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Abstract— The paper considers the problem of designing
Adaptive Feedforward Control (AFC) systems for uncertain
SISO linear systems perturbed by multi-sinusoidal disturbances
of known frequencies. The proposed approach removes the
longstanding assumption that either the sign of the real part or
the imaginary part of the transfer function of a stable plant at
the frequency of excitation be known for AFC to be applicable,
which is referred to in this paper as an SPR-like condition.
Notable features of the solution are that persistence of excitation
is not required and stability analysis tools based on averaging
are avoided; hence, the requirement of an exponentially stable
equilibrium for the closed-loop system is circumvented.

I. INTRODUCTION AND PROBLEM STATEMENT

In this paper, we consider the classic setup of the Adaptive
Feedforward Control (AFC) problem for uncertain SISO LTI
systems, shown in Figure 1 (see [1], [2]), where

ẋ = A(µ)x+B(µ)[ d̂(t)− d(t)] , x(0) = x0 ∈ Rn0

y = C(µ)x (1)

is the realization of the internally stable interconnection of
an uncertain plant model and a robust stabilizer. The vector
µ ∈ Rp collects the uncertain parameters of the plant model,
assumed to range over a given known compact set, P ⊂ Rp.
For future use, we let W (s) := C(µ)(sI − A(µ))−1B(µ)
denote the transfer function of System (1). The input of this
system is affected by the sinusoidal disturbance

d(t) =
∑
n∈N

[ψn,1 cos(ωnt) + ψn,2 sin(ωnt)] (2)

comprising N known distinct excitation frequencies ωn ∈
R>0 and uncertain parameters ψn := (ψn,1 ψn,2)> ∈
R2, n ∈ N := {1, 2, · · · , N}. The disturbance input is
matched with a disturbance estimate d̂(t) ∈ R, generated
by the Adaptive Feedforward Control module in Figure 1.
In qualitative terms, the control objective is posed as finding
the estimate d̂(·) such that boundedness of all internal trajec-
tories is maintained and the output is regulated to zero. The

This work has been partially supported by the European Union’s Horizon
2020 Research and Innovation Programme under grant agreement No
739551 (KIOS CoE).

Yang Wang is with the Dept. of Electrical and Electronic Engineering at
Imperial College London, UK. (yang.wang13@imperial.ac.uk)

Gilberto Pin is with Electrolux Italia S.p.A, Italy.
(gilbertopin@alice.it).

Andrea Serrani is with the Department of Electrical and Computer
Engineering, The Ohio State University, Columbus OH, USA.

Thomas Parisini is with the Dept. of Electrical and Electronic En-
gineering at Imperial College London, UK, with the KIOS Research
and Innovation Centre of Excellence, University of Cyprus, and with
the Dept. of Engineering and Architecture at University of Trieste, Italy.
(t.parisini@gmail.com)

Corresponding author: A. Serrani, serrani.1@osu.edu

Exosystem

Plant

Stabilizing
Controller

Exosystem
Copy

Adaptive Feedforward

d̂
−d

yc

Tunable
Gains

+
ypup

+
u y

Stabilized Plant

uc

Fig. 1. Typical setup of the AFC problem

significance of this setup has been demonstrated in myriad
applications to active noise control [3], helicopters [4], [5],
disk drives [6], marine systems [7] and vibration control [8],
to name but a few.

The standard continuous-time AFC algorithm of [1] re-
quires bn := sign Re{W (jωn)}, n ∈ N , to be known a
priori. In that case, the AFC module is comprised of the
certainty-equivalence estimators

˙̂
ψn = −εnbn eS

>
ntg y , ψ̂n(0) = ψ̂n0 ∈ R2

d̂ =

N∑
n=1

g>eSntψ̂n , n ∈ N (3)

where the matrices Sn, g are defined as

Sn =

 0 ωn

−ωn 0

 , g =

1

0

 (4)

and εn > 0 are gain parameters. Exponential stability of
the interconnection (1)–(3) is proved to hold for sufficiently
small values of εn by way of averaging arguments [9], [10].
Persistence of the sign of Re{W (jωn)} over the range of
frequencies of interest is referred to as an SPR-like condition.
A similar result is obtained in [11] using a time-invariant re-
alization of (3). Therein, it is shown that, in case the quantity
sign Im{W (jωn)} is known in place of sign Re{W (jωn)},
an equivalent controller is obtained by replacing g in (4)
with g = (0 1)> and by letting bn := −sign Im{W (jωn)}.
The extension of [11] to the case of uncertain frequencies
of excitation is proposed in [12]. The case of input delay is
considered in [13], under the assumption of knowledge of
the sign of the high-frequency gain.

For uncertain plant models, in absence of the crucial
information on both the sign of the real and the imaginary
parts of W (jωn), none of those strategies can be imple-
mented. An adaptive solution that estimates Re{W (jωn)}
and Im{W (jωn)} alongside ψn was pursued in [14]. The
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Fig. 2. Original closed-loop system (5)-(9) as the interconnection (8)-(9)
of a dynamic uncertainty, an auxiliary system and a dynamic controller.

effectiveness of the scheme was demonstrated in simulations
and experiments; however, the convergence properties of the
algorithm could not be formally proved due to the absence
of exponential stability, which is required for asymptotic
analysis based on averaging, and local stability of the closed-
loop system could only be postulated. Furthermore, the
issue of non-singularity of the control law, which requires
bounding away from zero the euclidean norm of the estimates
of Re{W (jωn)} and Im{W (jωn)}, was not addressed.
In [5], [15], a recursive least-squares estimator was employed
for on-line identification of the frequency response of the
plant. Therein, the analysis assumed that the plant model is
in steady-state, hence the dynamic interaction between the
AFC algorithm and the plant dynamics was neglected. The
same type of assumption was made for the adaptive solution
proposed in [16]. Robustness with respect to unstructured
dynamic uncertainty acting on a known nominal plant model
was considered in [17], [18].

In this paper, building upon the preliminary work [19], we
propose an AFC strategy that, by disposing of the knowledge
of both sign Re{W (jωn)} and sign Im{W (jωn)}, avoids
the need for SPR-like conditions, which are replaced by
a weaker observability condition for the disturbance. As
in the cited references, the plant model is unknown, but
assumed to be robustly stable. The solution makes use of
tools from direct adaptive control [20], multi-parametric
estimation [21]–[25] and L2-gain analysis [26]. To the best of
our knowledge, this is the first result that provides asymptotic
regulation in the presence of parametric model uncertainty
where the dynamics of the plant is explicitly accounted for
in the stability analysis.

Notation: Throughout the paper, ‖ · ‖ denotes Euclidean
norms of vectors and matrices, whereas ‖·‖L2

denotes norms
in L2. I denotes the generic identity matrix. For vectors xi ∈
Rn, col(x1, . . . , xN ) := (x>1 · · · x>N )> ∈ RnN . For vectors
or matrices Ai ∈ Rm×n, ⊕Ni=1Ai := diag(A1, . . . , AN ) ∈
RmN×nN . For a set A ⊂ Rn, AN := A× · · · × A.

A. Statement of the Problem

We begin by replacing in (3) the feedback terms −εnbny
with auxiliary inputs, uan, to be defined. A coordinate
change is then applied to dispose of the need to con-
sider a time-varying setting. As in [11], define wn(t) :=
exp(Snt)ψn and apply the transformation ŵn(t) :=

exp(Snt)ψ̂n to rewrite (1)-(3) as the interconnection of
an exosystem, an uncertain internally stable plant, and a
disturbance model (all linear and time-invariant) as follows:

ẇ = Sw , w(0) = w0 ∈ R2N

ẋ = A(µ)x+B(µ)[Γŵ − Γw], x(0) = x0 ∈ Rn0

˙̂w = Sŵ +Gua , ŵ(0) = ŵ0 ∈ R2N

y = C(µ)x
(5)

with w := col(w1, . . . , wN ), ŵ := col(ŵ1, . . . , ŵN ) ∈ R2N ,
ua := col(ua1, . . . , uaN ) ∈ RN , S := diag (S1, · · · , SN ) ∈
R2N×2N , G := diag (g, · · · , g) ∈ R2N×N and Γ :=(
g> · · · g>

)
∈ R2N .

Next, we clarify the statement that System (1) is internally
stable, robustly in µ ∈ P (see [27]):

Assumption 1.1: There exist constants %1, %2 > 0 such
that the parameterized family Pz : Rp → Rn×n of solutions
of the Lyapunov equation Pz(µ)A(µ) +A>(µ)Pz(µ) = −I
satisfies %1I ≤ Pz(µ) ≤ %2I for all µ ∈ P . /

Owing to Assumption 1.1, let Πn(µ) ∈ Rn0×2 denote
the unique solution of the Sylvester equation Πn(µ)Sn =
A(µ)Πn(µ) + B(µ)g>, and define the unknown parameter
vectors

ϑ>n := C(µ)Πn(µ)=
(
Re{W (jωn)} Im{W (jωn)}

)
(6)

for n ∈ N . Note that ϑn are functions of µ, but this
dependence will not be displayed for ease of notation.
Set Π(µ) :=

(
Π1(µ) · · · ΠN (µ)

)
∈ Rn0×2N and ϑ :=

col(ϑ1, . . . , ϑN ) ∈ R2N . Let the compact set Θ ⊂ R2 be
defined as the annular region

Θ :=
{
θ ∈ R2 | δ2

1 ≤ ||θ||2 ≤ δ2
2

}
(7)

for given real numbers 0 < δ1 < δ2. The SPR-like
assumptions are replaced by the following weaker condition,
which is independent on the sign of the entries of ϑn:

Assumption 1.2: The vectors ϑn, n ∈ N , satisfy ϑn ∈ Θ
for all µ ∈ P , that is, ϑ ∈ ΘN . /

Assumption 1.2 implies observability of the pair (ϑn, Sn),
uniformly in µ ∈ P . Changing again variables as ζ := ŵ−w
and z := x−Π(µ)ζ, one obtains the error system

ż = A(µ)z −Π(µ)Gua , z(0) = z0 ∈ Rn0

ζ̇ = Sζ +Gua , ζ(0) = ζ0 ∈ R2N

y = C(µ)z + ϑ>ζ .

(8)

The control problem can now be formally stated as follows:
Problem 1: Design a dynamic output-feedback controller

ξ̇ = fa(ξ, y) , ξ(0) = ξ0 ∈ Rm

ua = ha(ξ, y)
(9)

such that all trajectories of the closed-loop System (8)-(9)
originating from initial conditions z0 ∈ Rn0 , ζ0 ∈ R2N and
ξ0 ∈ X , where X ⊂ Rm is a set to be determined, are
bounded and satisfy limt→∞ y(t) = 0 for all µ ∈ P . /

2



The following strategy is adopted to solve Problem 1:
System (8)-(9) is regarded as the interconnection of an
auxiliary system (the ζ-dynamics), a dynamic perturbation
(the z-dynamics), and a controller to be determined, as seen
in Fig. 2(b). For the auxiliary system, a baseline adaptive
controller is designed, and a suitable non-minimal realization
of the observer error dynamics is derived, which is amenable
to parameter estimation. This is accomplished in Section II.
A stability analysis for the baseline controller is carried out
in Section III with the purpose of determining the properties
of the update law required to achieve asymptotic regulation.
The necessity of constraining the parameter estimates in
the non-convex parameter set ΘN necessitates replacing the
baseline controller with a multiple-model switching con-
troller, presented in Section IV. The stability analysis of
the overall system is presented in Section V, where global
boundedness of closed-loop trajectories and asymptotic reg-
ulation are proved. A lower-dimensional implementation of
the controller is suggested in Section VI. Finally, a detailed
simulation study is presented in Section VII.

II. BASELINE CONTROLLER DESIGN

As the useful information for reconstructing d(t) is the
steady-state response yss(t) = ϑ>ζ(t) corresponding to ua =
0 and ζ0 = −w0, we associate to (8) the auxiliary system

ζ̇ = Sζ +Gua

ya = ϑ>ζ
(10)

which is controllable and observable for all µ ∈ P , owing
to Assumption 1.2. Note that the signal ya = y − C(µ)z is
not available for feedback. To design a dynamic controller
for (10), we first obtain a more suitable realization by means
of the coordinate transformations ζon = M−1

on ζn, where

Mon :=
1

||ϑn||2

ϑn1 −ϑn2

ϑn2 ϑn1

 , n ∈ N .

This yields the system

ζ̇o = Sζo + θ ua

ya = Γζo,
(11)

where θ := ⊕Nn=1θn ∈ R2N×N , θn =
(
ϑn1 −ϑn2

)> ∈ R2

and ζo := col(ζ1, · · · , ζN ) ∈ R2N . Note that Assumption 1.2
holds for the re-parametrized vectors θn as well. A certainty-
equivalence adaptive observer for (11) reads as

˙̂
ζo = Sζ̂o + θ̂(t)ua − ε Γ> [ŷa − y]

ŷa = Γ ζ̂o
(12)

where θ̂ := col(θ̂1, . . . , θ̂N ) ∈ R2N collects vectors of
estimates θ̂ ∈ R2, whose update law is to be determined,
θ̂ := ⊕Nn=1θ̂n ∈ R2N×N , and ε > 0 is a gain parameter. The
design is completed by the certainty-equivalence control

ua = −ε θ̂>(t)ζ̂o (13)

which yields the closed-loop system in observer coordinates

˙̂
ζo =

[
S − ε θ̂(t)θ̂>(t)

]
ζ̂o − ε Γ> [ŷa − y] . (14)

The dynamics of the observation error ζ̃o := ζ̂o − ζo are

˙̃
ζo = Fε ζ̃o + θ̃(t)ua + ε Γ>C(µ)z

ỹ = Γ ζ̃o − C(µ)z
(15)

where θ̃n := θ̂n − θn, θ̃ := θ̂ − θ ∈ R2N , θ̃ := ⊕Nn=1θ̃n ∈
R2N×N , and ỹ := ŷa − y. Note that Fε := S − ε Γ>Γ ∈
R2N×2N is Hurwitz for sufficiently small ε > 0 (see
Lemma 3.2 in Section III.)

Non-minimal realization of the observer error dynamics

To design an update law for θ̂(t), one needs a more
convenient parametrization of (15) where the uncertain term
θ̃(t) is shifted to the output equation. Using a suitable version
of the classic Swapping Lemma [20], System (15) is regarded
as the parallel interconnection of two systems, with input-
output maps given respectively by

ỹ1(t) = Γ

∫ t

0

eFε(t−τ)θ̃(τ)ua(τ)dτ (16)

and by

ỹ2(t) = εΓ

∫ t

0

eFε(t−τ)Γ>C(µ)z(τ)dτ − C(µ)z(t) (17)

with ỹ = ỹ1 + ỹ2. The impulse response of (17) admits the
LTI realization

ξ̇3 = Fεξ3 + εΓ>C(µ)z

ỹ2 = Γξ3 − C(µ)z (18)

with ξ3 ∈ R2N , whereas (16) admits the LTV realization

ξ̇1 = E>ε ξ1 +Gua

ξ̇2 = Fε ξ2 +Ξ
˙̂
θ(t)

Ξ̇ = FεΞ + I(ua)

ỹ1 = θ̃>(t)ξ1 − Γξ2

(19)

where ξ1 ∈ R2N , ξ2 ∈ R2N , Ξ ∈ R2N×2N and Eε :=
S − εNGG> ∈ R2N×2N . The linear operator I(·) : RN →
R2N×2N is defined as I(ua) := ⊕Nn=1uanI2. The detailed
derivation of System (19) is found in Appendix A.

In (19), ˙̂
θ(t) is regarded as a known time-varying vector.

It will be shown in Lemma 3.6 in Section III that E>ε is
Hurwitz for all ε > 0, therefore System (19) is globally
exponentially stable if ˙̂

θ(·) is bounded. While the aggregate
state col(ξ2, ξ3) is not available for feedback, an open-loop
observer of the state ξ1 can be easily designed as

˙̂
ξ1 = E>ε ξ̂1 +Gua. (20)
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Together with (11) and (18), this setup yields the nonlinear
closed-loop system

˙̂
ζo =

[
S−ε θ̂θ̂>

]
ζ̂o−ε Γ>θ̃>ξ̂1+ε Γ>

[
Γξ2−Γξ3 + C(µ)z

]
˙̂
ξ1 = E>ε ξ̂1 − εGθ̂>ζ̂o
ξ̇2 = Fε ξ2 +Ξϕ

Ξ̇ = FεΞ + I(−εθ̂>ζ̂o)
ξ̇3 = Fεξ3 + ε Γ>C(µ)z

ż = A(µ)z + εΠ(µ)Gθ̂>ζ̂o
˙̂
θ = ϕ

y = Γ ζ̂o − θ̃>ξ̂1 + Γξ2 − Γξ3 + C(µ)z + θ̃>ξ̃1 (21)

where ˙̂
θ = ϕ is the update law to be determined, and ξ̃1 :=

ξ̂1−ξ1. Thanks to Lemma 3.6 and the fact that boundedness
of θ̂(·) will be enforced by the selection of ϕ, with a minor
abuse but no loss of generality, the exponentially decaying
term θ̃>ξ̃1 will be dropped from the last equation in (21).

The non-minimal realization (21) of the closed-loop sys-
tem allows one to recast the original Problem 1 as the
following problem of robust output stabilization:

Problem 2: Find an update law ϕ = ϕ(ζ̂o, ξ̂1, y) (depend-
ing only on the available variables) and a selection for ε > 0
such that the trajectories of (21) are bounded and satisfy
limt→∞ y(t) = 0 for any µ ∈ P and any θ ∈ ΘN . /

III. STABILITY ANALYSIS: BASELINE CONTROLLER

In this section, we provide the stability analysis of the
system in closed-loop with the baseline controller (Eq. (21)),
and derive sufficient conditions for the update law ϕ to solve
Problem 2. The results will serve as a building block for the
analysis of the multiple-model algorithm of the next section.

To begin with, we identify desirable properties for θ̂(·) that
will be attained by the update law ϕ designed in Section IV.

Definition 3.1: Let Θ̂N be the set of C1 signals θ̂(·) :
R≥0 → R2N whose components satisfy

1) θ̂n(t) ∈ Θ for all t ≥ 0 and n ∈ N ;
2) There exists a constant ρ > 0 such that ‖ ˙̂

θn(t)‖ ≤ ε2ρ
for all t ≥ 0 and n ∈ N /

Fix, arbitrarily, θ̂(·) ∈ Θ̂N and regard (21) as the LTV system,
with input u1 := −θ̃>ξ̂1 ∈ R and output y1 ∈ R, defined by

˙̂
ζo =

[
S−ε θ̂(t)θ̂>(t)

]
ζ̂o−εΓ>y1 + εΓ>u1

ξ̇2 = Fε ξ2 +Ξ
˙̂
θ(t)

Ξ̇ = FεΞ + I(−εθ̂>ζ̂o)
ξ̇3 = Fεξ3 + ε Γ>C(µ)z

ż = A(µ)z + εΠ(µ)Gθ̂>(t)ζ̂o

y1 = −Γξ2 + Γξ3 − C(µ)z

(22)

Σ1

Σ2

u1

y1

+

−

η2 ν2

ν1 η1

Σ3

η3 ν3

+

−

Fig. 3. System (22) as feedback interconnection of (23), (24) and (25).

System (22) is conveniently analyzed as the interconnection
of the following linear systems (see Fig. 3) :

Σ1 :


˙̂
ζo =

[
S − ε θ̂(t)θ̂>(t)

]
ζ̂o + ε Γ> ν1

η1 = θ̂>(t)ζ̂o
(23)

Σ2 :


ξ̇2 = Fε ξ2 +Ξ

˙̂
θ(t)

Ξ̇ = FεΞ + I(−ε ν2)

η2 = Γξ2

(24)

Σ3 :


ξ̇3 = Fεξ3 + ε Γ>C(µ)z

ż = A(µ)z + εΠ(µ)Gν3

η3 = Γξ3 − C(µ)z

(25)

with interconnection structure ν1 = u1 + η2 − η3 ∈ R, ν2 =
η1 ∈ RN , ν3 = η1 ∈ RN , overall input u1 and overall output
y1 = η3 − η2.

Next, we establish properties of Lyapunov function can-
didates and results for each subsystem in (23)–(25) that are
instrumental in the ensuing analysis.

Lemma 3.1: Let Io : (θ, ε) 7→ R2N×2N be the positive-
definite diagonal matrix-valued function

Io(θ, ε) := ε

N⊕
n=1

θ>n θnI2 , ε > 0 , θn ∈ Θ

and let Po : (θ, ε) 7→ R2N×2N denote the solution of the
parameterized family of Lyapunov equations

Po(θ, ε)
[
S−εθθ>

]
+
[
S−εθθ>

]>
Po(θ, ε)=−Io(θ, ε)

(26)
There exist a scalar ε̄0 > 0 and constants 0 < c1 < c2 ≤ c3
such that c1I ≤ Po(θ, ε) ≤ c2I and ‖Po(θ, ε)‖ ≤ c3 for all
(θ, ε) ∈ ΘN × (0, ε̄0]. /

Lemma 3.2: Let PF : ε 7→ R2N×2N denote the symmetric
solution of the family of Lyapunov equations

PF (ε)Fε + F>ε PF (ε) = QF (ε) (27)

for some symmetric negative definite matrix-valued function
QF (ε). There exist scalars ε̄1 ∈ R>0, λ ∈ R>0, c4 > 0,
a class-N function1 c5(·) and a symmetric matrix-valued
function QF (ε) such that for all ε ∈ (0, ε̄1]:
• QF (ε) ≤ −ελI2N
• c4 I2N ≤ PF (ε) ≤ c5(ε) I2N . /

1A class-N function α(·) : R+ → R+ is non-negative, continuous and
strictly increasing, but not necessarily α(0) = 0.

4



Proposition 3.3: There exist scalars γ?1 > 0 and ε?1 ∈
(0,min{ε̄0, ε̄1}] such that Σ1 is strictly dissipative with
respect to the supply rate q1(ν1, η1) = γ?1

2|ν1|2 − ||η1||2 for
all ε ∈ (0, ε?1), with positive definite and decrescent storage
function W1(t, ζ̂o)=2ε−1ζ̂>o Po(θ̂, ε)ζ̂o. /

Proposition 3.4: There exists γ?2 > 0 such that Σ2

is strictly dissipative with respect to the supply rate
q2(ν2, η2) = ε2γ?2

2||ν2||2 − |η2|2 for all ε ∈ (0, ε?1), with
quadratic and positive definite storage function of the form
W2(ξ2, Ξ) = a1(ε)ξ>2 PF (ε)ξ2 + a2(ε) trace

(
Ξ>PF (ε)Ξ

)
,

for suitable continuous functions a1(ε), a2(ε) > 0. /

Proposition 3.5: There exists γ?3 > 0 such that Σ3

is strictly dissipative with respect to the supply rate
q3(ν3, η3) = ε2γ?3

2||ν3||2 − |η3|2 for all ε ∈ (0, ε?1) and all
µ ∈ P , with a quadratic and positive definite storage function
of the form W3(ξ3, z) = a3(ε)ξ>3 PF (ε)ξ3 +a4(ε)z>Pz(µ)z,
for suitable continuous functions a3(ε), a4(ε) > 0. /

Finally, we establish a Lyapunov function for (20):
Lemma 3.6: Let PE : ε 7→ R2N×2N be the symmetric

solution of the family of Lyapunov equations

PE(ε)Eε + E>ε PE(ε) = −εNI2N (28)

Then, there exist a scalar c6 > 0 and a class-N function
c7(·) such that c6 I2N ≤ PE(ε) ≤ c7(ε) I2N for all ε > 0. /
The proofs of Lemmas 3.1, 3.2, 3.6 and Proposition 3.3 are
given in the Appendix. Conversely, the proofs of Proposi-
tions 3.4 and 3.5 are omitted, as they follow from similar
elementary Lyapunov arguments exploiting those lemmas.

For System (22), the following important result, which
enables the use of small-gain techniques, is obtained from
the analysis of the interconnection structure (23)–(25):

Proposition 3.7: Assume that θ̂(·) ∈ Θ̂N . Then, there
exists a constant ε? ∈ R>0, which depends only on the
compact sets P and Θ, such that the origin of the unforced
System (22) is exponentially stable for any ε ∈ (0, ε?).
Moreover, the L2-gain between the input u1 and the output
y1 vanishes monotonically as ε→ 0. /

Proof: Fix ε ∈ (0, ε?1 ) and notice that, since the
interconnected system is globally Lipschitz uniformly in t,
solutions exist uniquely for all t ≥ 0 and all locally
essentially bounded inputs u1(·). Applying Propositions 3.3
– 3.5 and combining the L2 gains of the single subsystems
Σi, i = 1, 2, 3, one obtains for all τ ∈ R≥0

‖η1τ ‖L2
≤ γ?1‖u1τ ‖L2

+ εγ?1
(
γ?2 + γ?3

)
‖η1τ ‖L2

where uτ (·) denotes the truncation of the signal u(·) over
[0, τ ]. Letting ε? := min{ε?1, 1/ γ?1 (γ?2 +γ?3 )}, it follows that
System (22) is a small-gain interconnection (with respect to
the L2-norm) for all ε ∈ (0, ε?). Application of the small-
gain theorem for finite L2-gain systems [26, Theorem 10.8.1
& Corollary 10.8.2] yields the result, with

‖y1τ ‖L2
≤ ε γ?1

(
γ?2 + γ?3

)
1− ε γ?1

(
γ?2 + γ?3

)‖u1τ ‖L2 (29)

for all ε ∈ (0, ε?) and all τ ∈ R≥0.

The next result follows from the fact that exponentially stable
linear systems are L2-to-L∞ stable:

Proposition 3.8: Consider the interconnection ν4 = η1 of
System (22) with the LTI system

Σ4 :
˙̂
ξ1 = E>ε ξ̂1 − εGν4. (30)

Under the conditions of Proposition 3.7, the solutions
of (22)–(30) belong to L∞ if u1(·) ∈ L2. /

Proof: From Proposition 3.3, it follows that the storage
function W1(t, ζ̂o) satisfies the dissipation inequality Ẇ1 ≤
γ?1

2|ν1|2 − ||η1||2. Integrating each side of this inequality
along trajectories of (22) and (30) over the interval [0, τ ],
and recalling from Proposition 3.4 and Proposition 3.5 that

‖ηjτ ‖L2
≤ εγ?j ‖η1τ ‖L2

, j = 2, 3,

one obtains

W1(τ, ζ̂o(τ)) < W1(0, ζ̂o(0)) + γ?1
2‖u1τ ‖2L2

−
(
1− ε2γ?1

2(γ?2
2+γ?3

2)
)
‖η1τ ‖2L2

.

By virtue of Lemma 3.1 and the small-gain condition, this
inequality implies that

‖ζ̂o(τ)‖ ≤
√

ε

c1
max

{√
2c2
ε
‖ζ̂o(0)‖ , γ?1‖u1‖L2

}
for all τ ∈ R≥0, hence ζ̂o(·) ∈ L∞. Since θ̂(·) is bounded by
assumption, it follows that η1(·) ∈ L∞. Exponential stability
of Systems (24), (25) and (30) implies that all remaining state
trajectories belong to L∞ as well.

Combining Proposition 3.7 and Proposition 3.8, one obtains
the main result of this section:

Theorem 3.9: Let Assumptions 1.1 and 1.2 hold. If there
exists an update law ϕ = ϕ(ζ̂o, ξ̂1, y) such that:

(i.) the forward solution θ̂(·) of ˙̂
θ = ϕ(ζ̂o, ξ̂1, y) belongs

to Θ̂N for all initial conditions θ̂(0) ∈ intΘN ;

(ii.) the signal η4(·) := ξ̂>1 (·)θ̃(·) belongs to L2.
Then there exists a constant ε such that the problem of output
stabilization for System (21) is solved for all ε ∈ (0, ε). /

Proof: Notice that Assumptions 1.1-1.2 and (i.)–(ii.)
imply that the requirements of Propositions 3.7 and 3.8 are
satisfied. Setting u1(·) = −η4(·) in System (22), Condi-
tion (ii.) implies that ξ̂1(·) ∈ L∞ and ˙̂

ξ1(·) ∈ L∞ for all
ε ∈ (0, ε). Since θ̂(·) ∈ Θ̂N implies that θ̂(·) ∈ L∞ and
˙̂
θ(·) ∈ L∞, it follows that η4(·) ∈ L2∩L∞ and η̇4(·) ∈ L∞.
By a corollary of Barbălat’s Lemma [20, Lemma 3.2.5],
it follows that limt→∞ η4(t) = 0. Since System (22) is
exponentially stable for all ε ∈ (0, ε), it follows that ζ̂o(t),
ξ2(t), ξ3(t), Ξ(t) and z(t) vanish asymptotically, hence
limt→∞ y(t) = 0.

IV. MULTIPLE-MODEL SWITCHING CONTROLLER

The results of Section III have shifted the burden of the
whole control strategy of Section II to the problem of finding
a suitable update law with the required characteristics listed
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θ1

θ2

δ2
δ1

Θ1Θ2

Θ3

Fig. 4. Finite covering of Θ using three convex sets, Θi i = 1, 2, 3.

in the statement of Theorem 3.9. While boundedness of ˙̂
θ(·)

can be enforced via normalization, ensuring that θ̂(t) ∈ ΘN
for all t ≥ 0 is hindered by the fact that Θ is not convex,
hence standard projection techniques do not apply. Following
the seminal work [21] and later enhancements [22]–[25],
the parameter set Θ defined in (7) is extended to a finite
covering of convex sets. In particular2, we let Θ̄ :=

⋃3
k=1Θk

as shown in Figure 4, and replace Θ with Θ̄ and ΘN

with Θ̄N . Denoting the index set by Q := {1, 2, · · · , 3N},
different parameter estimate vectors θ̂i ∈ R2N , i ∈ Q are
introduced, each governed by its own update law. Since one
must consider all possible combinations of estimates θ̂in for
each frequency ωn belonging to each one of the three sets
Θk, k ∈ {1, 2, 3}, Q is necessarily the power set. The map

R(i, n) : Q×N 7→ {1, 2, 3} (31)

establishes a one-to-one relation among estimators, distinct
excitation frequencies and corresponding parameter subsets.
This map is specified in such a way that ∪iR(i, ·) covers all
3N combinations of the parameter sets, that is ∪nR(i, n) 6=
∪nR(j, n), for any i, j ∈ Q, i 6= j. The ensuing partition of
the parameter space leads one to replace the original adaptive
controller with a switching controller based on a multiple
model estimator, where 3N estimators are continuously run
in parallel, whereas at a given time only one adaptive con-
troller (corresponding to a specific estimator) is connected
to the plant input. The selection of the active controller is
demanded to the switching logic with hysteresis of [22], [25].
The structure of the overall controller, shown in Figure 5,
comprises the following modules:

1) Multiple-model Estimator and Switching Controller:
The observer-based adaptive controller (12)-(13) is replaced
by controllers of the form

˙̂
ζio = Sζ̂io + θ̂iua − ε Γ>

[
ŷia − y

]
, ζ̂io ∈ R2N

ŷia = Γ ζ̂io (32)

uia = −εθ̂i>ζ̂io , i ∈ Q.
The control signal applied to the plant at any t ≥ 0 is ua(t) =

u
σ(t)
a (t), being σ : R≥0 → Q a piecewise-constant switching

signal determined by the switching mechanism.

2We consider one of many solutions to convexification of Θ with a
minimum number of subsets. One can arbitrarily modify the subsets in
Figure 4, as long as they remain convex and with non-overlapping interior.

...

Estimator 1

Estimator 3N

...

Controller 1

Controller 3N

...
Switching
Logic

...

...

Plant y

ŷ1

ŷ3
N

~y1

~y3
N

σ

u1
a

u3N

a

uσ
a

Multi-estimator

Multi-controller

Switching

Fig. 5. Block diagram of the multiple-model controller.

2) Multiple-model Update Law: For each vector θ̂i, the
parameter estimate θ̂in, associated to frequency ωn, is con-
strained to evolve on one of the convex setsΘk, k =R(i, n).
The corresponding update law is given by

˙̂
θin = Projk

(
θ̂in, ϕ

i
n(ξ̂1, ỹ

i)
)
, θ̂in(0) ∈ intΘk

˙̂
ξ1 = E>ε ξ̂1 +Gua , ξ̂1(0) ∈ R2N

ỹi = ŷia − y, i ∈ Q, n ∈ N
(33)

where k = R(i, n) and Projk(·) is the standard projection on
Θk [20]. Note that all update laws share the state of a single
observer for the state ξ1 of (19). The unconstrained update
law ϕi : (ξ̂1, ỹ

i) 7→ R2N for each estimator is selected as
the normalized gradient law

ϕin(ξ̂1, ỹ
i) = −ρε

2

N

ξ̂1nỹ
i

m2
i

∈ R2, n ∈ N , i ∈ Q (34)

yielding ϕi(ξ̂1, ỹ
i) = col

(
ϕi1(ξ̂11, ỹ

i), . . . , ϕiN (ξ̂1N , ỹ
i)
)
.

The normalization signal m2
i := 1 + ‖ξ̂1‖2 + |ỹi|2 ensures

that ‖ϕi‖ < ρε2 for all i ∈ Q.
3) Hysteresis Switching Logic: As in [23], the following

functions are defined as the performance criteria employed
in the switching logic for all estimator/controller pairs:

J i(t) = β

∫ t

0

ỹi(τ)2dτ , i ∈ Q (35)

where β > 0 is a parameter to be selected. The hysteresis
switching logic of [25] is adopted for the controller selection.

To specify the mechanism of hysteresis switching, it is
necessary to select the hysteresis constant h ∈ R>0. First,
set σ(0) = arg min

i∈Q
{J i(0)}. Suppose that at certain time

tm > 0, the value of σ(tm) just switches to some i0 ∈ Q.
Then σ(t) is kept constant until the time tm+1 > tm such
that h + min

i∈Q
{J i(tm+1)} < J i0(tm+1); at that point, set

σ(tm+1) = arg min
i∈Q
{J i(tm+1)}. Repeating the above steps,

one generates a piecewise-constant signal σ(t) which is
continuous from the right everywhere. When the indicated
arg min is not unique, a particular value for σ among those
achieving the minimum can be selected arbitrarily.

Let the time sequence {Tm}Mm=1, denote the times at
which the switching takes place; note that T0 = 0, σ(T0) =
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argmin{J i(0)} and that M ≤ ∞. The switching logic is
formally stated as

σ(Tm) := arg min
i∈Q,i6=k

{J ih(Tm)} (36)

where J ih(Tm) := J i(Tm)+h and k = σ(Tm−1) is the index
identifying the previously activating controller. According to
the hysteresis switching mechanism, a switching occurs at
t = Tm only if the condition

Jk(Tm) > min
i∈Q,i6=k

{J ih(Tm)}

is satisfied. Note that σ(t) = σ(Tm) in any time interval
[Tm, Tm+1). The proposed switching scheme thus consists
of continuously monitoring the performance index J ih(t),
i ∈ Q. Using the arguments in [28], it can be shown
that on each interval [0, T ] there are only finite number of
switches, therefore the infinitely fast switching (chattering)
phenomenon is avoided. At each t, the controller connected
to the plant is selected as ua(t) = u

σ(t)
a (t). In the sequel, we

drop the dependence of σ(t) on t when letting σ represent
the active controller.

The multiple-model switching controller (32)–(34) yields
the new closed-loop system

˙̂
ζio = Sζ̂io−ε θ̂iθ̂σ>ζ̂σo −εΓ>θ̃i>ξ̂1+ε Γ>

[
Γξ2−Γξ3+C(µ)z

]
˙̂
ξ1 = E>ε ξ̂1 − εGθ̂σ>ζ̂σo
ξ̇2 = Fε ξ2 +Ξ

˙̂
θσ

Ξ̇ = FεΞ + I(−εθ̂σ>ζ̂σo )

ξ̇3 = Fεξ3 + ε Γ>C(µ)z (37)

ż = A(µ)z + εΠ(µ)Gθ̂σ>ζ̂σo
˙̂
θin = Projk

(
θ̂in, ϕ

i
n(ξ̂1n, ỹ

i)
)

y = Γ ζ̂io − θ̃i>ξ̂1 + Γξ2 − Γξ3 + C(µ)z

ỹi = Γ ζ̂io − y
where i ∈ Q, n ∈ N and k = R(i, n) ∈ {1, 2, 3}.

V. STABILITY ANALYSIS: SWITCHING CONTROLLER

In this section, we complete the stability and convergence
analysis of the multiple-model extension of the baseline
controller. Referring to the results presented in Section III,
the outstanding issues are to show that Theorem 3.9 holds
for the multiple-model estimator-based switching controller,
and that the properties (i) and (ii) listed therein are verified.

We begin by noticing that if there exists a time Ts > 0
after which the switchings stop, then for all t ≥ Ts the active
subsystem of the multiple-model controller of Section IV is
equivalent to the baseline controller of Section II. Specifi-
cally, after the switching stops, the active states (i.e. ζ̂σo , ξ̂1,
ξ2, Ξ , ξ3, z and θ̂σ) of the multiple-model estimator-based
system (37) admits the same dynamics as the System (21).
Consequently, Theorem 3.9 must hold for System (37), as the
inactive subsystems (with states ζ̂io, θ̂

i, for i ∈ Q \ {σ}) are
disconnected from the rest of the system. Therefore, finite
termination of the switching sequence {Tm}Mm=1 is key for

the analysis. A series of intermediate results, presented next,
will be instrumental in showing that TM <∞.

Consider the new closed-loop system (37), where the
feedback interconnection structure in Fig. 3 is preserved with
input u1 = −θ̃σ>ξ̂1 ∈ R. First, it is readily seen that in any
time interval [Tm−1, Tm), the analogous of Proposition 3.3
holds for the new subsystem Σ1:

Σ1 :


˙̂
ζσo =

[
S − ε θ̂σθ̂σ>

]
ζ̂σo + ε Γ> ν1

η1 = θ̂σ>ζ̂σo
(38)

with positive definite and decrescent storage function
W ′1(t, ζ̂σo ) = 2ε−1ζ̂σ>o Po(θ̂

σ(t), ε)ζ̂σo . Moreover, as the cru-
cial property ‖ ˙̂

θσ(t)(t)‖ ≤ ρε2 is preserved, it is not surpris-
ing that within each interval [Tm−1, Tm) the analogous of
Proposition 3.4 holds for the new subsystem Σ2 defined as

Σ2 :


ξ̇2 = Fε ξ2 +Ξ

˙̂
θσ

Ξ̇ = FεΞ + I(−ε ν2)

η2 = Γξ2

(39)

Finally, using the appropriate modifications of Proposi-
tions 3.3-3.4 and following the same lines of the proof
of Proposition 3.7, one can show that the finite L2-gain
properties established in Proposition 3.7 are preserved. To-
wards this end, for any time interval [0, τ ], let [0, τ ] =⋃m̄
m=1[Tm−1, Tm)

⋃
[Tm̄, τ ] where 0 ≤ Tm̄ ≤ τ < Tm̄+1.

From elementary properties of Lebesgue integral [29, Theo-
rem 4, Sec.29.2], it follows that

‖y1τ ‖2L2
=

m̄∑
m=1

∫ Tm

Tm−1

|y1(s)|2ds+

∫ τ

Tm̄

|y1(s)|2ds

≤ ε̂2(ε)

m̄∑
m=1

∫ Tm

Tm−1

|u1(s)|2ds+ ε̂2(ε)

∫ τ

Tm̄

|u1(s)|2ds

= ε̂2(ε)‖u1τ ‖2L2

with ε̂(ε) :=
ε γ?1

(
γ?2 +γ?3

)
1−ε γ?1

(
γ?2 +γ?3

) , from which one concludes that

‖y1τ ‖L2
≤ ε̂(ε)‖u1τ ‖L2

(40)

for all ε ∈ (0, ε?) and all τ ∈ R≥0, which is consistent
with Proposition 3.7. These results lead to the claim that the
switching mechanism stops in finite time:

Proposition 5.1: For the hysteresis switching mechanism
in (36), there exist constant ε0 and a finite instant Ts > 0
such that for all ε ∈ (0, ε0]

σ(t) = σ(Ts) ∀ t ∈ [Ts,+∞)

that is, switchings stop at most in Ts units of time. /

The proof of Proposition 5.1 is given in the Appendix.
Next, we show that Proposition 3.8 (finite L2-to-L∞ gain)

holds in the interval [Ts,+∞) for the active subsystems
Σi, i = 1, . . . , 4, of the new closed-loop system (37).
From the revised Proposition 3.3, it follows that the storage
function W ′1(t, ζ̂σo ) satisfies the dissipation inequality Ẇ ′1 ≤
γ?1

2|ν1|2 − ||η1||2 as well. Integrating each side of this
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inequality along trajectories of (37) over the interval [Ts, t),
and recalling from Proposition 3.4 and Proposition 3.5 that∫ t

Ts

|ηj(s)|2ds ≤ ε2γ?2j

∫ t

Ts

||η1(s)||2ds j = 2, 3,

one obtains

W ′1(t, ζ̂σo (t))<W ′1(Ts, ζ̂
σ
o (Ts)) + γ?1

2
∫ t

Ts

|u1(s)|2ds

−
(
1− ε2γ?1

2(γ?2
2+γ?3

2)
) ∫ t

Ts

||η1(s)||2ds.

This implies, by virtue of Lemma 3.1 and the small-gain
interconnection, that

‖ζ̂σo (t)‖ ≤
√

ε

c1
max

{√
2c2
ε
‖ζ̂σo (Ts)‖, γ?1

(∫ t

Ts

|u1(s)|2ds
)1

2

}

for all t ∈ [Ts,+∞). Hence, ζ̂σo (·) ∈ L∞. Since θ̂σ(·) is
bounded by construction of the update laws, it follows that
η1(·) ∈ L∞. Exponential stability of new Systems (39), (25)
and (30) implies that state trajectories of system Σ2, Σ3 and
Σ4 belong to L∞ as well. Given the revised Proposition 3.8,
it follows that Theorem. 3.9 holds for the multiple-model
estimator-based system (37) for all t ≥ Ts.

The remaining issue is to show that properties (i.) and (ii.)
of Theorem 3.9 are satisfied. For the adaptation law defined
in (33), the following result is readily obtained:

Proposition 5.2: For all i ∈ Q and n ∈ N , the forward
solutions θ̂i(·) of (33)–(34) are defined over [0,∞) and
satisfy θ̂in(t) ∈ Θ̂k and ‖ ˙̂

θi(t)‖ ≤ ρε2, for all t ≥ 0 and
all initial conditions θ̂in(0) ∈ intΘk, k ∈ {1, 2, 3}. /

Hence, condition (i.) of Thm. 3.9 is verified for θ̂σ(t), in
particular for all t ∈ [Ts,+∞). Checking condition (ii.) re-
quires significantly more work. First, one more intermediate
result is needed:

Lemma 5.3: The normalization signal mi(·) in the update
law (34) belongs to L∞ for all i ∈ Q. /

The proof, found in the Appendix, is established using classic
arguments based on exponentially weighted norms [20].

Finally, we are in the position to show that the crucial
requirement (ii.) of Theorem 3.9, namely that η4(t) ∈ L2,
holds for the multiple-model estimator-based switching con-
troller. Consider the storage function V κ(θ̃κ) = 1

2‖θ̃κ‖2
where θ̃κ := θ̂κ − θ, and κ labels the estimator whose
parameters θ̂κn are all constrained on the regions that contain
the true parameter vector θn, i.e., such that θn ∈ ΘR(κ,n),
for all n ∈ N . Evaluating the derivative of V κ(θ̃κ) along
the trajectories of the parameter estimates governed by (33)
and (34) yields

V̇ κ = Projk
(
θ̂κn, ϕ

κ
n(ξ̂1, ỹ

κ)
)

= −ρε2θ̃κ>
ξ̂1ỹ

κ

m2
κ

− θ̃κ>Iκ(θ̂κ, ϕκ)ϕκ(ξ̂1, ỹ
κ)

with obvious definition of Iκ(·). Since θn ∈ ΘR(κ,n), the
term θ̃κ>Iκ(θ̂κ, ϕκ)ϕκ(ξ̂1, ỹ

κ) is non-negative, hence

V̇ κ ≤ −ρε2θ̃κ>
ξ̂1ỹ

κ

m2
κ

. (41)

Substituting the relation ỹκ = ξ̂>1 θ̃
κ+y1 and integrating both

sides of (41) from Ts to t, one obtains

V κ(t)− V κ(Ts) ≤ −
ρε2

2‖mκ‖2∞

∫ t

Ts

|ξ̂1(τ)>θ̃κ(τ)|2dτ

+
ρε2

2

∫ t

Ts

|y1(τ)|2dτ (42)

where we have taken advantage of boundedness of mκ(·) es-
tablished in Lemma 5.3. As before, we label with σ the active
controller. Two scenarios must be considered separately: In
the first one, if σ(Ts) = κ, then η4(t) = u1(t) = ξ̂>1 (t)θ̃κ(t).
Applying the small-gain condition (40) to (42) one obtains:

ρε2

2

(
1

‖mκ‖2∞
− ε̂2(ε)

)∫ t

Ts

|η4(τ)|2dτ ≤ V κ(Ts)

for all ε ∈ (0, ε?), where ε̂(ε) :=
ε γ?1

(
γ?2 +γ?3

)
1−ε γ?1

(
γ?2 +γ?3

) . By

Proposition 3.7, ε̂2(ε) vanishes monotonically as ε → 0.
Thus, there exists a constant ε1 such that, for all ε ∈ (0, ε1),
1/‖mκ‖2∞ − ε̂2(ε) > 0. In this case, it follows that∫ t

Ts

|η4(τ)|2dτ ≤ 2‖mκ‖2∞
ρε2(1− ‖mκ‖2∞ε̂2)

V κ(Ts) <∞

for all t ≥ Ts and for all ε ∈ (0,min{ε?, ε0, ε1}).
In the second situation where σ(Ts) 6= κ, hence η4(t) =

ξ̂>1 (t)θ̃σ , let us define η̄4(t) := ξ̂>1 (t)θ̃κ(t). Referring to (35),
the error variable ē(t) := Jκ(t)− Jσ(t) satisfies

ē(t) = ē(Ts)+β

∫ t

Ts

(ỹκ(τ))2−(ỹσ(τ))2dτ ∀ t ≥ Ts. (43)

According to the hysteresis switching logic (36), it follows
that ē(Ts) ≥ 0 and ē(t) ≥ −h for all t > Ts. Consequently,∫ t

Ts

(ỹk(τ))2 − (ỹj(τ))2dτ ≥ − 1

β
(h+ ē(Ts)) := −cē (44)

with a positive constant cē. Applying the inequalities

|ỹκ|2 = |η̄4|2 + |y1|2 + 2|η̄4||y1| ≤ 2|η̄4|2 + 2|y1|2
|ỹσ|2 = |η4|2 + |y1|2 + 2|η4||y1| ≥ 1

2 |η4|2 − |y1|2

to (44), yields

− cē ≤
∫ t

Ts

[(ỹκ(τ))2 − (ỹj(τ))2]dτ

≤
∫ t

Ts

2|η̄4(τ)|2 − 1

2
|η4(τ)|2 + 3|y1(τ)|2dτ

from which it follows that

−
∫ t

Ts

|η̄4(τ)|2dτ≤−1

4

∫ t

Ts

|η4(τ)|2dτ +
3

2

∫ t

Ts

|y1(τ)|2dτ +
cē
2
.

8



Substituting the above expression into (42) yields the dissi-
pation inequality

V κ(t)− V κ(Ts) ≤
ρε2

2

∫ t

Ts

|y1(τ)|2dτ

+
ρε2

2‖mκ‖2∞

[
−1

4

∫ t

Ts

|η4(τ)|2dτ +
3

2

∫ t

Ts

|y1(τ)|2dτ +
cē
2

]
≤ −ρ1ε

2

∫ t

Ts

|η4(τ)|2dτ+ρ2ε
2ε̂2(ε)

∫ t

Ts

|y1(τ)|2dτ+ρ3ε
2

for some positive constants ρ1, ρ2 and ρ3. Using the small-
gain condition (40), it follows that there exists a sufficiently
small ε2 > 0 such that ρ1 − ρ2ε̂

2(ε) > 0 and∫ t

Ts

|η4(τ)|2dτ ≤ 1

ρ1 − ρ2ε̂2(ε)
(V κ(Ts) + ρ3ε

2) <∞

for all ε ∈ (0,min{ε?, ε2}). Setting ε := min{ε?, ε0, ε1, ε2},
for any ε ∈ (0, ε) and any t ∈ [Ts,∞) one obtains∫ t
Ts
|η4(τ)|2dτ < ∞, hence the claim that η4(·) ∈ L2.

This concludes the stability analysis, as all assumptions of
Theorem 3.9 are now in place for the unique controller that
remains active for all t ≥ Ts.

VI. REDUCED-ORDER CONTROLLER

A drawback of the multiple-model switching controller
is its high dimensionality (it requires 3N estimators, each
with 4N states), especially when the number of distinct
excitation frequencies N is large. Here, an alternative lower-
dimensional scheme (comprising 3N estimators, each with
4 states) is derived by exploiting the decoupled structure of
the observers for ζ̂o and ξ̂1 given in (12) and (20). Since the
lower-dimensional architecture fully preserves the properties
of the multiple estimators, stability and convergence can be
established along the lines of Section V. However, since the
arguments would be more involved and less intuitive than
the ones adopted for the larger-dimensional counterpart, in
the interest of clarity this latter has been preferred in the
presentation of the stability analysis.

For the reduced-order controller, instead of selecting the
estimates θ̂σ ∈ R2N based on a single performance index J ,
N performance indexes Jn are employed, each one used for
selecting the corresponding parameter estimates θ̂σnn ∈ R2.
For each excitation frequency, the new architecture of the
switching controller is given as

˙̂
ζkon = Sζ̂kon + θ̂knu

σn
an − ε gỹkn , ζ̂kon ∈ R2

˙̂
θkn = Projk

(
θ̂kn, ϕ

k
n(ξ̂1n, ỹ

k
n)
)
, θ̂kn(0) ∈ intΘk

uσnan = −εθ̂σn>n ζ̂σnon (45)

ỹkn = g>ζ̂kon − yn
yn = y −ΣN

m=1,m 6=n g
>ζ̂σmom , k ∈ {1, 2, 3}, n ∈ N

where the control input and parameter estimates are given
by ua = col(uσ1

a1, . . . , u
σN
aN ) and θ̂σ = col(θ̂σ1>

1 , . . . , θ̂σN>N ),
and σn(t) is a piecewise-constant signal taking value in
{1, 2, 3} determined by the switching mechanism based on
Jkn .

TABLE I
PARAMETER VECTORS AND SUBREGIONS OF THE PARAMETER SET

Frequency True parameter vector θ Convex set Θi

ω1 = 1 [rad/s] θ1 = −0.2, θ2 = −0.6 Θ3

ω2 = 3 [rad/s] θ1 = 0.846, θ2 = 0.231 Θ1

ω3 = 5 [rad/s] θ1 = 0.56, θ2 = 0.72 Θ1

-1 -0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
Ax

is

Fig. 6. Nyquist diagram of the stabilized plant model

Comparing the two realizations, one can easily verify that
for any selection ς := (σ1 · · ·σN ) there always exists i ∈ Q
such that R(i, n) = σn for all n ∈ N , and vice versa.
Therefore, the underlying principles of the multiple-model
estimators and candidate controllers presented in SectionIV
and this section are essentially equivalent. The only differ-
ence lies in the switching criteria where previously σ(t) :=
arg mini∈Q{J ih(t)} and σn(t) = arg mink∈{1,2,3}{Jknh(t)}.
While the two switching criteria may generate different
switching signals, note that asymptotically accurate estima-
tion of θ is not required for output stabilization. Thus, there
exists more than one switching signals capable of selecting
a stabilizing controller in finite time.

VII. ILLUSTRATIVE EXAMPLE

A simulation study on an illustrative example is presented
to validate the proposed methodology. Referring to Figure 1,
let the stabilized plant model be described by the stable and
non-minimum phase transfer function ( assumed unknown)

W (s) =
2(s− 1)

s2 + 2s+ 5
(46)

with disturbance d(t) =
∑3
i=1 ψi sinωit, ψi ≥ 0.

Three distinct frequencies of excitation are considered,
listed in Table I, together with the specific region of the
covering Θ̄ for the corresponding parameter vectors θn,
n = 1, 2, 3. The Nyquist diagram of W (jω), displayed
in Figure 6, shows that it is not possible to use a single
controller of the type considered in [11], [12] to account for
frequencies of the sinusoidal disturbance in the range given
in Table I, as sign Re{W (jω1)} 6= sign Re{W (jω2)} and
sign Im{W (jω1)} 6= sign Im{W (jω2)}.
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TABLE II
CONTROLLER INDEXES AND CORRESPONDING SUBREGIONS

Q 1 2 3 4 5 6 7 8 9

θ̂1 Θ1 Θ1 Θ1 Θ2 Θ2 Θ2 Θ3 Θ3 Θ3

θ̂2 Θ1 Θ2 Θ3 Θ1 Θ2 Θ3 Θ1 Θ2 Θ3

The controller and the multiple estimators are equipped
with the same gains for all simulations: ε = 0.4, ρ = 0.5,
β = 1, h = 0.5, δ1 = 0.2, δ2 = 2. The initial conditions
of all states of the controller have been set at the origin,
with the exception of the parameter estimates, whose initial
conditions are chosen on the basis of each region of Θ̄ as

θ̂in(0) =


(1 1)> if θ̂in(0) ∈ Θ1

(−1 0)> if θ̂in(0) ∈ Θ2

(1 −2)> if θ̂in(0) ∈ Θ3

, n = N , i ∈ Q

1) Exact order of the disturbance model: The first set of
simulation results pertains to the case in which ψ1 = ψ2 =
2, ψ3 = 0 and the order of the external model coincides
with that of the disturbance model, namely ŵ ∈ R4 and
S = diag(S1, S2) in System (5). In this case, N = 2 and
3N = 9 combinations are possible for the multiple model
estimator. The labels of the estimators are detailed in Table II.
The initial controller in the switching sequence is selected
to be the one labeled as 5, whose estimates are constrained
in subsets that do not contain the true parameters.

Simulation results are reported in Figure 7, which shows
the time history of the output of the closed-loop system and
the switching signal. Asymptotic regulation is achieved, and
switchings terminate in about 20 [s]. It is noted that controller
labeled as 4 is ultimately selected, whereas the controller
corresponding to the true value of the parameters is the one
labeled as 7 in Table II. Figure 8 shows the trajectory of
the parameter estimates θ̂4

n(t), n = 1, 2, which converge to
constant values. The fact that limt→∞ θ̃4

n(t) 6= 0 implies
that the regressor ξ̂1(·) is not persistently exciting. This is
confirmed by Figure 9, which shows that ξ̂1(t) vanishes
asymptotically.

2) Over-parameterization of the disturbance model: The
same controller of the previous case study is tested with
ψ1 = ψ3 = 0 and ψ2 = 2, meaning that the controller now
accounts for a larger number of distinct frequencies than the
ones carried by the disturbance. Figure 10 indicates that lack
of persistency of excitation of the disturbance (with respect
to the order of the disturbance model) does not compromise
the effectiveness of the proposed methodology.

3) Reduced-order controller: Finally, to show the ef-
fectiveness of the reduced-order multiple model estimator
described in Section VI, we consider the case where dis-
turbance signal contains all three excitation frequencies by
letting ψi = 2, i = 1, 2, 3. The order of the external model is
taken to match that of the disturbance model, that is, ŵ ∈ R6

and S = diag(S1, S2, S3) in System (5). In this case, 27
estimators, each with 12 states, are needed to implement
the original multiple-model estimator of Section IV. On the
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Fig. 7. Case study 1: Output trajectory, y(t), and switching signal, σ(t).
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Fig. 8. Case study 1: Trajectories of the parameter estimates θ̂4n(t) corre-
sponding to the controller ultimately selected by the switching mechanism.
other hand, the lower-dimensional architecture of Section VI
requires only 9 estimators, each with 4 states, which is
much more efficient in terms of computation cost. The result
of the simulation is reported in Figure 11, which shows
the asymptotically converging output y(t) and the three
switching signals, σn(t), each converging in finite time.

VIII. CONCLUDING REMARKS

A methodology has been proposed to remove a longstand-
ing requirement in AFC, namely the necessity to impose
SPR-like conditions on the transfer function at frequen-
cies of interest. A drawback of the approach is the high
dimensionality of the ensuing controller (14N states for
N distinct excitation frequencies), which is an artifact of
the multiple-model approach adopted herein to deal with a
non-convex parameter set. This issue makes an extension
to a MIMO setting an arduous task. Current investigations
are pursuing alternative methods towards the design of a
lower-dimensional controller, as well as the incorporation of
frequency estimators in the control scheme to accommodate
uncertain exosystem models.
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APPENDIX

A. Derivation of the non-minimal realization (19)

Define Ψ(τ) :=
∫ τ

0
e−FεsI(ua(s))ds ∈ R2N×2N . Since

d
dτ Ψ(τ) = e−FετI(ua(τ)) and θ̃(τ)ua(τ) = I(ua(τ))θ̃(τ),
integrating by parts, one obtains from (16)

ỹ1(t) = Γ eFεt
∫ t

0

d
dτ Ψ(τ)θ̃(τ)dτ

= Γ eFεt
[
Ψ(τ)θ̃(τ)

]t
0

− Γ eFεt
∫ t

0

Ψ(τ)
˙̃
θ(τ)dτ

= Γ eFεt
∫ t

0

e−FετI(ua(τ))dτ θ̃(t)− Γ eFεt
∫ t

0

Ψ(τ)
˙̃
θ(τ)dτ.

Thanks to the special structure of matrices S and I(ua), one
obtains

[Γ eFε(t−τ)I(ua(τ))]> = eS
>(t−τ)I(ua(τ))e−εΓ

>Γ (t−τ)Γ>

= e[S>−εNGG>](t−τ)Gua(τ),
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where we have made used of the relations e−εΓ
>Γ (t−τ)Γ> =

e−εN(t−τ)GG>Γ>, I(ua(τ))GG> = GG>I(ua(τ)) and
I(ua(τ))Γ> = Gua(τ). Defining Eε := S − εNGG, one
obtains

ỹ1 = θ̃>(t)

∫ t

0

eE
>
ε (t−τ)Gua(τ)dτ − Γ eFεt

∫ t

0

Ψ(τ)
˙̃
θ(τ)dτ .

The first term on the right-hand side has realization

ξ̇1 = E>ε ξ1 +Gua , ỹ1,a = θ̃>(t)ξ1.

For the second term, using ˙̃
θ =

˙̂
θ, one obtains

Γ eFεt
∫ t

0

Ψ(τ)
˙̃
θ(τ)dτ = Γ eFεt

∫ t

0

∫ τ

0

e−FεsI(ua(s)) ds
˙̂
θ(τ) dτ

= Γ

∫ t

0

eFε(t−τ)

[∫ τ

0

eFε(τ−s)I(ua(s)) ds

]
˙̂
θ(τ) dτ

= Γ

∫ t

0

eFε(t−τ)Ξ(τ)
˙̂
θ(τ) dτ

where Ξ(τ) :=
∫ τ

0
eFε(τ−s)I(ua(s)) ds ∈ R2N×2N solves

the matrix differential equation Ξ̇(t) = FεΞ(t) + I(ua(t))
with initial condition Ξ(0) = 02N×2N . Consequently, the
second term admits the realization

ξ̇2 = Fε ξ2 +Ξ
˙̂
θ(t) , Ξ̇ = FεΞ + I(ua) , ỹ1,b = Γξ2,

hence (19) is achieved by letting ỹ1 = ỹ1,a − ỹ1,b. /

B. Proof of Lemma 3.1

Owing to the fact that S−εθθ> and Io(θ, ε) are block di-
agonal matrices, the solution Po(θ, ε) of (26) has a diagonal

structure as well. Specifically, Po(θ, ε) =
N⊕
n=1

Po,n(θn, ε),

where Po,n(θn, ε) is the solution of Po,n[Sn − εθnθ
>
n ] +

[Sn − εθnθ>n ]>Po,n = −εθ>n θnI2, n ∈ N and I2 denotes a
two-by-two the identity matrix. Let

Po,n =

pn1 pn2

pn3 pn4


where

pn1 =
ε2θ2

n1θ
2
n2 + ε2θ4

n2 + 2 ε ωn θn1 θn2 + 2ω2
n

2ω2
n

,

pn2 = pn3 = −ε
(
εθ3
n1θn2 + εθn1θ

3
n2 + ωn θ

2
n1 − ωnθ2

n2

)
2ω2

n

,

pn4 =
ε2θn1

4 + ε2θ2
n1θ

2
n2 − 2 ε ωnθn1θn2 + 2ω2

n

2ω2
n

.

Since det(Po,n) = (ε2‖θn‖4 + 4ω2
n)/(4ω2

n), it follows
that det

(
Po(θ, ε)

)
=
∏N
n=1 det

(
Po,n(θn, ε)

)
> 0 for all

(θn, ε) ∈ Θ × [0,+∞). The spectrum of Po satisfies

specPo(θ, 0) = {1, 1, · · · , 1}︸ ︷︷ ︸
2N

for all θn ∈ Θ and n ∈ N . As a result, there exist ε̄ > 0 and
constants 0 < c1 < c2 ≤ c3 such that c1I ≤ Po(θ, ε) ≤ c2I
and ‖Po(θ, ε)‖ ≤ c3 for all (θ, ε) ∈ ΘN × [0, ε̄0]. /

C. Proof of Lemma 3.2

Consider first the case of a single frequency, N = 1. The
solution of the Lyapunov equation

P1(ε1)F1 + F>1 P1(ε1) = −ε1I (47)

where

F1 :=

−ε1 ω1

−ω1 0

 , P1(ε1) =

 1 − ε1
2ω1

− ε1
2ω1

ε21+2ω2
1

2ω2
1

 .

Note that P1(ε1) is continuously differentiable with respect
to ε1 and positive definite for all ε1 ∈ R≥0, as det(P1(ε1)) =
ε21+4ω2

1

4ω2
1
≥ 1. The eigenvalues of P1(ε1) are found to be

λ1,1(ε1) =
ε2

1 + 4ω2
1 +

√
ε4

1 + 4ε2
1ω

2
1

4ω2
1

,

λ1,2(ε1) =
ε2

1 + 4ω2
1 −

√
ε4

1 + 4ε2
1ω

2
1

4ω2
1

.

One can verify that ∂λ1,1(ε1)
∂ε1

is positive and λ1,1(ε1) is
a strictly increasing function of ε1. Therefore, c5,1(ε1) :=
λ1,1(ε1) is a class-N function such that P1(ε1) ≤ c5,1(ε1)I
for all ε1 ∈ R≥0. Similarly, the smallest eigenvalue λ1,2(ε1)
is a strictly decreasing function of ε1; hence, letting c4 =
limε→+∞ λ1,2(ε1) = 1

2 yields P1(ε1) ≥ c4 for all ε1 ∈
R≥0. Consequently, for the case of N = 1, Lemma 3.2 is
verified for PF (ε) and QF (ε) by taking ε = ε1, Fε = F1,
PF (ε) = P1, QF (ε) = −ε1I , ε̄1 = ε1 and λ = 1. Next, let
N = 2. The solution of the Lyapunov equation

P2(ε2)F2 +F>2 P2(ε2) = −ε2I , F2 :=

−ε2 ω2

−ω2 0

 (48)

admits similar form and characteristics as P1(ε1), that is,
P2(ε2) is positive definite for all ε2 ∈ R>0 and satisfies
c4 I ≤ P2(ε2) ≤ c5,2(ε2) I , where c5,2(ε2) := λ2,1(ε2) is a
class-N function. For the Lyapunov equation (27), Fε takes
the form

Fε =

 F1 εFx

εF>x F2

 , Fx :=

−1 0

0 0

 .

Since P1(ε) and P2(ε) are positive definite for all ε ∈ R>0,
there exist a constant matrix Px and corresponding ε̄x > 0
such that, for all ε ∈ (0, ε̄x], the matrix

PF (ε) :=

 P1 εPx

εP>x P2

 (49)

is positive definite. This yields the matrix QF (ε)

QF (ε) = PF (ε)Fε + F>ε PF (ε) :=

q1 q2

q3 q4


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where

q1 = P1F1 + ε2PxF
>
x + F>1 P1 + ε2FxP

>
x ,

q2 = q>3 = εP1Fx + εPxF2 + εF>1 Px + εFxP2,

q4 = P2F2 + ε2P>x Fx + F>2 P2 + ε2F>x Px.

Since by assumption ω1 6= ω2, it follows that specF>1 ∩
specF2 = ∅. As a result, there exists a unique solution Px
of the Sylvester equation PxF2 + F>1 Px = −P1Fx − FxP2

verifying q2 = q>3 = 0. Using the Lyapunov equations (47)
and (48), one obtains

q1 = −εI + ε2(PxF
>
x + FxP

>
x )

q4 = −εI + ε2(P>x Fx + F>x Px)

from which it follows that there exist constants ε̄1 ∈ (0, ε̄x]
and λ ∈ R>0, such that PF (ε)Fε + F>ε PF (ε) = QF (ε) ≤
−λεI for all ε ∈ (0, ε̄1]. Moreover, exploiting the special
structure of PF (ε) in (49), boundedness of the determinant
and the eigenvalues of the matrix PF (ε) are easily verified.
This completes the proof for the case N = 2. The proof for
N > 2 proceeds analogously by constructing the solution

PF (ε) :=


P1 Px,1 Px,2 · · · Px,N−1

P>x,1 P2 Py,2 · · · Py,N−2

...
...

. . . . . .
...

P>x,N−1 P>y,N−2 · · · · · · PN

 .

D. Proof of Proposition 3.3

First, the following preliminary result is needed:
Property 1: The gradient with respect to θ of the quadratic

form Qo(w) := w>Po(θ, ε)w, w ∈ R2N , satisfies
∇θQo(w) = ε

(
w>R1(θ, ε)w · · · w>R2N (θ, ε)w

)
for some

matrix-valued functions Rj : (θ, ε) → R2N×2N , which are
continuous and bounded for (θ, ε) ∈ ΘN × (0, ε̄0]. /

Evaluating the derivative of the Lyapunov function can-
didate V1(t, ζ̂o) := ζ̂>o Po(θ̂(t), ε)ζ̂o along trajectories of
System (23), yields, for all (θ̂n(·), ε) ∈ Θ̂ × (0, ε̄0]

V̇1 =− ζ̂>o Io(θ̂, ε)ζ̂o +
∂ζ̂>o Poζ̂o

∂θ̂

˙̂
θ + 2ε ζ̂>o PoΓ

> ν1

≤− ε

2
Nδ2

1‖ζ̂o‖2 −
ε

2

N∑
n=1

ζ̂>onθ̂
>
n θ̂n ζ̂on + ε3ρ`1‖ζ̂o‖2

+ 2 εc3
√
N‖ζ̂o‖ |ν1| (50)

where we have made use of Lemma 3.1, Property 1 and
Definition 3.1, having denoted by `1 the quantity

`1 :=

N∑
n=1

max
θ̂n∈Θ̂, ε∈(0,ε̄0]

{
‖R2n−1(θ̂, ε)‖+ ‖R2n(θ̂, ε)‖

}
,

and δ1 is defined in (7). Adding and subtracting ε||η1||2/2
in (50) and using ||η1||2 ≤

N∑
n=1

ζ̂>onθ̂
>
n θ̂n ζ̂on, yield

V̇1 ≤−
ε

2
Nδ2

1‖ζ̂o‖2 −
ε

2
||η1||2 + ε3ρ`1‖ζ̂o‖2

+ 2 εc3
√
N‖ζ̂o‖ |ν1|. (51)

Making use of Young’s inequality in the form 2|ab| ≤ `22a2+
1
`22
b2 for the last term in (51) and choosing `2 := 2

δ1
yield

V̇1 ≤ −ε( δ
2
1

4 N − ε2 ρ`1)‖ζ̂o‖2 −
ε

2
||η1||2 + ε`22c

2
3|ν1|2.

Letting ε?1 := min
{
ε̄0,

δ1
√
N

2
√

2ρ`1

}
, it follows that, for all

(θ̂n(·), ε) ∈ Θ̂ε × (0, ε?1),

V̇1 ≤ −
ε

2
λ1(ε)‖ζ̂o‖2 −

ε

2
||η1||2 +

ε

2
2`22c

2
3|ν1|2

where λ1(ε) :=
δ2
1

2 N − 2ε2 ρ`1 >
δ2
1

4 N > 0. This shows
that for any ε ∈ (0, ε?1), System (23) is strictly dissipative
with respect to the supply rate q1(ν1, η1) = γ?1

2|ν1|2−‖η1‖2,
γ?1 :=

√
2`2c3, with storage function W1(t, ζ̂o) := 2

εV1(t, ζ̂o)

satisfying Ẇ1 ≤ −λ1(ε)‖ζ̂o‖2 − ||η1||2 + γ?
2

1 |ν1|2. 2

E. Proof of Lemma 3.6
As in the proof of Lemma 3.1, the block diagonal struc-

ture of Eε results in a block diagonal solution PE(ε) =
N⊕
n=1

PE,n(ε), where

PE,n(ε) =

 1 − εN
2ωn

− εN
2ωn

(εN)2+2ω2
n

2ω2
n


is the solution of the Lyapunov equation PE,n(ε)(Sn −
εNgg>) + (Sn − εNgg>)>PE,n(ε) = −εNI . The entries
of PE,n(ε) are continuously differentiable functions of ε
and positive definite for all ε ∈ R≥0 as det(PE,n(ε)) =
(εN)2+4ω2

n

4ω2
n

≥ 1, and the eigenvalues of PE,n(ε) are

σn,1(ε) =
ε2N2 + 4ω2

n +
√
ε4N4 + 4ε2N2ω2

n

4ω2
n

,

σn,2(ε) =
ε2N2 + 4ω2

n −
√
ε4N4 + 4ε2N2ω2

n

4ω2
n

.

One can verify that ∂σn,1(ε)
∂ε is positive and the largest

eigenvalue σn,1(ε) is a strictly increasing function of ε.
Therefore, there exists a class-N function c7,n(ε) = σn,1(ε)
such that PE,n(ε) ≤ c7,n(ε)I for all ε ∈ R≥0 and all n ∈ N .
Similarly, it is possible to show that the smallest eigenvalue
σn,2(ε) is a strictly decreasing function of ε, hence there
exists a constant c6 = limε→+∞ σn,2(ε) = 1

2 satisfying
PE,n(ε) ≥ c6 for all ε ∈ R≥0 and all n ∈ N . Owing
to the block diagonal structure of PE,n(ε), it follows that
eig
(
PE(ε)

)
= (σ1,1 , σ1,2 , σ2,1 , σ2,2 , · · ·σN,1 , σN,2). As a

result, PE,n(ε) is positive definite and bounded (in the sense
of positive semi-definiteness) by c6I and max

n∈N
{c7,n(ε)}I ./

F. Proof of Proposition 5.1
The proof proceeds by contradiction. Without loss of

generality, assume that a non-terminating switching takes
place between two controllers, labelled as 1 and 2. Since
the switching sequence does not stop, there exists a sub-
sequence {tm}∞m=0 ⊂ {Tm}∞m=0 such that

σ(t) =

{
1, t ∈ [t2m, t2m+1)

2, t ∈ [t2m+1, t2m+2)
∀m ∈ {0, 1, 2, · · · }.
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Then, according to (36), one obtains

J1(t2m) < J2(t2m)− h , J1(t2m+1) > J2(t2m+1) + h

which, rearranging terms, yields

[J1(t2m+1)− J1(t2m)]− [J2(t2m+1)− J2(t2m)] =

β

∫ t2m+1

t2m

|ỹ1(τ)|2dτ − β
∫ t2m+1

t2m

|ỹ2(τ)|2dτ > 2h (52)

with m ∈ {1, 2 · · · } and ỹi, i = 1, 2 is given in (37).
Substituting the inequalities

|ỹ1|2 ≤ |ξ̂>1 θ̃1|2 + |y1|2 + 2|ξ̂>1 θ̃1||y1| ≤ 2|ξ̂>1 θ̃2|2 + 2|y1|2

|ỹ2|2 ≥ |ξ̂>1 θ̃2|2 + |y1|2 − 2|ξ̂>1 θ̃2||y1| ≥
1

2
|ξ̂>1 θ̃2|2 − |y1|2

into (52), it follows that

2h<β

∫ t2m+1

t2m

2|ξ̂>1 θ̃1(τ)|2−1

2
|ξ̂>1 θ̃2(τ)|2+3|y1(τ)|2dτ (53)

where y1 is defined in (22). By virtue of the small gain
interconnection in (40), there exist positive constants µ1 and
µ2 satisfying∫ t2m+1

t2m

ξ̂>1 ξ̂1(µ1||θ̃1(τ)||2 − ||θ̃2(τ)||2)dτ > µ2h. (54)

Similarly, in the interval [t2m+1, t2m+2)∫ t2m+2

t2m+1

ξ̂>1 ξ̂1(µ1||θ̃2(τ)||2 − ||θ̃1(τ)||2)dτ > µ2h. (55)

Since m can be arbitrarily large and the vectors θ̃i, i = 1, 2
are norm-bounded from above, (54) and (55) imply that

min

{∫ t2m+1

t2m

ξ̂1(τ)>ξ̂1(τ)dτ,

∫ t2m+2

t2m+1

ξ̂1(τ)>ξ̂1(τ)dτ

}
> µ3h

(56)
for some constant µ3 > 0. Next, consider the storage
function V κ(θ̃κ) = 1

2‖θ̃κ‖2 , where θ̃κ := θ̂κ − θ, and κ
denotes the label of the estimator whose parameter estimates
θ̂κn are all constrained in the region that contains the true
parameter vector θn, i.e. θn ∈ ΘR(κ,n), for all n ∈ N .
Evaluating the derivative of V κ along the trajectories of the
parameter estimates governed by (33) and (34) on the time
interval [Ts,∞) yields

V̇ κ=−ρε2θ̃κ>
ξ̂1ỹ

κ

m2
κ

− θ̃κ>Iκ(θ̂κ, ϕ)ϕ≤−ρε2θ̃κ>
ξ̂1ỹ

κ

m2
κ

(57)

where the term θ̃κ>Iκ(θ̂κ, ϕκ)ϕκ introduced by the pro-
jection is non-negative, since the true parameter vectors
θn ∈ ΘR(κ,n) for all n ∈ N . Recalling that ỹκ = ξ̂>1 θ̃

κ + y1

and integrating both sides of (57) from t2m to t2m+2 yields

V κ(t2m+2)− V κ(t2m) ≤ ρε2

2

∫ t2m+2

t2m

|y1(τ)|2dτ

− ρε2

2‖mκ‖2∞

∫ t2m+2

t2m

|ξ̂1(τ)>θ̃κ(τ)|2dτ.

Using the small-gain connection (40), one obtains∫ t2m+2

t2m

|y1(τ)|2dτ ≤ ε̂2(ε)

∫ t2m+2

t2m

ξ̂>1 ξ̂1||θ̃σ(τ)||2dτ

≤ ε̂2(ε)

∫ t2m+1

t2m

ξ̂>1 ξ̂1||θ̃1(τ)||2dτ+ε̂2(ε)

∫ t2m+2

t2m+1

ξ̂>1 ξ̂1||θ̃2(τ)||2dτ

which implies that

V κ(t2m+2)− V κ(t2m)

≤ −ρε
2

2

∫ t2m+1

t2m

ξ̂>1 ξ̂1

(
||θ̃κ(τ)||2
||mκ||2∞

− ε̂2(ε)||θ̃1(τ)||2
)
dτ

− ρε2

2

∫ t2m+2

t2m+1

ξ̂>1 ξ̂1

(
||θ̃κ(τ)||2
||mκ||2∞

− ε̂2(ε)||θ̃2(τ)||2
)
dτ.

(58)

For the time being, assume that the controller κ takes part
in the non-terminating switching sequence, i.e., κ ∈ {1, 2}.
Without loss of generality, assume κ = 1. Consequently,

V κ(t2m+2)− V κ(t2m)

≤ −ρε
2

2

∫ t2m+2

t2m+1

ξ̂>1 ξ̂1

(
||θ̃κ(τ)||2
||mκ||2∞

−ε̂2(ε)||θ̃2(τ)||2
)
dτ.

(59)

Let ε > 0 be small enough so that ε̂2(ε)||mκ||2∞ < 1. Using
the fact that (56) implies that ξ̂1(t) is bounded away from
zero, it is seen that V κ(t) and ||θ̃κ(t)||2 will keep decreasing
until the left hand side of (59) is equal to zero. This implies
that there exists an integer m0 such that

||θ̃κ(t)||2 ≤ ε̂2(ε)||mκ||2∞max{||θ̃2(t)||2}
≤ 4ε̂2(ε)Nδ2

2 ||mκ||2∞

for all t ≥ t2m0
. Since not all θn belong to ΘR(2,n), the

bound ||θ̃2||2 ≥ Nδ′21 holds for some δ′1 > 0. Therefore,
for all ε > 0 satisfying 4µ1ε̂

2(ε)δ2
2 ||mκ||2∞ − δ

′2
1 < 0,

where µ1 is the constant defined in (54) and (55), one
obtains µ1||θ̃1(t)|| − ||θ̃2(t)|| < 0 for all t ≥ t2m0 , which
violates (54). Similarly, if κ = 2, (55) does not hold for
t > t2m0

. This contradiction implies that there exists a finite
time instant Ts ≥ t2m0

at witch the switching stops.
Next, it will be shown that κ ∈ {1, 2} for sufficient small

ε > 0. Assume κ 6∈ {1, 2} and consider the auxiliary variable
J̃(t) := Jκ(t)− J2(t). Then, for any m ≥ m0

J̃(t2m+1) = J̃(t2m0
)+β

∫ t2m+1

t2m0

|ỹκ(τ)|2−|ỹ2(τ)|2dτ.

Following the arguments used to derive (53), one obtains

J̃(t2m+1) ≤ J̃(t2m0
)

+ β

∫ t2m+1

t2m0

2|ξ̂>1 θ̃κ(τ)|2− 1

2
|ξ̂>1 θ̃2(τ)|2+3|y1(τ)|2dτ. (60)
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By virtue of the small-gain interconnection (29)

β

∫ t2m+1

t2m0

|y1(τ)|2dτ ≤ β
m∑

j=m0

∫ t2j+1

t2j

ε̂2(ε)|ξ̂>1 θ̃1(τ)|2dτ

+ β

m−1∑
j=m0

∫ t2j+2

t2j+1

ε̂2(ε)|ξ̂>1 θ̃2(τ)|2dτ ≤ β
∫ t2m+1

t2m0

ε̂2(ε)δ3|ξ̂>1 θ̃2(τ)|2dτ

(61)

where we have use the fact that, since κ 6∈ {1, 2}, there exists
δ3 > 1 such that ||θ̃1(τ)||2 ≤ δ3||θ̃2(τ)||2. Applying (61) to
(60) yields

J̃(t2m+1) ≤ J̃(t2m0
)+β

∫ t2m+1

t2m0

2|ξ̂>1 θ̃κ(τ)|2−µ4|ξ̂>1 θ̃2(τ)|2dτ

where µ4 := 1
2 − 3ε̂2(ε)δ3 > 0 for sufficient small ε. As

shown before, for t > t2m0
the upper bound of ||θ̃κ(t)||2

depends on ε, whereas the lower bound of ||θ̃2(t)||2 is
independent on ε. Consequently, if ε is small enough then

J̃(t2m+1) ≤ J̃(t2m0
)− β

∫ t2m+1

t2m0

µ5ξ̂
>
1 ξ̂1dτ

for some positive constant µ5. Using (56), it follows that

J̃(t2m+1) ≤ J̃(t2m0
)− (m−m0)βµ3µ5h. (62)

Consequently, there exists an integer m̄ > m0 such that
J̃(t2m̄+1) ≤ −h. Recalling the hysteresis switching logic
(36), inequality (62) violates the assumption κ 6∈ {1, 2},
hence the controller κ participates in the non-terminating
switching sequence. This completes the proof. 2

G. Proof of Lemma 5.3
Since the system is globally Lipschitz uniformly in t,

boundedness of the signal mi(·), i ∈ Q on the finite time
interval [0, Ts] is automatically satisfied, where Ts is defined
in Proposition 5.1. Let σ denote the label of the active
controller after the switching has stopped, that is, σ(t) = σ,
σ ∈ Q, for all t ≥ Ts. Setting ε := ỹσ/m2

σ yields
εmσ ∈ L∞. The properties of the L2δ norm3 are used to
establish boundedness of ζ̂σo (·). Rewrite the ζ̂σo -subsystem as

˙̂
ζσo =

[
S − ε θ̂σθ̂σ>

]
ζ̂σo − ε Γ>εm2

σ

and consider the Lyapunov function candidate W4(t, ζ̂σo ) :=
ζ̂σ>o Po(θ̂

σ(t), ε)ζ̂σo . The derivative of W4(·) reads as

Ẇ4 =−ε ζ̂σ>o Io(θ̂σ, ε)ζ̂σo+
∂ζ̂σ>o Poζ̂

σ
o

∂θ̂σ
˙̂
θσ+2ε ζ̂σ>o PoΓ

>(εm2
σ)

≤− εNδ′21 ‖ζ̂σo ‖2 + ε3ρ`1‖ζ̂σo ‖2 + 2 εc3
√
N‖ζ̂σo ‖ |εm2

σ|
≤ − ε (Nδ′21 − ε2ρ`1 − εNc23 ) ‖ζ̂σo ‖2 + |εm2

σ|2

for all (θ̂σn(·), ε) ∈ ΘR(σ,n) × (0, ε̄], where δ′1 = δ1
2 . Letting

ε?2 = min{ε̄, Nδ′21
ε̄ρ`1 + c23N

}, one obtains Nδ′21 − ε2ρ`1 −
εNc23 := λ4(ε) > 0 for all ε ∈ (0, ε?2). Consequently

Ẇ4 ≤ −ελ4(ε)‖ζ̂σo ‖2+|εm2
σ|2 ≤−

ελ4(ε)

c2
W4+|εm2

σ|2 (63)

3Recall that, in this case, ‖xt‖2δ :=
(∫ t
Ts
e−δ(t−τ)x>(τ)x(τ)dτ

) 1
2

where we made use of Lemma 3.1. Integrating both sides of
(63) and applying Lemma 3.1 yield, for all t ∈ [Ts,∞),

c1‖ζ̂σo (t)‖2 ≤ c2e−α0(t−Ts)‖ζ̂σo (Ts)‖2

+

∫ t

Ts

e−α0(t−τ)(εm2
σ)2(τ)dτ

where α0 := ελ4(ε)
c2

. Taking the square root and applying
the triangle inequality, one obtains

‖ζ̂σo (t)‖ ≤ κ1‖εm2
σt‖2α0 + κ0(ε, t) ∀ t ∈ [Ts,+∞) (64)

where κ1 := 1√
c1

and κ0(ε) :=
√

c2
c1
e
α0
2 Ts‖ζ̂σo (Ts)‖.

Exploiting the triangle inequality property of the L2δ norm,
it follows that ‖ζ̂o

σ

t ‖2δ ≤ κ1‖Qt‖2δ + ‖κ0(ε, ·)t‖2δ , where

‖Qt‖2δ=

[∫ t

Ts

e−δ(t−τ)

(∫ τ

Ts

e−
α0
2 (τ−s)|εm2

σ|(s)ds
)2

dτ

] 1
2

Using Schwartz inequality [20, Lemma 3.2.1], one obtains
for any δ ∈ [0, δ̄1) where 0 < δ̄1 < α0(∫ τ

Ts

e−
α0
2 (τ−s)|εm2

σ|(s)ds
)2

=

(∫ τ

Ts

e−(
α0
2 −

δ̄1
2 )(τ−s)e−

δ̄1
2 (τ−s)|εm2

σ|(s)ds
)2

≤ κ′1
∫ τ

Ts

e−δ̄1(τ−s)(εm2
σ)2(s)ds

with κ′1 := 1
α0−δ̄1

, yelding the upper bound ‖Qt‖2δ ≤√
κ′1

(∫ t
Ts
e−δ(t−τ)

∫ τ
Ts
e−δ̄1(τ−s)(εm2

σ)2(s)ds dτ
) 1

2

. Inter-
changing the sequence of the integration, one obtains

‖Qt‖2δ ≤
√
κ′1

(∫ t

Ts

e−δt+δ̄1s(εm2
σ)2(s)

∫ t

s

e−(δ̄1−δ)τdτds

)1
2

≤ κ2

(∫ t

Ts

(εm2
σ)2(s)

[
e−δ(t−s) − e−δ̄1(t−s)

]
ds

)1
2

with κ2 := 1√
(α0−δ̄1)(δ̄1−δ)

. Since ‖κ0(ε)‖2δ ≤ κ0(ε)/
√
δ,

then
‖ζ̂o

σ

t ‖2δ ≤ κ‖εm2
σt‖2δ +

κ0(ε)√
δ

(65)

for all 0 < δ < δ̄1 < α0, where κ := 1√
c1(α0−δ1)(δ̄1−δ)

.

Next, we show that ‖ξ̂1(t)‖, ‖ξ2(t)‖, ‖ξ3(t)‖, ‖z(t)‖ can be
bounded in terms of ‖ζ̂σot‖2δ . Recall that the ξ̂1-dynamics
wth the active controller read as

˙̂
ξ1 = E>ε ξ̂1 − εGθ̂σ>ζ̂σo .

Since Eε is Hurwitz, there exists positive constants α1, l1
satisfy ‖eE>ε (t−τ)‖ ≤ l1e

−α1(t−τ). Then making use of the
boundedness of the term εGθ̂> and the properties of the L2δ

norm [20, Lemma 3.3.3], for any constant δ ∈ [0, δ̄2) where
0 < δ̄2 < 2α1, it follows that ‖ξ̂1(t)‖ ≤ κ̄‖ζ̂o

σ

t ‖2δ + κ̄0 for
some finite constants κ̄, κ̄0 > 0. Similarly, for the subsystem
(22) where Fε is constant and Hurwitz, one obtains

max{‖ξ̂2(t)‖ , ‖ξ̂3(t)‖, ‖z(t)‖} ≤ κ̄‖ζ̂o
σ

t ‖2δ + κ̄0
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for any δ ∈ [0, δ?) where δ? is a positive constant. Then the
signal m2

σ satisfies

m2
σ ≤ 1 + ‖ξ̂1(t)‖2 + ‖θ̃σ>(t)ξ̂1(t)‖2 + ‖Γξ2(t)‖2

+ ‖Γξ3(t)‖+ ‖C(µ)z(t)‖2 ≤ k̄‖ζ̂o
σ

t ‖22δ + k̄0

for some finite constants k̄, k̄0 > 0. Letting k̄‖ζ̂o
σ

t ‖22δ +
k̄0 := m2

f , it follows that mσ ≤ mf and, due to (65),

m2
f ≤ k‖εm2

σt‖22δ + k0 ≤ k‖mf εmσt‖22δ + k0

≤ k
∫ t

Ts

e−δ(t−τ)(εmσ)2(τ)m2
f (τ)dτ + k0

for some finite constants k, k0 > 0. Applying Bellman-
Gronwall inequality [20, Lemma 3.3.7], one obtains

m2
f (t) ≤ k0 e

k
∫ t
Ts
e−δ(t−τ)(εmσ)2(τ)dτ .

Since εmσ ∈ L∞ and ‖εmσ‖∞ ≤ 1∫ t

Ts

e−δ(t−τ)(εmσ)2(τ)dτ ≤ ‖εmσ‖2∞
∫ t

Ts

e−δ(t−τ)dτ ≤ 1

δ

then we have mf (t) ≤
√
k0 e

k
2δ , therefore mf and mσ ∈

L∞. For the inactive controller i, i ∈ Q, i 6= σ, the signal
m2
i admits the following upper bound

m2
i = 1 + ||ξ̂1||2 + |ξ̂>1 θ̃i + y1|2

= 1 + ||ξ̂1||2 + |ξ̂>1(θ̃σ+ θ̂i − θ̂σ) + y1|2

≤ 1 + ||ξ̂1||2 + |ỹσ|2 + |ξ̂>1(θ̂i−θ̂σ)|2 ≤ m2
σ + |ξ̂>1(θ̂i−θ̂σ)|2

Since mσ, ξ̂1, θ̂
i − θ̂σ ∈ L∞, mi ∈ L∞ as well. 2
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