Revised conodont stratigraphy of the Cellon section (Silurian, Carnic Alps)

CARLO CORRADINI, MARIA G. CORRIGA, PEEP MÄNNIK AND HANS PETER SCHÖNLAUB

The Cellon section, located in the Carnic Alps, is a reference section for the Silurian of the world. The conodont association of the section is revised according to the most recent taxonomy and the biostratigraphy updated in the basis of the recently published zonation schemes. Seventy taxa (species and sub-species) belonging to 23 genera have been identified, allowing the discrimination of 15 biozones from the upper Llandovery to the end of the P/C20r/C19ı. However, some of the uppermost Llandovery and Wenlock biozones, corresponding to black shale intervals, have not been documented.

Biostratigraphy, Carnic Alps, Cellon section, Conodonts, Silurian.

Carlo Corradini [corradin@unica.it], Maria G. Corriga [maria.corriga@unica.it], Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, via Trentino 51, I-09129 Cagliari, Italy; Peep Männik [peep.mannik@ttu.ee], Institute of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; Hans Peter Schönlaub [hp.schoenlaub@aon.at], Austrian Academy of Sciences Center for Geosciences, Dr Ignaz Seipel-Platz 2, A-1010 Vienna, Austria; manuscript received on 20/11/2013; manuscript accepted on 07/05/2014.

The Cellon section, probably the most famous Silurian section in the world, is the reference section for many Silurian studies. It is located in the Austrian side of the Carnic Alps near Plöckenpass/Passo di Monte Croce Carnico, a few hundred metres from the Italian/Austrian state border (Fig. 1). The conodont fauna from the section was studied and described by Walliser (1964), whose pioneering work on the section included the first proposed Silurian conodont zonation. Subsequent studies on the Cellon section have documented the composition and distribution of several fossil groups, micro-facies, isotope signatures, taphonomic and palaeoenvironmental indicators and eustatic sea-level changes. In all these studies, Walliser’s (1964) conodont zonation was used as biostratigraphic framework, and the section was globally acknowledged as a Silurian reference section. In addition to papers comparing data from different regions with those from Cellon section, Kleffner (1989, 1995) chose it as a reference section for his Silurian chronostratigraphy-based on graphic correlation.

Since the Walliser’s (1964) paper, conodont studies have proceeded all around the world; several new taxa have been discovered and described; conodont taxonomy has been revised and now is based on multi-element apparatuses. Also, many authors have proposed several new more detailed zonal schemes for selected time intervals or geographical regions (Jeppsson 1997; Corradini & Serpagli 1999; Jeppsson et al. 2006; Männik 2007; Cramer et al. 2011; Corradini & Corriga 2012).

In this study, we present an updated Silurian conodont biostratigraphy of the Cellon section. The paper is based on restudy of Walliser’s conodont collection, stored in Göttingen University. Also, several new samples were collected and processed from selected levels in the section.

Geological setting

The Carnic Alps are located across the Italian–Austrian border, and here is found one of the best-exposed and most complete Palaeozoic successions in the world, ranging from the Upper Ordovician to Upper Permian.

Silurian outcrops are irregularly distributed in the region. The main types of rocks exposed here include shallow water bioclastic limestones, nautiloid-bearing limestones, limestones interbedded with shales, and black graptolitic shales and cherts (‘lydites’). The overall thickness of Silurian strata does not exceed 60 m. The Silurian transgression in the region started at the beginning of the Llandovery. The duration of the gap separating the Ordovician and Silurian successions is highly variable and a rock succession corresponding to several conodont zones of Llandovery or Llandovery to Early Wenlock...
age is locally missing (Schönlaub & Histon 1999; Storch & Schönlaub 2012).

Four main lithofacies, representing different depths and hydraulic conditions of deposition, have been described in the Silurian of the Carnic Alps (Wenzel 1997). The Wolayer facies is characterized by proximal sediments, the Bischofalm-facies by deep-water euxinic deposits; the Plöcken facies and the Findenig facies are intermediate between these two. In rough approximation, the four facies seem to replace each other from northwest to southeast in the western and central sectors of the Carnic Alps. The depositional features suggest an overall transgressional regime from Llandovery to Ludlow. The formation of uniform calcareous deposits in the P/C20 idoli indicates that stable conditions were developed in the region at that time (Schönlaub 1997).

In terms of lithostratigraphical subdivision, a recently established (but still unpublished) scheme identifies three units that follow each other in succession in the proximal (calcareous) parts of the basin: the Kok Fm. (Llandovery–lower Ludlow), the Cardiola Fm. (Ludlow) and the Alticola Fm. (upper Ludlow–Prídoli). The last unit corresponds to the former Alticola Limestone and Megaerella Limestone. All three units are represented mainly by ‘Orthoceras limestone’, a wackestone-packstone with high bioclastic content. The colour turns gradually from dark red and black in the lower Silurian to light grey-ochre in the Prídoli. Nautiloid cephalopods are very abundant; trilobites, bivalves and conodonts are common; crinoids, gastropods and rarer ostracods, brachiopods, chitinozoans are also present (Schönlaub 1997; Histon & Schönlaub 1999a; Schönlaub & Histon 2000; Corradini et al. 2010).

In the deeper part of the basin, the Silurian corresponds to the up to 60-m-thick Bischofalm Fm. It consists of black siliceous shales with interbeds of chert and clayish alum slate, mainly deposited in an euxinic environment. Graptolites are generally abundant in these rocks (Schönlaub 1997). Alternating black graptolitic shales, marls and limestones of the Nöblung Fm. were deposited in conditions intermediate between calcareous and shale facies (Schönlaub 1997). Both the Bischofalm Fm. and the Nöblung Fm. range from the Llandovery to the Lochkovian.

The Cellon section

The Cellon section is located in the Carnic Alps in a narrow avalanche gorge on the eastern flank of Mt. Cellon, at an altitude of about 1500 m, at coordinates 46°36′32″N, 12°56′31″E (Figs 1, 2). It is reachable by a short walk from Plöcken Pass (Passo di Monte Croce Carnico).

The section represents the classical exposure of sediments of the Silurian ‘Plöcken facies’ and exposes rocks from the Upper Ordovician to the Lower Devonian. The Silurian is represented by more than 40 m of ‘Orthoceras limestone’. It belongs to four lithostratigraphic units: the Kok Fm., the Cardiola Fm. and the Alticola and Megaerella formations (as the new lithostratigraphical subdivision of the Variscan sequence of the Carnic Alps is still unpublished, in this study, we follow the previous scheme).

In more detail, the section has been subdivided into the following units (including the Upper Ordovician at the base and the Lower Devonian on top):

1 Uggwa Limestone (= Calcari di Uqua in the Italian literature). Lithology: Greyish to brownish flaser limestone with layer of bioclastic debris. Thickness: 4.96 m. Age: Katian (Upper Ordovician), Hamarodus ordovicicus conodont Zone (beds 1–5).

2 Plöcken Formation. Lithology: Greyish siltstone intercalating with impure bioclastic limestone at the very base and grading into calcareous pyritic
limestone and sandstone higher in the section. The lowermost strata in the formation are evidently of diamicite origin, the upper strata display contorted deformation structures, slumping, channel fillings and interbeds of fossil debris. Thickness: 6.17 m. Age: Hirnantian (Upper Ordovician), *Normalograptus persculptus* graptolite Zone (beds 6–8).

3 Kok Formation. Lithology: Well bedded brownish ferruginous nautiloid limestone, at the base alternating with black shale and marly interbeds. Thickness: 13.5 m. Age: Llandovery to Ludlow, *Pterospathodus celloni* SZ to Ancoradella ploeckensis conodont Zones (beds 9–19; Figs 4–5).

4 Cardiola Formation. Lithology: Dark grey to black limestone with marly and shaly interbeds. Thickness: 3.5 m. Age: Ludlow, *A. ploeckensis* to *Polygnathoides siluricus* conodont Zone (beds 20–24A; Fig. 5).

5 Alticola Formation. Lithology: Grey to reddish nautiloid limestone with some marly layers and coarse bioclastic interbeds. Thickness: 20 m. Age: Ludlow to Prídolí, *Pedavis latialata–Ozarkodina snajdri* IZ to ‘Oz.’ *osteinhornensis* s.l. conodont Zone (beds 25–39A; Figs 5–6).

6 Megaerella Formation: Lithology: Greyish bioclastic limestone. Thickness: 8 m. Age: Přidolí–lowermost Lochkovian, ‘Oz.’ *osteinhornensis* s.l. to *Icriodus hesperius* conodont Zone (beds 40–47B; Fig. 6).

7 Rauchkopf Limestone: Lithology: Blackish platy limestone with black marly interbeds. Thickness: 80–120 m. Age: Lochkovian (Lower Devonian), *Icriodus hesperius* conodont Zone (bed 47C and above; Fig. 6).

Previous studies in the Cellon section

The Cellon section is the stratotype for the Silurian in the eastern and southern Alps. Nowhere else in the Alps has a comparably good section been found. The section has been famous since the 1894 when, soon after the systematic mapping of the Carnic Alps by the Geological Survey of Austria had started, Geyer first described the rock succession exposed here, discriminating all the units that are now distinguished from Ordovician to Lower Devonian (Geyer 1894, 1895, 1899, 1902).
In 1903, the Cellon section was presented to 11 national and international experts during an excursion associated with the 9th International Geological Congress, which was held in Vienna (Geyer 1903).

A few years later Spitz (1909) confirmed the pioneering study of Geyer, published a detailed map and introduced the so-called Plöcken facies, which he distinguished from the contemporaneous but shallower ‘Wolayer facies’ farther to the west.

After World War One, a new scientific period started in which comprehensive fieldwork was carried out by von Gaertner (1927, 1931a,b) and palaeontological studies of nautiloids, bivalves, trilobites, brachiopods, gastropods, graptolites developed by Heritsch (1929) from both Austrian and Italian sides (Gortani and Vinassa de Regny) of the Carnic Alps. In particular, Gaertner focused his work on the Cellon section, where he described 11 lithostratigraphically defined units (‘Formations’), which are partly still in use.

In the late 1950s, new techniques in macro- and micro-palaeontology were applied in studies in the Carnic Alps. After an initial work dated from 1957 (Walliser 1957), Walliser published his famous monograph on Silurian conodonts and conodont zonation, which was primarily based on data from the Cellon section (Walliser 1964). From the base to the top, Walliser processed 220 samples from nearly all limestone beds each weighing between 2 and 3 kg and he recovered almost 35 000 conodont elements. Based on this collection, he established 11 conodont zones for the Silurian. Although, in general, this zonation was recognized all over the world, it was subsequently updated and slightly revised. Nevertheless, the data from Cellon proved as a very successful tool for correlation of Silurian strata on a global scale.

In the following years, Walliser’s study was complemented by the publication of new geological maps (Schönlaub 1985b), detailed lithological investigations to characterize the rock succession (Flügel 1965; Schönlaub 1985a; Dullo 1992; Kreutzer 1992) and, in particular, the recognition and interpretation of K-bentonites by Histon et al. (2007) followed by a sequence stratigraphical study of the Silurian succession of the Carnic Alps (including the Cellon section; Brett et al. 2009). Carbon isotopes were analysed from the Silurian part of the Cellon section. The signatures recorded were discussed in a wider context, the results compared with those from the Baltic Region, the Barrandian, and some regions in Urals (Wenzel 1997), and for the Ludlow interval related to the Lau event along with data from Australia and Sardinia (Jeppsson et al. 2012).

Recent advances in Silurian conodont taxonomy

Since the publication of Walliser’s masterpiece Conodonten der Silur in 1964, conodont taxonomy has changed completely. The early 1970s was a ‘...time of transition from form-element to multi-element taxonomy’ (Aldridge & von Bitter 2009, p. 13). Now, it is well known that a conodont had several elements of different morphology forming the ‘conodont apparatus’. Hence, a conodont species yields elements of different morphology described earlier as separate taxa. Walliser (1964), although applying in his descriptions form-element taxonomy, had noticed general morphological similarities of elements of some of his taxa and proposed that, in reality, they might belong to the same species (apparatus). Based on such similarities and co-occurrences of elements, he described eight apparatuses, designated by letters (‘Conodonten-Apparat A’, ‘Conodonten-Apparat B’, etc.). Since then, conodont taxonomy has been completely revised, and many new apparatus-based genera and species have been described following rules of the International Code of Zoological Nomenclature (Barrick & Klamper 1976; Barrick 1977; Miller & Aldridge 1993; Serpagli et al. 1997; Männik 1998; Serpagli & Corradini 1999; Murphy et al. 2004; Carls et al. 2005; Corradini 2008; Corradini & Corriga 2010).
History of Silurian conodont biozonation

The first conodont zonation for the Silurian was proposed by Walliser (1964), who based his scheme primarily on the succession of conodonts in Cellon section, but also including data from Bohemia and Spain. The author defined 12 successive first appearance zones spanning the Silurian and the lowermost Devonian. Several of these zones were widely recognized later, but the difficulties of applying the complete scheme in other regions of the world led to the development of many local zonations, mainly for the Llandovery, which is not completely exposed in Cellon.

Aldridge & Schönlaub (1989), considering all the data then available, provided a new scheme, which was a ‘step on the path to the development of a reference biozonation’ (Aldridge & Schönlaub 1989, p. 275). Their global zonation was reported also in the Newsletter of the Subcommission of Silurian Stratigraphy (Silurian Times 1, 1993). Two years later, a new Conodont Global Zonation chart was published (Silurian Times 3; Nowlan 1995). It differed significantly from previous zonations, but was never fully justified or discussed. This scheme contains several biases, such as the indication of two ‘not zoned’ intervals, and some zones in it are based on taxa with a limited geographical distribution.

Corradini & Serpagli (1998, 1999) proposed a new scheme, based on Sardinian data. However, due to the absence of lowermost Silurian carbonates in Sardinia, this scheme starts from the topmost Llandovery. The authors demonstrated that the Sardinian conodont zonation is usable worldwide and claimed that it is ‘of practical use for Silurian biostratigraphy, and therefore more generally useful than extremely detailed schemes, sometimes based on not yet defined or endemic taxa’ (Corradini & Serpagli 1999, p. 270). Following these considerations, the same authors (Corradini & Serpagli 2000) proposed their scheme as a Standard Silurian conodont zonation for the Wenlock–Přídlí time interval.

A totally different approach to the Standard conodont zonation was presented by Jeppsson (1997) and Jeppsson et al. (2006), who provided a detailed scheme of zones based on the latest Llandovery to latest Ludlow succession exposed on Gotland. Unfortunately, many of these zones are not applicable in other regions, either because they reflect the local environmental conditions on Gotland, or because some zonal markers are extremely rare taxa (<0.1% of the fauna) or are endemic taxa to the Baltic area. Männik (2007) proposed a detailed zonation for the Llandovery, which is now widely accepted.

Ogg et al. (2008) published a zonation integrating those introduced by Nowlan (1995) and Corradini & Serpagli (1999), but some problems still remain, mainly the occurrence of a ‘not zoned’ interval and the unclear definition of a zone in the Ludlow.

More recently, following some taxonomic revisions of Late Silurian ozarkodinids, and detailed investigation of the upper Silurian in North Gondwana, the upper part of the Silurian zonation was updated by Corriga & Corradini (2009) and Corradini & Corriga (2012). These authors (Corriga & Corradini 2009) renamed the former ‘rem-scheidensis interval Zone’ as ‘eosteinhornensis s.l. interval Zone’ without changing the meaning of the zone and the definition of its boundaries. This proposal was accepted by Cramer et al. (2011) in the most recent updating of the Silurian conodont zonation and included by Melchin et al. (2012) in their stratigraphical summary of the Silurian Period.

In this study, we follow mainly the zonation by Cramer et al. (2011), although some modifications of it are needed in order to apply it in the Carnic Alps and to incorporate new recently published data on conodont biostratigraphy (Corradini & Corriga 2012; Slavík et al. 2012). These modifications include:

- The Kockelella patula Zone is recognized in the Wenlock; it corresponds to the central and upper parts of the K. walliseri Zone of Cramer et al. (2011). K. walliseri Zone cannot be identified because the nominal taxon of the zone has not been found in the Cellon section.

- In the Ludfordian, the Ozarkodina snajdri Interval Zone is here renamed the Pedavis latialata–Oz. snajdri interval Zone. The interval between the LAD of Polygnathoides siluricus and the FAD of Oz. crispa was often named Oz. snajdri Zone or Oz. snajdri Interval Zone (Aldridge & Schönlaub 1989; Cramer et al. 2011; Melchin et al. 2012). Other authors have subdivided this interval in two parts (Corradini & Serpagli 1999; Jeppsson et al. 2006): the lower one characterized by the icriodontid Pe. latialata and the upper one by Oz. snajdri. Also in the Cellon section, it is possible to subdivide this interval into two parts characterized by Pe. latialata and Oz. snajdri, respectively. However, in some regions in the world, Pe. latialata is very rare (e.g. in North America), whereas elsewhere it seems to have longer range and has been found also in the Oz. crispa Zone (Bohemia:...
slavik & carls 2012), and the pe. latialata and oz. snajdri zones cannot be separated. Therefore, we have decided to rename the oz. snajdri interval zone after the names of the two more characteristic species to the pe. latialata–oz. snajdri interval zone.

- the oz. crispa zone extends into the lowermost pridoli because its index taxon oz. crispa is present up to sample 33, above the occurrence of monograptus parultimus jaeger (the index taxon for the base of the pridoli), found in the section just above sample 32 (jaeger 1975).
- in the pridoli, the oulodus elegans detortus zone is subdivided into a lower o. e. detortus zone and a upper o. e. detortus zone, as introduced by corradini & corriga (2012).

updated conodont data and biostratigraphy

the walliser conodont collection from the cellon section is stored in the geoscience centre of the georg-august university of göttingen, germany, under repository number gzz 1613. it includes about 35,000 conodont elements from about 220 samples from the upper Ordovician to the base of Devonian. it is well known that coniform elements from Walliser collections were sent to Dr. Klaus Müller (Berlin) to be studied and therefore are not present in the material stored in Göttingen. However, most of the samples in Göttingen include coniform elements, and some are very crowded of simple cones. This can be explained by the fact that Walliser collected samples from Cellon several times (in the collection, some beds are represented by two or three samples) and likely only coniforms from the first sampling are missing; therefore, it is possible to have a good database, even if not fully complete, of their occurrence in the section.

in this study, revised distribution data and zonation of conodonts from the Silurian part of the section are presented. Our information is based on the restudy of Walliser’s collection and from several new samples collected from the section, mainly from its upper part. This additional material is stored in the palaeontological and geological museum ‘domenico lovisato’ of Cagliari University. Conodonts from a few samples stored in Lund University were also considered.

it should be noted that the biostratigraphy of the Upper Ordovician part of the section has been revised by ferretti & Schönlaub (2001), and the study of the Lochkovian part based on a new detailed sampling by M.G. Corriga and C. Corradini is in progress.

in terms of diversity, Walliser (1964) paper reported the occurrence of 83 morphospecies from the Silurian part of the section; our revision now demonstrates the presence of 70 taxa (species and sub-species) belonging to 23 genera: Ancoradella, Apsidognathus, Aspelundia?, Aulacognathus, Belodella, Corysognathus, Dapsilodus, Decoriconus, Distomodus, Dvorakia, Kockeella, Oulodus, Ozarkodina, Panderodus, Pedavis, Pelekysgnathus, Polygnathoides, Pseudolonchodina?, Pseudooneotodus, Pterosphathodus, Walliserodus, Wurmiiella, Zieglerodina. The occurrence of all these taxa is showed in figures 4–6.

Conodont zones in the Cellon section

The conodont fauna allows the discrimination of 15 biozones from the upper Llandovery to the end of the pridoli (Figs 3–6). However, some of the uppermost Llandovery and Wenlock biozones, most probably corresponding to unsampled black shale intervals, have not been documented (Fig. 3).

The conodont zones now recognized in the Cellon section are briefly discussed below. For each zone, its original definition, interval in the Cellon section, occurrence of the most characteristic taxa and a few comments, if necessary, are provided. The complete conodont distribution data are provided in Figures 4–6.

Pterosphathodus celloni Superzone, Männik (2007)

The superzone corresponds to the interval between the first appearance datum (FAD) of Pt. amorphognathoides angulatus below and Pt. a. amorphognathoides above and evidently correlates with the interval of total range of Pt. celloni (Männik 2007).

In the Cellon section, Pt. celloni appears in sample W735 (10allg.) evidently marking the lower boundary of the Pt. celloni Superzone (SZ) (Fig. 4). However, as there are no data from strata over a thickness of several metres (from beds 8 and 9) and the next sample below comes from bed 7 (yielding elements of an Ordovician conodont Amorphognathus sp., Walliser 1964), the lower boundary of the Pt. celloni SZ can only be drawn just below sample 10allg. tentatively. In reality, it could be at any level between the probable Ordovician–Silurian boundary at the base of bed 9 below (Walliser 1964) and
The lowermost **Pt. a. amorphognathoides** in the section has been found in sample Wa1709 (10J). In reality, two samples, Wa1709 (dominated by specimens of **Pt. a. amorphognathoides** and W740 [in Walliser (1964) indicated as sample 10J, dominated by **Pt. celloni**] were processed from the bed 10J. It is evident that one of them (W740) comes from the lower part of the bed.
and the other one (Wa1709) from the upper part of it. Hence, the boundary between the Pt. celloni SZ and the Pt. a. amorphognathoides Zone lies in bed 10J.

Three zones, Pt. a. angulatus, Pt. a. lennarti and Pt. a. lithuanicus, correspond to the Pt. celloni SZ (Männik 2007).

Pterospathodus amorphognathoides angulatus Zone, Männik (2007)

The Pt. a. angulatus Zone corresponds to the interval of the total range of the nominal species (Männik 2007). Pt. a. angulatus dominates in the inner shelf carbonate-terrigeneous facies, but is sporadic in distal graptolite-bearing facies, where Dapsilodus is common and Pt. celloni appears and occurs together with Pt. a. angulatus. In the Cellon section, the appearance of Pt. a. angulatus in sample (bed) 10B indicates that this level lies already in the Pt. a. angulatus Zone, the appearance of Pt. celloni at a lower level, in sample 10allg., indicates that the lower boundary of the zone should be looked for below that sample (see above).

Two sub-zones, the Lower and Upper P. a. angulatus sub-zones, were distinguished in the P. a. angulatus Zone. The boundary between these sub-zones was drawn at the level of the appearance of Ozarkodina sp. n. (Männik 2007). Additionally, Apsidognathus disappears temporarily (reappears in the lowermost Pt. a. amorphognathoides Zone) at this level and Pelekysgnathus? sp. occurs in the Lower Pt. a. angulatus Sub-zone. No Ozarkodina has been found in this interval in the Cellon section, but the continuous occurrence of Apsidognathus tuberculatus in beds10allg.–10E, and of Pelekysgnathus? sp. in bed 10D, evidently suggest that this interval corresponds to the Lower Pt. a. angulatus Sub-zone and the boundary between the Lower and Upper Pt. a. angulatus sub-zones lies between samples 10E and 10H (Fig. 4).

Pterospathodus amorphognathoides lennarti and Pterospathodus amorphognathoides lithuanicus zones, Männik (2007)

The Pt. a. lennarti Zone corresponds to the interval of the total range of Pt. a. lennarti (Männik 2007).
Fig. 5. Distribution of conodonts in the Ludlow part of the Cellon section. From left to right: series, stage, formation, bed numbers, lithological log (after the original drawing by Walliser 1964), samples (grey squares indicate samples which precise position in the section is not known), distribution of taxa (white dots indicate problematic identifications), zones. Arrows at the end of distribution lines indicate that the taxon also occurs above/below the illustrated interval. Horizontal lines mark boundaries of chrono-/litho-/biostratigraphical units.
Fig. 6. Distribution of conodonts in the Přídolí part of the Cellon section. From left to right: series, formation, bed numbers, lithological log (after the original drawing by Walliser 1964), samples (grey squares indicate samples which precise position in the section is not known), distribution of taxa (white dots indicate problematic identifications), zones. Arrows at the end of distribution lines indicate that the taxon also occurs above/below the illustrated interval. Horizontal lines mark boundaries of chrono-/litho-/biostratigraphical units.
In the Cellon section, only one fragment of *Pt. a. lennarti* has been found (in sample 10H/J). Its precise position in the section is not known to us, but H/J might indicate that this sample yields (rock) material from both beds 10H and 10J (in Fig. 4 this sample is indicated between these two beds). *Pt. a. lennarti* was not found in sample 10J (bed 10J). Accordingly, it is most probable that the boundary between the *Pt. a. angulatus* and *Pt. a. lennarti* Zones lies in bed 10H or in the shale between beds 10H and 10J.

As noted above, the lower boundary of the *Pt. a. amorphognathoides* Zone in the section occurs in bed 10J. The sample just below this boundary, from the lower part of bed 10J, is dominated by elements of *Pt. celloni*. No specimens of *Pt. amorphognathoides* were found. As it is known from elsewhere, the uppermost part of the *Pt. celloni* SZ corresponds to the *Pt. a. lithuanicus* Zone (Männik 2007). *Pt. a. lithuanicus* has not been found in the Cellon section. This might have two reasons: (1) *Pt. a. lithuanicus* is missing due to ecological conditions (*Pt. a. lithuanicus* is very rare in distal graptolite-bearing environments; Männik 2007); or (2) the strata corresponding to this zone are missing in the section. Additional sampling is needed to find out which explanation is correct. Tentatively, in Figure 4, the interval from the sample 10H/J up to the lower boundary of the *Pt. a. amorphognathoides* Zone above is correlated with the *Pt. a. lennarti* and *Pt. a. lithuanicus* zones.

Pterospathodus amorphognathoides amorphognathoides Zone, Walliser (1964)

According to Jeppsson (1997), the *Pt. a. amorphognathoides* Zone forms the lower (main) part of the *Pt. a. amorphognathoides* Zonal group. The zonal group corresponds to the total range interval of *Pt. a. amorphognathoides*. In its uppermost part, the Lower and Upper Pseudeooneotodus bicornis zones were separated. The *Pt. a. amorphognathoides* Zone corresponds to the interval between the appearance of *Pt. a. amorphognathoides* below and Datum 1 of the Ireviken Event (the level of disappearance of *Nudibedolina sensitiva* Jeppsson) above. At or very close to the lower boundary of the zone *Apsidognathus*, which is missing in the upper half of the *Pt. celloni* SZ, is known to reappear (Männik 2007). In the *Pt. a. amorphognathoides* Zone, this genus is usually represented by *A. walmsleyi* Aldridge and *A. ruginosus*. In the Cellon section, *Pt. a. amorphognathoides* appears in the upper part of bed 10J (in sample Wa1709) and its uppermost specimens in the section come from bed 12A (Fig. 4). Together with *Pt. a. amorphognathoides*, poorly preserved specimens of *Apsidognathus* appear and are identified here as *Apsidognathus* sp. (aff. *A. tuberculatus*), somewhat higher in the section *A. cf. ruginosus* and *Pt. pennatus procerus* are also present. However, as *N. sensitiva* has not been found in this section, the level of the upper boundary of the *Pt. a. amorphognathoides* Zone remains problematic here. It may lie in the upper (most) part of the *Pt. a. amorphognathoides* range or higher in the section, in the unsampled shales between beds 12A and 12B. As the uppermost sample with *Pt. a. amorphognathoides* also yields *Apsidognathus* (A. *ruginosus*), it is evident that this sample comes from an interval below Datum 2 of the Ireviken Event (marked by the disappearance of *Apsidognathus* together with some other taxa and corresponding to the boundary between the Lower and Upper *Ps. bicornis* zones, Jeppsson 1997).

Aspelundia fluegeli, common in the *Pt. celloni* SZ, disappears in the basal part of the *P. a. amorphognathoides* Zone. It reappears briefly in the middle part of the zone (in the Cellon section in bed 11C) where it is represented by another species, *Aspelundia*? n. sp. (Fig. 4; Männik 2007). The level of disappearance of this taxon corresponds to the boundary between the Lower and Upper Sub-zones of the *P. a. amorphognathoides* Zone. Elsewhere, *Aspelundia* has not been found above this level. The occurrence of *A. fluegeli* in a sample from bed 12A in the Cellon section is unusual and difficult to explain: either this is real occurrence and *Aspelundia* reappears in the uppermost *Pt. a. amorphognathoides* Zone or this presents some mistreatment during sample processing in laboratory.

Kockella patula Zone, Walliser (1964)

The zone corresponds to the total range of *K. patula* (Jeppsson 1997); in the Cellon section to beds 12B–12D. In this interval, the fauna is dominated by *K. patula*. According to Jeppsson (1997), *K. patula* Zone forms the middle part of the Upper *K. walliseri* SZ; in Cramer et al. (2011), it is considered to be an equivalent of the central and upper parts of the *K. walliseri* Zone. Other zones of the Upper *K. walliseri* SZ sensu Jeppsson (1997) and other intervals lying below (*Ozarkodina sagitta rhenana*, *K. ranuliformis*, *Pt. p. procerus* and *Ps. bicornis* superzones) known from elsewhere were not recognized in the Cellon section (Figs 3, 4). They might correspond to a gap or, at least some of them, to the unsampled interval of shales between beds 12A and 12B. *K. walliseri* has not been found in the Cellon section.
Kockelella ortus ortus Zone, Jeppsson (1997)

This zone corresponds to the interval between the FAD of K. o. ortus below and that of Oz. s. sagitta above. According to Jeppsson (1997), the zone forms the middle part of the K. o. ortus SZ. In the Cellon section, the K. o. ortus Zone seems to overlie directly the K. patula Zone indicating that the uppermost Upper K. walliseri Zone and the lowermost K. o. ortus SZ might be missing here (Figs 3, 4).

Ozarkodina sagitta sagitta Zone, Aldridge & Schönlaub (1989)

The zone corresponds to the interval of total range of Oz. s. sagitta (Jeppsson 1997; Jeppsson & Calner 2002). In the Cellon section, the zone is discriminated in beds 13C-15A by the occurrence of Oz. s. sagitta in the samples from these beds (Fig. 4). In this part of the section, the diversity of conodonts is very low, and many samples yielded only a monospecific association represented by Oz. s. sagitta. Ps. linguicornis Jeppsson has its only occurrence within this zone (in bed 14D), as documented also in other areas (Männik & Mäkki 1998; Männik 2003; Corradini 2008).

Kockelella crassa Zone, Walliser (1964)

The K. crassa Zone corresponds to the interval of the total range of the marker K. crassa (Corradini & Serpagli 1999). In the Cellon section, the zone is discriminated in beds 15B1-16A. The base of this zone coincides with the base of the Ludlow series (Cramer et al. 2011). Kockelella v. variabilis Walliser enters in the upper part of this Zone.

Two zones, Oz. bohemica longa and K. o. absidata, corresponding to the main part of Homarian have been recognized between the Oz. s. sagitta and K. crassa zones (Cramer et al. 2011; Fig. 3). Both of them seem to be missing in the Cellon section. They correspond to a gap in the section or lie in the narrow interval of shales between samples 15A and 15B1 (Figs 4, 5).

Kockelella variabilis variabilis Interval Zone, Cramer et al. (2011)

The K. v. variabilis Interval Zone is recognized in beds 16B-17E. The lower boundary is marked by the last occurrence of K. crassa and the upper boundary by the entry of Ancoradella ploeckensis. Rare specimens of K. stauros occur in the lower part of the Zone. K. variabilis ichnusae Serpagli & Corradini has its first occurrence in the lower part of the zone.

It is possible to discriminate an interval characterized by Wurmiella hamata (Walliser) in the upper part of the zone. This interval was considered as a zone by Corradini & Serpagli (1999) on the basis of the occurrence of the nominal taxon in North Gondwana, Laurentia (Nevada) and Baltica (Gotland). However, as the index taxon is not reported from many other regions and, even if present, it is rare, it looks more appropriate to consider this interval as a sub-zone in the upper part of the K. variabilis Interval Zone (Fig. 5).

Ancoradella ploeckensis Zone, Walliser (1964)

The A. ploeckensis Zone is discriminated in samples 18–20A. The lower boundary is marked by the entry of Ancoradella ploeckensis and the upper boundary by the first occurrence of Polygnathoides siluricus. In the Cellon section, Wurmiella posthamata and W. inflata occur only in this zone, whereas elsewhere the latter taxon appears already in older strata (Corradini & Serpagli 1999; Corriga et al. 2009). Kockelella ortus sardoa has its first occurrence in the central part of the zone.

Polygnathoides siluricus Zone, Walliser (1964)

This zone corresponds to the interval of total range of P. siluricus and is one of the zones with widest distribution in the Silurian: it has been indicated in all published zonal schemes and everywhere its boundaries are defined on the same criteria (Fig. 3). In the Cellon section, this zone is recognized in beds 20–24A and includes most of the Cardiola Fm. A. ploeckensis is still present in the lower part of the zone and genus Kockelella disappears within it but various species of the genus have different last occurrences: K. v. variabilis and K. v. ichnusae occur only in the lower part of the zone, K. o. sardoa reaches its upper part, while K. o. absidata and K. maenniki are present up to the top of the zone. The last species occurs only in this zone (Serpagli & Corradini 1999), but it usually does not reach its upper boundary. However, it should be noted that, as suggested by the presence of a hard ground just above sample 24A at the top of the Cardiola Fm., a short hiatus may occur, and likely the upper(most) part of the P. siluricus Zone is missing in the Cellon section.

Within this zone, a few anomalous elements, represented mainly by ramiforms with branched processes, are present. Such specimens are documented in various intervals in the Silurian and Lower Devonian, but are particularly abundant in the P. siluricus
Zone (Corradini et al. 1996; Slavík et al. 2010; Corriga et al. 2014b).

Pedavis latialata – Ozarkodina snajdri Interval Zone

This zone corresponds to the interval of beds 25–30. Its lower boundary is defined by the last occurrence of Polygnathoides siluricus and the upper boundary by the first occurrence of Ozarkodina crispa (Walliser). For the reasons discussed above, we indicate this interval using names of the two most characteristic species occurring here: Pe. latialata (Walliser) and Oz. snajdri (Walliser). In the Cellon section, Pe. latialata occurs in the lower part of the zone, and Oz. snajdri appears in its upper part. The ranges of these two taxa overlap in a short interval (samples 28B–29).

Wurmiella sp. A, characterized by an asymmetrical P1 element, occurs only in this zone; W. alternata and Oz. confluens appear in the lower part, and Oulodus elegans elegans and Wurmiella sp. B in the upper part of the zone. The latter species is characterized by a distinct enlargement of the blade of P1 element, just below the insertion of denticles.

Ozarkodina crispa Zone, Walliser (1964)

The Oz. crispa Zone corresponds to the interval of total range of Oz. crispa, in the Cellon section to beds 30A–33. Oz. eosteinhornensis s.l. enters in the uppermost part of the zone, while Oz. snajdri became extinct at the top of the zone.

It should be noted that the last occurrence of Oz. crispa was often used to approximate the Ludlow/Přídoli boundary. However, the presence of Monograptus parultimus Jaeger just above sample 32 (Jaeger 1975) indicates that this zone spans the boundary and includes also the lowermost part of the Přídoli.

‘Ozarkodina’ eosteinhornensis s.l. Interval Zone, Corriga & Corradini (2009)

The ‘Oz.’ eosteinhornensis s.l. Interval Zone is discriminated in beds 33A–36C. The lower boundary of the zone is defined by the last occurrence of Oz. crispa and the upper boundary by the first occurrence of O. e. detortus (Corradini & Corriga 2012). Corysognathus dubius has its only occurrence at Cellon section within this zone; O. e. elegans appears at the base of the zone and Wurmiella sp. C (characterized by strongly reclined denticles on the P1 element), in the central part of it.

Lower Oulodus elegans detortus Zone, Corradini & Corriga (2012)

The lower boundary of the Lower O. e. detortus Zone is defined by the first occurrence of O. e. detortus and the upper boundary by the last occurrence of Dapsilodus obliquicostatus (Corradini & Corriga 2012). In the Cellon section, the zone has been discriminated in beds 37–42B. The occurrence of ‘Oz.’ eosteinhornensis s.s. in the central part of the zone marks a well-defined horizon, about one metre thick (beds 40–41), that can be used for correlations (see discussion in Corradini & Corriga 2012, p. 647). Zieglerodina planilingua enters within this horizon and ranges up to the Devonian, as also in other regions (i.e. Morocco, Corriga et al. 2014a,b; Sardini, Corriga et al. 2009; Corradini & Corriga 2012). Wurmiella sp. C is present in the lower part of the zone, below the ‘Oz.’ eosteinhornensis s.s. horizon. Rare specimens of Z. zellmeri, and some other still undescribed species of Zieglerodina, appear at the base of the zone.

Upper Oulodus elegans detortus Zone, Corradini & Corriga (2012)

The Upper O. e. detortus Zone has been discriminated in beds 43–47A. Its lower boundary is marked by the last occurrence of Daps. obliquicostatus and the upper boundary by the first occurrence of Icriodus hesperius (Corradini & Corriga 2012). Rare specimens of Z. ivochlupachi occur within the zone. W. alternata disappears within the zone, and Oz. confluens in the upper part of the zone, just below the level of the first occurrence of Z. remscheidensis, which enters just below the upper boundary. Z. zellmeri is present up to the top of the zone.

The occurrence of I. hesperius in bed 47 B marks the base of the I. hesperius Zone. This level coincides with the base of the Devonian (Carls et al. 2007; Corradini & Corriga 2012).

Conclusions

The main results of this study can be summarized as follows:

- The conodont association from the Silurian of Cellon section has been revised. Seventy taxa (species and sub-species) belonging to 23 genera were recognized.
- The conodont fauna allows the discrimination of 15 biozones in the interval from the upper Llandovery to the end of the Přídoli. However, some
of the zones known from the uppermost Llandovery and Wenlock have not been documented. Most probably, they correspond to the unsampled intervals of black shale.

In terms of biostratigraphy, the zonation applied in this study differs from the recently published Carls, P. (1999) Silurian and lowermost Devonian conodonts from the Paso Volaia area (Carnic Alps, Italy). *Bollettino della Società Paleontologica Italiana* 49, 237–253.

Geyer, G. 1895: Ein neues Vorkommen fossilißierender Silurbild-
ungen in den Karnischen Alpen. Verhandlungen der kaiserlich
königlichen Geologischen Reichsanstalt 1895, 308.
Geyer, G. 1899: Ueber die geologischen Aufnahmen im Westab-
schnitt der Karnischen Alpen. Verhandlungen der kaiserlich
königlichen Geologischen Reichsanstalt 1899, 89–117.
Geyer, G. 1902: Erläuterungen zur Geologischen Spezialkarte
der österreichisch-ungarischen Monarchie 1:75000. Blatt Silsian und
St Stefano del Comelico. Verlag der kaiserlich königlichen Geo-
logischen Reichsanstalt, Wien.
Geyer, G. 1903: Exkursion in die Karnischen Alpen. Führer IX
Internationaler Geologischer Kongress in Wien 11, 1–51.
from the Carnic Alps: a preliminary investigation. Bollettino
Carinthia II 27, 23.
Nielsen, A.T., Bjerrum, C.J., Schovsbo, N.H., Schönlaub, H.P.,
the end-Ordovician mass extinction. Earth and Planetary Sci-
ence Letters 331–332, 128–139.
Heritsch, F. 1929: Faunen aus dem Silur der Ostalpen. Abhand-
lungen der Geologischen Bundesanstalt 23, 1–183.
Histon, K. 1999: Revision of Silurian Nautiloid cephalopods from
the Carnic Alps (Austria) – the Heritsch (1929) Collection in
the Geological Survey of Austria. In Lobitzer H. & Grecula P.
(eds): Geologie ohne Grenzen-Festschrift 150 Jahre Geologische
Bundesanstalt. Abhandlungen der Geologischen Bundesanstalt
56, 229–258.
Histon, K. 2002: Teleoccephalians and orthoceroids of the
Southern Alps. In Histon K. (ed.): V International Symposium,
Cephalopods - Present and Past, Carnic Alps Excursion Guide-
Histon, K. & Schönlaub, H.P. 1999a: The Palaeozoic of the
Southern Alps. In Histon K. (ed.): V International Symposium,
Cephalopods - Present and Past, Carnic Alps Excursion Guide-
Palaeozoic K-bentonites from the Carnic Alps, Austria. Austr-
alian Journal of Earth Sciences 100, 26–42.
Jaeger, H. 1975: Die Grendolitinhäufung im Silur/Devon des
Çelîlon-ProV Is (Karnische Alpen). Ein Beitrag zur Gleich-
schaltung der Conodonten und Grendolitinhäufungen des Silurs.
Carinthia II 165, 111–126.
Jaeger, H., Havlicek, V. & Schönlaub, H.P. 1975: Biostratigraphie
der Orдовизium/Silur-Grenze in den Südalpen - Ein Beitrag
zur Diskussion um die Hirnantia-Fauna. Verhandlungen der
Jeppsson, L. 1997: A new latest Telychian, Shinwoodian and
Early Homorian (Early Silurian) standard conodont zonation.
Transactions of the Royal Society of Edinburgh: Earth Sciences
88, 91–114.
Jeppsson, L. & Calner, M. 2002: The Silurian Mulde Event and
a scenario for secundo–secundo events. Transactions of the Royal
Jeppsson, L., Eriksson, M.E. & Calner, M. 2006: A latest Llando-
very to latest Ludlov high-resolution biostratigraphy based on
Jeppsson, L., Talent, J.A., Mawson, R., Andrew, A., Corradini, C.,
Simpson, A.J., Wigforss-Lange, J. & Schönlaub, H.P. 2012:
Late Ludfordian correlations and the Lau Event. In Talent, J.A.
653–675. Springer Verlag, Heidelberg.
Kleefner, M. 1989: A conodont based Silurian chronostratigra-
Kleefner, M., 1995: A conodont- and graptolite-based Silurian
chronostratigraphy. Graphic Correlation SEPM Special Publica-
tions 53, 159–176.
Kreutzer, L.H. 1992: Photoskizzen der vielfarbigen Cono-
donten und Graptolithenzonen des Silurs. Abhandlungen der
Geologischen Bundesanstalt 47, 1–129.
Kristan-Tollmann, E. 1971: Sandschalige Foraminiferen aus dem
Silur der Nördlichen und Südlichen Grauwackenzone Österr-
eichs. Neues Jahrbuch für Geologie und Paläontologie Abhand-
lungen 137, 249–283.
Krüz, J. 1974: New genera of Cardioliidae (Bivalvia) from the Silu-
rian of the Carnic Alps. Vestn Ustrednho ustavu geologichko
49, 171–176.
Krüz, J. 1979: Silurian Cardioliidae (Bivalvia). Sbornik Geologi-
cheskoi ved, Paleontologie 22, 1–160.
Krüz, J. 1999: Silurian and lowermost Devonian bivalves of Bohe-
man type from the Carnic Alps. In Lobitzer H. & Grecula P.
(eds): Geologie ohne Grenzen-Festschrift 150 Jahre Geologische
Bundesanstalt. Abhandlungen der Geologischen Bundesanstalt
56, 259–316.
Langer, W. 1969: Foraminiferen aus dem Alt-Paläozoikum der
Männik, P. 1998: Evolution and taxonomy of the Silurian cono-
dont Pteraspathodus. Palaeontologie 41, 1001–1050.
Männik, P. 2003: Distribution of Ordovician and Silurian cono-
donts. In Pöldvere A. (ed.): Ruhnu (500) Drill Core. Estonian
Geological Sections 5, 17–23.
Männik, P. 2007: An updated Telychian (Late Llandovery, Silu-
rian) conodont zonation based on Baltic faunas. Lethaia 40,
45–60.
Männik, P. & Malkowski, K. 1998: Silurian conodonts from
the Goldap core, Poland. In Szaniawski H. (ed.): Proceedings of
the Sixth European Conodont Symposium (ECOS VI). Palaeontol-
ogica Polonica 58, 139–149.
Martin, F. 1978: Sur quelques Acritarches Llandoveryiens de Cel-
lon (Alpes Carniques Centrales, Autriche). Verhandlungen der
Geologischen Bundesanstalt 1978, 35–42.
Melchin, M.I., Sadler, P.M. & Cramer, B.D. 2012: The Silurian
period. In Gradstein F.M., Ogg J.G., Schmitz M. & Ogg G. The
Miller, C.G. & Aldridge, R.J. 1993: The taxonomy and apparatus
of the Silurian distomodontid conodont Coryagnostus Link &
Murphy, M.A., Valenzuela-Rios, J.I. & Carls, P. 2004: On classifi-
cation of Pridoli (Silurian) Lochkovian (Devonian) Spat-
hognathodontidae (Conodonts). University of California,
Riverside Campus Museum. Contribution 6, 1–25.
Nowlan, G.S. 1995: Left hand column for correlation charts. Silu-
rian Times 3, 7–8.
Ogg, J.G., Ogg G. & Gradstein, F.M. 2008: The Concise Geologic
Pickett, J.W. 2007: Late Silurian Rugose Corals from the Cellon
and Rauchkofelboden Sections (Carnic Alps, Austria). Jahr-
Plodowski, G. 1971: Revision of the Brachioptoden-Fauna of the
Siluriums der Karnischen Alpen, 1: Glattschalige Atypaceae
durch die Zentralkarnischen Alpen und aus Böhmen. Sencken-
bergiana lethaea 52, 285–313.
Plodowski, G. 1973: Revision of the Brachiopoden-Fauna of the Obe-
Siluriums der Karnischen Alpen, 2: Rhynchonellacea aus den
Priewald, H. 1987: Acritarchen aus dem Silur des Cellon-Pro-
fils, Karnische Alpen, Österreich. Abhandlungen der Geologis-
cben Bundesanstalt 40, 1–121.
Priewald, H. 1997: The distribution of the Chitinozoans in the
Cellon Section (Hirnantian - Lower Lochkovian) – a prelimin-

