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a b s t r a c t 

This paper describes a method for the synthesis of linear aperiodic antenna arrays with beam scanning

capability. The algorithm is based on a recently proposed Gaussian approach, regarding linear aperiodic

arrays of isotropic elements with uniform amplitude distribution, which yields the optimal element posi- 

tions of the array in such a way as to form a Gaussian beam of prescribed properties. The latter approach

is here extended to solve a problem of beam scanning in an angular region of interest. Precisely, the ar- 

ray element positions are determined in such a way as to form a pencil beam, that can be pointed in

any direction of the angular region of interest by a suitable distribution of the excitation phases. Thus, a

continuous beam scanning can be performed by phase-only control. It is also shown that the alternating

projection approach can mitigate the pattern degradation that arises for pointing angles near the end-fire

direction.

1. Introduction

The potentialities characterizing antenna arrays have been well 

known for many decades [1–5] , so this type of radiating structures 

is employed in different scenarios, ranging from remote sensing 

to civil and military radars, to wireless and satellite communica- 

tions. A very attractive feature of antenna arrays is the capability 

of controlling their radiation pattern. This is known as pattern 

 

 

 

 

 

 

 

 

 

 

 

 

 

well known approach to scan the beam toward a desired direction 

is the so-called progressive phase method [19] . 

Of course, optimization of the element positions, in addition to 

that of the excitation phases, provides extra degrees of freedom 

to the designer, thus allowing one to obtain better performance 

with the same number of elements, or the same performance 

with fewer elements. Clearly, reducing the number of elements is 

certainly desirable since it reduces the complexity, the weight and 
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reconfigurability . The literature provides many synthesis methods

for reconfigurable antenna arrays, as, for example, [6–8] . Here, it is

worth noticing that the advantages provided by beam design are

also recognized in related works of other research topics, such as,

for example, imaging [9,10] , remote sensing [11,12] , signal recovery

and reconstruction [13–15] and wireless sensor networks [16–18] . 

Furthermore, antenna arrays provide beam scanning capability,

which can be regarded as a special case of pattern reconfigurabil-

ity, in which all the different radiation patterns exhibit the same

shape, but with the main beam pointing in different directions. So,

the synthesis algorithms developed for reconfigurable arrays can

also be used to achieve beam scanning. On the contrary, there are

synthesis methods specifically thought of as beam-scanning arrays,

that are not suitable for implementing pattern reconfigurability. A
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he cost of the whole antenna system. 

The interest in aperiodic antenna arrays (also called sparse or

on-uniform arrays) appeared around the 1960s [20–23] and never

xpired. Nowadays, the literature offers a number of algorithms

or the synthesis of aperiodic antenna arrays [24–31] . However,

any of these methods can only deal with single beam antennas

24,28,30,31] . This is not the case for [25] , where pattern syn-

hesis of reconfigurable sparse arrays is performed with multiple

easurement vectors, called the FOCUSS method. Precisely, the el-

ment positions, common to all patterns, and the different element

xcitations are simultaneously optimized. Similarly, in [26] an ef-

ective method is presented for synthesizing multiple-patterns of

inear arrays with a reduced number of antenna elements. In [27] ,

 strategy based on compressive sensing is first used to determine

he element positions and, subsequently, the element excitations

re optimized by an alternating projection algorithm. Also, in [29] ,

 compressive antenna array is synthesized, for direction-of-arrival

stimation, which allows reconfigurability. These approaches are

nteresting, but are based on a sort of thinning. In fact, in [25,27] ,
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the positions of the elements are chosen from a pre-defined set of 

candidate positions, while in [26] they are found by selecting the 

minimum suitable number of active elements of a periodic linear 

array. Moreover, the beam scanning is treated as a special case 
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excitation amplitudes is assumed with | a n | = 1 , n = 1 , . . . , N, the

array factor in (1) takes the form [ 34 , Eq. (6–7)] : 

F ( α, z ; u ) = 

N ∑ 

exp ( jα ) exp ( jz u ) (2) 
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f reconfigurability. Thus, only a discrete beam scanning can be

ealized, and the complexity of the problem increases when the

umber of desired pointing directions increases. 

In this paper, the recently developed Gaussian approach [32] is

dopted and extended in such a way as to handle the synthesis of

eam scanning linear aperiodic antenna arrays. Thanks to the for-

ulation of the synthesis problem in terms of an auxiliary variable,

he optimal element positions are simultaneously synthesized for

ontinuous beam scanning in a desired angular region. According

o the Gaussian approach, a uniform distribution of the amplitude

f excitations is initially assumed, which allows one to simplify

he feed network. Having uniform amplitude of the excitations has

ther advantages, such as increased efficiency and reduced mutual

oupling. However, the degrees of freedom of the problem are

educed. So, a strategy to improve the solution may then be used,

or cases in which the scanning performance obtained with the

aussian approach is not completely satisfactory. Here, the alter-

ating projection approach described in [33] is adopted, since it is

uitable for arrays of arbitrary geometry, thus also for aperiodic ar-

ays. Moreover, it allows one to impose a threshold on the dynamic

ange ratio (DRR) of the excitations, defined as the ratio between

aximum and minimum amplitude of the excitations. In particu-

ar, by imposing a low threshold, the solution may be improved,

reserving good performance in terms of efficiency and reduced

utual coupling. The key advantages characterizing the proposed

pproach with respect to the algorithms in [32,33] are due to the

ntroduction of a suitable auxiliary variable, which allows one to

erform continuous beam scanning in a very short computational

ime. In fact, the Gaussian approach in [32] is suitable only for

xed beam broadside arrays. On the other hand, the alternating

rojection approach in [33] belongs to a class of algorithms, that

reats a beam scanning as a special kind of reconfigurability. This

as two major disadvantages. Firstly, only discrete beam scanning

an be realized. Secondly, the computational burden may be-

ome considerably higher. As an important advantage, the mutual

oupling between adjacent elements can be taken into account. 

The paper is organized as follows. In the next section, the

roblem of beam scanning by aperiodic linear antenna arrays is

ntroduced. Then, in Section 3 , the Gaussian synthesis procedure is

xplained, and in Section 4 , is extended to deal with beam

canning. A first numerical example is shown in Section 5 and an

mprovement of the solution is presented in Section 6 , where com-

arison examples are also presented. Finally, Section 7 concludes

he paper. 

Notation. Throughout the paper the following notation is used:

ower-case bold letters denote vectors, where a n is the n th element

f a , j is the imaginary unit, and erf (x ) denotes the error function. 

. Phase-only beam scanning with linear aperiodic arrays

With reference to a Cartesian system O ( x, y, z ), a linear ar-

ay consisting of N isotropic radiators lying at the positions

 n , n = 1 , . . . N on the z -axis is considered. The array factor of such

n array is given by: 

 (a , z ; u ) = 

N ∑ 

n =1

a n exp ( jz n u ) (1)

here a and z are the complex excitations and positions of the

rray elements, respectively, u = k sin θ, with θ the angle from

roadside (i.e., the elevation angle) and k = 2 π/λ is the wave

umber, being λ the wavelength. When a uniform distribution of
n =1

n n 

here α is the vector of excitation phases. So, in order to point

he beam toward a generic direction θ0 , the excitation phases are

hosen in such a way that the N exponential terms in (2) are in

hase at the desired direction, that is 

n = −kz n sin θ0 , n = 1 , . . . , N. (3)

Here, it is to be noted that when the elements are equally

paced (i.e., z n = nd, n = 1 , . . . , N, having denoted by d the inter-

lement distance), this is exactly the well-known progressive-phase

ethod [19] . In fact, the excitation phases can be written as

n = nα0 , n = 1 , . . . , N, with α0 = −kd sin θ0 , so that each succeed-

ng element of the array has an α0 progressive phase lead current

xcitation with respect to the preceding element. 

Now, with the excitation phases in (3) , the array factor in

2) represents a pencil beam pointing at the generic direction θ0 ,

hich is written as: 

 ( α, z ; u ) = 

N ∑ 

n =1

exp ( jz n u ) (4)

here the auxiliary variable u is defined here as: 

 = k ( sin θ − sin θ0 ) . (5)

The problem addressed in this paper is that of finding the opti-

al positions of N elements of an aperiodic array having uniform

mplitude distribution, in such a way as to realize continuous

hase-only beam scanning in an angular region of interest. 

. Gaussian synthesis procedure

The synthesis procedure that we propose for phase-only scan-

ing is based on the Gaussian approach recently presented in [32] ,

hich is summarized here for convenience to the reader. 

First of all, a desired pattern F d ( u ) is introduced, defined as a

aussian function. This is a particularly convenient choice for two

easons. First, a pencil beam can be approximated by a Gaussian

unction whose width is controlled by the standard deviation,

. Second, the Fourier transform of a Gaussian function is still a

aussian function. And, as is well known, the Fourier transform of

 radiation pattern produced by a continuous current distribution

 ( z ) is proportional to a ( z ) [19] . So, a ( z ) being a Gaussian function,

he density tapering approach [21] can be easily applied, and the

lement positions can be evaluated in closed form. Details of this

pproach are given in [32] , and are briefly summarized below. 

First, the desired Gaussian pencil beam is: 

 d (u ) = exp 

(
− u 

2

2 σ 2 

)
. (6) 

The mean-square deviation σ is used to control the beamwidth:

= k 

√ 

10 

b ln 10 

sin 

(
πBW deg 

360 

)
(7) 

or a desired b -dB beamwidth of BW deg (in degrees). Then, using

he Fourier transform relation [19] , the excitation density a ( z ) of

he continuous source that (exactly) produces F d ( u ) is: 

 (z) = 

σ√ 

2 π
exp 

(
−σ 2 z 2 

2 

)
, −∞ < z < + ∞ . (8)
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Finally, the optimal positions of a finite number of elements N 

belonging to an array of assigned length L a and having uniform 

excitation amplitude are selected as 1 : 

s n −1 + s n
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1

First example. Positions obtained by the Gaussian approach, and phases ob- 

tained by the alternating projection approach. (Due to symmetry, the remaining

values are z n = −z N−n +1 , n = 12 , . . . , 21 and αn = −αN−n +1 , n = 12 , . . . , 21 .). 

n z n / λ αn ( 
◦) n z n / λ αn ( 

◦) 

1 −5.00 −17.88 7 −1.80 4.37

2 −4.38 59.44 8 −1.34 11.85

3 −3.80 −2.71 9 −0.89 5.44

4 −3.27 −12.68 10 −0.44 −1.37 

5 −2.76 −18.60 11 0.00 0.00

6 −2.27 −14.36 

(11) , provides the optimal element positions, z n , n = 1 , . . . , N, in 

approximately 3 10 ms, which are listed in Table 1 . The array pat- 

tern is provided by (4) with these optimized positions, and Fig. 1 

shows the desired pattern F d ( u ), the array factor produced by the 

p  

I  

v  

t  

O  

a  

s  

b  

p  

P  

o

f  

p  

t  

a  

θ
(

 

t  

t  

u  

b  

b  

n  

[  

t  

b  

s  

t  

θ  

t  

t  

t  

c  

i  

a  

e  

e  

t  

m  

6

 

m  

f  

w

z n = 

2 

, (9)

with 

s n = 

√ 

2 

σ
erf 

−1

[(
2 n 

N 

− 1 erf 

(
σ L 

2 

√ 

2 

)]
, (10)

for n = 1 , . . . , N, where the length L is obtained by solving the

equation 

2 : 

L = 

2
√ 

2 

σ
erf 

−1

{
N 

2 − N 

erf 

[
σ√

2 

(
−L a + 

L

2 

]}
(11)

as described in [ 32 , Appendix B]. The above closed form solution

in (10) is obtained by the so-called density tapering approach.

Precisely, given the infinite continuous source distribution a ( z ), the

positions of a desired number of N elements of an aperiodic array

of length L a are found by imposing that the area between the

amplitude distribution a ( z ) and the z -axis be subdivided into N

regions of equal area, where z N − z 1 = L a . An interesting graphical

representation of this approach is shown in [ 35 , Fig. 4]. 

4. Beam scanning

Once the element positions in (9) are determined, in order to

point the beam at the angle θ0 , the excitation phases of the array

elements are evaluated by (3) and the array pattern is provided by

(4) . 

However, before showing a numerical example, it is worth em-

phasizing here that position synthesis by the Gaussian approach

allows one to realize phase-only beam scanning in terms of the

new definition of the auxiliary variable u (5) , which implies a

different visible region for the synthesized pattern. In fact, u is

an auxiliary variable that takes all real values, unlike the angles θ
and θ0 . Nevertheless, for a given pointing direction θ0 in (4) , since

−π/ 2 ≤θ≤π/ 2 , only values of u in the interval 

I VP = [ k ( −1 − sin θ0 ) , k ( 1 − sin θ0 ) ] (12)

specify a visible pattern, while the remaining values specify invis-

ible patterns, which are not of interest. Furthermore, when beam

scanning in an angular region � = [ θ0 min , θ0 max ] is of concern, a

wider interval has to be considered, namely: 

I � = [ k (−1 − sin θ0 max ) , k (1 − sin θ0 min )] . (13)

Then, for each arbitrary pointing direction θ0 ∈ �, the visible

region is the interval I VP ⊂ I �, as expressed in (12) . The following

sections propose some interesting numerical results, endowed

with many general comments on the synthesis procedure. 

5. Numerical example

The method described in the previous section is used here to

synthesize the positions of an aperiodic array of assigned length

L a = 10 λ and is composed of N = 21 isotropic elements. The

limits of the desired scanning interval � are θ0 min = −50 ◦ and

θ0 max = 0 ◦. The root-mean-square deviation σ of the desired Gaus-

sian pattern in (6) is chosen in such a way as to have the same

beamwidth as that of a periodic array of equal length and the

same number of isotropic elements with unitary excitation, result-

ing in σ = 0 . 1763 rad/m. Using (9) , in conjunction with (10) and

1 Alternatively, [ 32 , Eq. (13)] can be used, which is not reported here.
2 If [ 32 , Eq. (13)] is used for the element positions, [ 32 , Eq. (16)] is to be used to

evaluate L .
3

eriodic array, and that obtained with the synthesized positions.

n Fig. 1 (a) the array factors are plotted versus the auxiliary

ariable u in the interval [ −4 k, 4 k ] . Here, it can be noticed that

he pattern radiated by the periodic array is a periodic function.

n the contrary, the radiation pattern of the optimized aperiodic

rray is not periodic and does not have grating lobes. However,

ome high sidelobes still appear. This is the typical result provided

y the Gaussian approach. Importantly, in general, this kind of

lot can also be used to determine the maximum scanning range.

recisely, in this example, one obtains a maximum scanning angle

f ± 34 ◦ for a maximum sidelobe level of −15 dB, and of ± 44 ◦

or a maximum sidelobe level of −10 dB. Fig. 1 (b) shows the same

atterns versus u , but is limited to the scanning interval, I �, where

he maximum sidelobe level is −9.95 dB. Finally, Figs. 1 (c), (d),

nd (e) show the same radiation patterns, but versus the angle

for three selected values of the beam pointing direction θ0 ∈ �

respectively, θ0 = 0 ◦, θ0 = −10 ◦, and θ0 = −50 ◦). 

Now, it is useful to focus attention on the following charac-

eristics of this numerical example, which are common to other

ested examples. Firstly, when passing from the auxiliary variable

 to the angular variable θ , a broadening and asymmetry of the

eam has to be expected when the beam is scanned away from

roadside. This phenomenon is also experienced for beam scan-

ing with periodic arrays employing the progressive-phase method

19] . Thus, the considered method is only suitable in cases where

hese effects can be tolerated. Then, for pointing directions θ0 near

roadside, the performance of the synthesized aperiodic array is

atisfactory. On the other hand, when the beam is scanned away,

he pattern degradation may not be acceptable, as is the case for

0 = −50 ◦, where high sidelobes appear near the endfire direc-

ion [see Fig. 1 (e)]. However, there are many applications where

he scanning interval is limited, as for example in communica-

ions between geostationary satellites and the Earth [36] . In these

ases, the results provided by the proposed approach are very sat-

sfactory. Finally, note that the only degrees of freedom with the

dopted formulation of the problem are the positions of the array

lements (which, appear in the exponential terms), whereas the

xcitation phases are evaluated by (3) . Thus, it is to be expected

hat an improvement of the solution may be obtained by also opti-

izing the element excitations, which is shown in the next section.

. Improved solution

Here, a method is proposed for lowering high sidelobes that

ight arise near the endfire direction, i.e., for pointing angles

ar from broadside. Precisely, the scanning performance of the

3 All the provided numerical examples are obtained using Matlab on a laptop

ith 8GB RAM.
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Fig. 1. First example: N = 21 and L a = 10 λ, showing desired (red) Gaussian pattern (outside of the mainbeam, the amplitude is below −30 dB), array factor (blue dotted) of 

the periodic array, and synthesized array factor (yellow). (a) Versus u in the interval [ −4 k, 4 k ] . (b) Versus u in the scanning interval I � . (c) Versus θ with θ0 = θ0 max = 0 ◦ . (d) 

Versus θ with θ0 = −10 ◦ . (e) Versus θ with θ0 = θ0 min = −50 ◦ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.)

aperiodic array, whose positions are synthesized in the previous 

section, is enhanced by optimizing the element excitations. The 

algorithm in [33] is chosen, which uses an alternating projection 

approach for finding the optimal element excitations of an array 
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and 

V = { ̃ v : ˜ v = [ F ( v , z ; u ) , v ] } , (18) 

such that f ( u ) ∈ M and DRR( u ) ≤ D . In other words, the 
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f arbitrary (but fixed) geometry, in such a way that the radiation

attern lies within a given mask, while the DRR of the excitations

s constrained to not exceed a given threshold. This algorithm also

llows control of the cross-polar component of the pattern and is

uitable for reconfigurable arrays. However, when the problem is

ormulated in terms of the auxiliary variable u in the interval I �,

ontinuous beam scanning can be realized with a unique mask,

o reconfigurability is not required and the algorithm is applied as

riefly described below. 

• At first, a (unique) suitable mask is introduced, whose

lower bound is the desired pattern F d ( u ) and whose upper

bound F up ( u ) is used to control the maximum sidelobe level,

M = { f (u ) : F d (u ) ≤ | f (u ) | ≤ F up (u ) } . In order to maintain

the uniform amplitude distribution of the array elements,

the maximum DRR of the excitation is constrained to D = 1 .

Therefore, the constraints of the synthesis problem are:

F ( a , z ; u ) ∈ M (14) 

DRR (a ) ≤ D. (15) 

• Then, in order to formulate this problem as an intersection-

finding problem, a set W is introduced, composed of

inhomogeneouos elements as follows:

W = { ̃  w : ˜ w = [ g(u ) , w ] } , (16)

where g ( u ) is an arbitrary scalar complex function de-

fined in I �, and w is an arbitrary vector with N complex

components. In W , two subsets are introduced:

U = { ̃  u : ˜ u = [ f (u ) , u ] } , (17)
elements of U satisfy the constraints (14) and (15) , whereas

in (18) , v is an arbitrary complex vector and F ( v, z ; u ) is the

array pattern evaluated by replacing a with v in (1) . 
• Now, it is evident that a point ˜ u ∈ U ∩ V is a solution to the

problem. Since U ∩ V might be empty (unfeasible problem),

the solution is considered as a point of U “sufficiently”

close to V . Such a solution is found following the iterative

scheme:

˜ u n +1 = P U P V ̃  u n , n = 0 , 1 , 2 , . . . (19)

where P U and P V are the projection operators onto the sets

U and V , respectively, and 

˜ u 0 = P U ( ̃  w 0 ) is a suitable starting

point in U . Due to the definition and properties of the pro-

jection operators, the points { ̃  u n } of the sequence generated

by (19) get closer and closer to the set V , as the sequence

{ d n } of the distances d n between 

˜ u n and V is non-increasing,

and therefore is convergent. The iteration is stopped when

d n ≤ ε 1 or (d n −1 − d n ) /d n ≤ ε 2 (20)

where ε1 and ε2 are suitably small thresholds. (Further

details on the alternating projection approach and the for-

mulas for implementation can be found in [ 33 , Appendix].)

Now, the above described alternating projection approach is

pplied to improve the scanning performance of the array syn-

hesized in the previous section. A starting point ˜ u 0 = P U ( ̃  w 0 ) is

hosen, with the function g(u ) = 

∑ 

n exp ( jz n u ) and with the vector

 having all the components equal to unity, w n = 1 , n = 1 , . . . , N.

he upper bound of the mask F up ( u ) is chosen so as to obtain a

aximum sidelobe level of −15.32 dB. The scheme in (19) is ap-

lied with the thresholds ε 1 = 10 −4 and ε 2 = 10 −6 , and a sampling



190 G. Buttazzoni and R. Vescovo / Signal Processing 164 (2019) 186–192

Fig. 2. Graphical representation of the proposed design strategy.
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Fig. 3. Array factor (black) of the linear aperiodic array synthesized using the alter- 

nating projection approach versus u in the interval I � within the mask (dotted red),

compared to the array factor of the Gaussian approach (yellow). (For interpretation

of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

step of 5 · 10 −4 rad/m, where the process stops after 7947 itera- 

tions (approximately 162 s). Fig. 2 offers a graphical representation 

of the complete design procedure. Fig. 3 shows the obtained array 

factor versus the u variable, which exhibits a maximum sidelobe 
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Fig. 5. First comparison example, showing a Taylor pattern (blue dotted) of the ref- 

erence periodic array in [26] , array factor obtained by the Gaussian approach (yel- 

low), and array factor synthesized by the proposed approach (black), all within the

mask (red dashed) in the scanning interval I � . (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this

article.)

Table 2

First comparison example, where positions are obtained by the Gaussian ap- 

proach, and excitations are obtained by the alternating projection approach.

(Due to symmetry, the remaining values are z n = −z N−n +1 , n = 17 , . . . , 32 and 

a n = a N−n +1 , n = 17 , . . . , 32 .). 

n z n / λ a n n z n / λ a n

1 −9.75 0.0392 9 −2.17 0.6706

2 −5.87 0.0373 10 −1.85 0.8863

3 −4.93 0.2569 11 −1.54 0.7784

4 −4.27 0.3667 12 −1.25 0.9431

5 −3.73 0.7392 13 −0.96 0.7294

6 −3.28 0.7333 14 −0.68 1.0 0 0 0

7 −2.88 0.5980 15 −0.41 0.7961

8 −2.51 0.7706 16 −0.14 0.8863

considered, where a periodic array with 40 isotropic elements 

and d = λ/ 2 is taken as a reference, which radiates a Taylor 

pattern with PSL = −30 dB, shown in Fig. 5 . The M = 7 scanning 

angles θ0 = 0 ◦, ±10 ◦, ±20 ◦, ±30 ◦ are considered in [26] , and an 

e  

a  

e  

s  

F  

u  

N  

w  

e  

θ
 

a  
level of −15.30 dB in the scanning interval I �. Table 1 lists the

optimized excitation phases (with unity DRR of the excitations).

Finally, in Fig. 4 , the obtained array factor is plotted versus the

variable θ for different pointing directions and is compared to that

of the Gaussian approach. As can be seen, an overall increase of the

sidelobes is payed back by the desired lowering of the high side-

lobes, which arises near the endfire direction when the beam is

scanned away from broadside. It is worth noting that the reduction

of the maximum sidelobe level is obtained thanks to the increased

degrees-of-freedom of the problem, due to the excitation phases. 

Now, in order to compare the proposed approach with a

state-of-the-art algorithm, the beam scanning example of [26] is
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Fig. 4. Array factor (black) synthesized by the alternating projection approach, compar

θ0 = θ0 max = 0 ◦ . (b), θ0 = −10 ◦ . (c), θ0 = θ0 min = −50 ◦ . 

5

nhanced matrix pencil method is used to synthesize the positions

nd excitations of an aperiodic array with a reduced number of

lements, N = 32 . The algorithm requires 0.38 s and achieves good

canning performance for the desired pointing directions [ 26 ,

ig. 11(c)]. Here, the Gaussian approach proposed in Section 4 is

sed to synthesize the positions of an equal number of elements

 = 32 on an aperture with the same assigned length, L a = 19 . 5 λ,

ith a desired pattern having the same beamwidth as the ref-

rence pattern ( σ = 0 . 2892 rad/m) and a scanning interval with

0 min = −30 ◦ and θ0 max = 30 ◦. The synthesized element positions

are listed in Table 2 . The radiation pattern exhibits high sidelobes,

s can be seen in Fig. 5 . But, this is to be expected since the Gaus-
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ed to the array factor of the Gaussian approach (yellow) versus the angle θ . (a),
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Fig. 6. Second comparison example, showing the array factors obtained: by the

method in [38] (thin magenta), the method in [37] (thin blue), the Gaussian ap- 

proach (thick yellow), the proposed design procedure (thick black) and radiation

pattern taking into account mutual coupling (thick red). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)

sian approach assumes a uniform amplitude distribution. So, the 

alternating projection approach described in Section 6 is used to 

synthesize the element excitations, imposing a maximum sidelobe 

level of −30 dB and without considering the DRR constraint (15) . 

T  

h  

b  

o  

a

 

w  

a  

I  

e  

a  

w  

a  

r  

2  

r  

e  

d  

e  

a  

c  

d  

s  

t  

v

Table 3

Most relevant results of the second comparison example: number of elements,

aperture length, minimum inter-element distance, DRR, CPU time.

CS in [38] MPM in [37] Proposed

N 20 21 20

z N − z 1 7.74 λ 8.98 λ 9 λ

d min 0.13 λ 0.42 λ 0.37 λ

DRR −15 dB −15 dB −15.5 dB 

CPU time 1550 s 53 ms 76 ms

Now, it is worth noting that the developed approach, as well 

as the considered references, do not take into account the mutual 

coupling effects. In [32] , for the case of a broadside beam, it was 

shown that coupling causes an increase of the sidelobes nearer to 
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m  
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i  

i  

a  
he optimized element excitations are reported in Table 2 and

ave DRR = 26.79. Fig. 5 shows the obtained pattern. As can

e seen, the high sidelobes are lowered below the desired level

f −30 dB. The computational time to obtain the final result is

pproximately 1.5 s (99 iterations). 

Finally, the performance of the proposed algorithm is compared

ith that obtained by the matrix pencil method (MPM) of [37] ,

nd by the compressive sensing (CS) approach developed in [38] .

n both of these methods, the amplitude distribution of the array

lement is not uniform, and the number of elements is not fixed

 priori, but is optimized during the synthesis procedure. An array

ith L a = 9 λ is considered. Firstly, the MPM [37] is applied, taking

s reference a Chebyshev pattern with PSL = −15 dB. The algorithm

equires 53 ms to obtain the optimized positions and excitations of

1 elements. Secondly, the CS approach [38] is used. The algorithm

equires approximately 1550 s to obtain the optimal positions and

xcitations of a 20-element array. Thirdly, the Gaussian approach

escribed in Section 4 is applied to obtain the positions of N = 20

lements. Fig. 6 shows the array factors obtained by the MPM, CS

nd Gaussian approach. Then, in order to lower the sidelobes ex-

eeding the desired −15 dB, the alternating projection approach

escribed in Section 6 is applied, without considering the DRR con-

traint (15) . The alternating projection requires 11 ms (76 itera-

ions). As can be seen in Fig. 6 the sidelobes are below the desired

alue. Table 3 summarizes the most relevant results. 
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Fig. 7. Radiation patterns synthesized by the alternating projection approach [33] wi

6

he main beam. This is confirmed here by the red line of Fig. 6 ,

hich shows the radiation pattern obtained taking into account

he coupling effects for an array of half-wave dipoles at the

ositions synthesized by the Gaussian approach. When the beam

s scanned away from broadside, the pattern degradation becomes

ore severe. In order to mitigate this, one can use the alternating

rojection approach of [33] , which is suitable for the phase-only

ynthesis of reconfigurable arrays. Here, it is applied to the linear

rray optimized by the Gaussian approach, without considering

he DRR constraint and with a number of S = 10 masks, from

0 = 0 ◦ to θ0 = 45 ◦, with an angular step of 5 ◦. Fig. 7 shows

he radiation patterns obtained for θ0 = 0 ◦, 20 ◦, 45 ◦. Satisfactory

esults are obtained, but for discrete beam scanning and with a

onger computational time (approximately 1680 s). 

. Conclusion

In this paper, the very simple and fast Gaussian approach intro-

uced in [32] was extended to the problem of position synthesis

f phase-only beam scanning arrays. This is an important novelty

ith respect to the original Gaussian approach, which was suited

or the position synthesis of broadside arrays. With the proposed

ethod, the positions of the array elements are found in closed

orm, and the obtained array factors are quite acceptable, espe-

ially for scanning directions not too far from broadside. In many

pplications, as for example in satellite communications [36] , this

s sufficient. On the other hand, when the beam is pointed near

he endfire direction, high sidelobes arise. This is a physical limita-

ion, that cannot be avoided with the proposed solving procedure.

o, when it is necessary to mitigate this issue, a suitable synthesis

ethod may be applied that is able to deal with the excitation

ynthesis of linear arrays with arbitrary, but fixed, geometry. Also,

n this paper, an alternating projection approach was chosen since

t allows one to optimize the element excitations, simultaneously

mposing a threshold on their maximum DRR, which can eventu-

lly be set equal to unity so as to maintain a uniform amplitude
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thin the mask (red) versus the angle θ . (a), θ0 = 0 ◦ . (b), θ0 = 20 ◦ . (c), θ0 = 45 ◦ . 
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distribution. If this is not necessary, higher values can be imposed 

(and eventually no thresholds), so as to allow further reduction 

of the sidelobe levels, thanks to the increased number of degrees 

of freedom available to the designer. This is an important novelty 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[14] T. Liu, T. Qiu, R. Dai, J. Li, L. Chang, R. Li, Nonlinear regression A ∗OMP for com- 
pressive sensing signal reconstruction, Digit. Signal Process. 69 (2017) 11–21,

doi: 10.1016/J.DSP.2017.06.004 .
[15] D. Mardani, G.K. Atia, A.F. Abouraddy, Signal reconstruction from interferomet- 

ric measurements under sensing constraints, Signal Process. 155 (2019) 323–

 

 

[

[

 

[  

[

 

 

[

7

with respect to the approach in [32] , which was conceived for

arrays with a uniform amplitude distribution. Besides, thanks

to the two-step procedure, the mutual coupling effects can be

considered by applying the alternating projection approach as

originally proposed in [33] . So, the position synthesis is performed

by using the Gaussian approach described in Section 4 and the

phase-only synthesis of the excitation is performed by the method

in [33] . However, in this case, although the provided results are

very satisfactory, some advantages of the proposed synthesis

strategy are lost, i.e., the possibility of performing continuous

beam scanning, and achieving very short computational time.

These are important aspects, which will be the subject of future

research. 
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