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Polynomial goal programming and particle swarm optimization

for enhanced indexation

Massimiliano Kaucic!

Abstract

. Fabrizio Barbini? - Federico Julian Camerota Verdu'

Enhanced indexation is an investment strategy that aims to generate moderate and consistent excess returns with respect to
a tracked benchmark index. In this work, we introduce an optimization approach where the risk of under-performing the
benchmark is separated from the potential over-performance, and the Sharpe ratio measures the profitability of the active
management. In addition, a cardinality constraint controls the number of active positions in the portfolio, while a turnover
threshold limits the transaction costs. We adopt a polynomial goal programming approach to combine these objectives with
the investor’s preferences. An improved version of the particle swarm optimization algorithm with a novel constraint-handling
mechanism is proposed to solve the optimization problem. A numerical example, where the Euro Stoxx 50 Index is used as
the benchmark, shows that our method consistently produces larger returns, with reduced costs and risk exposition, than the

standard indexing strategies over a 10-year backtesting period.

Keywords Enhanced indexation - Cardinality - Turnover constraint - Polynomial goal programming - Particle swarm

optimization - Constraint handling

1 Introduction

During the last years, index-linked investing has become one
of the most widely used vehicle for equity investors.

The standard index tracking (IT) strategy aims to replicate
an index, assuming that the underlying market is efficient.
Two alternatives are possible for this type of investment. In
the so-called full tracking, an agent invests in each stock
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exactly the same proportion as it is in the benchmark index.
Even if the exact replication is attained, this strategy is diffi-
cult to be realized in practice, because of its high transaction
costs and possible liquidity crunches. To overcome these
drawbacks, the so-called partial tracking strategy involves
a limited number of stocks. Normally, it is executed by min-
imizing the tracking error between the return of the tracking
portfolio and that of the index. For an extensive overview on
the subject, one may refer to Affolter et al. (2016), Beasley
et al. (2003), Benidis et al. (2018), Canakgoz and Beasley
(2009), Guastaroba and Speranza (2012).

If the market is weakly efficient, enhanced indexation (EI)
represents a promising portfolio design that combines the
strengths of both passive and active management to gener-
ate moderate and consistent excess returns with respect to a
mimicked benchmark index (DiBartolomeo 2000). Roughly
speaking, the problem may be tackled by minimizing a func-
tion of the tracking error and, at the same time, maximizing
the excess return of the portfolio. Several approaches and
methods are described in the literature to construct an EI
portfolio following this scheme. A detailed description of
the early contributions to the problem is given in Canakgoz
and Beasley (2009), while Bruni et al. 2015; Gnégi and Strub
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2018; Sharma et al. 2017; Xu et al. 2018; Zhao et al. 2019
concern the recent proposals.

Among the plethora of studies in this context, we now
focus on those that are related to our work.

In Wu et al. (2007), the enhanced indexation strategy
is formulated as a double-goal programming problem, in
which one goal represents the desired return and the other
is the desired tracking error. Li et al. (2011) propose a multi-
objective optimization model for enhanced indexation that
maximizes the excess return and, at the same time, mini-
mizes the downside deviation between the portfolio and the
benchmark. An immune-based multi-objective optimization
algorithm is used to find the solutions. A heuristic approach
that combines the kernel search with the e-constraint method
is proposed in Filippi et al. (2016), where the excess return
is maximized and the absolute deviation is minimized.
Guastaroba et al. (2016) propose two linear programming
variants for the EI model using the Omega ratio, one with
a fixed target point and another with a random target point.
Thomaidis (2011) considers EI strategies, which focus on
the probability of under-performing the benchmark. He han-
dles the subjectivity of the investment targets by using the
fuzzy set theory. The resulting cardinality-constrained port-
folio selection problems are solved by three nature-inspired
optimization techniques: simulated annealing, genetic algo-
rithms and particle swarm optimization (PSO). An empirical
analysis of the convergence properties of these algorithms
shows the effectiveness of the evolutionary algorithms in
reaching solutions in the vicinity of the optimum.

Other researchers propose to directly combine active
and passive criteria in the EI model. Jorion (2003) jointly
optimizes portfolio return, variance and tracking error. Vas-
siliadis et al. (2009) applies ant colony optimization to an
active—passive approach under a downside risk framework.
An active tracking formulation incorporating nonstandard
criteria related to portfolio performance is proposed in
Thomaidis (2010). Such targets/constraints are formulated
within the framework of fuzzy mathematical multi-objective
programming. Simulated annealing, genetic algorithms and
PSO are used to solve the problem. The multi-objective
active—passive approach in di Tollo et al. (2014) integrates
the index tracking and the Markowitz model (Markowitz
1952). A hybrid metaheuristic that combines local search and
quadratic programming is introduced to obtain an approxi-
mation of the Pareto set.

Recently, the problem of controlling the transaction costs
has become of primary importance, due to its effect on
the profitability of the index-linked strategies. Mezali and
Beasley (2014) investigate two different index tracking mod-
els that account for fixed and variable transaction costs when
constructing and/or rebalancing an index tracking portfolio.
Additionally, they consider constraints limiting the number
of stocks that can be bought/sold as well as limiting the total

transaction cost that can be incurred. In Strub and Baumann
(2018), the index tracking problem consists of rebalancing
the composition of the index fund’s tracking portfolio in
response to new market information and cash deposits and
withdrawals from investors. The index fund’s tracking accu-
racy is maximized. Moreover, the strategy directly considers
the trade-off between transaction costs and similarity in terms
of normalized value development. Diaz et al. (2019) propose
a hybrid model for solving the multi-period index tracking
problem, which includes limits on the number of stocks, floor
and ceiling constraints, diversification by sector, and transac-
tion costs. Their model combines a genetic algorithm, used to
select stocks, and a mixed-integer nonlinear programming,
to estimate the weights.

We propose a novel enhanced index tracking strategy,
based on the principles of the active—passive approach. On
the one hand, our portfolio minimizes the number of peri-
ods in which it is below the benchmark and, at the same
time, maximizes the number of periods in which it beats the
market index. On the other hand, our model maximizes a
risk-adjusted performance measure. We integrate the three
criteria with the investor’s preferences into a single func-
tion to minimize, using the polynomial goal programming
approach (Deckro and Hebert 1988; Proelss and Schweizer
2014). A set of constraints from real-world practice is intro-
duced. In particular, we consider cardinality, floor and ceiling
constraints, and a turnover threshold to limit the costs in the
rebalancing phase.

Since the PSO shows to be very promising in solving
index-linked investment problems (Thomaidis 2011; Zhu
et al. 2010), we deal with the inherent complexity of our
optimization problem by using an ad hoc version of this algo-
rithm, called IC-PSO. It uses a hybrid constraint-handling
procedure, which combines a repair mechanism (Megh-
wani and Thakur 2017) with the domination principle (Deb
2000; Pulido and Coello 2004). Moreover, we introduce
a multi-start perturbation procedure to prevent premature
convergence and loss of diversity in the final stages of the
algorithm.

In the literature, other techniques have already been pro-
posed to overcome these drawbacks. For instance, Kaucic
(2013) includes a re-initialization strategy based on two
diversity measures in a variant of the PSO algorithm with an
adaptive velocity based on the differential operator. In order
to enhance the performance of PSO, Wang et al. (2013) pro-
pose a hybrid variant, which employs a diversity enhancing
mechanism and neighborhood search strategies. A conver-
gence speed controller is applied in Huang et al. (2019).
Chowdhury et al. (2013) focus on mixed-discrete optimiza-
tion problems. They integrate into the PSO algorithm an
adaptive diversity-preservation technique, which provides a
repulsion away from the best global solution in the case of
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continuous variables, and stochastically updates the discrete
variables.

IC-PSO specifically addresses the stagnation issues of
PSO when portfolio selection problems have to be solved,
that is, the selection of stocks as well as the estimation of
weights under real-world constraints. Two main steps are
involved to this end. If the diversity level in the swarm
falls below a given threshold, the candidate solutions are re-
initialized. At the same time, if the convergence speed slows
down, a swap operator (Krink et al. 2009) and an adaptive
perturbation operator are applied to the best global solution to
generate a new swarm. The hybrid constraint-handling tech-
nique guarantees a rapid convergence of the swarm toward
the feasible region.

The rest of the paper is organized as follows. In Sect. 2,
we introduce the proposed PGP-based multi-criteria index-
linked investment problem. In Sect. 3, we design the IC-PSO
algorithm. Section 4 first describes the computational exper-
iments and introduces an investigation of the parameter
setting for IC-PSO. Then, the performance of the PGP-based
enhanced indexation is analyzed in comparison with other
index-linked strategies. Finally, Sect.5 concludes our work
and provides some future research directions.

2 The optimization model

In Sect.2.1, we introduce the structure and the constraints
of the strategy. Then, the criteria considered for the portfolio
design are presented in Sect. 2.2. Finally, Sect. 2.3 defines the
procedure used to combine investment objectives and agent’s
preferences.

2.1 Investment framework

Let us consider a financial market with n stocks and represent
a portfolio by a weight vector x = (x,..., xn)T, where
x; € R denotes the proportion of capital invested in asset
i, withi = 1,...,n, and the symbol «T> is the transpose
operator. Let us assume to operate in adynamic setting, where
the portfolio positions are readjusted over time due to the
market evolution, and fix an investment horizon of length
h. If we observe the market over a time window [0, 7] and
consider historical observations to be good predictors of the
future, then the investment strategy we propose involves the
following steps:

1. determine the optimal portfolio composition at time T
on the basis of the market information over the period
[0, T1;

2. maintain the portfolio composition unchanged for the
next & trading periods, assuming the stocks selected at
time 7 are still available at time T + h.

The procedure can be repeated over time, updating the con-
struction window of step 1 by eliminating the /& oldest
observations and including the # most recent ones. In this
manner, the strategy schedules portfolio rebalancing at a reg-
ular calendar interval defined by the investment horizon £,
starting from 7" Zhang and Maringer (2010).

In this study, we consider an investor who defines his opti-
mal portfolios on the basis of the information conveyed by the
[0, T'] construction window, his preferences and law guide-
lines.

For each time period 7 € [0, T, the investor has available
the price of stock i, denoted by P;j;, and the price of the
benchmark, Py;. Thus, the rate of return of stock i and of the
benchmark at time ¢ are computed as

Pi= Pt
Rir = d M i=1,...,n
P
and
Pbt - Pb,t—l
Rht = )
Pb t—1

respectively. The rate of return of a portfolio x at time 7 is
the random variable

Rpi(x) =Y xiRis ey

i=1

having the probability distribution function induced by that
of (Ris, ..., Ryt). Letus denote by u = (1, ..., un)T and
C the vector of expected values and the covariance matrix
of the rates of return of the risky assets. Assuming R, (x)
measurable in (Ry;, ..., Ry;), its expected value is given by

up®) =x"p )
and its variance is
oy(x) =x' Cx. (3)

In this study, we define the set of feasible, or admissible,
portfolios through the following constraints.

1. The capital invested is equal to the capital available at
time 7. In terms of portfolio weights, this is equivalent
to impose

Swi=t. @
i=1

2. We require that an admissible portfolio exactly includes
a predefined number K of stocks out of the n available
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stocks. By introducing the binary variable §; to model
the inclusion or exclusion of stock i in the portfolio as
5 — 0, if asset i is not included in the portfolio )
" 7] 1, if asset i is included in the portfolio

the cardinality constraint can be written as

n

251' =K. (6)

i=1

3. To avoid extreme positions and brokerage fees for very
small orders, we impose minimum and maximum limits
for the weights of the stocks in the portfolio. Let us
denote by /; and u; the lower bound and the upper bound
for the weight of stock i, with 0 < [; < u; < 1, and
then the buy-in thresholds are given by

Sili < x; <8ju;, i=1,...,n. (7)
Note that if a stock is not selected, no capital can be
invested in it. Moreover, by assuming /; > 0, short
selling is not allowed.

4. Because of the transaction costs when we rebalance a
portfolio, we include additional constraints involving
the asset allocation changes compared to the current
asset allocation. Let x; be the portfolio weight of stock
i attime 7 4 h and x;“ be the corresponding weight
after rebalancing, and the turnover constraint can be
expressed as

Z ’xl+ —xi| <TR ®)
i=1

where TR € [0, 1] is the maximum turnover rate. If
TR is set to 0, then the rebalanced portfolio is equal to
the initial one. As T R increases, the allowed turnover
increases and, as a consequence, also the allowed costs
for the new portfolio increase.

Remark 1 Equation (7) implicitly introduces cardinality con-
straints (Maringer and Oyewumi 2007). For instance, if we
consider a common upper bound equal to u, then at least

1
Kiin = {—J stocks must be bought. At the same time, a
u

1
common lower bound of / allows for at most Ky,x = ’77—‘

positive weights.

With an abuse of notation, let us denote by X" the set of
feasible portfolios. In the construction phase, X’ represents
the solutions satisfying constraints (4), (6) and (7). If the
optimization problem concerns the rebalancing phase, the

feasible set also involves the constraint (8). The meaning of
X will be clear from the context.

2.2 Passive and active investment criteria

In the literature, the tracking accuracy of a portfolio x with
respect to a benchmark has been calculated as some function
of the difference between the rate of return of the tracking
portfolio, R, (x), and that of the benchmark, Rj,. However,
measures based only on the variance of this deviation, like
the tracking error variance (Franks 1992), become zero even
for tracking portfolios that do not satisfactorily replicate the
movements of the benchmark, as is the case when the differ-
ence in returns from the benchmark is constant. A solution
to this disadvantage is provided by the following family of
measures (Beasley et al. 2003):

1/,1

! "

TEX) = (Z |Rpi (%) — Ry | ) ©)
teS

where o > 0 is the power by which portfolio’s rate of return
deviations are penalized and S is a subset of the time win-
dow over which we compare R, (x) and Rp,. In general, the
choice o = 2 guarantees good in-sample as well as out-of-
sample performances (Takeda et al. 2013). The definition of
S is related to the type of risk the investor is interested in. A
significant number of studies tackle the index tracking prob-
lem by setting « = 2 and S = [1, T]; that is, S comprises
all the time periods. Considering the previously defined set
of feasible portfolios, X, the passive strategy associated with
these choices of « and S can be formulated as

T

> (Rp®) = Rer)”. (10)

t=1

min —
xeX T

We can note that since the risk of the tracking portfolio is con-
strained to be as close as possible to the risk of the replicated
index, Problem (10) maximizes the systematic risk, regard-
less of the total risk of the portfolio (Roll 1992). Moreover,
investment opportunities, such as cross-sectional risk-return
inversion, are not exploited in the optimization (Wurgler
2010).

To overcome these drawbacks, we introduce in the invest-
ment decision process other tracking measures, by modifying
the time subset S in Eq. (9), as well as a performance measure
from active management.

By defining S as the subset of periods in which the track-
ing portfolio under-performs the index, we can measure the
downside risk of the tracking strategy by
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T

TE™ (x) = % 3 (R — R0’ (11)

t=1

where (a)™ = max(a, 0), for all ¢ € R. In a similar manner,
by taking into account only the periods in which the optimal
portfolio outperforms the benchmark, we can calculate the
upside potential profit of the strategy by

T

TET (x) = % > ((Ru - Rbt)+)2. (12)

t=1

In an attempt to further increase profits and control the port-
folio total risk, we can consider the so-called Sharpe ratio, a
performance measure defined as the expected rate of return
of the portfolio in excess of the risk-free rate over the stan-
dard deviation of the rates of return of the portfolio itself
(Sharpe 1966). According to Eqs. (2) and (3), the Sharpe
ratio of portfolio X is calculated as

l"«p(x) — Ry

SR(x) =~ =
p

(13)

where Ry denotes the risk-free rate. This measure evaluates
the compensation earned by the investor per unit of both sys-
tematic and idiosyncratic risks (Caporin et al. 2014). Higher
values of SR indicate more promising performance. How-
ever, when the expected excess rate of return is negative,
the portfolio with higher standard deviation leads to a better
Sharpe ratio, which is counter-intuitive. In this case, Israelsen
et al. (2005) suggests to multiply, instead of dividing, the
excess rate of return of the managed portfolio by its total
risk. The resulting modified Sharpe ratio is

up(X) — Ry

MSR(x) = W

(14)

where sign(-) represents the sign function. In line with the
prescription of the Sharpe ratio, a higher value of MSR is
preferred.

The proposed index-linked strategy aims to

1. reduce the number of periods in which the tracking port-
folio is below the benchmark as well as the magnitude
of these losses;

2. increase the number of periods in which the tracking
portfolio beats the benchmark and the magnitude of
these extra-rewards;

3. enhance the risk-adjusted performance of the portfolio.

Thus, investor’s decisions are based on the following prefer-
ence relation.

Definition 1 Let X C R” be the set of feasible portfolios and
x,y € X. Then x (Pareto) dominates y, in symbols x <y,
if and only if TE=(x) < TE™(y), TET(x) > TE*(y) and
MSR(x) > MSR(y), with at least one strict inequality.

According to this definition, we say that a portfolio x* € X' is
(Pareto) optimal if and only if it is nondominated with respect
to X, i.e., there does not exist another x € X that dominates
x*. Thus, an efficient portfolio for this investment strategy
is a Pareto optimal solution of the following multi-objective
problem

minimize (TE_ (x), —TE"(x), —MSR(X))
. (15)
subjectto x € X.

We consider the same set of criteria to guide the investment
choices in both the construction and the rebalancing stages.

2.3 The polynomial goal programming procedure

A general way to solve problem (15) is by transforming it
into a single-objective nonlinear programming problem. To
this end, we adopt the polynomial goal programming (PGP)
approach that aims at minimizing a polynomial expression
of the deviations between the achievement of goals and their
aspiration levels by accommodating investor’s preferences
(Deckro and Hebert 1988; Proelss and Schweizer 2014).

The procedure involves two steps. First, the optimal values
of each objective are determined by separately solving the
following optimization problems

TE, = min TE™ (x) (16)
xeX

TE] = max TE* (x) (17)
xeX

MSR, = max MSR(x). (18)
xeX

Then, given the investor’s subjective preferences toward the
downside tracking error risk, denoted by X1, the upside poten-
tial tracking profit, A2, and the modified Sharpe ratio, 13, the
portfolio optimization problem can be reformulated as

d Al d A2
1 -
TE‘) U TE}

*

minimize Z = <1 +

(e ]2 ])
MSR,
subject to TE™ (x) —d; = TE, (19)

TE" (x) +d, = TE]
MSR(x) + d3 = MSR,
di>0 i=1,2.73
xeX.
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This specification of the objective function ensures that it is
monotonically increasing in the deviations from the theoret-
ically optimal values of TE~, TE' and MSR.

The higher the preference parameter A;, i = 1,2, 3, the
more relevant the corresponding objective is deemed by the
investor. Thus, a preference parameter of zero would mean
that the investor has no interest in optimizing the corre-
sponding objective, while larger values would imply stronger
interest in the objective.

In the experimental section, we will consider several sets
of preferences to point out the features of this portfolio allo-
cation framework for different investors attitudes.

3 Constrained particle swarm optimization

Section 3.1 introduces the fundamentals of swarm opti-
mization and the constraint-handling mechanism we have
developed. Section 3.2 presents some procedures designed
to improve the constrained PSO algorithm.

3.1 Particle swarm optimization

Particle swarm optimization (PSO) is a population-based
algorithm that performs multidimensional search by mim-
icking the movements of a bird flock, or a fish schooling,
that searches for food (Eberhart and Kennedy 1995). The
PSO mechanism is mainly based on the communication of
information about good solutions through the swarm. In this
manner, the particles will tend to move toward good areas in
the search space (Wang et al. 2018).

For solving Problem (19), these ideas translates into the
following adaptations.

At each iteration s, we consider a set of P candidate solu-
tions, denoted by P. The p-th element of P is defined by a
pair of n-dimensional real vectors (x (), Vp (s)) such that:

- Xp(s) = (xp1(s), .. .,xp,z(s))—r represents the weights
of the p-th portfolio to be optimized;

= Vp(s) = (vp1(s), ...,vpn(s))—r is called velocity, and
conveys the information about possible changes in the
composition of x, for the next iteration.

For each weight vector x,(s), the K assets with the highest
weights enter the corresponding portfolio, while zero weight
is assigned to the remaining n — K assets. The binary variables
8i,i = 1,...,n,in (5) are thus implicitly handled, and the
cardinality constraint is satisfied. Further, assuming /; > 0 in
Eq. (7) avoids the indecisiveness case represented by §; = 1
and x; = 0.

Forall p =1,..., P, let us denote by xff“ and g”*! the
most recent best portfolio related to candidate solution p and

the overall best portfolio, respectively. Then, the update rule
for the velocity vector v, is given by

V(s +1) = wv,(s) + ciry (Xff’” —Xp(s))

+eara (g — x,(5)) (20)

where

w € R, called inertia weight, controls the exploration
and the exploitation steps of the algorithm by scaling the
contribution of the current vector of weight changes;

- xll’f” — Xp(s) represents the so-called cognitive compo-
nent and quantifies how much displacement, starting at
its current composition X, (s), the candidate solution will
need to reach its own best composition xf,e‘”;

- gbe‘” —X,(s), called social component, measures the dis-
tance of portfolio weights x,,(s) to the best composition
g5t of the entire group of portfolios;

— ¢1 and ¢; are positive acceleration coefficients used to
weight the contribution of the cognitive and social com-
ponents, respectively;

— r1 and r; represent two random numbers generated by a

uniform distribution on the interval [0, 1].

It can be noticed thatif w < 1, v;, decreases over time until it
is zero and P converges to an optimal portfolio, emphasizing
the local search around the current search area. On the con-
trary, if w > 1, v, increases and P diverges, emphasizing
the global search. Moreover, if ¢; > c¢3, then each portfolio
presents a stronger attraction to its own best composition,
resulting in a slow convergence, while if ¢; < ¢, it is most
attracted to the global best portfolio composition, causing
premature convergence.

The composition X, (s) of the p-th portfolio in P is modi-
fied atiteration s+ 1 by the vector of weight changes v, (s+1)
according to the following updating rule

Xp(s+1) =x,0)+vp(s+1) p=1,..., P. 21

3.1.1 Constraint-handling procedure for the portfolio
construction phase

In the construction phase, admissible portfolios have to sat-
isfy cardinality, budget constraint and buy-in thresholds. In
this case, we propose a repair operator that projects candi-
date solutions that do not meet constraints, onto the feasible
region.

First of all, since large values of weight changes may cause
candidate solutions to leave the domain boundaries (see Eber-
hart and Shi 2001), we clamp vectors v, to lie in a predefined
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interval. The vector of weight changes for the candidate solu-
tion p on dimension i at iteration s becomes:
min

!

i opi(s) < o™t
max

vpi (t) = 4 v, if vpi(s) > v{"ax (22)
Vi (5), otherwise

forp=1,...,Pandi = 1,...,n, where v;“i“ and v"*
are minimum and maximum percentages of capital that are
allowed to be moved for asset i, respectively. In this paper,
we follow Shi and Eberhart (1998) and set the maximum
weight change equal to a fraction § of the distance between
the bounds of the search space, that is, vlmax =8 (u; — 1),
with0 < § < 1. The minimum weight change is then defined
as U;’l’lll’l — _vimax
When a portfolio weight goes beyond one of its boundaries
due to (21), we modify the candidate solution as follows:

1. the portfolio weight takes the value of that boundary
(either the lower or the upper boundary);

2. the corresponding perturbation component in v, is
scaled by a random number generated by a uniform
distribution on the interval [0, 1], and multiplied by —1
so that it searches in the opposite direction.

In this manner, we obtain a set of candidate portfolios that
satisfy floor and ceiling constraints. Finally, the full invest-
ment condition (4) is dealt with the repair transformations
recommended in Meghwani and Thakur (2017) as follows.
Let us consider a portfolio x = (x1, ..., x,) " such that

1. I; <x; <u;foralli e I+,
2. Ziel+ l,‘ < 1,
3. Zie[+ u; > 1,

with I, ={i =1,...,n|x; > 0}, |I+] = K. Then, we

define the portfolio x = (x1, ..., )En)T e X asx; = 0 for
i ¢y, and, foralli € I,

(xi — 1)

i+ —"""_|1- sz ,
Zj€[+(xj_lj) j€1+
if Y xj>landiel;
Jely
foo a0 ) =1 (23)
JEL+
(i — xi)

Zu./—l ,

Zjebr(uj_‘xj) jely

if Y xj<landiel.

Jelt

u; —

It can be noticed that X preserves the invested positions of
X, satisfies the constraints /; < x; < u;, foralli € I, and
Y E =1

To select the vectors Xff”, p=1,...,P, and g’ in
each iteration, we use the following comparison rules. If the
current portfolio composition x, (s) attains a worst objective
function value than the best portfolio composition vector in
memory, x’;“ !, the latter is kept; otherwise, the current vector
of weights replaces the one in memory; if they assume the
same objective function value, then we select one of them
randomly. A similar idea is also used to update g’’’ but
now, the previous g”¢! is compared to each xi’,“ !, For mini-
mization problems, these rules can be expressed as

xi’f”, if F (xp(s)) > F (xbest

p

xll’f” = x’}’f”, if F (xp(s)) =F xl;f” andr > 0.5

Xp(s), otherwise

(24)

and

gbest7 if F X};]est - F(gbext)
gt = Jgbest i xbest) = F (gh") and 7 > 0.5

Xffs ! otherwise

(25)

where F is the objective function at hand, r and 7 are two
random numbers generated by a uniform distribution on the
interval [0, 1].!

3.1.2 Constraint-handling procedure for the portfolio
rebalancing phase

Since the rebalancing phase takes into account the turnover
constraint as well as the constraints involved in the con-
struction phase, we propose to update the weight vectors
Xp, p = 1,..., P, by integrating into the previous repair
mechanism the following set of feasibility rules based on the
domination principle (Deb 2000):

1. when two feasible portfolios are compared, that is, both
the portfolios meet (8), the one with the best objective
function value is chosen;

2. when afeasible portfolio is compared with an infeasible
portfolio, that is, a portfolio with a turnover higher than
the maximum turnover rate, the first one is chosen;

! For maximization problems, it suffices to replace > with < in (24)
and (25).
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3. when two infeasible portfolios are compared, the one
with the lowest constraint violation is chosen.

According to these rules, portfolios that are feasible in terms
of the turnover are always considered better than the infeasi-
ble ones. When two feasible portfolios are considered, they
are only compared on the basis of their objective function
values by means of (24) to identify Xl;fs " and through (25) to
select g*s? | respectively. In the case of two infeasible port-
folios, the comparison is based on the turnover violations,
irrespective of the objective function values. This rule aims
at pushing infeasible portfolios to the feasible region.

The resulting variant of the PSO algorithm, involving
these constraint-handling techniques, will be denoted by C-
PSO.

3.2 Improvements to the C-PSO algorithm

In C-PSO, the decision variables x,;, with i = 1,...,n,
indicate if a security has been selected and, at the same time,
the amount invested in it. Hence, stagnation and premature
convergence can occur in two forms. It may happen that
the update rule (20) pushes each portfolio weight vector x,
toward both its best composition X’I’f” and the overall best
portfolio g?**. It means that the values of the cognitive and
social components become small. Once these best candidate
solutions get stuck in local optima, all portfolios in P will
quickly converge to those points. Alternatively, it may also
happen that the same set of assets is selected for all the ele-
ments of P. In this case, PSO moves over only a specific
subspace of the search region and is unable to include other
assets in the composition of the candidate solutions.

To prevent these issues, we consider the following diver-
sity measure based on the relative distance of the portfolios
Xp, p = 1,..., P,from the overall best portfolio gb”’ (Kau-
cic 2013):

_ obest
51(S) = max M

peP diam (X)) (26)

where ||-|| represents the Euclidean distance and diam(X’) =

Vo (i — 1;)? is the diameter of the smallest hypercube
that contains the feasible set X'. If §;(s) is smaller than a
predefined threshold €5, with 0 < €5, < 1, stagnation
occurs. The candidate solutions (x p(8), vy (s)) are then re-
initialized, but the current xff“ and g’ individuals are
unchanged. In this manner, the generated candidate solutions
will move toward the potential neighborhood of the optimal
solution found so far, increasing the global search capabilities

of the algorithm.

This procedure, however, may slow down the convergence
speed of the PSO. According to Huang et al. (2019), we can
measure the magnitude of this effect by

F (gbest (S _ .[)) —F (gbest(s))

82(s) = F (gbest(s _ .L.))

27

where g’ (s — t) and g’**'(s) represent the overall best
solutions found at iteration s — 7 and s, respectively. If the
improvement in the objective function value > (s) is less than
a given threshold es,, with €5, > 0, it means that the PSO
algorithm cannot make any relevant progress in t iterations.
To improve the quality of the solutions in this case, we have
designed the perturbation procedure reported in Algorithm 1.

Algorithm 1: Perturbation procedure

Input : g%, 1, u, s, Sypax, Operator
Output: X, (s)

best

1SetX,(s) =g
2 if operator is swap then
3 | a—{i:xpi(s) =0}
a | b {itli <xpis) < ui)

5 /Gpa(s):la“"%(ua_la)
6 | £pp(s)=0

7 else

8 fori = 1tondo

9 if gf""” > 0 then

10 Setd = (1 - j) i —1;)
11 Ib = max (gr" — d, I;)
12 ub = min (g¥" +d, u;)
13 Xpi(s) = [Ib, ub]

14 end

15 end

16 end

Assuming that the higher-quality solutions are near the
global optimal solutions with higher probability than the
lower-quality ones (Huang et al. 2019), we generate a novel
population of P portfolios in the neighborhood of gl¢s’.
Half of the candidate solutions are generated by applying
the swap operator proposed in Krink et al. (2009) to g?¢’.
Let a and b be two randomly chosen positions in g?¢*!, such
that gge” =0andl, < gfj“” < uy, then the new p-th weight
vector, X, (s), is defined componentwise as

ghest, ifi #a and i #b
best
A —1
Rpi) = 1+ 8 ", 1), iti=a
up —Ip
0, ifi =b.

(28)
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The remaining portfolios are the result of the following pro- Algorithm 2: IC-PSO
cedure, similar to that proposed in Coello et al. (2004). Given Tnput _: investment objective F, K, [, u, TR, x", S, P, P, 5, &
: ,K,LLu,TR,x",S, P, P,3, €5,
If={i=1,...,n|gh" >0}, foralli € I§, we define €5, Smax
Output: ghes!
s _ best s . . best 1 Sets =0
Wi = [gi - (1 e ) i =1, & 2 Initialize X, (s) and v, (s), with p = 1,..., P
max
3 Set x| (s) = xt
s .
+ <1 _ ) (ui — li)] 4 Clamp Vp(s) using Eq. (22)
Smax 5 Repair x,(s) using Egs. (23)

6 Calculate turnover violation using Eq. (8)
7 Calculate F(xp(s))

8 Set x?,”’ =x,(0)

9 Find g?*' using Eq. (25)

10 while s < 5,,4, do

where s is the current iteration number and spyax represents
the maximum allowed number of iterations. Then, % ; (s)
is randomly generated from the interval W? N [/;, u;]. For

i ¢ IS, we set Xpi(s) = 0. By narrowing the range over u | s=s+1
time, this scheme improves the exploratory behavior around 12 | forp=1t Pdo
gbeST . 13 Update v, (s) using Egs. (20) and (22)
14 Upd.ate X, (s) using Egs. (21)
Remark 2 The swap operator provides an outward drift to 15 fori =1tondo
. . . 16 if x,;(s) >0 A Xp;(s) <I; then
explore un-reached regions. The new candidate solution " Set x,:(s) = I;
. . . .. . . . pi =1l
maintains K active positions, satisfies quantity constraints 18 r— [0,1]
for a and removes asset b from the portfolio. In general, the 19 Set vpi(s) = —rvp(s)
second operator can produce infeasible portfolios. The hybrid 20 else if x; (s) > u; then
constraint-handling procedure we have previously described 2 fei)x’[’é)(sl)]: i
is, thus, fupdamental to move these portfolios toward the 23 Set Vi (5) = —rV i (s)
feasible region. 24
25 end
Finally, we update the population of candidate solutions 26 Clamp v, (s) using Eq. (22)
x, with the corresponding X, maintaining unchanged v,, 27 Repair x,, (s) using Eqgs. (23)
xl;f” and g®**. The conditions related to (26) and (27) are ;z 53232:2 ;’Eiov(‘:;)vmlauon using Eq. (8)
applied perlodlcally, every v 1.terat10ns, to a}v01d unnecessary M Update xf’f” using Eq. (24)
calculations and, at the same time, to exploit t'he convergence a Update g**" using Eq. (25)
speed capabilities of the standard PSO algorithm. 2 | end
The pseudocode of the improved C-PSO algorithm that 33 | if smodt = 0 then
incorporates the proposed multi-start perturbation procedure, 34 if 51 (s) < ¢ then
henceforth IC-PSO, is given in Algorithm 2. It can be imple- * Re-initialize X, (s) .
. 36 Update x,(s) using Algorithm 1
mented to solve Problem (19) when rebalancing is requested. 3 Repair x,, (s) using Eqs. (23)
With suitable changes, IC-PSO can also be used to identify 38 Calculate turnover violation using Eq. (8)
the aspired levels in Problems (16)-(18) as well as to finda ¥ CalCUIatehF (xp(s))
. . est I
solution for the construction phase of Problem (19). 4 Update x,,”" using Eq. (24)
41 Update g?*! using Eq. (25)
2 end
. . . . 43 if 82(s) < €5, then
4 Experimental analysis and discussion “ Update x,(s) using Algorithm 1
45 Repair x,(s) using Egs. (23)
Section 4.1 presents the data set and describes the structure of 46 gaicuia‘e tF”mO"er violation using Eq. (8)
the experiments. In Sect. 4.2, we investigate the capabilities :; Uaci;lt::b”’(i[; i(r:))E 24)
of the developed algorithm. First, we identify a set of suitable P st g
. . 49 Update g”**" using Eq. (25)
configurations for the parameters. Successively, we show the s end
benefits of IC-PSO with respect to C-PSO. Section 4.3 ana- s1 | end

lyzes the performance of the PGP-based investment approach 52 end

by varying the vector of preferences.
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Table 1 List of stocks forming the investible universe

No. Company No. Company
1 ADIDAS 25 SOCIETE GENERALE
2 KONINKLIJKE AHOLD DELHAIZE 26 IBERDROLA
3 AIR LIQUIDE 27 ING GROEP
4 AIRBUS 28 INTESA SANPAOLO
5 ALLIANZ 29 INDITEX
6 ANHEUSER-BUSCH INBEV 30 KERING
7 ASML HOLDING 31 L’OREAL
8 AXA 32 LVMH
9 BANCO SANTANDER 33 MUENCHENER RUCK.
10 BASF 34 NOKIA
11 BAYER 35 ORANGE
12 BBV.ARGENTARIA 36 PHILIPS ELTN. KONINKLIJKE
13 BMW 37 SAFRAN
14 BNP PARIBAS 38 SANOFI
15 CRH 39 SAP
16 DAIMLER 40 SCHNEIDER ELECTRIC
17 DANONE 41 SIEMENS
18 DEUTSCHE POST 42 TELEFONICA
19 DEUTSCHE TELEKOM 43 TOTAL
20 ENEL 44 WEFD UNIBAIL RODAMCO STAPLED UNITS
21 ENGIE 45 UNILEVER DUTCH CERT.
22 ENI 46 VINCI
23 ESSILORLUXOTTICA 47 VIVENDI
24 FRESENIUS 48 VOLKSWAGEN PREF.
4.1 Data description and problem setting 4500 1
Our investible universe is represented by the 48 stocks listed 40001 ]
in Table 1, while the Euro Stoxx 50 Index plays the role of
the benchmark. The corresponding daily closing prices have 35001
been downloaded from Datastream and cover the period from Q
07/07/2005 to 21/06/2019, for a total of 3642 observations. & ~°°°[ 1
Figure 1 shows the evolution of the prices of the benchmark
- . . 2500 1
for this time frame. The investment strategies are based on the
rolling window procedure described in Sect.2.1. A training 2000l |
period of 250 days is used to determine the optimal portfo- backlesting analysis
lios, and 21 days represent the investment horizon. For each 15001 |
imation win h r f return of th k A A 6
estimation window, the expected rates of return of the stocks o 01|'l,§§,%\IZsrgg)al'lg%%tsﬂ?&%?)|%01«|04'2§€R0'2«0A}I05'2§««1‘2'2'%%6'20‘9

are calculated as sample estimates. Because of its effective-
ness in reducing the estimation error as well as in lowering the
out-of-sample variance of the portfolios, we have adopted the
Bayesian shrinkage estimator proposed in Ledoit and Wolf
(2003) for the covariance matrix.

We consider portfolios with 20 stocks. The buy-in thresh-
olds for the stocks weights are /; = 0.02 and u; = 0.30, for
i =1,...,n,respectively. When rebalancing is considered,
the maximum turnover rate 7 R is set to 10%.

10

Fig. 1 Prices of the Euro Stoxx 50 Index from 07/07/2005 to
21/06/2019

The six vectors of preferences listed in Table 2 provide
some representative investor attitudes toward the criteria con-
sidered in the PGP model. The first four types of investors
exploit two out of three criteria. Agents A; and A are
more conservative, giving double importance to the downside
tracking error risk, while agents A3 and A4 are more aggres-
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Table 2 Investors considered in Problem (19) with the corresponding
preferences toward the downside tracking error risk (A1), the upside
potential tracking profit (1,) and the modified Sharpe ratio (13)

Parameter Value

Agent Al Ar Az Ay As Ag
A 2 2 1 1 2

Ao 0 1 0 2

A3 1 0 1.5 1

Table3 Values of the C-PSO parameters used in the experimental anal-
ysis

Parameter Value Parameter Value
w 0.4 P 30

c 1.5 ) 0.07
2 2 Smax 5000

sive, doubling the attention for the other criteria. Moreover,
agents A1 and A3 manage the active risk-return performance
in terms of the modified Sharpe ratio, while agents A, and
A4 make their decisions on the basis of the upside potential
tracking information. The last two agents consider all the
criteria in acting their decisions, with particular attention to
control the downside risk.

4.2 Algorithmic analysis

The algorithms have been implemented in MATLAB R2019a
and are run on a Workstation with Intel Core 19 with 3.3 GHz
and 16 GB RAM.

4.2.1 Parameter settings

Since the hybrid constraint-handling procedure in C-PSO
does not require any setup, we focus on only the parame-
ters of the PSO, that is, the inertia weight w, the acceleration
coefficients c¢; and ¢, the population size P, the fraction §
used to clamp the velocity update in Eq. (22), and the number
of iterations spax . Based on the sensitivity analysis of Shi and
Eberhart (1998), we consider the parameters values reported
in Table 3. The procedure designed to improve C-PSO has
three parameters to be tuned, namely the cycle parameter t,
the stagnation threshold €5, and the quality threshold €5,. To
guarantee a suitable compromise between rapid convergence
and re-initialization, we select t in the set {100, 300, 500}.
For the stagnation parameter, the analysis has focused on the
values {0.0001, 0.0005, 0.001}, while the quality improve-
ment parameter is checked in {0.0001, 0.001, 0.01}. With
these parameter choices, we aim at promoting the local search
nearby the optimal solutions. At the same time, implement-

11

Table 4 End date of the time frames used as estimation windows for
the parameter tuning, divided by market phase and investment type

Market phase Investment type End date
Uptrend Construction 06/07/2007
Rebalancing 06/08/2007
Downtrend Construction 03/11/2008
Rebalancing 02/12/2008
Sideways/broadening trends Construction 31/12/2014
Rebalancing 29/01/2015

Table 5 Average rankings achieved by the Friedman test for the IC-
PSO algorithm in the two investment phases

Investment phase T €5, €5, Rankings
Construction 300 0.0005 0.0010 19.2778
Rebalancing 300 0.0010 0.0010 19.3889

ing re-initialization from time to time guarantees adequate
global search capabilities.

The effect of these parameters on IC-PSO is analyzed
by testing the optimization problems related to the three
aspired levels and the six instances of Problem (19). To take
into account possible time dependence, three sets of data
windows have been randomly selected. As given in Table
4, the first data set corresponds to an uptrend phase, the
second refers to a downtrend phase, and the third involves
sideways/broadening trends. Thus, the test set includes 27
optimization problems for the construction phase. The best
solutions are then used as initial portfolios for the following
27 optimization problems regarding the rebalancing phase.
To check the robustness of the results, 30 runs for each test
problem are used.

Table 5 shows the best parameter configurations for the
two optimization phases, based on the average ranking of
the Friedman test (Derrac et al. 2011). The only difference
between the two setups is for the stagnation threshold level.
This is due to the turnover constraint, used in the rebalancing
phase, that reduces the set of feasible portfolios with respect
to the construction phase. As a consequence, IC-PSO aims to
increase the number of re-initializations, in order to devote
more time to the global search. This is attained by doubling
€5, -

4.2.2 Performance evaluation of the algorithms

To show the merits of IC-PSO over C-PSO, the nine test

functions related to Problem (19) are carried out for 10
dates randomly selected from 07/07/2005 to 21/06/2019. The
configurations of the algorithms in the experimental study
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Table 6 Wilcoxon signed-rank test results for the construction phase
at different dates

Table 7 Wilcoxon signed-rank test results for the rebalancing phase at
different dates

Experiment End date Rt R~ p value Experiment End date Rt R~ p value
1 18/06/2009 43 2 0.0059 1 17/07/2009 45 0 0.0020
2 24/03/2010 44 1 0.0039 2 22/04/2010 45 0 0.0020
3 29/07/2011 45 0 0.0020 3 29/08/2011 45 0 0.0020
4 23/12/2011 45 0 0.0020 4 23/01/2012 45 0 0.0020
5 18/09/2012 45 0 0.0020 5 17/10/2012 45 0 0.0020
6 16/08/2013 43 2 0.0059 6 16/09/2013 45 0 0.0020
7 30/04/2015 45 0 0.0020 7 29/05/2015 45 0 0.0020
8 01/07/2015 44 1 0.0039 8 30/07/2015 45 0 0.0020
9 13/10/2015 44 1 0.0039 9 11/11/2015 45 0 0.0020
10 14/02/2019 44 1 0.0039 10 15/03/2019 42 3 0.0098
14 ; ;

correspond to the best alternatives found in the previous sec- 13l - %_F;,SS% |
tion.

Their performance are compared in terms of the Wilcoxon 121 .
signed-rank test (Derrac et al. 2011). Table 6 reports the
results for the average values over 30 runs regarding the "r i
construction phase. Similarly, the results for the rebalanc- L 10 i

ing phase over 30 runs are given in Table 7. In both cases, the
second column provides the end date of the corresponding
estimation window, R™ is the sum of ranks for the problems
in which IC-PSO outperformed C-PSO, R~ denotes the sum
of the ranks for the opposite, and the last column shows the
resultant p-values. It can be seen that IC-PSO is significantly
better than C-PSO in all the experiments.

As an example to support these findings, we focus on the
role that the improvement procedure has on the behavior of
PSO for agent Ag in Experiment 10. Figure 2 points out
the rapid convergence of C-PSO with respect to IC-PSO in
the construction phase. In particular, as shown in Fig. 3, it
can be seen that the re-initialization step increases the diver-
sity of solutions in IC-PSO and, at the same time, the local
search technique improves the solution quality even in the
last iterations. Figures 4 and 5 exhibit similar effects for the
rebalancig phase. As shown in Fig.6, the feasibility rules
handle the turnover constraint efficiently.

Similar conclusions can be inferred for the other agents
and test sets and, thus, are omitted.

4.3 Performance evaluation of the strategies

As in the previous sections, the out-of-sample analysis uses a
rolling window strategy with 250 days for the estimation win-
dow and 21 days for the investment horizon. The backtesting
period runs from 23/06/2006 to 27/12/2017 and covers 142
consecutive portfolio rebalancing phases (see Fig.1). The
performance of the PGP-based models is tested with respect
to two passive strategies, namely the index tracking model,

12
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Fig. 2 Comparison of C-PSO and IC-PSO in solving Problem (19)
for agent Ag at 14/02/2019 (construction phase), in terms of the best
objective function values. The results are averaged over 30 runs

given by Problem (10), and the portfolio that minimizes the
downside tracking error (11).

The following measures are considered in the compar-

isons. We compute the wealth of a portfolio at the ¢-th day
as in (Benidis et al. 2018)
Wy =Wi1(1+ Rpy) — ¢ (X, x-1) (29)
where ¢, represents the transaction cost function that depends
on the current and previous portfolios, denoted by x; and
X¢—1, respectively. In particular, we define ¢; as in Beraldi
et al. (2019). Its characteristics are reported in Table 8.

We propose to measure the effect of the costs on the avail-
able capital over the out-of-sample period by

Nreb

Z ¢ (Xr, X—1)
W1

=1

1
C= N (30)

reb
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Fig. 3 Comparison of C-PSO and IC-PSO in solving Problem (19) for agent Ag at 14/02/2019 (construction phase), in terms of the population
diversity &1 (on the left) and objective function improvement &, (on the right). The results are averaged over 30 runs
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Fig. 4 Comparison of C-PSO and IC-PSO in solving Problem (19)
for agent Ag at 15/03/2019 (rebalancing phase), in terms of the best
objective function values. The results are averaged over 30 runs

where Wy represents the initial wealth, xo is the initial
portfolio, and N, is the number of times the portfo-
lio is rebalanced. In the experiments, Wy is set equal to
1,000,000€ for all the investment strategies.

As suggested in Sharpe et al. (1995), to compare the prof-
itability of the investments, we use the so-called compound
annual growth rate (CAGR), which is calculated as

WT 250/7
CAGR = | — —1
Wo

&1V}

where T is the number of days in the investment period and
Wr is the final wealth.

For a rigorous assessment of the risk-adjusted perfor-
mance, we consider two standard measures: the out-of-

13

sample Sharpe ratio (Sharpe 1966) and the Rachev ratio
(Biglova et al. 2004). The first is defined as the ratio between
the mean of the out-of-sample portfolio returns and their stan-
dard deviation. The second is specified as the ratio between
the average of the best 8% returns of a portfolio and that of the
worst @ % returns. In this study, we have set both the parame-
ters @ and B equal to 10, as in Bruni et al. (2015). In general,
the out-of-sample Sharpe ratio is more focused to describe
the central part of the portfolio return distribution, while the
Rachev ratio stresses the behavior of the distribution on the
tails. Moreover, we analyze the capability of the strategies
to track the benchmark by evaluating the correlation and
the average difference between the annualized out-of-sample
returns of the portfolios and of the market index.

Tables 9, 10 and 11 list the results of the comparisons
for different values of the portfolio size. Over the same
time period, the CAGR of the Euro Stoxx 50 is 0.04%, its
Sharpe ratio is 11.56%, and the Rachev ratio is 97.26%.
Overall, the strategies present very low costs, with C vary-
ing between 0.08% and 0.15%. Moreover, there is no clear
relationship between performance and portfolio cardinality.
Notwithstanding, all the PGP-based portfolios beat the buy &
hold strategy as well as the corresponding passive portfolios
in terms of CAGR and risk-adjusted performance measures.

The high values of the correlations show that the PGP-
based portfolios are able to replicate the benchmark trend. At
the same time, the values of the average differences, which
are higher than those of the passive strategies, show that the
PGP-based models are able to generate moderate and con-
sistent excess returns with respect to the benchmark.

Figure 7 reports a graphical comparison of the values of
the wealth for the best PGP-based model, namely the one
using the preference vector Ag with 15 stocks, with the best
passive strategy, given by the index tracking model with 15



M. Kaucic et al.

0.14 T T

. C-PSO
IC-PSO

0.12r

0.08F

5,(s)

0.06

0.04f

S

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

. C-PSO
IC-PSO

r 4

L

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
S

Fig. 5 Comparison of C-PSO and IC-PSO in solving Problem (19) for agent Ag at 15/03/2019 (rebalancing phase), in terms of the population
diversity &1 (on the left) and objective function improvement &, (on the right). The results are averaged over 30 runs
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Fig.6 Comparison of C-PSO and IC-PSO in solving Problem (19) for
agent Ag at 15/03/2019 (rebalancing phase) in terms of the percentage
of feasible solutions in the set of candidate solutions PP. The results are
averaged over 30 runs

Table 8 Structure of the transaction costs

Trading segment (€) Fixed fee (€) Proportional cost (%)
0-7999 40 0

8000-49,999 0 0.5

50,000-99,999 0 04

100,000-199,999 0 0.25

> 200,000 400 0

constituents. Finally, to test whether the corresponding out-
of-sample mean returns of the two strategies over the different
market phases are statistically different, we apply a one-sided
t test. The null hypothesis is that the two strategies have the

14
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Fig.7 Wealth evolution of different index-linked investment strategies
from 23/06/2006 to 27/12/2017

same mean return, the alternative is that the PGP-based model
has a greater value. The results listed in Table 12 show that
the PGP-based portfolio behaves as the passive strategy in
downtrend and sideways phases. However, when the market
grows up, it is able to consistently outperform the tracking
portfolio.

5 Concluding remarks

We have introduced an EI strategy involving the downside
risk and the upside potential profit of the tracking portfolio,
and its Sharpe ratio as criteria to optimize. The investor’s
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Table 9 Out-of-sample results for the index tracking strategy (10),
denoted by /77, the strategy that minimizes the down side risk (11),
denoted by /75, and the six instances of Problem (19). All the portfo-

lios have cardinality K = 15 and refer to the investment period from
03/10/2007 to 27/12/2017

1T, 1T, Al Ao Az Ay As Ag
C (%) 0.08 0.10 0.09 0.10 0.10 0.12 0.10 0.10
CAGR (%) 0.79 0.33 1.56 1.37 1.72 0.84 1.48 1.82
Sharpe ratio (%) 14.96 13.02 18.12 17.41 18.75 15.25 17.77 19.29
Racheyv ratio (%) 98.90 98.66 97.79 98.03 97.65 97.33 97.63 97.88
Correlation (%) 98.28 98.30 98.23 98.30 98.02 97.99 98.05 98.13
Average diff. (%) 0.85 0.40 1.46 1.38 1.49 0.94 1.36 1.75

Table 10 Out-of-sample results for the index tracking strategy (10),
denoted by /77, the strategy that minimizes the down side risk (11),
denoted by /7>, and the six instances of Problem (19). All the portfo-

lios have cardinality K = 20 and refer to the investment period from
03/10/2007 to 27/12/2017

1T, 1T A Ao Az Ay As Ag
C (%) 0.10 0.11 0.10 0.11 0.11 0.12 0.11 0.11
CAGR (%) 0.03 —0.01 1.07 0.66 1.25 0.52 1.09 0.89
Sharpe (%) 11.74 11.58 16.04 14.40 16.70 13.87 16.09 15.28
Rachev (%) 98.65 98.63 98.63 98.69 98.51 98.44 98.51 98.93
Correlation (%) 98.42 98.51 98.67 98.66 98.52 98.53 98.60 98.53
Average diff. (%) 0.10 0.07 1.02 0.70 1.10 0.61 1.01 0.86

Table 11 Out-of-sample results for the index tracking strategy (10),
denoted by /77, the strategy that minimizes the down side risk (11),
denoted by /T3, and the six instances of Problem (19). All the portfo-

lios have cardinality K = 30 and refer to the investment period from
03/10/2007 to 27/12/2017

1Ty 17 Al Ar Az Ay As Ag
C (%) 0.14 0.15 0.14 0.15 0.15 0.15 0.15 0.15
CAGR (%) 0.71 0.74 1.08 0.74 1.35 1.06 1.6 1.16
Sharpe (%) 14.58 14.76 16.10 14.71 17.21 16.10 16.89 16.48
Rachev (%) 98.04 98.13 98.56 98.35 98.42 99.04 98.64 98.64
Correlation (%) 98.83 98.86 98.85 98.91 98.79 98.82 98.84 98.85
Average diff. (%) 0.75 0.79 1.06 0.77 1.26 1.10 1.22 1.15

Table 12 Results of the one-sided ¢ test for the out-of-sample mean
returns of the PGP-based model with the preference vector Ag and
K = 15 and those of the index tracking model with K = 15 in different
market phases

Time period Market phase p value
23/06/2006-21/07/2011 Downtrend and sideways 0.6654
22/07/2011-27/12/2017 Uptrend 0.0481

preferences have been used to combine these objectives by
polynomial goal programming. The resulting nonlinear prob-
lem has been solved by a novel version of the particle swarm
optimization algorithm, called IC-PSO. This procedure uses
a multi-start perturbation procedure to improve the search
capabilities of the original algorithm. In addition, IC-PSO
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handles the portfolio constraints by a hybrid technique that
combines a repair mechanism with the domination principle.

The computational analysis on a real-world case study
showed the effectiveness of IC-PSO and, at the same time,
the backtesting pointed out the benefits of the proposed EI
portfolio with respect to the passive strategies.

Future research work on the topic includes the study of
more types of preferences, eventually by defining a dynamic
setting, dependent on the economic cycle. We also plan
further investigations of the profitability of our PGP-based
strategy for other international indexes of stocks and fixed
income securities.
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