FFT) of
the matter density fields, computed from the particles distribution through a Cloud-
in-Cell algorithm, by using a regular grid with N, = 2048. This allows us to obtain
nonlinear spectra in a large k-interval. In particular, our resolution allows to work out
spectra up to k ~ 10k Mpc~!. However, for k > 2-3 h Mpc~! neglecting baryon
physics is no longer accurate (Jing et al. 2006; Rudd et al. 2008; Bonometto et al.
2010; Zentner et al. 2008; Hearin and Zentner 2009). For this reason, we consider WL
spectra only up to €max = 2000.

Particular attention has to be paid to matter power spectra normalizations. In fact, we
found that, normalizing all models to the same linear og(z = 0), the shear derivatives
with respect to wg, w, or §2,, were largely dominated by the normalization shift at
z = 0, og and o3y, values being quite different and the shift itself depending on
wo, W and £2,,. This would confuse the z dependence of the growth factor, through
the observational z-range. This normalization problem was not previously met in
analogous tests with the Fisher matrix, as HALOFIT does not directly depend on the
DE state equation.

As a matter of fact, one should keep in mind that, observing the galaxy distribution
with future surveys, one can effectively measure oy ,;, and not its linear counterpart.
For these reasons, we choose to normalize matter power spectra to og j;, assuming to
know it with high precision.

In Fig. 27 we show the confidence ellipses, when the fiducial model is ACDM, in
the cases of 3 or 5 bins and with £;,,x = 2000. Since the discrepancy between different
seeds are small, discrepancies between HALOFIT and simulations are truly indicating
an underestimate of errors in the HALOFIT case.

As expected, the error on £2,, estimate is not affected by the passage from simu-
lations to HALOFIT, since we are dealing with ACDM models only. On the contrary,
using HALOFIT leads to underestimates of the errors on wg and w,, by a substantial
30-40% (see Casarini et al. (2011) for further details).

This confirms that, when considering models different from ACDM, nonlinear
correction obtained through HALOFIT may be misleading. This is true even when the
fiducial model is ACDM itself and we just consider mild deviations of w from — 1.

@ Springer



2 Page 142 of 345 L. Amendola et al. (The Euclid Theory Working Group)

Wo Wa Wo Wa
-1.1 -1 -09 -04-02 0 02 04 -11 -1 -09 -04-02 0 02 04
L R L
0.28 | + E 0.28 + E
0.276 | + E 0276 | E
9, f i E 0, f ]
0.272 + > E 0.272 E
0.268 |- E 0.268 |- E
A P s | d
o4 ‘ T o4 B
02| B Ny, = 3 02| B Ny, =5
F max = 2000 [ max = 2000
w, 0 C ] w, (U ]
_o2 | E Halofit o2k E Halofit
“t —— N-body 1 ) —— N-body 1
_oa | ‘ ‘ ‘ 3 — N-body 2 o4 ‘ ‘ ‘ 1 —— N-body 2
-1.1 -1 -0.9 -1 -1 -09
Wo Wo

Fig. 27 Likelihood contours, for 65 and 95% C.L., calculated including signals up to £ =~ 2000 for the
ACDM fiducial. Here simulations and HALOFIT yield significantly different outputs
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Fig. 28 On the left (right) panel, 1- and 2-o contours for the M1 (M3) model. The two fiducial models
exhibit quite different behaviors

Figure 28 then show the results in the wo—w, plane, when the fiducial models are
M1 or M3. It is evident that the two cases are quite different. In the M1 case, we see
just quite a mild shift, even if they are O (10%) on error predictions. In the M3 case,
errors estimated through HALOFIT exceed simulation errors by a substantial factor.
Altogether, this is a case when estimates based on HALOFIT are not trustworthy.

The effect of baryon physics is another nonlinear correction to be considered. We
note that the details of a study on the impact of baryon physics on the power spectrum
and the parameter estimation can be found in Semboloni et al. (2011)

1.8.6 Forecasts for the dark-energy sound speed

As we have seen in Sect. 1.3.1, when dark energy clusters, the standard sub-horizon
Poisson equation that links matter fluctuations to the gravitational potential is modified
and Q # 1. The deviation from unity will depend on the degree of DE clustering and
therefore on the sound speed c;. In this subsection, we try to forecast the constraints
that Euclid can put on a constant ¢y by measuring Q both via weak lensing and via
redshift clustering. Here we assume standard Einstein gravity and zero anisotropic
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stress (and therefore we have ¥ = &) and we allow ¢, to assume different values in
the range 0-1.

Generically, while dealing with a non-zero sound speed, we have to worry about
the sound horizon ks, = a H /cg, which characterizes the growth of the perturbations;
then we have at least three regimes with different behavior of the perturbations:

1. perturbations larger than the causal horizon (where perturbations are not causally
connected and their growth is suppressed),

2. perturbations smaller than the causal horizon but larger than the sound horizon,
k < aH /c; (this is the only regime where perturbations are free to grow because
the velocity dispersion, or equivalently the pressure perturbation, is smaller than
the gravitational attraction),

3. perturbations smaller than the sound horizon, k > aH/cg (here perturbations
stop growing because the pressure perturbation is larger than the gravitational
attraction).

As we have set the anisotropic stress to zero, the perturbations are fully described
by Q. The main problem is therefore to find an explicit expression that shows how
Q depends on c¢;. Sapone and Kunz (2009) have provided the following explicit
approximate expression for Q (k, a) which captures the behavior for both super- and
sub-horizon scales:

1—Q2u0 (1+w)a3"

(k,a) =1+ .
¢ Luo 1-3w-+ %v(a)2

(1.8.21)

Here, v(a)? = kcha/ (.QM,OHOZ), which it is defined through csk = vaH so that v
counts how deep a mode is inside the sound horizon.

Eq. (I.8.21) depends substantially on the value of the sound speed or, to put it
differently, on the scale considered. For scales larger than the sound horizon (v & 0),
Eq. (I1.8.21) scales as a—>* and for £2,,, 0 = 0.25 and w = — 0.8 we have that

3
0— 1= ﬁa2'4 ~0.184>%, (1.8.22)

This is not a negligible deviation today, but it decreases rapidly as we move into the
past, as the dark energy becomes less important.'? As a scale enters the sound horizon,
O — 1 grows with one power of the scale factor slower (since Spg stops growing),
suppressing the final deviation roughly by the ratio of horizon size to the scale of
interest (as now v> > 1). In the observable range, (k/Hp)> ~ 10°~10*. Therefore, if
¢s & 1, QO — 1 and the dependence on c; is lost. This shows that Q is sensitive to c;
only for small values, cs2 <1072

We can characterize the dependence of Q on the main perturbation parameter ¢
by looking at its derivative, a key quantity for Fisher matrix forecasts:

2

N

dlogQ x 0-1
dlogez  (1+x) Q

(1.8.23)

12 For this reason, early dark-energy models can have a much stronger impact.
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where x = %v(a)z/(l — 3w) =~ 0.2v(a)? (with the last expression being for w =
— 0.8). For the values we are interested in here, this derivative has a peak at the present
epoch at the sound horizon, i.e., for ¢; & Hy/k, which in the observable range of k
is ¢y &~ .01 — .001, and declines rapidly for larger c;. This means that the sensitivity
of Q to the sound speed can be boosted by several orders of magnitude as the sound
speed is decreased.

There are several observables that depend on Q:

e The growth of matter perturbations

There are two ways to influence the growth factor: firstly at background level,
with a different Hubble expansion. Secondly at perturbation level: if dark energy
clusters then the gravitational potential changes because of the Poisson equation,
and this will also affect the growth rate of dark matter. All these effects can be
included in the growth index y and we therefore expect that y is a function of w
and cf (or equivalently of w and Q).

The growth index depends on dark-energy perturbations (through Q) as (Sapone
and Kunz 2009)

_3d-w—A0) (1.8.24)
5 — 6w
where
A =21 (18.25)
1= Ru () o

Clearly here, the key quantity is the derivative of the growth factor with respect to
the sound speed:

dlog G [9
OF oc/ —Vdacx/ deaoc/ (0 - 1)da. (1.8.26)
a agn S

dlnc? , 0c?

From the above equation we also notice that the derivative of the growth factor
does not depend on Q — 1 like the derivative Q, but on Q — Qo as it is an integral
(being Qg the value of Q today). The growth factor is thus not directly probing
the deviation of Q from unity, but rather how Q evolves over time, see Sapone
et al. (2010) for more details.
e Redshift space distortions

The distortion induced by redshift can be expressed in linear theory by the g factor,
related to the bias factor and the growth rate via:

_ Q2w (7D
B(z, k) = T (1.8.27)

The derivative of the redshift distortion parameter with respect to the sound speed
is:
dlog (1+pu?) 3 Bu?
3 log c2 O 5—6wl+pull4x

Q-1. (1.8.28)

We see that the behavior versus cs2 is similar to the one for the Q derivative, so the

same discussion applies. Once again, the effect is maximized for small ¢;. The g
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derivative is comparable to that of G at z = 0 but becomes more important at low
redshifts.
e Shape of the dark matter power spectrum

Quantifying the impact of the sound speed on the matter power spectrum is quite
hard as we need to run Boltzmann codes (such as CAMB, Lewis et al. 2000b) in order
to get the full impact of dark-energy perturbations into the matter power spectrum.
Sapone et al. (2010) proceeded in two ways: first using the CAMB output and then
considering the analytic expression from Eisenstein and Hu (1999) (which does
not include dark energy perturbations, i.e., does not include cy).

They find that the impact of the derivative of the matter power spectrum with
respect the sound speed on the final errors is only relevant if high values of cf are
considered; by decreasing the sound speed, the results are less and less affected.
The reason is that for low values of the sound speed other parameters, like the

growth factor, start to be the dominant source of information on cf.

Impact on weak lensing

Now it is possible to investigate the response of weak lensing (WL) to the dark-
energy parameters. Proceeding with a Fisher matrix as in Amendola et al. (2008b),
the main difference here being that the parameter Q has an explicit form. Since Q
depends on w and csz, we can forecast the precision with which those parameters can
be extracted. We can also try to trace where the constraints come from. For a vanishing
anisotropic stress the WL potential becomes:

3HZ 2
k(P + W) = —2Q02—M’0AM (1.8.29)
a
which can be written, in linear perturbation theory as:
K (@ +W)=—3H (a)>a’0 (a, k) 2y (a) G (a, k) Ay (k). (1.8.30)

Hence, the lensing potential contains three conceptually different contributions
from the dark-energy perturbations:

e The direct contribution of the perturbations to the gravitational potential through
the factor Q.

e The impact of the dark-energy perturbations on the growth rate of the dark matter
perturbations, affecting the time dependence of Ay, through G (a, k).

e A change in the shape of the matter power spectrum P (k), corresponding to the
dark energy induced k dependence of Ayy.

We use the representative Euclid survey presented in Sect. 1.8.2 and we extend our
survey up to three different redshifts: zmax = 2, 3, 4. We choose different values of c%
and wo = — 0.8 in order to maximize the impact on Q: values closer to — 1 reduce
the effect and therefore increase the errors on c;.

In Fig. 29, we report the 1 — o confidence region for wy, cf for two different values
of the sound speed and zmax. For high value of the sound speed (cs2 = 1) we find
o(wp) = 0.0195 and the relative error for the sound speed is o(csz)/cg = 2615.
As expected, WL is totally insensitive to the clustering properties of quintessence
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Fig. 29 Confidence region at 68% for three different values of zmax = 2.5, 3.5, 4, red solid, green long-
dashed and blue dashed contour, respectively. The left panel shows the confidence region when the sound
speed is cs2 = 1; the right panel with the sound speed cs2 = 107°. The equation of state parameter is for
both cases wy = — 0.8

dark-energy models when the sound speed is equal to 1. The presence of dark-energy
perturbations leaves a w and cf, dependent signature in the evolution of the gravitational
potentials through Apg/A,, and, as already mentioned, the increase of the cf enhances
the suppression of dark-energy perturbations which brings Q — 1.

Once we decrease the sound speed then dark-energy perturbations are free to grow at
smaller scales. In Fig. 29, the confidence region for wy, cf for cs2 = 107% is shown; we
find o (wo) = 0.0286, (c?)/cf, = (.132; in the last case the error on the measurement
of the sound speed is reduced to the 70% of the total signal.

Impact on galaxy power spectrum.

We now explore a second probe of clustering, the galaxy power spectrum. The
procedure is the same outlined in Sect. 1.7.3. We use the representative Euclid survey
presented in Sect. I.8.2. Here too we also consider in addition possible extended surveys
t0 Zmax = 2.5 and zmax = 4.

In Fig. 30, we report the confidence region for wy, cz for two different values of the
sound speed and zm,x. For high values of the sound speed (c? = 1) we find, for our
benchmark survey: o (wg) = 0.0133, and U(csz)/cf = 50.05. Here again we find that
galaxy power spectrum is not sensitive to the clustering properties of dark energy when
the sound speed is of order unity. If we decrease the sound speed down to cf =10"°
then the errors are o (wo) = 0.0125, o/ (c2)/c? = 0.118.

In conclusion, as perhaps expected, we find that dark-energy perturbations have
a very small effect on dark matter clustering unless the sound speed is extremely
small, ¢y < 0.01. Let us remind that in order to boost the observable effect, we always
assumed w = — 0.8; for values closer to — 1 the sensitivity to ¢? is further reduced. As
a test, Sapone et al. (2010) performed the calculation for w = — 0.9 and cs2 =107
and found o2/ cs2 = 2.6 and 0.2/ cs2 = 1.09 for WL and galaxy power spectrum
experiments, ;espectively. '
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Fig. 30 Confidence region at 68% for three different values of zmax = 2.5, 3.5, 4, red solid, green long-
dashed and blue dashed contour, respectively. The left panel shows the confidence region when the sound
speed is c% = 1; the right panel with the sound speed c% = 107%. The equation of state parameter is for
both cases wg = — 0.8

Such small sound speeds are not in contrast with the fundamental expectation of
dark energy being much smoother that dark matter: even with ¢y & 0.01, dark-energy
perturbations are more than one order of magnitude weaker than dark matter ones (at
least for the class of models investigated here) and safely below nonlinearity at the
present time at all scales. Models of “cold” dark energy are interesting because they
can cross the phantom divide (Kunz and Sapone 2006) and contribute to the cluster
masses (Creminelli et al. 2010) (see also Sect. 1.6.2 of this review). Small ¢, could be
constructed for instance with scalar fields with non-standard kinetic energy terms.

1.8.7 Weak lensing constraints on f(R) gravity

In this section, we present the Euclid weak lensing forecasts of a specific, but very
popular, class of models, the so-called f(R) models of gravity. As we have already
seen in Sect. [.5.4 these models are described by the action

Seray = f J=gd*x [% - cm} , (1.8.31)
where f(R) is an arbitrary function of the Ricci scalar and £, is the Lagrange density
of standard matter and radiation.

In principle one has complete freedom to specify the function f(R), and so any
expansion history can be reproduced. However, as discussed in Sect. 1.5.4, those that
remain viable are the subset that very closely mimic the standard ACDM background
expansion, as this restricted subclass of models can evade solar system constraints
(Chiba 2003; Tsujikawa et al. 2008a; Gu 2011), have a standard matter era in which
the scale factor evolves according to a(t) t2/3 (Amendola et al. 2007b) and can
also be free of ghost and tachyon instabilities (Nariai 1973; Gurovich and Starobinsky
1979).
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Fig. 31 The Bayes factor In B 10000
for the f(R) model of
Eq. (1.5.36) over standard 1000

ACDM as a function of the extra
parameter n. The green, red and
blue curves refer to the
conservative, bin-dependent and
optimistic {max, respectively.
The horizontal lines denote the
Jeffreys’ scale levels of
significance
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To this subclass belongs the popular f(R) model proposed by Hu and Sawicki
(2007a) (I1.5.36). Camera et al. (2011b) demonstrated that Euclid will have the power
of distinguishing between it and ACDM with a good accuracy. They performed a
tomographic analysis using several values of the maximum allowed wavenumber of the
Fisher matrices; specifically, a conservative value of 1000, an optimistic value of 5000
and a bin-dependent setting, which increases the maximum angular wavenumber for
distant shells and reduces it for nearby shells. Moreover, they computed the Bayesian
expected evidence for the model of Eq. (I.5.36) over the ACDM model as a function
of the extra parameter n. This can be done because the ACDM model is formally
nested in this f(R) model, and the latter is equivalent to the former when n = 0. Their
results are shown in Fig. 31. For another Bayesian evidence analysis of f(R) models
and the added value of probing the growth of structure with galaxy surveys see also
Song et al. (2007b).

This subclass of f(R) models can be parameterized solely in terms of the mass of
the scalar field, which as we have seen in Eq. (I.5.55) is related to the f(R) functional
form via the relation |

2
M = S er e (@1 (1832
where R subscripts denote differentiation with respect to R. The function f gg can be
approximated by its standard ACDM form,

Roack ~ 3-Qm0
HO2 T ad

+ 12924, (1.8.33)

valid for z < 1000. The mass M (a) is typically a function of redshift which decays
from a large value in the early universe to its present day value M.

Whilst these models are practically indistinguishable from ACDM at the level of
background expansion, there is a significant difference in the evolution of perturbations
relative to the standard GR behavior.

The evolution of linear density perturbations in the context of f(R) gravity is
markedly different than in the standard ACDM scenario; §, = 8om/pm acquires a
nontrivial scale dependence at late times. This is due to the presence of an additional
scale M (a) in the equations; as any given mode crosses the modified gravity ‘horizon’
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k = aM (a), said mode will feel an enhanced gravitational force due to the scalar field.
This will have the effect of increasing the power of small scale modes.

Perturbations on sub-horizon scales in the Newtonian gauge evolve approximately
according to

2K?
=1+ T o, (1.8.34)
342K2
Kd = —47G (ﬁ) a2 PmSm, (1.8.35)
.. . 34+4K?
(Sm + 2H5m —4n G m pm8m = O, (1836)

where K = k/(aM(a)). These equations represent a particular example of a general
parameterization introduced in Martinelli et al. (2010a), Bertschinger and Zukin (2008)
and Zhao et al. (2009b). To solve them one should first parameterize the scalaron mass
M (a), choosing a form that broadly describes the behavior of viable f(R) models. A
suitable functional form, which takes into account the evolution of M (a) in both the
matter era and the late-time accelerating epoch, is given by Thomas et al. (2011)

-3 —3\ 2V

4

M2 = M} <%> : (1.8.37)
1+ 4ay

where a, is the scale factor at matter- A equality; a, = (£2m0/52 A)l/ 3. There are two
modified gravity parameters; My is the mass of the scalaron at the present time and v
is the rate of increase of M (a) to the past.

In Fig. 32, the linear matter power spectrum is exhibited for this parameteriza-
tion (dashed line), along with the standard ACDM power spectrum (solid line). The
observed, redshift dependent tilt is due to the scalaron’s influence on small scale modes,
and represents a clear modified gravity signal. Since weak lensing is sensitive to the
underlying matter power spectrum, we expect Euclid to provide direct constraints on
the mass of the scalar field.

By performing a Fisher analysis, using the standard Euclid specifications, Thomas
et al. (2011) calculates the expected f(R) parameter sensitivity of the weak lensing
survey. By combining Euclid weak lensing and Planck Fisher matrices, both modified
gravity parameters Mo and v are shown to be strongly constrained by the growth
data in Fig. 33. The expected 1o bounds on My and v are quoted as My = 1.34 +
0.62 x 10739 [heV], v = 1.5 £ 0.18 when using linear data [ < 400 only and
My = 1.34 £0.25 x 1073 [heV], v = 1.5 & 0.04 when utilizing the full set of
nonlinear modes / < 10,000.

1.8.8 Forecast constraints on coupled quintessence cosmologies

In this section, we present forecasts for coupled quintessence cosmologies (Amendola
2000a; Wetterich 1995; Pettorino and Baccigalupi 2008), obtained when combining
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Fig. 32 Left panel: Linear matter power spectra for ACDM (solid line; M, = 0, v = 1.5) and scalaron

(dashed line; Mal = 375 [1028 h~! eV_l], v = 1.5) cosmologies. The modification to gravity causes a
sizeable scale dependent effect in the growth of perturbations. The redshift dependence of the scalaron can
be seen by comparing the top and bottom pairs of power spectra evaluated at redshifts z = 0.0 and z = 1.5,
respectively. Right panel: The environmental dependent chameleon mechanism can be seen in the mildly
nonlinear regime. We exhibit the fractional difference (P (k) — Pgr(k))/PGRr (k) between the f(R) and
GR power spectra for the model (1.8.37) with parameters MO_l =375 [1028 h1 erl] and v = 1.5. The
dashed lines represent linear power spectra (P (k) and PgR (k) calculated with no higher order effects) and
the solid lines are the power spectra calculated to second order. We see that the nonlinearities decrease the
modified gravity signal. This is a result of the chameleon mechanism. The top set of lines correspond to
z = 0 and the bottom to z = 0.9; demonstrating that the modified gravity signal dramatically decreases
for larger z. This is due to the scalaron mass being much larger at higher redshifts. Furthermore, nonlinear
effects are less significant for increasing z

Fig. 33 68% (dark grey) and T T T T T
95% (light grey) projected
bounds on the modified gravity 150
parameters M, ~1and v for the
combined Euclid weak lensing
and Planck CMB surveys. The
larger (smaller) contours
correspond to including modes
[ =400 (10,000) in the weak
lensing analysis
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Euclid weak lensing, Euclid redshift survey (baryon acoustic oscillations, redshift
distortions and full P (k) shape) and CMB as obtained in Planck (see also the next
section for CMB priors). Results reported here were obtained in Amendola et al.
(2011) and we refer to it for details on the analysis and Planck specifications (for
weak lensing and CMB constraints on coupled quintessence with a different coupling
see also Martinelli et al. 2010b; De Bernardis et al. 2011). In Amendola et al. (2011),
the coupling is the one described in Sect. 1.5.3.4, as induced by a scalar—tensor model.
The slope o of the Ratra—Peebles potential is included as an additional parameter and
Euclid specifications refer to the Euclid Definition phase (Laureijs et al. 2011).
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Fig. 34 Comparison among predicted confidence contours for the cosmological parameter set ©@ =
{ﬂ2, o, $2¢, h, 2p, ng, 0y, log(A)} using CMB (Planck, blue contours), P (k) (pink-violet contours) and
weak lensing (orange-red contours) with Euclid-like specifications. Image reproduced by permission from
Amendola et al. (2011), copyright by APS

The combined Fisher confidence regions are plotted in Fig. 34 and the results are
in Table 13. The main result is that future surveys can constrain the coupling of dark
energy to dark matter A2 to less than 3 x 10~%. Interestingly, some combinations of
parameters (e.g., £25 vs. @) seem to profit the most from the combination of the three
probes.

We can also ask whether a better knowledge of the parameters {«, $2., h, 2, ng, 03,
log(A)}, obtained by independent future observations, can give us better constraints
on the coupling A2. In Table 14 we show the errors on 8% when we have a better
knowledge of only one other parameter, which is here fixed to the reference value. All
remaining parameters are marginalized over.

It is remarkable to notice that the combination of CMB, power spectrum and weak
lensing is already a powerful tool and a better knowledge of one parameter does not
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Table 13 1-o0 errors for the set

o= {/32’ @ 2. h, 2, Parameter 0;CMB + P (k) 0; CMB + P(k) + WL
ng og, log(A)} of f:o.smological /32 0.00051 0.00032
parameters, combining
CMB + P(k) (left column) and ¢ 0.055 0.032
CMB + P (k) + WL (right 2 0.0037 0.0010
column) h 0.0080 0.0048
2 0.00047 0.00041
ng 0.0057 0.0049
o3 0.0049 0.0036
log(A) 0.0051 0.0027

Table 14 1-o errors for ,82, for CMB, P(k), WL and CMB + P (k) + WL

Fixed parameter CMB P (k) WL CMB + P(k) + WL
(Marginalized on all params) 0.0094 0.0015 0.012 0.00032
o 0.0093 0.00085 0.0098 0.00030
2 0.0026 0.00066 0.0093 0.00032
h 0.0044 0.0013 0.011 0.00032
2 0.0087 0.0014 0.012 0.00030
g 0.0074 0.0014 0.012 0.00028
og 0.0094 0.00084 0.0053 0.00030
log(A) 0.0090 0.0015 0.012 0.00032

For each line, only the parameter in the left column has been fixed to the reference value. The first line
corresponds to the case in which we have marginalized over all parameters. Table reproduced by permission
from Amendola et al. (2011), copyright by APS

improve much the constraints on 2. CMB alone, instead, improves by a factor 3
when £2. is known and by a factor 2 when % is known. The power spectrum is mostly
influenced by 2., which allows to improve constraints on the coupling by more than
a factor 2. Weak lensing gains the most by a better knowledge of o3.

1.8.9 Forecasts for the anisotropic stress parameter 1

One problem, encountered in trying to constrain the MG theoretical parameters
Q(a, k) and n(a, k) introduced earlier, is that one has to assume, or parametrize,
the initial fluctuation power spectrum and its evolution until the epoch at which obser-
vations are made. This is of course fine if one assumes a standard cosmology until dark
energy begins driving the expansion, but not necessarily so if dark energy, or any other
non-standard process, is active also in the past. In this section, we examine briefly how
can one perform a test of the anisotropic stress parameter 7 that is independent of the
shape and the volution of the power spectrum.

In Amendola et al. (2013a) it has been shown that lensing, clustering, and redshift
distortion measurements at linear scales can determine, in addition to the expansion
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rate H (z), only three additional variables R, A and L, generally function of space and
time, that are independent of the power spectrum shape. They are given by

A =Gbémp, R=Gfdmo,
L = 2u0G 01 + 1/7)8myo. (1.8.38)

where the subscript 0 denotes present time and, as usual, G is the growth factor
normalized to unity today, f is the growth rate and b is the bias: all these functions can
in principle freely depend on time and space. The factor é; o represents the square root
of the variance of todays’ fluctuations. As anticipated, its shape depends on processes
that are known only in standard cosmologies.

In order to reconstruct n from A, R and L it is necessary therefore to remove
the dependence on &; . This can be done by considering ratios like P = R/A,
P, = L/R and P = R'/R (prime is derivative with respect to e-folding time). All
other possible combinations can be obtained from these quantities. In terms of these
model-independent ratios, and assuming that beside dark energy one has only pres-
sureless matter (this assumption can easily generalized) the gravitational slip becomes
(Amendola et al. 2013a; Motta et al. 2013)

3P (1 3
l4+79= 2 +2) (1.8.39)

282 (P +2+ &)

where we also set E(z) = H(z)/Hp. This expression gives then the theoretical quan-
tity n(a, k) as a direct function of the observables, without the need of additional
assumptions on initial conditions beyond the region effectively observed.

The function 7 can assume in principle any form, but if one confine themselves to
single scalar fields with second-order equation of motion or to bimetric gravity, then
the relatively simple form (1.4.8) holds true. Then, Eq. (I.8.39) can test a vast class of
models at once. In Amendola et al. (2014), the forecasts for n have been performed for
a Euclid-like survey and assuming a LSST-like amount of supernovae Ia. The result is
that 1 can be measured to within 1-2% when assumed constant in redshift and space
and to within 10%, roughly, when varying only in redshift, while the error rapidly
degrades when assuming a more general form like Eq. (1.4.8).

1.8.10 Extra-Euclidean data and priors

In addition to the baseline Euclid surveys, a possibility may exist for an auxiliary
Euclid survey, for example focused on Type Ia supernovae. Type Ia supernovae used
as standardized candles (luminosity distance indicators) led to the discovery of cosmic
acceleration and they retain significant leverage for revealing the nature of dark energy.
Their observed flux over the months after explosion (the light curve) is calibrated by an
empirical brightness—light curve width relation into a luminosity distance multiplied
by a factor involving the unknown absolute brightness and Hubble constant. This
nuisance factor cancels when supernovae at different redshifts are used as a relative
distance measure. The relative distance is highly sensitive to cosmic acceleration and
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Table 15 Cosmological performance of the simulated surveys

o(wg) Zp a(wp) FoM
low-z + LSST-DDF + DESIRE 0.22 0.25 0.022 203.2
low-z + LSST-DDF 0.28 0.22 0.026 137.1
LSST-DDF + DESIRE 0.40 0.35 0.031 81.4

The FoMs assume a 1-D geometrical Planck prior and flatness. z) is the redshift at which the equation
of state uncertainty reaches its minimum o (wp). The FoM is defined as [Det (Cov(wy, wa))]_l/2 =
[o(wg)o (w p)]*1 and accounts for a suite of systematic uncertainties (see Astier et al. 2014)

provides strong complementarity with other cosmological probes of dark energy, at
the same or different redshifts.

Another advantageous property of supernovae is their immunity to systematics
from cosmology theory—they are purely geometric measures and do not care about
the matter power spectrum, coupling to dark matter, cosmologically modified gravity,
dark energy clustering, etc. Their astrophysical systematics are independent of other
probes, giving important crosschecks. The cosmological parameter likelihood function
arising from supernovae constraints can to a good approximation simply be multiplied
with the likelihood from other probes. Current supernovae likelihoods are in user
friendly form from the joint lightcurve analysis (JLA) of the supernova legacy survey
(SNLS) and sloan digital sky survey (SDSS) of Betoule et al. (2014) or the Union2.1
compilation of Suzuki et al. (2012). In the near future the Union3 compilation should
merge these sets and all other current supernova data, within an improved Bayesian
framework.

The Euclid Supernovae Science Working Group proposed a six month auxiliary sur-
vey with Euclid, the Dark Energy Supernova InfraRed Experiment (DESIRE) (Astier
et al. 2014). This delivers substantial improvements on dark energy equation of state
constraints relative to ground-based supernova surveys, with a 50% higher figure of
merit, as shown in Table 15.

Other dark-energy projects will enable the cross-check of the dark-energy con-
straints from Euclid. These include Planck, BOSS, WiggleZ, HETDEX, DES,
Panstarrs, LSST, BigBOSS and SKA.

Planck will provide exquisite constraints on cosmological parameters, but not tight
constraints on dark energy by itself, as CMB data are not sensitive to the nature of dark
energy (which has to be probed at z < 2, where dark energy becomes increasingly
important in the cosmic expansion history and the growth history of cosmic large scale
structure). Planck data in combination with Euclid data provide powerful constraints
on dark energy and tests of gravity. In the next Sect. 1.8.10.1, we will discuss how
to create a Gaussian approximation to the Planck parameter constraints that can be
combined with Euclid forecasts in order to model the expected sensitivity.

The galaxy redshift surveys BOSS, WiggleZ, HETDEX, and BigBOSS are com-
plementary to Euclid, since the overlap in redshift ranges of different galaxy redshift
surveys, both space and ground-based, is critical for understanding systematic effects
such as bias through the use of multiple tracers of cosmic large scale structure. Euclid
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will survey Ha emission line galaxies at 0.5 < z < 2.0 over 15,000 square degrees.
The use of multiple tracers of cosmic large scale structure can reduce systematic effects
and ultimately increase the precision of dark-energy measurements from galaxy red-
shift surveys (see, e.g., Seljak et al. 2009).

Currently on-going or recently completed surveys which cover a sufficiently large
volume to measure BAO at several redshifts and thus have science goals common to
Euclid, are the Sloan Digital Sky Survey III Baryon Oscillations Spectroscopic Survey
(BOSS for short) and the WiggleZ survey.

BOSS!? maps the redshifts of 1.5 million Luminous Red Galaxies (LRGs) out to
z ~ 0.7 over 10,000 square degrees, measuring the BAO signal, the large-scale galaxy
correlations and extracting information of the growth from redshift space distortions.
A simultaneous survey of 2.2 < z < 3.5 quasars measures the acoustic oscillations
in the correlations of the Lyman-o forest. LRGs were chosen for their high bias, their
approximately constant number density and, of course, the fact that they are bright.
Their spectra and redshift can be measured with relatively short exposures in a 2.4 m
ground-based telescope. The data-taking of BOSS will end in 2014.

The WiggleZ!* survey is now completed, it measured redshifts for almost 240,000
galaxies over 1000 square degrees at 0.2 < z < 1. The target are luminous blue star-
forming galaxies with spectra dominated by patterns of strong atomic emission lines.
This choice is motivated by the fact that these emission lines can be used to measure
a galaxy redshift in relatively short exposures of a 4-m class ground-based telescope.

Red quiescent galaxies inhabit dense clusters environments, while blue star-forming
galaxies trace better lower density regions such as sheets and filaments. It is believed
that on large cosmological scales these details are unimportant and that galaxies are
simply tracers of the underlying dark matter: different galaxy type will only have a
different ‘bias factor’. The fact that so far results from BOSS and WiggleZ agree well
confirms this assumption.

Between now and the availability of Euclid data other wide-field spectroscopic
galaxy redshift surveys will take place. Among them, eBOSS will extend BOSS opera-
tions focusing on 3100 square degrees using a variety of tracers. Emission line galaxies
will be targeted in the redshift window 0.6 < z < 1. This will extend to higher red-
shift and extend the sky coverage of the WiggleZ survey. Quasars in the redshift range
1 < z < 2.2 will be used as tracers of the BAO feature instead of galaxies. The BAO
LRG measurement will be extended to z ~ 0.8, and the quasar number density at
z > 2.2 of BOSS will be tripled, thus improving the BAO Lyman-« forest measure.

HETDEX aims at surveying 1 million Lyman-« emitting galaxies at 1.9 < z < 3.5
over 420 square degrees. The main science goal is to map the BAO feature over this
redshift range.

Further in the future, we highlight here the proposed BigBOSS survey and SuMIRe
survey with HyperSupremeCam on the Subaru telescope. The BigBOSS survey will
target [OII] emission line galaxies at 0.6 < z < 1.5 (and LRGs at z < 0.6) over
14,000 square degrees. The SuMIRe wide survey proposes to survey ~ 2000 square

13 http://www.sdss3.org/surveys/boss.php.
14 http://wigglez.swin.edu.au/site/index.html.
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degrees in the redshift range 0.6 < z < 1.6 targeting LRGs and [OII] emission-line
galaxies. Both these surveys will likely reach full science operations roughly at the
same time as the Euclid launch.

Wide field photometric surveys are also being carried out and planned. The ongoing
Dark Energy Survey (DES)" will cover 5000 square degrees out to z ~ 1.3 and is
expected to complete observations in 2017; the Panoramic Survey Telescope and
Rapid Response System (Pan-STARRS), on-going at the single-mirror stage, The
PanSTARSS survey, which first phase is already on-going, will cover 30,000 square
degrees with 5 photometry bands for redshifts up to z ~ 1.5. The second pause of the
survey is expected to be competed by the time Euclid launches. More in the future
the Large Synoptic Survey Telescope (LSST) will cover redshifts 0.3 < z < 3.6
over 15,000 square degrees, but is expected to begin operations in 2021, after Euclid’s
planned launch date. The galaxy imaging surveys DES, Panstarrs, and LSST will
complement Euclid imaging survey in both the choice of band passes, and the sky
coverage.

SKA (which is expected to begin operations in 2020 and reach full operational
capability in 2024) will survey neutral atomic hydrogen (HI) through the radio 21 cm
line, over a very wide area of the sky. It is expected to detect HI emitting galaxies out
to z ~ 1.5 making it nicely complementary to Euclid. Such galaxy redshift survey will
of course offer the opportunity to measure the galaxy power spectrum (and therefore
the BAO feature) out to z ~ 1.5. The well behaved point spread function of a synthesis
array like the SKA should ensure superb image quality enabling cosmic shear to be
accurately measured and tomographic weak lensing used to constrain cosmology and
in particular dark energy. This weak lensing capability also makes SKA and Euclid
very complementary. For more information see, e.g., Rawlings et al. (2004) and Blake
et al. (2004).

Figure 35 puts Euclid into context. Euclid will survey Hoa emission line galaxies at
0.5 < z < 2.0 over 15,000 square degrees. Clearly, Euclid with both spectroscopic
and photometric capabilities and wide field coverage surpasses all surveys that will
be carried out by the time it is launched. The large volume surveyed is crucial as the
number of modes to sample for example the power spectrum and the BAO feature
scales with the volume. The redshift coverage is also important especially at z < 2
where the dark-energy contribution to the density of the universe is non-negligible (at
z > 2 for most cosmologies the universe is effectively Einstein—de Sitter, therefore,
high redshifts do not contribute much to constraints on dark energy). Having a single
instrument, a uniform target selection and calibration is also crucial to perform pre-
cision tests of cosmology without having to build a ‘ladder’ from different surveys
selecting different targets. On the other hand it is also easy to see the synergy between
these ground-based surveys and Euclid: by mapping different targets (over the same
sky area and ofter the same redshift range) one can gain better control over issues
such as bias. The use of multiple tracers of cosmic large scale structure can reduce
systematic effects and ultimately increase the precision of dark-energy measurements
from galaxy redshift surveys (see, e.g., Seljak et al. 2009).

15 http://www.darkenergysurvey.org.
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Fig.35 Redshiftcoverage and volume for the surveys mentioned in the text. Spectroscopic surveys only are
shown. Recall that while future and forthcoming photometric surveys focus on weak gravitational lensing,
spectroscopic surveys can extract the three dimensional galaxy clustering information and therefore measure
radial and tangential BAO signal, the power spectrum shape and the growth of structure via redshift space
distortions. The three-dimensional clustering information is crucial for BAO. For example to obtain the
same figure of merit for dark-energy properties a photometric survey must cover a volume roughly ten
times bigger than a spectroscopic one

Moreover, having both spectroscopic and imaging capabilities Euclid is uniquely
poised to explore the clustering with both the three dimensional distribution of galaxies
and weak gravitational lensing.

1.8.10.1 The Planck prior

Planck will provide highly accurate constraints on many cosmological parameters,
which makes the construction of a Planck Fisher matrix somewhat non-trivial as it is
very sensitive to the detailed assumptions. A relatively robust approach was used by
Mukherjee et al. (2008) to construct a Gaussian approximation to the WMAP data by
introducing two extra parameters,

R=./2uH}r(zems),  la = mr(zems)/rs(zems), (1.3.40)

where r(z) is the comoving distance from the observer to redshift z, and r;(zcmB) 1s
the comoving size of the sound-horizon at decoupling.

In this scheme, [, describes the peak location through the angular diameter distance
to decoupling and the size of the sound horizon at that time. If the geometry changes,
either due to non-zero curvature or due to a different equation of state of dark energy,
1, changes in the same way as the peak structure. R encodes similar information, but
in addition contains the matter density which is connected with the peak height. In a
given class of models (for example, quintessence dark energy), these parameters are
“observables” related to the shape of the observed CMB spectrum, and constraints on
them remain the same independent of (the prescription for) the equation of state of
the dark energy.
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As a caveat we note that if some assumptions regarding the evolution of perturba-
tions are changed, then the corresponding R and /, constraints and covariance matrix
will need to be recalculated under each such hypothesis, for instance, if massive neu-
trinos were to be included, or even if tensors were included in the analysis (Corasaniti
and Melchiorri 2008). Further, R as defined in Eq. (I.8.40) can be badly constrained
and is quite useless if the dark energy clusters as well, e.g., if it has a low sound speed,
as in the model discussed in Kunz (2009).

In order to derive a Planck fisher matrix, Mukherjee et al. (2008) simulated Planck
data as described in Pahud et al. (2006) and derived constraints on our base parameter
set {R, [,, .Qbhz, ng} with a MCMC based likelihood analysis. In addition to R and
I, they used the baryon density $2,42, and optionally the spectral index of the scalar
perturbations 7, as these are strongly correlated with R and /,, which means that we
will lose information if we do not include these correlations. As shown in Mukherjee
et al. (2008), the resulting Fisher matrix loses some information relative to the full
likelihood when only considering Planck data, but it is very close to the full analysis
as soon as extra data is used. Since this is the intended application here, it is perfectly
sufficient for our purposes.

The following tables, from Mukherjee et al. (2008), give the covariance matrix for
quintessence-like dark energy (high sound speed, no anisotropic stress) on the base
parameters and the Fisher matrix derived from it. Please consult the appendix of that
paper for the precise method used to compute R and /, as the results are sensitive to
small variations.

Table 16 R, Iy, 2,h? and n

P B
estimated from Planck simulated arameter fmean fms variance
2y #0
data
R 1.7016 0.0055
lq 302.108 0.098
Table reproduced by permission .Q},h2 0.02199 0.00017
from Mukherjee et al. (2008), ng 0.9602 0.0038

copyright by APS

Table 17 Covariance matrix for (R, I,, .Qbhz, ng) from Planck

R Iy Qph? ng
2k #0
R 0.303492E-04 0.297688E-03 —0.545532E-06 —0.175976E-04
Iy 0.297688E-03 0.951881E-02 —0.759752E-05 —0.183814E-03
2ph? —0.545532E-06 —0.759752E-05 0.279464E-07 0.238882E-06
ns —0.175976E-04 —0.183814E-03 0.238882E-06 0.147219E-04

Table reproduced by permission from Mukherjee et al. (2008), copyright by APS
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1.8.11 Forecasts for model independent observations

As discussed in Sect. 1.7.6, it is worth to complement the standard P (k) analysis,
see Eq. (I.7.31), with the C¢(z1, z2) method, which involves the directly observable
redshift and angular separations instead of reconstructed model-dependent comoving
distances. The full relativistic expression of the redshift dependent angular power
spectra of galaxy number counts, C¢(z1, z2), which holds for any theory of gravity
whose metric can be written as in Eq. (I.7.2) and in which photons and dark matter
particles move along geodesics, is given in Bonvin and Durrer (2011) and Di Dio
et al. (2013). In particular, it includes the lensing contribution [see Eq. (I.7.17)] and
redshift-space distortions due to peculiar velocities, see Kaiser (1987), as well as other
terms depending on the gravitational potentials.

The Fisher matrix is discussed, e.g., in Di Dio et al. (2013) and Eq. (I1.7.31) is

replaced by:
Fap= )
£.@j).(pq)

acy actt |

——£ s 1.8.41
0P Opp LGN ( )

where CZ’ is the correlation between redshift bin z; and z;, and the covariance matrix
between different power spectra can be approximated as:

obs,ip ~obs, jq obs,iqg ~obs, jp
CP eI 4 e ey
fsky (2¢ + 1)

Covie, 1), (pg = e, (1.8.42)

The observable power spectrum Cgbs’ij takes into account the fact that we observe a
finite number of galaxies instead of a smooth field. This leads to a shot noise term

Cgbs,t/ _ Czj + Nl(/l) . (1.8.43)

where N (i) denotes the number of galaxies in the bin around z;. The power spectra,
using A%z = k3P /(27?%), see Eq. (1.7.30), given by
¢ —an [ 22 00 i@ 2] & 1.8.44
5—77 771()[()5()7 ()
are computed in terms of integrals of transfer functions A, (z, k):

Al(k) = f dz”;—fw,- (2)Ae(z, k), (1.8.45)

which account for the tracer distribution il_];/ and the bin selection function W;(z).
This can be approximated by a top hat if good redshift estimates are available, or by a
Gaussian with standard deviation determined by the photometric redshift errors. The
power spectra are computed, e.g., by the publicly available code CLASSgal described
in Di Dio et al. (2013).
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Fig. 36 We show the figure of merit for ocpys = hZ.QC pm and Hy as a function of the number of bins
for the photometric survey of Euclid. The black line is the P (k) result, the red dashed line is the C;(z1, z2)
result for bin auto-correlations only, while the blue line also includes cross-correlations

For photometric redshifts, the model independent C¢(z1, z2) method performs sig-
nificantly better then the standard P (k) analysis (Di Dio et al. 2014) as can be seen in
Fig. 36.

This is due to the fact that this analysis makes optimal use of the redshift informa-
tion and does not average over directions. For spectroscopic redshifts, however, the
large number of redshift bins which would be needed to fully profit from the redshift
information, is severely limited by shot noise. In fact when using redshift bins that are
significantly thicker than the redshift resolution of the survey, the P (k) analysis, in
principle, has an advantage since it makes use of the full redshift resolution in deter-
mining distances of galaxies, while in the C¢(z1, z2) analysis we do not distinguish
redshifts of galaxies in the same bin. However, for spectroscopic surveys we can in
principle allow for very slim bins with a thickness significantly smaller than the non-
linearity scale, and the maximal number of useful bins is decided by the shot noise, as
well as by numerical limitations related to Markov Chain Monte Carlo data analysis.

The cross correlations from different redshift bins provide an alternative measure
of the lensing potential (Montanari and Durrer 2015), which is complementary to
the analysis of shear with completely different systematic errors. This will allow the
measurement of (§(z1)x(z2)) for zp > z3.

1.9 Summary and outlook

This section introduced the main features of the most popular dark energy/modified
gravity models. Here we summarize the performance of Euclid with respect to these
models. Unless otherwise indicated, we always assume Euclid with no external priors
and all errors fully marginalized over the standard cosmological parameters. Here RS
denotes the redshift survey, WLS the weak lensing one (Tables 16, 17, 18).
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10.

11.

12.

13.

. Euclid (RS) should be able to measure the main standard cosmological parameters

to percent or sub-percent level as detailed in Table 7 (all marginalized errors,
including constant equation of state and constant growth rate, see Table 11 and
Fig. 24).

The two CPL parameters wg, w; should be measured with errors 0.06 and 0.26,
respectively (fixing the growth rate to fiducial), see Table 11 and Fig. 24.

. The equation of state w and the growth rate parameter y, both assumed constant,

should be simultaneously constrained to within 0.04 and 0.03, respectively.

The growth function should be constrained to within 0.01-0.02 for each redshift
bin from z = 0.7 to z = 2 (see Table 4).

A scale-independent bias function b(z) should be constrained to within 0.02 for
each redshift bin (see Table 4).

The growth rate parameters )y, y; defined in Eq. (I.8.5) should be measured to
within 0.08, 0.17, respectively.

Euclid will achieve an accuracy on measurements of the dark energy sound speed
of o (c2)/c? =2615(WLS)and o (c?)/c? = 50.05 (RS), if ¢ = 1,0r0(c?)/c? =
0.132 (WLS) and o (c2)/c? = 0.118 (RS), if ¢ = 1075.

The coupling 82 between dark energy and dark matter can be constrained by Euclid
(with Planck) to less than 3 x 107 (see Fig. 34 and Table 13).

Any departure from GR greater than ~ 0.03 in the growth index y will be distin-
guished by the WLS (Heavens et al. 2007).

Euclid WLS can detect deviations between 3 and 10% from the GR value of the
modified-gravity parameter X' (Eq. 1.3.28), whilst with the RS there will be a 20%
accuracy on both X' and u (Eq. 1.3.27).

With the WLS, Euclid should provide an upper limit to the present dimensionless
scalaron inverse mass ; = Hy/My of the f(R) scalar [where the time dependent
scalar field mass is defined in Eq. (1.8.37)] as . = 0.00 £ 1.10 x 1073 for [ < 400
and ;= 0.0 £2.10 x 10~* for / < 10,000

The WLS will be able to rule out the DGP model growth index with a Bayes factor
|In B| >~ 50 (Heavens et al. 2007), and viable phenomenological extensions could
be detected at the 30 level for 1000 < ¢ < 4000 (Camera et al. 2011a).

The photometric survey of Euclid, i.e., the WLS, is very promising in measuring
directly observable angular and redshift dependent power spectra C¢(z1, z2) (and
correlation function) as discussed in Di Dio et al. (2014). This spectra are truly
model independent and especially well suited to estimate cosmological parameter
or test models of modified gravity.

At the same time, there are several areas of research that we feel are important for

the future of Euclid, both to improve the current analyses and to maximize its science
return. Here we provide a preliminary, partial list.

1.

2.
3.

The results of the redshift survey and weak lensing surveys should be combined
in a statistically coherent way

The set of possible priors to be combined with Euclid data should be better defined
The forecasts for the parameters of the modified gravity and clustered dark-energy
models should be extended to include more general cases
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4. We should estimate the errors on a general reconstruction of the modified gravity
functions X', i or of the metric potentials ¥, @ as a function of both scale and
time.

5. We should use the C¢(z1, z2)-method to constrain modified gravity models.

Part II Dark matter and neutrinos
I1.1 Introduction

The identification of dark matter is one of the most important open problems in particle
physics and cosmology. In standard cosmology, dark matter contributes 85% of all
the matter in the universe, but we do not know what it is made of, as we have never
observed dark matter particles in our laboratories. The foundations of the modern dark
matter paradigm were laid in the 1970s and 1980s, after decades of slow accumulation
of evidence. Back in the 1930s, it was noticed that the Coma cluster seemed to contain
much more mass than what could be inferred from visible galaxies (Zwicky 1933,
1937), and a few years later, it became clear that the Andromeda galaxy M31 rotates
anomalously fast at large radii, as if most of its mass resides in its outer regions.
Several other pieces of evidence provided further support to the dark matter hypothesis,
including the so called timing-argument. In the 1970s, rotation curves were extended
to larger radii and to many other spiral galaxies, proving the presence of large amounts
of mass on scales much larger than the size of galactic disks (Peacock 1999).

We are now in the position of determining the total abundance of dark matter rel-
ative to normal, baryonic matter, in the universe with exquisite accuracy; we have
a much better understanding of how dark matter is distributed in structures ranging
from dwarf galaxies to clusters of galaxies, thanks to gravitational lensing observations
(see Massey et al. 2010, for a review) and theoretically from high-resolution numeri-
cal simulations made possible by modern supercomputers (such as, for example, the
Millennium or Marenostrum simulations).

Originally, Zwicky thought of dark matter as most likely baryonic—missing cold
gas, or low mass stars. Rotation curve observation could be explained by dark matter in
the form of MAssive Compact Halo Objects (MACHOs, e.g., a halo of black holes or
brown dwarfs). However, the MACHO and EROS experiments have shown that dark
matter cannot be in the mass range 0.6 x 107’ My < M < 15 Mg, if it comprises
massive compact objects (Alcock et al. 2000; Tisserand et al. 2007). Gas measurements
are now extremely sensitive, ruling out dark matter as undetected gas (Bi and Davidsen
1997; Choudhury et al. 2001; Richter et al. 2006; but see Pfenniger et al. 1994). And the
CMB and Big Bang Nucleosynthesis require the total mass in baryons in the universe
to be significantly less that the total matter density (Rebolo 2002; Coc et al. 2002;
Turner 2002).

This is one of the most spectacular results in cosmology obtained at the end of the
20th century: dark matter has to be non-baryonic. As a result, our expectation of the
nature of dark matter shifted from an astrophysical explanation to particle physics,
linking the smallest and largest scales that we can probe.
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During the seventies the possibility of the neutrino to be the dark matter particle
with a mass of tenth of eV was explored, but it was realized that such light particle
would erase the primordial fluctuations on small scales, leading to a lack of structure
formation on galactic scales and below. It was therefore postulated that the dark matter
particle must be cold (low thermal energy, to allow structures on small scale to form),
collisionless (or have a very low interaction cross section, because dark matter is
observed to be pressureless) and stable over a long period of time: such a candidate is
referred to as a weakly interacting massive particle (WIMP). This is the standard cold
dark matter (CDM) picture (see Frenk et al. 1990; Peebles et al. 1991).

Particle physicists have proposed several possible dark matter candidates. Super-
symmetry (SUSY) is an attractive extension of the Standard Model of particle physics.
The lightest SUSY particle (the LSP) is stable, uncharged, and weakly interacting, pro-
viding a perfect WIMP candidate known as a neutralino. Specific realizations of SUSY
each provide slightly different dark matter candidates (for a review see Jungman et al.
1996). Another distinct dark matter candidate arising from extensions of the Standard
Model is the axion, a hypothetical pseudo-Goldstone boson whose existence was pos-
tulated to solve the so called strong C P problem in quantum chromodynamics (Peccei
and Quinn 1977), also arising generically in string theory (Witten 1984; Svrcek and
Witten 2006). They are known to be very well motivated dark matter candidates (for
a review of axions in cosmology see Sikivie 2008). Other well-known candidates
are sterile neutrinos, which interact only gravitationally with ordinary matter, apart
from a small mixing with the familiar neutrinos of the Standard Model (which should
make them ultimately unstable), and candidates arising from technicolor (see, e.g.,
Gudnason et al. 2006). A wide array of other possibilities have been discussed in the
literature, and they are currently being searched for with a variety of experimental
strategies (for a complete review of dark matter in particle physics see Amsler et al.
2008).

There remain some possible discrepancies in the standard cold dark matter model,
such as the missing satellites problem, and the cusp-core controversy (see below for
details and references) that have led some authors to question the CDM model and to
propose alternative solutions. The physical mechanism by which one may reconcile
the observations with the standard theory of structure formation is the suppression
of the matter power spectrum at small scales. This can be achieved with dark matter
particles with a strong self-scattering cross section, or with particles with a non-
negligible velocity dispersion at the epoch of structure formation, also referred to as
warm dark matter (WDM) particles.

Another possibility is that the extra gravitational degrees of freedom arising in
modified theories of gravity play the role of dark matter. In particular this happens
for the Einstein-Aether, TeVeS and bigravity models. These theories were developed
following the idea that the presence of unknown dark components in the universe may
be indicating us that it is not the matter component that is exotic but rather that gravity
is not described by standard GR.

Finally, we note that only from astrophysical probes can any dark matter candidate
found in either direct detection experiments or accelerators, such as the LHC, be
confirmed. Any direct dark matter candidate discovery will give Euclid a clear goal to
verify the existence of this particle on astrophysical scales. Within this context, Euclid
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can provide precious information on the nature of dark matter. In this part, we discuss
the most relevant results that can be obtained with Euclid, and that can be summarized
as follows:

e The discovery of an exponential suppression in the power spectrum at small scales,
that would rule out CDM and favor WDM candidates, or, in absence of it, the
determination of a lower limit on the mass of the WDM particle, mwpwm, of 2 keV;

e the determination of an upper limit on the dark matter self-interaction cross section
o/m ~ 10727 cm? GeV~! at 68% CL, which represents an improvement of three
orders of magnitude compared to the best constraint available today, which arises
from the analysis of the dynamics of the bullet cluster;

o the measurement of the slope of the dark matter distribution within galaxies and
clusters of galaxies with unprecedented accuracy;

e the determination of the properties of the only known—though certainly
subdominant—non-baryonic dark matter particle: the standard neutrino, for which
Euclid can provide information on the absolute mass scale, its normal or inverted
hierarchy, as well as its Dirac or Majorana nature;

o the test of unified dark matter (UDM, or quartessence) models, through the detec-
tion of characteristic oscillatory features predicted by these theories on the matter
power spectrum, detectable through weak lensing or baryonic acoustic oscillations
studies;

e a probe of the axiverse, i.e., of the legacy of string theory through the presence of
ultra-light scalar fields that can affect the growth of structure, introducing features
in the matter power spectrum and modifying the growth rate of structures.

Finally, Euclid will provide, through gravitational lensing measurement, a map of the
dark matter distribution over the entire extragalactic sky, allowing us to study the
effect of the dark matter environment on galaxy evolution and structure formation as
a function of time. This map will pinpoint our place within the dark universe.

II.2 Dark matter halo properties

Dark matter was first proposed by Zwicky (1937) to explain the anomalously high
velocity of galaxies in galaxy clusters. Since then, evidence for dark matter has been
accumulating on all scales. The velocities of individual stars in dwarf galaxies suggest
that these are the most dark matter dominated systems in the universe (e.g., Mateo
1998; Kleynaetal. 2001; Simon and Geha 2007; Martin et al. 2007; Walker et al. 2007).
Low surface brightness (LSB) and giant spiral galaxies rotate too fast to be supported
by their stars and gas alone, indicating the presence of dark matter (de Blok et al. 2001;
Simon et al. 2005; Borriello and Salucci 2001; Klypin et al. 2002). Gravitationally
lensed giant elliptical galaxies and galaxy clusters require dark matter to explain
their observed image distributions (e.g., Refsdal 1964; Bourassa and Kantowski 1975;
Walsh et al. 1979; Soucail et al. 1987; Clowe et al. 2006a). Finally, the temperature
fluctuations in the cosmic microwave background (CMB) radiation indicate the need
for dark matter in about the same amount as that required in galaxy clusters (e.g.,
Smoot et al. 1992; Wright et al. 1992; Spergel et al. 2007).
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While the case for particle dark matter is compelling, until we find direct evidence
for such a particle, astrophysics remains a unique dark matter probe. Many varieties of
dark matter candidates produce a noticeable change in the growth of structure in the
universe (Jungman et al. 1996; Steffen 2009). Warm dark matter (WDM) suppresses
the growth of structure in the early universe producing a measurable effect on the small-
scale matter power spectrum (Bode et al. 2001; Avila-Reese et al. 2001; Barkana et al.
2001). Self-interacting dark matter (SIDM) changes the expected density distribution
within bound dark matter structures (Dalcanton and Hogan 2001; Hogan and Dalcanton
2000). In both cases, the key information about dark matter is contained on very small
scales. In this section, we discuss previous work that has attempted to measure the small
scale matter distribution in the universe, and discuss how Euclid will revolutionize the
field. We divide efforts into three main areas: measuring the halo mass function on
large scales, but at high redshift; measuring the halo mass function on small scales
through lens substructures; measuring the dark matter density profile within galaxies
and galaxy clusters.

I1.2.1 The halo mass function as a function of redshift

Attempts have already been made to probe the small scale power in the universe
through galaxy counts. Figure 37 shows the best measurement of the ‘baryonic mass
function’ of galaxies to date (Read and Trentham 2005). This is the number of galaxies
with a given total mass in baryons normalized to a volume of 1 Mpc. To achieve this
measurement, Read and Trentham (2005) sewed together results from a wide range of
surveys reaching a baryonic mass of just ~ 10° My—some of the smallest galaxies
observed to date.

Fig. 37 The baryonic mass
function of galaxies (data
points). The dotted line shows a
Schechter function fit to the
data. The blue line shows the
predicted mass function of dark
matter haloes, assuming that
dark matter is cold. The red line
shows the same assuming that
dark matter is warm with a
(thermal relic) mass of

mwpm = 1 keV

Logyo(N Mpc™Msun™")

6 8 10 12 14
Log,o(M/Msun)
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The baryonic mass function already turns up an interesting result. Over-plotted
in blue on Fig. 37 is the dark matter mass function expected assuming that
dark matter is ‘cold’—i.e., that it has no preferred scale. Notice that this has
a different shape. On large scales, there should be bound dark matter structures
with masses as large as 10'* Mg, yet the number of observed galaxies drops off
exponentially above a baryonic mass of ~ 102 M. This discrepancy is well-
understood. Such large dark matter haloes have been observed, but they no longer
host a single galaxy; rather they are bound collections of galaxies—galaxy clus-
ters (see e.g. Zwicky 1937). However, there is also a discrepancy at low masses
that is not so well understood. There should be far more bound dark matter haloes
than observed small galaxies. This is the well-known ‘missing satellite’ problem
(Moore et al. 1999; Klypin et al. 1999).

The missing satellite problem could be telling us that dark matter is not cold. The
red line on Fig. 37 shows the expected dark matter mass function for WDM with a
(thermal relic) mass of mwpym = 1 keV. Notice that this gives an excellent match to
the observed slope of the baryonic mass function on small scales. However, there may
be a less exotic solution. It is likely that star formation becomes inefficient in galaxies
on small scales. A combination of supernovae feedback, reionization and ram-pressure
stripping is sufficient to fully explain the observed distribution assuming pure CDM
(Kravtsov et al. 2004; Read et al. 2006; Maccio et al. 2010). Such ‘baryon feedback’
solutions to the missing satellite problem are also supported by recent measurements
of the orbits of the Milky Way’s dwarf galaxies (Lux et al. 2010).

11.2.1.1. Weak and strong lensing measurements of the halo mass function

To make further progress on WDM constraints from astrophysics, we must avoid the
issue of baryonic physics by probing the halo mass function directly. The only tool for
achieving this is gravitational lensing. In weak lensing this means stacking data for a
very large number of galaxies to obtain an averaged mass function. In strong lensing,
this means simply finding enough systems with ‘good data’. Good data ideally means
multiple sources with wide redshift separation (Saha and Read 2009); combining
independent data from dynamics with lensing may also prove a promising route (see
e.g. Treu and Koopmans 2002).

Euclid will measure the halo mass function downto~ 10'3 M, using weak lensing.
It will simultaneously find 1000s of strong lensing systems. However, in both cases,
the lowest mass scale is limited by the lensing critical density. This limits us to probing
down to a halo mass of ~ 10'! M, which gives poor constraints on the nature of dark
matter. However, if such measurements can be made as a function of redshift, the
constraints improve dramatically. We discuss this in the next Section.

11.2.1.2 The advantage of going to high redshift

Dark matter constraints from the halo mass function become much stronger if the halo
mass function is measured as a function of redshift. This is because warm dark matter
delays the growth of structure formation as well as suppressing small scale power. This
is illustrated in Fig. 38, which shows the fraction of mass in bound structures as a func-
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fraction of moss in bound structures

Fig. 38 The fraction of mass in bound structures as a function of redshift, normalized to a halo of Milky
Way’s mass at redshift z = 0. Marked are different masses of thermal-relic WDM particles in keV (black
solid lines). Notice that the differences between different WDM models increases towards higher redshift

tion of redshift, normalized to a halo of Milky Way’s mass at redshift z = 0. Marked
are different thermal relic WDM particle masses in keV (black solid lines). Notice that
the differences between WDM models increase significantly towards higher redshift
at a given mass scale. Thus we can obtain strong constraints on the nature of dark
matter by moving to higher z’s, rather than lower halo mass.

The utility of redshift information was illustrated recently by observations of the
Lyman-« absorption spectra from Quasars (Viel et al. 2008; Seljak et al. 2006). Quasars
act as cosmic ‘flashlights’ shining light from the very distant universe. Some of this
lightis absorbed by intervening neutral gas leading to absorption features in the Quasar
spectra. Such features contain rich information about the matter distribution in the
universe at high redshift. Thus, the Lyman-« forest measurements have been able
to place a lower bound of mwpwm > 4 keV probing scales of ~ 1 Mpc. Key to the
success of this measurement is that much of the neutral gas lies in-between galaxies
in filaments. Thus, linear approximations for the growth of structures in WDM versus
CDM remain acceptable, while assuming that the baryons are a good tracer of the
underlying matter field is also a good approximation. However, improving on these
early results means probing smaller scales where nonlinearities and baryon physics
will creep in. For this reason, tighter bounds must come from techniques that either
probe even higher redshifts, or even smaller scales. Lensing from Euclid is an excellent
candidate since it will achieve both while measuring the halo mass function directly
rather than through the visible baryons.
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11.2.2 The dark matter density profile

An alternative approach to constraining dark matter models is to measure the distri-
bution of dark matter within galaxies. Figure 39 shows the central log-slope of the
density distribution for 9 galaxies/groups and 3 lensing clusters as a function of the
enclosed lensing mass (Saha et al. 2006; Read et al. 2007; Saha and Read 2009).
Over the visible region of galaxies, the dark matter distribution tends towards a single
power law: p oc r®. Marked in red is the prediction from structure-formation simula-
tions of the standard cosmological model, that assume non-relativistic CDM, and that
do not include any baryonic matter. Notice that above an enclosed lensing mass of
~ 10'2 M, the agreement between theory and observations is very good. This lends
support to the idea that dark matter is cold and not strongly self-interacting. However,
this result is based on only a handful of galaxy clusters with excellent data. Further-
more, lower mass galaxies and groups can, in principle, give tighter constraints. In
these mass ranges, however (Mene < 10'2 M), the lensing mass is dominated by
the visible stars. Determining the underlying dark matter distribution is then much
more difficult. It is likely that the dark matter distribution is also altered from simple
predictions by the dynamical interplay between the stars, gas and dark matter during
galaxy formation (e.g., Debattista et al. 2008).

I1.3 Euclid dark matter studies: wide-field X-ray complementarity
The predominant extragalactic X-ray sources are AGNs and galaxy clusters. For dark
matter studies the latter are the more interesting targets. X-rays from clusters are emit-

ted as thermal bremsstrahlung by the hot intracluster medium (ICM) which contains
most of the baryons in the cluster. The thermal pressure of the ICM supports it against
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gravitational collapse so that measuring the temperature through X-ray observations
provides information about the mass of the cluster and its distribution. Hence, X-rays
form a complementary probe of the dark matter in clusters to Euclid weak lensing
measurements.

The ongoing X-ray missions XMM-Newton and Chandra have good enough angu-
lar resolution to measure the temperature and mass profiles in ~ 10 radial bins for
clusters at reasonable redshifts, although this requires long exposures. Many planned
X-ray missions aim to improve the spectral coverage, spectral resolution, and/or col-
lection area of the present mission, but they are nonetheless mostly suited for targeted
observations of individual objects. Two notable exceptions are eROSITA ! (Cappel-
luti et al. 2011) and the Wide Field X-ray Telescope!” (WEXT Giacconi et al. 2009;
Vikhlinin et al. 2009; Sartoris et al. 2010; Rosati et al. 2011; Borgani et al. 2011;
Sartoris et al. 2012, proposed) which will both conduct full sky surveys and, in the
case of WFXT, also smaller but deeper surveys of large fractions of the sky.

A sample of high-angular resolution X-ray cluster observations can be used to test
the prediction from N-body simulations of structure formation that dark matter haloes
are described by the NFW profile (Navarro et al. 1996) with a concentration parameter
c. This describes the steepness of the profile, which is related to the mass of the halo
(Neto et al. 2007). Weak or strong lensing measurements of the mass profile, such as
those that will be provided from Euclid, can supplement the X-ray measurement and
have different systematics. Euclid could provide wide field weak lensing data for such
a purpose with very good point spread function (PSF) properties, but it is likely that
the depth of the Euclid survey will make dedicated deep field observations a better
choice for a lensing counterpart to the X-ray observations. However, if the WFXT
mission becomes a reality, the sheer number of detected clusters with mass profiles
would mean Euclid could play a much more important role.

X-ray observations of galaxy clusters can constrain cosmology by measuring the
geometry of the universe through the baryon fraction fy,s (Allen et al. 2008) or by
measuring the growth of structures by determining the high-mass tail of the mass
function (Mantz et al. 2010). The latter method would make the most of the large
number of clusters detected in full-sky surveys and there would be several benefits
by combining an X-ray and a lensing survey. It is not immediately clear which type
of survey would be able to better detect clusters at various redshifts and masses,
and the combination of the two probes could improve understanding of the sample
completeness. An X-ray survey alone cannot measure cluster masses with the required
precision for cosmology. Instead, it requires a calibrated relation between the X-ray
temperature and the cluster mass. Such a calibration, derived from a large sample of
clusters, could be provided by Euclid. In any case, it is not clear yet whether the large
size of a Euclid sample would be more beneficial than deeper observations of fewer
clusters.

Finally, X-ray observations can also confirm the nature of possible ‘bullet-like’
merging clusters. In such systems the shock of the collision has displaced the ICM

16 http://www.mpe.mpg.de/erosita/.

17 http://www.wfxt.eu/home/Overview.html.
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from the dark matter mass, which is identified through gravitational lensing. This
offers the opportunity to study dark matter haloes with very few baryons and, e.g.,
search for signatures of decaying or annihilating dark matter.

II.4 Dark matter mapping

Gravitational lensing offers a unique way to chart dark matter structures in the universe
as it is sensitive to all forms of matter. Weak lensing has been used to map the dark
matter in galaxy clusters (see for example Clowe et al. 2006b) with high resolution
reconstructions recovered for the most massive strong lensing clusters (see for example
Bradac et al. 2006). Several lensing studies have also mapped the projected surface
mass density over degree scale-fields (Gavazzi and Soucail 2007; Schirmer et al. 2007,
Kubo et al. 2009) to identify shear-selected groups and clusters. The minimum mass
scale that can be identified is limited only by the intrinsic ellipticity noise in the lensing
analysis and projection effects. Using a higher number density of galaxies in the shear
measurement reduces this noise, and for this reason the Deep Field Euclid Survey will
be truly unique for this area of research, permitting high resolution reconstructions of
dark matter in the field (Massey et al. 2007; Heymans et al. 2008) and the study of
lenses at higher redshift.

There are several non-parametric methods to reconstruct dark matter in 2D which
can be broadly split into two categories: convergence techniques (Kaiser and Squires
1993) and potential techniques (Bartelmann et al. 1996). In the former one measures the
projected surface mass density (or convergence) k directly by applying a convolution
to the measured shear under the assumption that ¥ < 1. Potential techniques perform
a x> minimization and are better suited to the cluster regime and can also incorporate
strong lensing information (Bradac et al. 2005). In the majority of methods, choices
need to be made about smoothing scales to optimize signal-to-noise whilst preserving
reconstruction resolution. Using a wavelet method circumvents this choice (Starck
et al. 2006; Khiabanian and Dell’ Antonio 2008) but makes the resulting significance
of the reconstruction difficult to measure.

In Van Waerbeke et al. (2013) the techniques of weak lensing mass mapping were
applied to a wide-field survey for the first time, using the CFHTLenS data set. These
mass maps were used to generate higher order statistics beyond the two-point corre-
lation function.

11.4.1 Charting the universe in 3D

The lensing distortion depends on the total projected surface mass density along the
line of sight with a geometrical weighting that peaks between a given source and
observer, while increasing with source distance. This redshift dependence can be used
to recover the full 3D gravitational potential of the matter density as described in Hu
and Keeton (2002), Bacon and Taylor (2003) and applied to the COMBO-17 survey
in Taylor et al. (2004) and the COSMOS survey in Massey et al. (2007). This work
has been extended in Simon et al. (2009) to reconstruct the full 3D mass density field
and applied to the STAGES survey in Simon et al. (2012).
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All 3D mass reconstruction methods require the use of a prior based on the expected
mean growth of matter density fluctuations. Without the inclusion of such a prior,
Hu and Keeton (2002) have shown that one is unable to reasonably constrain the
radial matter distribution, even for densely sampled space-based quality lensing data.
Therefore 3D maps cannot be directly used to infer cosmological parameters.

The driving motivation behind the development of 3D reconstruction techniques
was to enable an unbiased 3D comparison of mass and light. Dark haloes for example
would only be detected in this manner. However the detailed analysis of noise and the
radial PSF in the 3D lensing reconstructions presented for the first time in Simon et al.
(2012) show how inherently noisy the process is. Given the limitations of the method to
resolve only the most massive structures in 3D the future direction of the application of
this method for the Euclid Wide survey should be to reconstruct large scale structures
in the 3D density field. Using more heavily spatially smoothed data we can expect
higher quality 3D resolution reconstructions as on degree scales the significance of
modes in a 3D mass density reconstruction are increased (Simon et al. 2009). Adding
additional information from flexion may also improve mass reconstruction, although
using flexion information alone is much less sensitive than shear (Pires and Amara
2010).

11.4.2 Mapping large-scale structure filaments

Structure formation theory robustly predicts that matter in the Universe is concentrated
in sheets and filaments and that galaxy clusters live at the intersection of these fila-
ments. The most comprehensive analytical framework for describing the emergence
of these structure from anisotropic gravitational collapse is the work of Bond et al.
(1996), which coined the term “cosmic web” for them. It combines the linear evolu-
tion of density fluctuations in the Zeldovich approximation (Zel’dovich 1970) with
the statistics of peaks in the primordial density field (Bardeen et al. 1986) using the
the peak-patch formalism (Bond and Myers 1996a, b, c).

Numerically, filaments have been seen since the early days of N-body simulations
(e.g., Klypin and Shandarin 1983). Increasing mass and spatial resolution of these
simulations have refined our understanding of them and a detailed inventory of the
mass distribution over the different kinds of large-scale structures (galaxy clusters,
filaments, sheets, voids) indicates that a plurality of all mass in the Universe and thus
probably of all galaxies is in filaments (Aragén-Calvo et al. 2010).

Observationally, filaments have been traced by galaxy redshift surveys from early
indications (Joeveer et al. 1978) of their existence to conclusive evidence in the CfA
redshift survey (Geller and Huchra 1989) to modern day redshift surveys like 2dF,
SDSS, BOSS and VIPERS (Colless et al. 2001; Ahn et al. 2012; Dawson et al. 2013;
Guzzo et al. 2014). In X-rays the tenuous warm-hot intergalactic medium expected to
reside in filaments (Davé et al. 2001) has been seen in emission (Werner et al. 2008)
and absorption (Buote et al. 2009; Fang et al. 2010). Observing the underlying dark
matter skeleton has been much more challenging and early weak-lensing candidates
for direct detections (Kaiser et al. 1998; Gray et al. 2002) could not be confirmed by
higher quality follow-up observations (Gavazzi et al. 2004; Heymans et al. 2008).
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The most significant weak-lensing detection of a large-scale structure filament yet
was presented by Dietrich et al. (2012), who found a mass bridge connecting the
galaxy clusters Abell 222 and Abell 223 at 40 in a mass reconstruction. This dark
matter filament is spatially coincident with an overdensity of galaxies (Dietrich et al.
2005) and extended soft X-ray emission (Werner et al. 2008). This study, like the others
mentioned before, makes use of the fact that filaments have a higher density closer
to galaxy clusters and are expected to be particular massive between close pairs of
galaxy clusters (Bond et al. 1996). Jauzac et al. (2012), reported another weak-lensing
filament candidate at 30 significance coming out of a galaxy cluster but not obviously
connecting to another overdensity of galaxies or dark matter. The works of Dietrich
et al. (2012) and Jauzac et al. (2012) also provide the first direct mass measurements
of filaments. These are in agreement with the prediction that massive filaments can be
as heavy as small galaxy clusters (Aragén-Calvo et al. 2010).

The relative dearth of weak lensing filament observations compared to galaxy clus-
ter measurements is of course due to their much lower density contrast. Numerical
simulations of weak-lensing observations accurately predict that filaments will gen-
erally be below their detection threshold (Dietrich et al. 2005; Mead et al. 2010). A
statistical analysis of large set of ray-tracing simulations indicates that even with a
survey slightly deeper than the Euclid wide-survey, the vast majority of filaments will
not be individually detectable (Higuchi et al. 2014). Maturi and Merten (2013) propose
a matched filter tuned to the shape of filaments to overcome the obstacles in filament
detections in weak lensing data.

Analternative to lensing by individual filaments is to average (or “stack”) the lensing
signal of many filaments. These filaments could either be identified in the Euclid
spectroscopic survey or one could use the high probability that neighbouring massive
dark matter halos are often connected by filaments. Zhang et al. (2013) pioneered
this technique of blindly stacking the area between galaxy cluster pairs to boost the
overdensity of filament galaxies with respect to the field. Their selection of cluster pairs
was based on statistical studies of the abundance and properties of filaments between
cluster pairs (Pimbblet et al. 2004; Colberg et al. 2005). This stacking approach was
extended to weak lensing by Clampitt et al. (2016). They developed a method to
measure the lensing signal of extended structures while at the same time nulling the
contribution of the halo pairs at the endpoints of filaments. Stacking the lensing signal
in the regions between luminous red galaxies in SDSS, Clampitt et al. (2016) were
able to put first constraints on the density profiles of filaments.

I1.5 Constraints on dark matter interaction cross sections

We now move towards discussing the particulate aspects of dark matter, starting with
a discussion on the scattering cross-sections of dark matter. At present, many physical
properties of the dark matter particle remain highly uncertain. Prospects for studying
the scattering of dark matter with each of the three major constituents of the universe—
itself, baryons, and dark energy—are outlined below.
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11.5.1 Dark matter—dark matter interactions

Self-interacting dark matter (SIDM) was first postulated by Spergel and Steinhardt
(2000), in an attempt to explain the apparent paucity of low-mass haloes within the
Local Group. The required cross-section o/m ~ 1cm?/g was initially shown to
be infeasible (Meneghetti et al. 2001; Gnedin and Ostriker 2001), but recent high-
resolution simulations have revised the expected impact of self-interaction, which
now remains consistent with observations of cluster halo shapes and profiles. Indeed,
self-interaction within a hidden dark sector is a generic consequence of some exten-
sions to the Standard Model. For example, atomic, glueballino, and mirror dark
matter models predict a cross-section o/m =~ 0.6cm?/g = 1barn/GeV (simi-
lar to nuclear cross-sections in the Standard Model). Note that couplings within
the dark sector can be many orders of magnitude larger than those between dark
matter and Standard Model particles, which is of order picobarns. Interactions
entirely within the dark sector are unprobed by direct detection or collider exper-
iments, but leads to several phyical effects that can potentially be observed by
Euclid.

Clusters of galaxies present an interesting environment in which the dark matter
density is sufficiently high for collisions to play a significant role. If dark mat-
ter particles possess even a small cross-section for elastic scattering, small-scale
structure can be erased, and cuspy cores can be smoothed. In particular, colli-
sions between galaxy clusters act as astronomical-scale particle colliders. Since
dark matter and baryonic matter are subject to different forces, they follow differ-
ent trajectories out of the collision. If dark matter’s particle interactions are rare
but exchange a lot of momentum (often corresponding to short-ranged forces),
dark matter will tend to be scattered away and lost. If the interactions are rare
but exchange little momentum (often corresponding to long-ranged forces),the dark
matter will be decelerated by an additional drag force and become spatially offset
(Kahlhoefer et al. 2014).

How do these cosmological constraints relate to the values anticipated by parti-
cle physics? WIMPs are expected to fall in the range of 10 GeV to a few TeV. The
aforementioned values would then correspond to around o, < 107%* cm?, at least
twenty order of magnitudes greater than what one might expect to achieve from neu-
tral current interactions. Therefore in a cosmological context WIMPs are essentially
collisionless, as are axions, since they exhibit an even smaller cross section. Any cos-
mological detection of SIDM would thus point towards the more exotic candidates
postulated by particle physicists, particularly those which are not point particles but
instead comprise of extended objects such as Q-balls. A measurement of the scattering
cross-section would also place an upper bound on the mass of the dark matter particle,
since unitarity of the scattering matrix forbids extremely large cross sections (Hui
2001), i.e.,

2 _ 2
o < 176 x 10~ om? ( GV (10km ™! 5.1
tot = 1./0 X cm " - . (IL.5.1)
X re
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11.5.1.1 Dark matter evaporation

As highlighted by Gnedin and Ostriker (2001), cross-sections large enough to alleviate
the structure formation issues would also allow significant heat transfer from particles
within a large halo to the cooler sub-haloes. This effect is most prominent close to
the centers of clusters. As the sub-halo evaporates, the galaxy residing within the
halo would be disrupted. Limiting this rate of evaporation to exceed the Hubble time
allows an upper bound to be placed on the scattering cross-section of approximately
op/m, S 0.3 cm? g~! (neglecting any velocity dependence). Note the dependence
on particle mass—a more massive CDM particle would be associated with a lower
number density, thereby reducing the frequency of collisions.

11.5.1.2 Dark matter deceleration

Particulate dark matter and baryonic matter may be temporarily separated during col-
lisions between galaxy clusters, such as 1E 0657-56 (Clowe et al. 2006a; Bradac et al.
2006) and MACS J0025.4-1222 (Bradac et al. 2008). These ‘bullet clusters’ have pro-
vided astrophysical constraints on the interaction cross-section of hypothesized dark
matter particles (Randall et al. 2008), and may ultimately prove the most useful labo-
ratory in which to test for any velocity dependence of the cross-section. Unfortunately,
high-speed collisions between two massive progenitors are rare (Shan et al. 2010a, b),
and constraints from individual systems are limited by uncertainties in their collision
velocity, impact parameter and angle with respect to the plane of the sky.

However, all galaxy clusters grow through almost continual minor merger accretion.
In Massey et al. (2011) and Harvey et al. (2014), a statistical ‘bulleticity’ method has
been proposed to exploit every individual infalling substructure in every cluster. For
each piece of infalling substructure, a local vector from the dark matter peak (identified
using weak lensing analysis) and the baryonic mass peak (from X-rays). An average
bulleticity signal of zero would imply an equal cross sections for the dark matter and
baryonic matter. By measuring any observed, finite amplitude of bulleticity, one can
empirically measure the ratio between the dark matter self-interaction and baryonic
self-interaction cross sections. Since we know the baryonic cross-section relatively
well, we can infer the dark matter-dark matter cross-section.

In Fig. 40, a result from hydrodynamical simulations of dark and baryonic matter
within clusters in shown. Massey et al. (2011) and Harvey et al. (2014) have used these
simulations to show that the measurement of a net bulleticity consistent with the cold
dark matter used in the simulations will be possible with Euclid.

Finally, a Fisher matrix calculation has shown that, under the assumption that sys-
tematic effects can be controlled, Euclid could use such a technique to constrain the
relative particulate cross-sections to 6 x 10727 cm? GeV~!.

The dark matter-dark matter interaction probed by Euclid using this technique will
be complementary to the interactions constrained by direct detection and accelerator
experiments where the primary constraints will be on the dark matter-baryon interac-
tion.
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Fig. 40 Full hydrodynamical
simulations of massive clusters
at redshift z = 0.6. Total
projected mass is shown in blue,
while X-ray emission from
baryonic gas is in red. The
preferential trailing of gas due to
pressure from the ICM, and its
consequent separation from the
non interacting dark matter, is
apparent in much of the infalling
substructure

11.5.1.3 Dark matter halo shapes

e
500A~™" Mpc

Self-interacting dark matter circularises the centres of dark matter halos, removing
triaxiality (Feng et al. 2010; Peter et al. 2013), and smooths out cuspy cores. These
profiles can be measeured directly using strong gravitational lensing (e.g., Sand et al.

2008; Newman et al. 2013).
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Meneghetti et al. (2001) have performed ray-tracing through N-body simulations,
and have discovered that the ability for galaxy clusters to generate giant arcs from
strong lensing is compromized if the dark matter is subject to just a few collisions
per particle. This constraint translates to an upper bound o,/m, < 0.1 em? gL
Furthermore, more recent analyses of SIDM models (Markevitch et al. 2004; Randall
et al. 2008) utilize data from the Bullet Cluster to provide another independent limit
on the scattering cross section, though the upper bound remains unchanged. Massey
et al. (2011) have proposed that the tendency for baryonic and dark matter to become
separated within dynamical systems, as seen in the Bullet Cluster, could be studied in
greater detail if the analysis were to be extended over the full sky in Euclid.

11.5.2 Dark matter—baryonic interactions

Currently, a number of efforts are underway to directly detect WIMPs via the recoil
of atomic nuclei. The underground experiments such as CDMS, CRESST, XENON,
EDELWEISS and ZEPLIN have pushed observational limits for the spin-independent
WIMP-nucleon cross-section down to the o < 10™*3cm? régime.!® A collection of
the latest constraints can be found at http://dmtools.brown.edu.

Another opportunity to unearth the dark matter particle lies in accelerators such as
the LHC. By 2018 it is possible these experiments will have yielded mass estimates for
dark matter candidates, provided its mass is lighter than a few hundred GeV. However,
the discovery of more detailed properties of the particle, which are essential to confirm
the link to cosmological dark matter, would have to wait until the International Linear
Collider is constructed.

11.5.3 Dark matter—dark energy interactions

Interactions in the dark sector have provided a popular topic for exploration, with a view
to building models which alleviate the coincidence and fine-tuning issues associated
with dark energy (see Sect. 1.5.3). The great uncertainty surrounding the physical
nature of dark energy leaves plenty of scope for non-gravitational physics to play a
role. These models are discussed at length in other sections of this reviews (1.5 and
I1.10). Here, we only mention that Simpson (2010) have explored the phenomenology
associated with dark matter scattering elastically with dark energy. The growth rate of
large-scale structures is artificially slowed, allowing a modest constraint of

10 2 1
. I1.5.2
I+w cm g ( )

op/mp S

It is clear that such dark sector interactions do not arise in the simplest models of
dark matter and dark energy. However a rigorous refutation of GR will require not
only a robust measure of the growth of cosmic structures, but confirmation that the
anomalous dynamics are not simply due to physics within the dark sector.

18 7t is anyway worth noticing the controversial results of DAMA/LIBRA, and more recently of CoGeNT.
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I1.6 Constraints on warm dark matter

N-body simulations of large-scale structures that assume a ACDM cosmology appear
to over-predict the power on small scales when compared to observations (Primack
2009): ‘the missing-satellite problem’ (Kauffmann et al. 1993; Klypin et al. 1999;
Strigari et al. 2007; Bullock 2010), the ‘cusp-core problem’ (Li and Chen 2009; Simon
et al. 2005; Zavala et al. 2009) and sizes of mini-voids (Tikhonov et al. 2009). These
problems may be more or less solved by several different phenomena (e.g. Diemand
and Moore 2011), however one which could explain all of the above is warm dark
matter (WDM) (Bode et al. 2001; Colin et al. 2000; Boyanovsky et al. 2008). If the
dark matter particle is very light, it can cause a suppression of the growth of structures
on small scales via free-streaming of the dark matter particles whilst relativistic in the
early universe.

11.6.1 Warm dark matter particle candidates

Numerous WDM particle models can be constructed, but there are two that occur most
commonly in literature, because they are most plausible from particle physics theory
as well as from cosmological observations:

e Sterile neutrinos may be constructed to extend the standard model of particle
physics. The standard model active (left-handed) neutrinos can then receive the
observed small masses through, e.g., a see-saw mechanism. This implies that right-
handed sterile neutrinos must be rather heavy, but the lightest of them naturally has
amass in the keV region, which makes it a suitable WDM candidate. The simplest
model of sterile neutrinos as WDM candidate assumes that these particles were
produced at the same time as active neutrinos, but they never thermalized and were
thus produced with a much reduced abundance due to their weak coupling (see
Biermann and Munyaneza 2008, and references therein).

e The gravitino appears as the supersymmetric partner of the graviton in supergravity
models. If it has a mass in the keV range, it will be a suitable WDM candidate.
It belongs to a more general class of thermalized WDM candidates. It is assumed
that this class of particles achieved a full thermal equilibrium, but at an earlier
stage, when the number of degrees of freedom was much higher and hence their
relative temperature with respect to the CMB is much reduced. Note that in order
for the gravitino to be a good dark matter particle in general, it must be very stable,
which in most models corresponds to it being the LSP (e.g. Borgani and Masiero
1997; Cembranos et al. 2005).

Other possible WDM candidates exist, for example a non-thermal neutralino (Hisano
et al. 2001) or a non-thermal gravitino (Baltz and Murayama 2003) etc.

11.6.2 Dark matter free-streaming

The modification of the shape of the linear-theory power spectrum of CDM due to
WDM can be calculated by multiplication by a transfer function (Bode et al. 2001)
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_ | Pwpm() _ 2 1M
T(k) = /—PCDM(k) _[1+(ak) ] , (IL6.1)

with suitable parameter 1« = 1.12 (Viel et al. 2005) and with the scale break parameter,
«, in the case of thermal relic DM

o 011 , ) \122
o = 0.049 (’"WDM) WDM ) mpe. (1L6.2)
keV 0.25 0.7

This is a fit to the solution of the full Boltzman equations.

There is a one-to-one relation between the mass of the thermalized WDM particle
mwpM (e.g., gravitino), and the mass of the simplest sterile neutrino m g, such that
the two models have an identical impact on cosmology (Viel et al. 2005)

4/3 ~13
mww) (“’WDM) keV. (1L6.3)

— 443
Mvs ( keV 0.1225

where @ = $2h>. The difference comes from the fact that in the gravitino case the
particle is fully thermalized, the number of effective degrees of freedom being deter-
mined by mass and energy density of dark matter, while in the simplest sterile neutrino
case the number of degrees of freedom is fixed, while abundance is determined by
mass and energy density of dark matter.

11.6.3 Current constraints on the WDM particle from large-scale structure

Measurements in the particle-physics energy domain can only reach masses uninter-
esting in the WDM context, since direct detectors look mainly for a WIMP, whose
mass should be in the GeV-TeV range. However, as described above, cosmological
observations are able to place constraints on light dark matter particles. Observation of
the flux power spectrum of the Lyman-« forest, which can indirectly measure the fluc-
tuations in the dark matter density on scales between ~ 100 kpc and ~ 10 Mpc gives
the limits of mwpm > 4 keV or equivalently m,s > 28 keV at 95% confidence level
(Viel et al. 2008, 2005; Seljak et al. 2006). For the simplest sterile neutrino model,
these lower limits are at odds with the upper limits derived from X-ray observations,
which come from the lack of observed diffuse X-ray background from sterile neutrino
annihilation and set the limit m,s < 1.8 keV at the 95% confidence limit (Boyarsky
et al. 2006). However, these results do not rule the simplest sterile neutrino models
out. There exist theoretical means of evading small-scale power constraints (see e.g.
Boyarsky et al. 2009, and references therein). The weak lensing power spectrum from
Euclid will be able to constrain the dark matter particle mass to about mwpm > 2 keV
(Markovic et al. 2011).

11.6.4 Nonlinear structure in WDM

In order to extrapolate the matter power spectrum to later times one must take into
account the nonlinear evolution of the matter density field.
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Several fitting functions have been found to calculate the nonlinear power on the
small scales of the present-day matter power spectrum in the scenario where all dark
matter is warm. The most basic approach is simply to modify the linear matter power
spectrum from Eq. I1.6.1, which is based on the output of Bolzmann codes like CAMB
or CLASS (Lewis et al. 2000b; Blas et al. 2011). One can then either (i) run simulations
(Boehm et al. 2005; Boyanovsky et al. 2008; Zavala et al. 2009; Wang and White
2007; Colombi et al. 2009; Viel et al. 2012; Schneider et al. 2012; Benson et al. 2013;
Angulo et al. 2013; Semenov et al. 2013), (ii) use the halo model (Smith and Markovic
2011; Schneider et al. 2012; Dunstan et al. 2011) or (iii) a fit analogous to Eq. I1.6.1,
where the ACDM nonlinear power spectrum is modified by a transfer function (Viel
et al. 2012) to calculate the present-day power on the small scales:

Pal L (k —s/Qp)
T (k) = VXIA():[H(M)“’] S (I.6.4)
PCDM(k)
where
KeV \ 185 /14 o\ 13
a(mwpwm, z) = 0.0476 —_— , (11.6.5)
mMwDpM 2

and u = 3,1 = 0.6, s = 0.4 are the fitting parameters.
Such fits can be used to calculate further constraints on WDM from the weak lensing
power spectrum or galaxy clustering (Markovic¢ et al. 2011; Markovic and Viel 2014)
It should be noted that in order to use the present day clustering of structure as a
probe for WDM it is crucial to take into account baryonic physics as well as neutrino
effect, which are described in the following section.

I1.7 Neutrino properties

The first significant evidence for a finite neutrino mass (Fukuda et al. 1998) indicated
the incompleteness of the standard model of particle physics. Subsequent experiments
have further strengthened this evidence and improved the determination of the neutrino
mass splitting required to explain observations of neutrino oscillations.

As a summary of the last decade of neutrino experiments, two hierarchical neutrino
mass splittings and three mixing angles have been measured. Furthermore, the standard
model has three neutrinos: the motivation for considering deviations from the standard
model in the form of extra sterile neutrinos has disappeared (Melchiorri et al. 2009;
Aguilar-Arevalo et al. 2007). Of course, deviations from the standard effective numbers
of neutrino species could still indicate exotic physics which we will discuss below
(Sect. 11.7.4).

New and future neutrino experiments aim to determine the remaining parameters
of the neutrino mass matrix and the nature of the neutrino mass. Within three families
of neutrinos, and given all neutrino oscillation data, there are three possible mass
spectra: (a) degenerate, with mass splitting smaller than the neutrino masses, and
two non-degenerate cases, (b) normal hierarchy (NH), with the larger mass splitting
between the two more massive neutrinos and (c) inverted hierarchy (IH), with the
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Fig. 41 Constraints from neutrino oscillations and from cosmology in the m—X' plane. Image reproduced
by permission from Jiménez et al. (2010); copyright by IOP and SISSA

smaller spitting between the two higher mass neutrinos. Figure 41 (Jiménez et al.
2010) illustrates the currently allowed regions in the plane of total neutrino mass, X,
versus mass of the lightest neutrino, m. Note that a determination of ¥ < 0.1 eV would
indicate normal hierarchy and that there is an expected minimum mass ¥ > 0.054 eV.
The cosmological constraint is from Reid et al. (2010).

Cosmological constraints on neutrino properties are highly complementary to par-
ticle physics experiments for several reasons:

e Relic neutrinos produced in the early universe are hardly detectable by weak
interactions, making it impossible with foreseeable technology to detect them
directly. But new cosmological probes such as Euclid offer the opportunity to
detect (albeit indirectly) relic neutrinos, through the effect of their mass on the
growth of cosmological perturbations.

e Cosmology remains a key avenue to determine the absolute neutrino mass
scale Particle physics experiments will be able to place lower limits on the effective
neutrino mass, which depends on the hierarchy, with no rigorous limit achievable
in the case of normal hierarchy (Murayama and Pefa-Garay 2004). Contrarily,
neutrino free streaming suppresses the small-scale clustering of large-scale cos-
mological structures by an amount that depends on neutrino mass.

o “What is the hierarchy (normal, inverted or degenerate)?”’ Neutrino oscilla-
tion data are unable to resolve whether the mass spectrum consists in two light
states with mass m and a heavy one with mass M—normal hierarchy—or two
heavy states with mass M and a light one with mass m—inverted hierarchy—in a
model-independent way. Cosmological observations, such as the data provided by
Euclid, can determine the hierarchy, complementarily to data from particle physics
experiments.

e ‘“‘Are neutrinos their own anti-particle?” If the answer is yes, then neutrinos are
Majorana fermions; if not, they are Dirac. If neutrinos and anti-neutrinos are iden-
tical, there could have been a process in the early universe that affected the balance
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between particles and anti-particles, leading to the matter anti-matter asymmetry
we need to exist (Fukugita and Yanagida 1986). This question can, in principle,
be resolved if neutrino-less double-S decay is observed (see Murayama and Pefia-
Garay 2004, and references therein). However, if such experiments (ongoing and
planned, e.g., Cremonesi 2010) lead to a negative result, the implications for the
nature of neutrinos depend on the hierarchy. As shown in Jiménez et al. (2010), in
this case cosmology can offer complementary information by helping determine
the hierarchy.

11.7.1 Evidence of relic neutrinos

The hot big bang model predicts a background of relic neutrinos in the universe with
an average number density of ~ 100 N, cm~3, where N, is the number of neutrino
species. These neutrinos decouple from the CMB at redshift z ~ 10'° when the
temperature was T ~ o(MeV), but remain relativistic down to much lower redshifts
depending on their mass. A detection of such a neutrino background would be an
important confirmation of our understanding of the physics of the early universe.

Massive neutrinos affect cosmological observations in different ways. Primary
CMB data alone can constrain the total neutrino mass X', if it is above ~ 1eV
(Komatsu et al. 2011, finds ¥ < 1.3 eV at 95% confidence) because these neutri-
nos become non-relativistic before recombination leaving an imprint in the CMB.
Neutrinos with masses X < 1 eV become non-relativistic after recombination alter-
ing matter-radiation equality for fixed £2,,h%; this effect is degenerate with other
cosmological parameters from primary CMB data alone. After neutrinos become non-
relativistic, their free streaming damps the small-scale power and modifies the shape
of the matter power spectrum below the free-streaming length. The free-streaming
length of each neutrino family depends on its mass.

Current cosmological observations do not detect any small-scale power suppression
and break many of the degeneracies of the primary CMB, yielding constraints of X' <
0.3 eV (Reid et al. 2010) if we assume the neutrino mass to be a constant. A detection
of such an effect, however, would provide a detection, although indirect, of the cosmic
neutrino background. As shown in the next section, the fact that oscillations predict
a minimum total mass X ~ 0.054 eV implies that Euclid has the statistical power to
detect the cosmic neutrino background. We finally remark that the neutrino mass may
also very well vary in time (Wetterich 2007); this might be tested by comparing (and
not combining) measurements from CMB at decoupling with low-z measurements.
An inconsistency would point out a direct measurement of a time varying neutrino
mass (Wetterich and Pettorino 2009).

11.7.2 Neutrino mass

Particle physics experiments are sensitive to neutrino flavours making a determina-
tion of the neutrino absolute-mass scales very model dependent. On the other hand,
cosmology is not sensitive to neutrino flavour, but is sensitive to the total neutrino
mass.
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The small-scale power-suppression caused by neutrinos leaves imprints on CMB
lensing and prior to the experiment forecasts indicated that Planck should be able
to constrain the sum of neutrino masses X', with a 1o error of 0.13 eV (Kaplinghat
et al. 2003; Lesgourgues et al. 2006; de Putter et al. 2009). In Planck Collaboration
(2014a) reported constraints on the Negr = 3.30+/—0.27 for the effective number of
relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino
mass. However the Planck cosmological constraints also reported a relatively low
value of the Hubble parameter with respect to previous measurements, that resulted in
several papers, for example (Wyman et al. 2014), that investigated the possibility that
this tension could possibly be resolved by introducing an eV-scale (possibly sterile)
neutrino. Combining the Planck results with large scale structure measurements or
weak lensing measurements has resulted in reported claims of even stronger constraints
on the sum of neutrino masses, for example (Riemer-Sgrensen et al. 2014) found
an upper limit on the sum of neutrino masses of < 0.18 eV (95% confidence) by
combining with WiggleZ data (Battye and Moss 2014) and (Hamann and Hasenkamp
2013) combined Planck data with weak lensing data from CFHTLenS and found
higher values for the sum of neutrino masses, as a result of tension in the measured
and inferred values of og between lensing and the CMB where the lensing prefers
a lower value, however (Kitching et al. 2014) find that such a lower value of oy is
consistent with Baryon feedback models impacting the small-scale distribution of
dark matter.

Euclid’s measurement of the galaxy power spectrum, combined with Planck (pri-
mary CMB only) priors should yield an error on X' of 0.04 eV (for details see Carbone
et al. 2011b) which is in qualitative agreement with previous work (e.g., Saito et al.
2009), assuming a minimal value for X' and constant neutrino mass. Euclid’s weak
lensing should also yield an error on X' of 0.05 eV (Kitching et al. 2008a). While these
two determinations are not fully independent (the cosmic variance part of the error is
in common given that the lensing survey and the galaxy survey cover the same vol-
ume of the universe) the size of the error-bars implies more than 1o detection of even
the minimum X allowed by oscillations. Moreover, the two independent techniques
will offer cross-checks and robustness to systematics. The error on X' depends on the
fiducial model assumed, decreasing for fiducial models with larger X'. Euclid will
enable us not only to detect the effect of massive neutrinos on clustering but also to
determine the absolute neutrino mass scale. However, recent numerical investigations
found severe observational degeneracies between the cosmological effects of massive
neutrinos and of some modified gravity models (Baldi et al. 2014). This may indicate
an intrinsic theoretical limit to the effective power of astronomical data in discrimi-
nating between alternative cosmological scenarios, and in constraining the neutrino
mass as well. Further investigations with higher resolution simulations are needed to
clarify this issue and to search for possible ways to break these cosmic degeneracies
(see also La Vacca et al. 2009; Kristiansen et al. 2010; Marulli et al. 2012).

11.7.3 Hierarchy and the nature of neutrinos

Since cosmology is insensitive to flavour, one might expect that cosmology may not
help in determining the neutrino mass hierarchy. However, for ¥ < 0.1 eV, only nor-

@ Springer



2 Page 184 of 345 L. Amendola et al. (The Euclid Theory Working Group)

0.5

excluded by cosmology
x? compared to IH

0.0

—05F

i

i

i

i

i

i

i
OA;‘llAAAlAAAlAAAlAAAlAAxlAAA
-0.6 —0.4 0.2 0.0 02 04 06 0.8

A

Z (eV)

Fig. 42 Left: region in the A—X parameter space allowed by oscillations data. Right: Weak lensing fore-
casts. The dashed and dotted vertical lines correspond to the central value for A given by oscillations data.
In this case Euclid could discriminate NI from ITH witha Ax2 = 2. Image reproduced by permission from
Jiménez et al. (2010); copyright by IOP and SISSA

mal hierarchy is allowed, thus a mass determination can help disentangle the hierarchy.
There is however another effect: neutrinos of different masses become non-relativistic
at slightly different epochs; the free streaming length is sightly different for the differ-
ent species and thus the detailed shape of the small scale power suppression depends
on the individual neutrino masses and not just on their sum. As discussed in Jiménez
et al. (2010), in cosmology one can safely neglect the impact of the solar mass split-
ting. Thus, two masses characterize the neutrino mass spectrum: the lightest m, and
the heaviest M. The mass splitting can be parameterized by A = (M — m)/X for
normal hierarchy and A = (m — M)/ X for inverted hierarchy. The absolute value
of A determines the mass splitting, whilst the sign of A gives the hierarchy. Cosmo-
logical data are very sensitive to |A|; the direction of the splitting—i.e., the sign of
A—introduces a sub-dominant correction to the main effect. Nonetheless, Jiménez
et al. (2010) show that weak gravitational lensing from Euclid data will be able to
determine the hierarchy (i.e., the mass splitting and its sign) if far enough away from
the degenerate hierarchy (i.e., if X' < 0.13).

A detection of neutrino-less double-8 decay from the next generation experiments
would indicate that neutrinos are Majorana particles. A null result of such double-8
decay experiments would lead to a result pointing to the Dirac nature of the neutrino
only for degenerate or inverted mass spectrum. Even in this case, however, there are
ways to suppress the double-8 decay signal, without the neutrinos being Dirac parti-
cles. For instance, the pseudo-Dirac scenario, which arises from the same Lagrangian
that describes the see-saw mechanism (see, e.g., Rodejohann 2012). This information
can be obtained from large-scale structure cosmological data, improved data on the
tritium beta decay, or the long-baseline neutrino oscillation experiments. If the small
mixing in the neutrino mixing matrix is negligible, cosmology might be the most
promising arena to help in this puzzle.
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11.7.4 Number of neutrino species

Neutrinos decouple early in cosmic history and contribute to a relativistic energy den-
sity with an effective number of species N, off = 3.046. Cosmology is sensitive to the
physical energy density in relativistic particles in the early universe, which in the stan-
dard cosmological model includes only photons and neutrinos: wye] = @y, + Ny et @y,
where w,, denotes the energy density in photons and is exquisitely constrained from
the CMB, and w, is the energy density in one neutrino. Deviations from the standard
value for N, ¢ff would signal non-standard neutrino features or additional relativistic
species. N, off impacts the big bang nucleosynthesis epoch through its effect on the
expansion rate; measurements of primordial light element abundances can constrain
N, efr and rely on physics at 7 ~ MeV (Bowen et al. 2002). In several non-standard
models—e.g., decay of dark matter particles, axions, quintessence—the energy density
in relativistic species can change at some later time. The energy density of free-
streaming relativistic particles alters the epoch of matter-radiation equality and leaves
therefore a signature in the CMB and in the matter-transfer function. However, there
is a degeneracy between N, ¢ and 2,,h? from CMB data alone (given by the com-
bination of these two parameters that leave matter-radiation equality unchanged) and
between N, eff and og and/or ng. Large-scale structure surveys measuring the shape
of the power spectrum at large scale can constrain independently the combination
£2,,h and ng, thus breaking the CMB degeneracy. Furthermore, anisotropies in the
neutrino background affect the CMB anisotropy angular power spectrum at a level
of ~ 20% through the gravitational feedback of their free streaming damping and
anisotropic stress contributions. Detection of this effect is now possible by combining
CMB and large-scale structure observations. This yields an indication at more than
20 level that there exists a neutrino background with characteristics compatible with
what is expected under the cosmological standard model (Trotta and Melchiorri 2005;
De Bernardis et al. 2008).

The forecasted errors on N, ¢f for Euclid (with a Planck prior) are 0.1 at 1o
level (Kitching et al. 2008a), which is a factor ~ 5 better than current constraints
from CMB and LSS and about a factor ~ 2 better than constraints from light element
abundance and nucleosynthesis.

11.7.5 Model dependence

A recurring question is how much model dependent will the neutrino constraints be. Itis
important to recall that usually parameter-fitting is done within the context of a ACDM
model and that the neutrino effects are seen indirectly in the clustering. Considering
more general cosmological models, might degrade neutrino constraints, and vice versa,
including neutrinos in the model might degrade dark-energy constraints. Here below
we discuss the two cases of varying the total neutrino mass X and the number of
relativistic species N, separately. Possible effects of modified gravity models that
could further degrade the neutrino mass constraints will not be discussed in this section.
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11.7.6 X forecasted error bars and degeneracies

InCarboneetal. (2011b) itis shown that, for a general model which allows for a non-flat
universe, and a redshift dependent dark-energy equation of state, the 1o spectroscopic
errors on the neutrino mass X are in the range 0.036-0.056 eV, depending on the
fiducial total neutrino mass X', for the combination Euclid+Planck.

On the other hand, looking at the effect that massive neutrinos have on the dark-
energy parameter constraints, it is shown that the total CMB + LSS dark-energy
FoM decreases only by ~ 15-25% with respect to the value obtained if neutrinos
are supposed to be massless, when the forecasts are computed using the so-called
“P (k)-method marginalized over growth-information” (see Methodology section),
which therefore results to be quite robust in constraining the dark-energy equation of
state.

For what concerns the parameter correlations, at the LSS level, the total neutrino
mass X is correlated with all the cosmological parameters affecting the galaxy power
spectrum shape and BAO positions. When Planck priors are added to the Euclid con-
straints, all degeneracies are either resolved or reduced, and the remaining dominant
correlations among X and the other cosmological parameters are X —£24e, X' —£2,,, and
Y —w,, with the X'—£24. degeneracy being the largest one.

11.7.6.1 Hierarchy dependence

In addition, the neutrino mass spectroscopic constraints depend also on the neutrino
hierarchy. In fact, the 1o errors on total neutrino mass for normal hierarchy are ~ 17—
20% larger than for the inverted one. It appears that the matter power spectrum is
less able to give information on the total neutrino mass when the normal hierarchy is
assumed as fiducial neutrino mass spectrum. This is similar to what found in Jiménez
et al. (2010) for the constraints on the neutrino mass hierarchy itself, when a normal
hierarchy is assumed as the fiducial one. On the other hand, when CMB information are
included, the X -errors decrease by ~35% in favor of the normal hierarchy, at a given
fiducial value X' |q. This difference arises from the changes in the free-streaming effect
due to the assumed mass hierarchy, and is in agreement with the results of Lesgourgues
et al. (2004), which confirms that the expected errors on the neutrino masses depend
not only on the sum of neutrino masses, but also on the order of the mass splitting
between the neutrino mass states.

11.7.6.2 Growth and incoherent peculiar velocity dependence

Y spectroscopic errors stay mostly unchanged whether growth-information are
included or marginalised over, and decrease only by 10%-20% when adding f,03
measurements. This result is expected, if we consider that, unlike dark-energy param-
eters, X affects the shape of the power spectrum via a redshift-dependent transfer
function T (k, z), which is sampled on a very large range of scales including the P (k)
turnover scale, therefore this effect dominates over the information extracted from
measurements of f,og. This quantity, in turn, generates new correlations with X' via
the og-term, which actually is anti-correlated with M, (Marulli et al. 2011). On the
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other hand, if we suppose that early dark-energy is negligible, the dark-energy param-
eters §24e, wo and w, do not enter the transfer function, and consequently growth
information have relatively more weight when added to constraints from H (z) and
D 4(z) alone. Therefore, the value of the dark-energy FoM does increase when growth-
information are included, even if it decreases by a factor ~50-60% with respect to
cosmologies where neutrinos are assumed to be massless, due to the correlation among
X' and the dark-energy parameters. As confirmation of this degeneracy, when growth-
information are added and if the dark-energy parameters £24., wo, w, are held fixed
to their fiducial values, the errors o (X') decrease from 0.056 to 0.028 eV, for Euclid
combined with Planck.

We expect that dark-energy parameter errors are somewhat sensitive also to the
effect of incoherent peculiar velocities, the so-called “Fingers of God” (FoG). This
can be understood in terms of correlation functions in the redshift-space; the stretching
effect due to random peculiar velocities contrasts the flattening effect due to large-
scale bulk velocities. Consequently, these two competing effects act along opposite
directions on the dark-energy parameter constraints (see methodology Sect. V).

On the other hand, the neutrino mass errors are found to be stable again at o (X) =
0.056, also when FoG effects are taken into account by marginalising over o,(z); in
fact, they increase only by 10%—14% with respect to the case where FoG are not taken
into account.

Finally, in Table 19 we summarize the dependence of the X'-errors on the model
cosmology, for Euclid combined with Planck.'® We conclude that, if ¥ is > 0.1eV,
spectroscopy with Euclid will be able to determine the neutrino mass scale indepen-
dently of the model cosmology assumed, provided GR is correct and dark energy
does not interact with other species (Baldi et al. 2014). If X' is < 0.1eV, the sum of
neutrino masses, and in particular the minimum neutrino mass required by neutrino
oscillations, can be measured in the context of a ACDM model.

11.7.7 Negt forecasted errors and degeneracies

Regarding the N spectroscopic errors, Carbone et al. (2011b) finds o (Negr) ~ 0.56
from Euclid, and o (Negr) ~ 0.086, for Euclid+Planck. Concerning the effect of Negt
uncertainties on the dark-energy parameter errors, the CMB + LSS dark-energy FoM
decreases only by ~ 5% with respect to the value obtained holding N fixed at
its fiducial value, meaning that also in this case the “P (k)-method marginalized over
growth—information” is not too sensitive to assumptions about model cosmology when
constraining the dark-energy equation of state.

About the degeneracies between Negr and the other cosmological parameters, it is
necessary to say that the number of relativistic species gives two opposite contribu-
tions to the observed power spectrum Pyps (see methodology Sect. V), and the total
sign of the correlation depends on the dominant one, for each single cosmological
parameter. In fact, a larger N.gr value suppresses the transfer function 7' (k) on scales
k < kmax. On the other hand, a larger Negr value also increases the Alcock—Paczyniski

19 1n this case we have added the contribution from BOSS at redshifts 0.1 < z < Zmin» Where zmin = 0.5
is the minimum redshift of the Euclid spectroscopic survey.
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prefactor in Pypns. For what concerns the dark-energy parameters $24e, wo, w,, and
the dark-matter density £2,,, the Alcock—Paczynski prefactor dominates, so that Negt
is positively correlated to §24. and w,, and anti-correlated to £2,,, and wg. In con-
trast, for the other parameters, the 7' (k) suppression produces the larger effect and
Negr results to be anti-correlated to §2;, and positively correlated to # and ng. The
degree of the correlation is very large in the ns-Negr case, being of the order ~ 0.8
with and without Planck priors. For the remaining cosmological parameters, all the
correlations are reduced when CMB information are added, except for the covariance
Nefr-$24e, as happens also for the M, -correlations. To summarize, after the inclusion
of Planck priors, the remaining dominant degeneracies among Negr and the other cos-
mological parameters are Nefr-ns, Neff-§24e, and Negr-h, and the forecasted error is
o (Ner) ~ 0.086, from Euclid+Planck. Finally, if we fix to their fiducial values the
dark-energy parameters $24e, wo and w,, o (Negr) decreases from 0.086 to 0.048, for
the combination Euclid+Planck. However, it has to be noticed that if Nt is allowed
to vary, then the shape of the matter power spectrum in itself cannot constrain £2,, 4.
Indeed, in ACDM models, the power spectrum constrains §2,,/ because the turning
point keq corresponds to the comoving Hubble rate at equality. If the radiation con-
tent is known, then keq depends only on §2,,h. However, if the radiation content is
unknown, then keq is not linked to a unique value of £2,,,h (Abazajian et al. 2012b).
The fact that one can use a combination of CMB (excluding the damping tail) and
matter power spectrum data to break the Neg—$2,,h> degeneracy is due to a decreasing
baryon fraction fj, = £2,h%/82,,h> when N is increased (while keeping Zeq fixed)
(e.g., Bashinsky and Seljak 2004).

11.7.8 Nonlinear effects of massive cosmological neutrinos on bias, P(k) and RSD

In general, forecasted errors are obtained using techniques, like the Fisher-matrix
approach, that are not particularly well suited to quantifying systematic effects. These
techniques forecast only statistical errors, which are meaningful as long as they dom-
inate over systematic errors. Possible sources of systematic errors of major concern
are the effects of nonlinearities and galaxy bias.

The description of nonlinearities in the matter power spectrum in the presence of
massive neutrinos has been addressed in several different ways: Wong (2008), Saito
et al. (2008, 2009, 2011) have used perturbation theory, Lesgourgues et al. (2009)
the time-RG flow approach and Brandbyge et al. (2008), Brandbyge and Hannestad
(2009), Brandbyge et al. (2010), Viel et al. (2010) different schemes of N-body sim-
ulations. Another nonlinear scheme that has been examined in the literature is the
halo model. This has been applied to massive neutrino cosmologies in Abazajian et al.
(2005a) and Hannestad et al. (2005, 2006).

On the other hand, galaxy/halo bias is known to be almost scale-independent only
on large, linear scales, but to become nonlinear and scale-dependent for small scales
and/or for very massive haloes. From the above discussion and references, it is clear that
the effect of massive neutrinos on the galaxy power spectrum in the nonlinear regime
must be explored via N-body simulations to encompass all the relevant effects.

Here below we focus on the behavior of the DM halo mass function (MF), the DM
halo bias, and the redshift-space distortions (RSD), in the presence of a cosmological
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Fig. 43 DM halo mass function (MF) as a function of X and redshift. MF of the SUBFIND haloes in the
ACDM N-body simulation (blue circles) and in the two simulations with X' = 0.3 eV (magenta triangles)
and ¥ = 0.6 eV (red squares). The blue, magenta and red lines show the halo MF predicted by Sheth
and Tormen (2002), where the variance in the density fluctuation field, o (M), at the three cosmologies,
X =0,0.3,0.6 eV, has been computed with the software CAMB (Lewis et al. 2000b)

background of massive neutrinos. To this aim, Brandbyge et al. (2010) and Marulli et al.
(2011) have analysed a set of large N-body hydrodynamical simulations, developed
with an extended version of the code GADGET- 3 (Viel et al. 2010), which take into
account the effect of massive free-streaming neutrinos on the evolution of cosmic
structures (Fig. 42).

The pressure produced by massive neutrino free-streaming contrasts the gravita-
tional collapse which is the basis of cosmic structure formation, causing a significant
suppression in the average number density of massive structures. This effect can be
observed in the high mass tail of the halo MF in Fig. 43, as compared with the ana-
Iytic predictions of Sheth and Tormen (2002) (ST), where the variance in the density
fluctuation field, o (M), has been computed via CAMB (Lewis et al. 2000b), using
the same cosmological parameters of the simulations. In particular, here the MF of
sub-structures is shown, identified using the SUBFIND package (Springel et al. 2001),
while the normalization of the matter power spectrum is fixed by the dimensionless
amplitude of the primordial curvature perturbations A%z(kONﬁd =23 x 1077, evalu-
ated at a pivot scale kg = 0.002/Mpc (Larson et al. 2011), which has been chosen to
have the same value both in the ACDMv and in the ACDM cosmologies.
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Fig.44 Real space two-point auto-correlation function of the DM haloes in the ACDM N-body simulation
(blue circles) and in the simulation with ¥ = 0.6 eV (red squares). The blue and red lines show the DM
correlation function computed using the CAMB matter power spectrum with ¥ = 0 and ¥ = 0.6¢eV,
respectively. The bottom panels show the ratio between the halo correlation function extracted from the
simulations with and without massive neutrinos

In Fig. 43, two fiducial neutrino masses have been considered, ¥ = 0.3 and
Y = 0.6 eV. From the comparison of the corresponding MFs, we confirm the theoret-
ical predictions, i.e., that the higher the neutrino mass is, the larger the suppression in
the comoving number density of DM haloes becomes. These results have been overall
confirmed by recent numerical investigations (Villaescusa-Navarro et al. 2014; Cas-
torina et al. 2014; Costanzi et al. 2013). Moreover, it was shown that an even better
agreement with numerical simulations can be obtained by using the linear CDM power
spectrum, instead of the total matter one (see also Ichiki and Takada 2012).

Massive neutrinos also strongly affect the spatial clustering of cosmic structures.
A standard statistic generally used to quantify the degree of clustering of a population
of sources is the two-point auto-correlation function. Although the free-streaming of
massive neutrinos causes a suppression of the matter power spectrum on scales k larger
than the neutrino free-streaming scale, the halo bias is significantly enhanced. This
effect can be physically explained thinking that, due to neutrino structure suppression,
the same halo bias would correspond, in a ACDM cosmology, to more massive haloes
(than in a ACDMv cosmology), which as known are typically more clustered.

This effect is evident in Fig. 44 which shows the two-point DM halo correlation
function measured with the Landy and Szalay (1993) estimator, compared to the
matter correlation function. In particular, the clustering difference between he ACDM
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Fig. 45 Bias of the DM haloes in the ACDM N -body simulation (blue circles) and in the two simulations
with ¥ = 0.3 eV (magenta triangles) and ¥ = 0.6 eV (red squares). Dotted lines are the theoretical
predictions of Sheth et al. (2001)

and ACDMv cosmologies increases at higher redshifts, as it can be observed from
Figs. 44, 45, and 46. Note also the effect of nonlinearities on the bias, which clearly
starts to become scale-dependent for separations » < 20 Mpc/ & (see also Villaescusa-
Navarro et al. 2014; Castorina et al. 2014; Costanzi et al. 2013).

There are indications from 3D weak lensing in the CFHTLenS survey (Kitching
et al. 2014) that the matter power suppressed is suppressed with respect to the ACDM
expectation in the wavenumber range 1-10 & Mpc ™!, which may be a hint of either
massive neutrinos, or feedback from AGN, or both. Euclid will be able to probe this
regime with much greater precision, and potentially disentangle the two effects.

RSD are also strongly affected by massive neutrinos. Figure 47 shows the real and
redshift space correlation functions of DM haloes as a function of neutrino mass. The
effect of massive neutrinos is particularly evident when the correlation function is
measured as a function of the two directions perpendicular and parallel to the line of
sight. The value of the linear growth rate that can be derived by modelling galaxy
clustering anisotropies can be greatly suppressed with respect to the value expected
in a ACDM cosmology. Indeed, neglecting the relic massive neutrino background in
data analysis might induce a bias in the inferred growth rate, from which a potentially
fake signature of modified gravity might be inferred. Figure 48 demonstrates this
point, showing the best-fit values of 8 and o>, as a function of X' and redshift, where
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Fig.46 Mean bias (averagedin 10 < r [Mpc/h] < 50) as a function of redshift compared with the theoret-
ical predictions of Sheth and Tormen (2002). Here the dashed lines represent the theoretical expectations for
a ACDM cosmology renormalized with the og value of the simulations with a massive neutrino component

B = ! gff]f“), besr being the halo effective linear bias factor, f(§£2y) the linear growth

rate and o1, the pairwise velocity dispersion.

I1.8 Coupling between dark energy and neutrinos

As we have seen in Sect. 1.5.3, it is interesting to consider the possibility that dark
energy, seen as a dynamical scalar field (quintessence), may interact with other com-
ponents in the universe. In this section we focus on the possibility that a coupling may
exist between dark energy and neutrinos.

The idea of such a coupling has been addressed and developed by several authors
within MaVaNs theories first (Fardon et al. 2004; Peccei 2005; Bi et al. 2005; Afshordi
et al. 2005; Weiner and Zurek 2006; Das and Weiner 2011; Takahashi and Tanimoto
2006; Spitzer 2006; Bjzlde et al. 2008; Brookfield et al. 2006b, a) and more recently
within growing neutrino cosmologies (Amendola et al. 2008a; Wetterich 2007; Mota
et al. 2008; Wintergerst et al. 2010; Wintergerst and Pettorino 2010; Pettorino et al.
2010; Brouzakis et al. 2011). It has been shown that neutrinos can play a crucial
role in cosmology, setting naturally the desired scale for dark energy. Interestingly, a
coupling between neutrinos and dark energy may help solving the ‘why now’ problem,
explaining why dark energy dominates only in recent epochs. The coupling follows the
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