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Abstract

We consider a Nonlinear Schrödinger Equation (NLS) with a very general nonlinear term and
with a trapping δ potential on the line. We then discuss the asymptotic behavior of all its small
solutions, generalizing a recent result by Masaki et al. [33] by means of virial–like inequalities.
We give also a result of dispersion in the case of defocusing equations with a non–trapping delta
potential.

1 Introduction

In this paper we consider the Nonlinear Schrödinger Equation (NLS):

iu̇ = H1u+ g(|u|2)u, (t, x) ∈ R× R,with u(0) = u0 ∈ H1(R,C), (1.1)

with the Schrödinger operator (here δ(x) is the Dirac δ centered in 0)

Hq = −∂2x − qδ(x) for q ∈ R\{0} (1.2)

defined by Hq := −∂2x with domain

D(Hq) = {u ∈ H1(R,C) ∩H2(R \ {0},C) | ∂xu(0+)− ∂xu(0
−) = −qu(0)}. (1.3)

For the nonlinearity, we assume g ∈ C([0,∞),R) ∩ C3((0,∞),R) and that there exist p > 0 and
C > 0 such that for k = 0, 1, 2, 3 we have

|g(k)(s)| ≤ C|s|p−k for all s ∈ (0, 1]. (1.4)

In particular, we have g(0) = 0 and the primitive G of g defined by

G′(s) = g(s) and G(0) = 0. (1.5)

satisfies |G(s)| . |s|p+1 for all s ∈ (0, 1).

Remark 1.1. A typical example we have in mind is g(s) = λsp with p > 0 and λ ∈ {±1}. In this
case, our NLS can be written taking q = 1 in the form

iu̇ = Hqu+ λ|u|2pu, (1.6)

which was considered by Masaki et al. [33] for the case p ≥ 2. They also considered the cubic NLS
for the cubic NLS, p = 1, with repulsive potential q < 0 in [34], where they proved dispersion, that

is ‖u(t)‖L∞(R) . t−
1
2 as t→ +∞, for appropriate very small solutions.
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We recall, see [33], that the operator in (1.2) for q > 0 satisfies

σd(Hq) = {−q2/4} with ker
(
Hq + q2/4

)
= Sp(ϕq) where ϕq :=

√
q/2e−

q
2 |x| , (1.7)

with Sp(ϕq) := Cϕq. Furthermore the point 0 is neither an eigenvalue nor a resonance for Hq, that
is to say, the only u0 ∈ L2(R) ∪ L∞(R) such that Hqu0 = 0 is u0 = 0.
We also have a spectral (orthogonal) decomposition

L2(R) = Sp(ϕq)⊕ L2
c(Hq) (1.8)

with L2
c(Hq) the continuous spectrum component associated to Hq. We will consider the case q = 1

and denote

L2
c := L2

c(H1) and ϕ := ϕ1.

We will denote by Pc the projection onto L2
c . In particular,

Pcu := u−
(∫

R
uϕdx

)
ϕ = u− 〈u, ϕ〉ϕ− 〈u, iϕ〉 iϕ,

where

〈f, g〉 = Re

∫
R
f(x)g(x)dx for f, g : R → C . (1.9)

We will also use the following notation.

• Given a Banach space X, v ∈ X and ε > 0 we set DX(v, ε) := {x ∈ X | ‖v − x‖X < ε}.

• For γ ∈ R we set

L2
γ := {u ∈ S ′(R,C) | ‖u‖L2

γ
:= ‖eγ|x|u‖L2 <∞}, (1.10)

H1
γ := {u ∈ S ′(R,C) | ‖u‖H1

γ
:= ‖eγ|x|u‖H1 <∞}. (1.11)

• For f : C → X for some Banach space X, we set D1f = ∂Re zf and D2f = ∂Im zf .

The eigenvalue of H1 yields by bifurcation a family of standing waves solutions.
As in [6, 15, 33], we have the following, which we prove in the appendix.

Proposition 1.2 (Bound states). Let p > 0. Then there exist γ0 > 0, a0 > 0 and C > 0 such that
there exists a unique Q ∈ C1(DC(0, a0),H

1
γ0
) satisfying the gauge property

Q[eiθz] = eiθQ[z], (1.12)

such that there exists E ∈ C([0, a20),R) such that

H1Q[z] + g(|Q[z]|2)Q[z] = E(|z|2)Q[z], (1.13)

and for j = 1, 2,

‖Q[z]− zϕ‖H1
γ0

≤ C|z|2p+1, ‖DjQ[z]− ij−1ϕ‖H1
γ0

≤ C|z|2p,
∣∣∣∣E(|z|2) + 1

4

∣∣∣∣ ≤ C|z|2p. (1.14)

Moreover, if p > 1/2 we have Q[z] ∈ C2
(
DC(0, a0),H

1
γ0

)
and

‖DjDkQ[z]‖H1
γ0

≤ C|z|2p−1, j, k = 1, 2. (1.15)
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Remark 1.3. In the case of power type nonlinearities g(s) = sp, there is an explicit formula for Q[z].
See [12, 33].

Our first result is the following, related to [15, 33, 36], see [6] for more references.

Theorem 1.4. Assume p > 0 in (1.4). Then there exist ε0 > 0, γ > 0 and C > 0 such that for
ε := ‖u(0)‖H1 < ε0 the solution u(t) of (1.1) can be written uniquely for all times as

u(t) = Q[z(t)] + ξ(t) with ξ(t) ∈ PcH
1, (1.16)

such that we have
|z(t)|+ ‖ξ(t)‖H1 ≤ Cε for all t ∈ [0,∞), (1.17)∫ ∞

0

‖ξ‖2H1
−γ
dt ≤ Cε2. (1.18)

In [38] it is shown that if p < 1/2 and ξ(t) = eit∂
2
xξ++o(1) in L2(R) with o(1) t→∞−−−→ 0 in L2(R),

then ξ+ = 0. In this paper we do not discuss scattering. Notice that
∫∞
0

‖eit∂2
xξ+‖2H1

−γ
dt = ∞ for

(1 + |x|2)ξ+ ∈ L2(R) with ξ̂+(0) 6= 0.
Theorem 1.4 claims that solutions with sufficiently small H1 norm converge asymptotically to

the set formed by the Q[z]. Indeed formula (1.18) is stating that, in an averaged sense, ξ
t→∞−−−→ 0

locally in space. In Theorem 1.4 there is no proof of selection of ground state: we do not prove
that up to a phase, z(t) has a limit as t → +∞. However, if we strengthen the hypotheses of the
nonlinearity g(s), we obtain also the selection of ground states. This will be our second result. It
requires a more subtle representation of u(t) than the one in (1.16), due to Gustafson et al. [15].

Definition 1.5. Consider the a0 > 0 in Proposition 1.2.

Hc[z] :=
{
η ∈ L2(R) : 〈i η,D1Q〉 = 〈i η,D2Q〉 = 0

}
. (1.19)

It is immediate that Hc[0] = L2
c . Our second result is the following.

Theorem 1.6. Let p > 1/2 in (1.4). Then there exist ε0 > 0, γ > 0 and C > 0 such that for
ε := ‖u(0)‖H1 < ε0 the solution u(t) of (1.1) can be written uniquely for all times as

u(t) = Q[z(t)] + η(t) with η(t) ∈ Hc[z(t)], (1.20)

such that we have
|z(t)|+ ‖η(t)‖H1 ≤ Cε for all t ∈ [0,∞), (1.21)∫ ∞

0

‖η‖2H1
−γ
dt ≤ Cε2. (1.22)

and there exists a z+ ∈ C such that

lim
t→+∞

z(t)ei
∫ t
0
E[z(s)]ds = z+. (1.23)

We don’t know if the last statement, with the limit (1.23), is true for p ≤ 1/2. We will prove
Theorem 1.4 in Sect. 2 and Theorem 1.6 in Sect. 3. In Sect. 4 we will also give a very simple proof
of the following result for defocusing equations (1.1) with non–trapping δ potential, which to our
knowledge is not in the literature.
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Theorem 1.7. Consider equation (1.1) with q < 0, g ≥ 0 everywhere and sg(s) − G(s) ≥ 0 for
any s ≥ 0 for G defined in (1.5). Then for any γ > 0 there exists a Cγ > 0 such that for any
u0 ∈ H1(R,C) the corresponding strong solution u(t) satisfies∫ ∞

0

‖u‖2H1
−γ
dt < Cγ

(
(E(u0)Q(u0))

1
2 +Q(u0)

)
. (1.24)

Equations like (1.1) and its particular case (1.6) represent an interesting special type of the
NLS in 1–D. Related models, obtained eliminating the linear δ potential and replacing g(|u|2)u with∑n

j=1 δ(x−xj)g(|u|2)u, in some cases have been shown to satisfy very satisfactory characterizations
of the global time behavior for all their finite energy solutions; see [23]–[26], which solved the Soliton
Risolution Conjecture in these cases.

Returning to equation (1.1), Goodman et al. [14] and Holmer et al. [16]–[19] have shown in the
cubic case interesting patterns involving solitons, usually for finite intervals of time or numerically.
Some of these results have been proved for global times by Deift and Park [7], using the Inverse
Scattering Transform. Masaki et al. [33] is a transposition to (1.6) of a result similar to Theorem
1.6, but for more regular potentials, by Mizumachi [36]. Similarly, the result in Masaki et al. [34] we
described under (1.6) transposes to the case of δ potentials work on dispersion of very small solutions
for NLS’s with a non–trapping and quite regular potential in [9, 13, 39]. Even though [9, 13, 34, 39]
are usually motivated by the problem of stability of solitons, currently it is not so clear how to get
from them results of the type ‖ξ(t)‖L∞(R) . t−

1
2 as t → +∞ for the error term ξ(t) in (1.16) or

for the η(t) in (1.20). Such kind of transformation of results around 0 into results around a soliton
exists in the context of the theory of Integrable Systems, where there are appropriate coordinate
changes named Bäcklund and Darboux transforms, see for instance Deift and Park [7]. However for
non–integrable perturbations of the cubic NLS such coordinate changes represent an open question,
c.f.r. the discussion in Mizumachi and Pelinovsky [37].

The main motivation for this paper is then to show the promise of an alternative method,
involving positive commutators, which is classical in Quantum Mechanics, see for example Reed and
Simon [42, pp. 157–163] and [2, 10]. In the nonlinear setting the method is also classical and has
been extensively used to prove dispersion, like for example Morawetz estimates, see [5], or in the
analysis of blow up, see for example [35, 40]. The method, which is also referred as virial inequality,
has been extensively used in the study of KdV–like equations, see [31] and therein, and represents
the tool of choice to complete the last step, often referred as Liouville property, of the proof in the
theory of stabilization developed by Kenig and Merle [20] (a possible alternative, the energy channel
method of Duyckaerts et al. [11], has not been adapted yet to NLS’s). In this paper we are inspired
by the study in Kowalczyk et al. [27, 29] on the stability of various patterns for wave like equations.
The main point here, is that this method can be applied rather simply in the proof of Theorems 1.4,
1.6 and 1.7.

The main feature of the method, and the reason of its robustness, is that a positive commutator,
which is linear, allows to ignore small nonlinear terms, which are much smaller. Even large nonlinear
defocusing terms are not an obstruction to the method, as we will se for Theorem 1.7.

The most insidious problem of the method comes from the fact that the commutators often
have some negative eigenvalues. An important part of the proof in papers such as [27] consists
in showing that analogues of the ξ in (1.16) or of the η in (1.20), live where the commutator is
positive. If in (1.1) we replace the δ potential with a more regular one, this step appears to be
mostly open. See [47] for related problems. In the case of a δ potential in 1–D, we show that
this is easy to solve (see also Banica and Visciglia [3], Ikeda and Inui [30] and Richard [43]; for a
different but similarly favorable set up we refer to [28, 32]). This allows us to cover with a rather
simple proof cases outside the reach of the theory in Masaki et al. [33], where the use of Strichartz
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estimates restricts consideration to p ≥ 2. In this sense we go beyond the results for more regular
potentials considered by Mizumachi [36], in turn related to [15, 41, 44, 45]. In some of these older
papers there is a clear interest at obtaining the largest possible set of values for the exponent p.
However they are severely restricted by their dependence on dispersive and/or Strichartz estimates,
not always sufficiently robust in nonlinear settings, see [46]. The commutator method can be more
robust, as results such as [27, 29] show. In the literature some partial stability results have been
obtained for mass subcritical nonlinearities in 2–D and 3–D by Kirr et al. [21, 22] using dispersive
estimates. But exactly like for the dispersion results on small solutions of cubic NLS’s with potentials
in [9, 13, 34, 39] or for the theory initiated by Deift and Zhou [8] on the Scattering Transform in non–
Integrable Systems, the ultimate test will be how pliable, widely utilizable and not too technically
complicated will they be. Our point here is that the theory in [27, 29] seems the most promising.

2 Proof of Theorem 1.4

2.1 Notation and coordinates

We have the following ansatz, which is an elementary consequence of the Implicit Function Theorem.

Lemma 2.1. There exist c0 > 0 and C > 0 such that for all u ∈ H1 with ‖u‖H1 < c0, there exists
a unique pair (z, ξ) ∈ C× PcH

1 such that

u = Q[z] + ξ with |z|+ ‖ξ‖H1 ≤ C‖u‖H1 . (2.1)

The map u→ (z, ξ) is in C1(DH1(0, c0),C×H1).

Proof. Set

F (z, u) :=

(
〈u−Q[z], ϕ〉
〈u−Q[z], iϕ〉

)
.

Then, by Proposition 1.2, we see that F ∈ C1(DC(0, a0)×H1,R2) and moreover

∂F

∂(zR, zI)

∣∣∣∣
(z,u)=(0,0)

= −
(
1 0
0 1

)
. (2.2)

Therefore, by implicit function theorem, we have the conclusion.

For z, w ∈ C, we will use the notation

DQ[z]w :=
d

dε

∣∣∣∣
ε=0

Q[z + εw]. (2.3)

Notice that by Q[eiθz] = eiθQ[z], we have

iQ[z] =
d

dε

∣∣∣∣
ε=0

eiεQ[z] =
d

dε

∣∣∣∣
ε=0

Q[eiεz] =
d

dε

∣∣∣∣
ε=0

Q[z + εiz] = DQ[z]iz.

Further, for w ∈ C, we set

f(w) := g(|w|2)w. (2.4)
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The well posedness of problem (1.1) in H1(R) is considered by Goodman et al. [14], Fukuizumi
et al. [12] and [1]. The energy and mass conservation imply the global well posedness of our small
solutions, with representation (1.16) valid for all times along with the bound (1.17). So we can write
the equation (1.1) in terms of the ansatz (1.16) and obtain the system:〈

iDQ[z](ż + iEz), ij−1ϕ
〉
=
〈
f(ξ) + f̃(z, ξ), ij−1ϕ

〉
for j = 1, 2, (2.5)

iξ̇ = H1ξ + f(ξ) + f̃(z, ξ)− iDQ[z](ż + iEz), (2.6)

where

f̃(z, ξ) := f(Q[z] + ξ)− f(ξ)− f(Q[z]) (2.7)

In order to prove the estimate (1.18) of Theorem 1.4, we will use the method considered by
Kowalczyk et al. in [27] and in their very recent paper [29].

2.2 The commutator method

Following [29], we introduce an even smooth function χ : R → [−1, 1] such that

χ = 1 in [−1, 1], χ = 0 in R \ [−2, 2], χ′ ≤ 0 in R+. (2.8)

For A� 1 large enough which will be fixed later, we set

ζA(x) := exp

(
−|x|
A

(1− χ(x))

)
and ψA(x) =

∫ x

0

ζ2A(t)dt. (2.9)

One can easily verify

e−
|x|
A ≤ ζA(x) ≤ 2e−

|x|
A and |ψA(x)| ≤ 2A for A ≥ 4. (2.10)

To each function ξ ∈ H1(R) we can associate

w := ζAξ. (2.11)

Notice that there exist fixed constants C and A0 such that〈
(−∂2x + δ)w,w

〉
≤ C‖ξ‖2H1 for all A ≥ A0. (2.12)

Also, we have

‖w′‖2L2 + ‖ 〈x〉−2
w‖2L2 ≤ C

〈
(−∂2x + δ)w,w

〉
, (2.13)

where 〈x〉 := (1 + |x|2)1/2 and C = 12. To prove (2.13), it suffices to bound the second term. Since

w(x) = w(0) +

∫ x

0

w′(s) ds,

from Hölder inequality we have

|w(x)| ≤ |w(0)|+ |x|1/2‖w′‖L2 ≤ 2 〈x〉1/2
〈
(−∂2x + δ)w,w

〉 1
2 . (2.14)
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Thus, we have

‖ 〈x〉−2
w(x)‖2L2 ≤ 4

∫
R
〈x〉−3

dx
〈
(−∂2x + δ)w,w

〉
≤ 12

〈
(−∂2x + δ)w,w

〉
.

We consider now the quadratic form

J (ξ) := 2−1

〈
iξ,

(
ψ′
A

2
+ ψA∂x

)
ξ

〉
. (2.15)

From (2.10), one obtains the upper bound

|J (ξ)| ≤ 2A‖ξ‖2H1 for A ≥ 4. (2.16)

By the well posedness of (1.1) we can consider

ξ ∈ C0(R, D(H1)) ∩ C1(R, L2(R,C)) ⊂ C0(R,H1(R,C)) ∩ C1(R, L2(R,C)) =: Y.

We claim that J (ξ) ∈ C1(R,R) with

d

dt
J (ξ) =

〈
iξ̇,

(
ψ′
A

2
+ ψA∂x

)
ξ

〉
. (2.17)

Indeed we can consider a sequence {ξn} in C0(R,H2(R,C)) ∩ C1(R,H2(R,C)) converging to ξ in
Y uniformly for t on compact sets. The functions J (ξn) belong to C1(R,R) and their derivatives
satisfy (2.17) with ξ replaced by ξn. From this formula we derive that the sequence { d

dtJ (ξn)}
converges uniformly on compact sets to the r.h.s. of (2.17). Since J (ξn)

n→∞−−−−→ J (ξ) uniformly on
compact sets, we conclude that J (ξ) ∈ C1(R,R) and that formula (2.17) is correct.
From (2.17) we obtain

d

dt
J (ξ) +

〈
iDQ(ż + iEz),

(
ψ′
A

2
+ ψA∂x

)
ξ

〉
(2.18)

=

〈
H1ξ,

(
ψ′
A

2
+ ψA∂x

)
ξ

〉
+

〈
f(ξ),

(
ψ′
A

2
+ ψA∂x

)
ξ

〉
+

〈
f̃(z, ξ),

(
ψ′
A

2
+ ψA∂x

)
ξ

〉
.

The main result of this subsection is the following.

Proposition 2.2. There exist values 1 � a0 > 0 and A � 1 such that for ξ ∈ PcH
1 and |z| +

‖ξ‖H1 < a0 we have

r.h.s. of (2.18) ≥ 1

12

(
‖w′‖2L2 + ‖ 〈x〉−2

w‖2L2

)
for w = ζAξ. (2.19)

The rest of this subsection is devoted to the proof of Proposition 2.2.
The key and single most important term is the quadratic form singled out in the following lemma,
see [27, 29].

Lemma 2.3. For w = ζAξ we have the equality〈(
ψ′
A

2
+ ψA∂x

)
ξ,H1ξ

〉
=
〈
H 1

2
w,w

〉
+

1

2A
〈V w,w〉 for V (x) := χ′′(x) |x|+ 2χ′(x)

x

|x|
. (2.20)
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Proof. Integrating by parts, see Corollary 8.10 [4], we obtain〈(
ψ′
A

2
+ ψA∂x

)
ξ,H1ξ

〉
= −1

2
Re

∫
R
ψ′
Aξξ

′′
dx− 1

2

∫
R
ψA(|ξ′|2)′dx

=

∫
R
ψ′
A|ξ′|2dx+

1

4

∫
R
ψ′′
A(|ξ|2)′dx+

1

2
Re
(
ψ′
A(0)ξ(0)

(
ξ
′
(0+)− ξ

′
(0−)

))
= 〈ψ′

Aξ
′, ξ′〉 − 1

4
〈ψ′′′

A ξ, ξ〉 −
1

2
〈δξ, ξ〉 , (2.21)

where we used ξ′(0+)− ξ′(0−) = −ξ(0), ψA(0) = ψ′′
A(0) = 0 and ψ′

A(0) = 1.
For the first term in the r.h.s. of (2.21), we have

〈ψ′
Aξ

′, ξ′〉 =

〈
ζ2A

(
w

ζA

)′

,

(
w

ζA

)′
〉

=

〈
w′ − ζ ′A

ζA
w,w′ − ζ ′A

ζA
w

〉

= 〈w′, w′〉+

〈(
ζ ′A
ζA

)2

w,w

〉
− 2

〈
w′,

ζ ′A
ζA
w

〉

= 〈w′, w′〉+

〈((
ζ ′A
ζA

)′

+

(
ζ ′A
ζA

)2
)
w,w

〉
= 〈w′, w′〉+

〈
ζ ′′A
ζA
w,w

〉
,

and for the second term we have

− 1

4
〈ψ′′′

A ξ, ξ〉 = −1

4

〈
(ζ2A)

′′

ζ2A
w,w

〉
= −1

2

〈(
ζ ′′A
ζA

+

(
ζ ′A
ζA

)2
)
w,w

〉
.

Summing up we obtain〈(
ψ′
A

2
+ ψA∂x

)
ξ,H1ξ

〉
=
〈
H 1

2
w,w

〉
+

1

2

〈(
ζ ′′A
ζA

−
(
ζ ′A
ζA

)2
)
w,w

〉
. (2.22)

Finally, from

ζ ′A =
1

A

(
χ′(x)|x|+ (χ(x)− 1)

x

|x|

)
ζA and

ζ ′′A =
1

A2

(
χ′(x)|x|+ (χ(x)− 1)

x

|x|

)2

ζA +
1

A

(
χ′′(x)|x|+ 2χ′(x)

x

|x|

)
ζA,

we conclude

A

(
ζ ′′A
ζA

−
(
ζ ′A
ζA

)2
)

= χ′′(x)|x|+ 2χ′(x)
x

|x|
= V (x). (2.23)

Substituting (2.23) into (2.22) we obtain (2.20).

The main step in the proof of Proposition 2.2 is the following lemma.

Lemma 2.4. There exist a fixed constant A0 > 1 such that for A ≥ A0 we have〈(
ψ′
A

2
+ ψA∂x

)
ξ,H1ξ

〉
≥ 1

5

〈
(−∂2x + δ)w,w

〉
for w = ζAξ and all ξ ∈ Hc[0]. (2.24)
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Proof. We use formula (2.20) singling out the the 1st term in the r.h.s. and writing it as〈
H 1

2
w,w

〉
=

1

4

〈(
−∂2x + δ

)
w,w

〉
+

3

4
〈H1w,w〉 .

We now make the following two claims.

Claim 2.5. There exist A0 > 0 and C0 > 0 such that for A ≥ A0 we have

1

2A
‖ 〈V w,w〉 ‖ ≤ C0

A

〈
(−∂2x + δ)w,w

〉
for all w ∈ H1. (2.25)

Claim 2.6. There exist A0 > 1 and C0 > 0 such that for A ≥ A0 we have

〈H1w,w〉 ≥ −C0

A2

〈
(−∂2x + δ)w,w

〉
for all w = ζAξ with ξ ∈ L2

c . (2.26)

Let us assume Claims 2.5 and 2.6. Then we conclude〈(
ψ′
A

2
+ ψA∂x

)
ξ,H1ξ

〉
=
〈
H 1

2
w,w

〉
+

1

2A
〈V w,w〉

=
1

4

〈(
−∂2x + δ

)
w,w

〉
+

3

4
〈H1w,w〉+

1

2A
〈V w,w〉

≥
(
1

4
− C0

(
3

4
A−2 +A−1

))〈(
−∂2x + δ

)
w,w

〉
which yields immediately (2.24). This, up to the proof of Claims 2.5 and 2.6, completes the proof
of Lemma 2.4.

Proof of Claim 2.5. By multiplying V (x) to the square of (2.14) and integrating, we obtain

1

2A
‖ 〈V w,w〉 ‖ ≤ 2

A

∫
R
|V (x)| 〈x〉 dx

〈
(−∂2x + δ)w,w

〉
for all w ∈ H1.

Proof of Claim 2.6. Since w =
(∫

R wϕ1 dx
)
ϕ1 + Pcw and 〈H1Pcw,Pcw〉 ≥ 0, we have

〈H1w,w〉 = −1

4

∣∣∣∣∫
R
wϕ1dx

∣∣∣∣2 + 〈H1Pcw,Pcw〉 ≥ −1

4

∣∣∣∣∫
R
wϕ1dx

∣∣∣∣2 for all w ∈ H1.

On the other hand, for w as in (2.26) we have∫
R
wϕ1dx =

∫
R
ξζAϕ1 dx =

∫
R
ξ (ζAϕ1 − ϕ1) dx = −

∫
R
wϕ1

(
1

ζA
− 1

)
dx.

Since e−
|x|
A ≤ ζA(x) ≤ 1 and e|x| − 1 ≤ |x|e|x| for all x ∈ R, for A ≥ 4∣∣∣∣∫

R
wϕ1dx

∣∣∣∣ ≤ ∫
R
|w|ϕ1

(
1

ζA
− 1

)
dx ≤ 1√

2

∫
R
|w|e−

|x|
2

(
e

|x|
A − 1

)
dx

≤ 1√
2A

∫
R
|w|e−

|x|
2 +

|x|
A |x|dx ≤ 1√

2A

∫
R
|w|e−

|x|
4 |x|dx.

Furthermore, by (2.14) we obtain the following, which immediately leads to the lower bound (2.26):

1√
2A

∫
R
|w|e−

|x|
4 |x|dx ≤

√
2

A

∫
R
〈x〉3/2 e−

|x|
4 dx

〈
(−∂2x + δ)w,w

〉1/2
.
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By Lemma 2.4 we have found a lower bound on the the 1st term in the r.h.s. of (2.18).
We now examine the contribution to (2.19) of the term with f(ξ) = g(|ξ|2)ξ.

Lemma 2.7. For any ε0 > 0 and A� 1 there exists a0 > 0 such that for ‖ξ‖H1 ≤ a0 we have∣∣∣∣〈(ψ′
A

2
+ ψA∂x

)
ξ, f(ξ)

〉∣∣∣∣ ≤ ε0‖w′‖2L2 for w = ζAξ . (2.27)

Proof. We follow [27, 29]. Recall that f(ξ) = g(|ξ|2)ξ. Consider the G in (1.5). Then, we have

〈
ψA∂xξ, g(|ξ|2)ξ

〉
= Re

∫
R
ψAg(|ξ|2)ξ∂xξ dx =

1

2

∫
R
ψA∂xG(|ξ|2) dx = −1

2

∫
R
ψ′
AG(|ξ|2) dx.

Thus, by ψ′
A = ζ2A, we have∣∣∣∣〈(ψ′
A

2
+ ψA∂x

)
ξ, f(ξ)

〉∣∣∣∣ ≤ ∫
R
ζ2A
(
|g(|ξ|2)|ξ|2|+ 2−1|G(|ξ|2)|

)
dx ≤ C

∫
R
ζ2A|ξ|2(p+1) dx.

Let q = 2p
3 > 0. Then, by the embedding H1(R) ↪→ L∞(R), we have∫

R
ζ2A|ξ|2(p+1) dx . ‖ξ‖qH1

∫
R
ζ2A|ξ|2(p+1)−qdx.

Therefore, it suffices to prove ∫
R
ζ2A|ξ|2(p+1)−q dx . ‖w′‖2L2 . (2.28)

Following p. 793 [27], since 2(2(p− q) + 1) = 2(p+ 1)− q,∫
R
ζ2A|ξ|2(p+1)−qdx =

∫
R
ζ
−(2p−q)
A |w|2(p+1)−qdx

.
∫ ∞

0

e
2p−q

A x|w|2(p+1)−qdx+

∫ 0

−∞
e−

2p−q
A x|w|2(p+1)−qdx

≤ − 2A

2p− q
|w(0)|2(p+1)−q +

A

2p− q

∫
R
e

2p−q
A |x|

∣∣∣(|w|2(p+1)−q)′
∣∣∣ dx

. A

p

∫
R
ζ−2p+q
A |w|2p−q+1|w′| dx =

A

p

∫
R
ζA|ξ|2p−q+1|w′| dx

≤ A

p
‖ξ‖qH1

∫
R
ζA|ξ|2(p−q)+1|w′| dx

≤ A

p
‖ξ‖qH1

(∫
R
ζ2A|ξ|2(p+1)−q dx

) 1
2

‖w′‖L2

≤ ‖w′‖2L2 +
1

4p2
A2‖ξ‖2qH1

∫
R
ζ2A|ξ|2(p+1)−q dx.

Thus, taking 1
4p2A

2a2q0 � 1, we have (2.28).

We now examine the contribution to (2.19) of the term with f̃(z, ξ).
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Lemma 2.8. There exist C0 > 0 and r > 0 and a neighborhood U of the origin in C such that for
any pair z, ξ ∈ U and for f̃(z, ξ) defined in (2.7) we have

|f̃(z, ξ)| ≤ C0|Q[z]|r|ξ|. (2.29)

Proof. It is enough to set ζ = Q[z] and then to prove

|f(ζ + ξ)− f(ξ)− f(ζ)| ≤ C0|ζ|r|ξ|. (2.30)

We will prove (2.30) with r = 1 if p ≥ 1/2 and with r = 2p if p ≤ 1/2. With these values of r, then
|ζ| ≥ |ξ| implies |ζ|r|ξ| ≤ |ξ|r|ζ|. This means that it is enough to consider the case |ζ| ≥ |ξ|.
If |ζ| ≤ 2|ξ| we have |ζ| ∼ |ξ| and it is elementary to conclude that each of the 3 terms in the l.h.s.
of (2.30) is . |ζ|r|ξ|. Hence we are left with case |ζ| ≥ 2|ξ|. Notice that |f(ξ)| . |ξ|2p+1 ≤ |ζ|r|ξ|.
So it is enough to prove that for a fixed Cr > 0 we have

|f(ζ + ξ)− f(ζ)| ≤ Cr|ζ|r|w|. (2.31)

By (1.4) we obtain the following, that implies (2.31) and completes the proof of the lemma:

|f(ζ + ξ)− f(ζ)| ≤
∫ 1

0

∣∣∣∣ ddtf(ζ + tξ)

∣∣∣∣ dt
=

∫ 1

0

∣∣g(|ζ + tξ|2)ξ + 2g′(|ζ + tξ|2)(ζ + tw)
(
Re (ζw) + t|w|2

)∣∣ dt
≤ C|ζ|2p|ξ|+ C

(
|ζ|2p|ξ|+ |ζ|2p−1|ζ|2

)
≤ 3C|ζ|2p|ξ|.

Lemma 2.9. For any ε0 > 0 and A � 1 there exists a0 > 0 such that for ‖(z, ξ)‖C×H1 ≤ a0 we
have ∣∣∣∣〈(ψ′

A

2
+ ψA∂x

)
ξ, f̃(z, ξ))

〉∣∣∣∣ ≤ ε0

(
‖w′‖2L2 + ‖ 〈x〉−2

w‖2L2

)
for w = ζAξ .

Proof. First, we have ∣∣∣∣〈ψ′
A

2
ξ, f̃(z, ξ)

〉∣∣∣∣ . ∫
R
|Q[z]||w|2 dx . a0‖ 〈x〉−2

w‖2L2 .

Next, since |∂xξ| . e2
|x|
A (|w′|+ |w|), we have∣∣∣〈ψA∂xξ, f̃(z, ξ)
〉∣∣∣ . A

∫
R
|Q[z]|r e 3

A |x| (|w′|+ |w|) |w| dx . a0A
(
‖w′‖2L2 + ‖ 〈x〉−2

w‖2L2

)
.

Therefore, taking a0A� 1, we have the conclusion.

2.3 Closure of the estimates and completion of the proof of Theorem 1.4

We fix A� 1 and 0 < a0 � 1 so that the conclusion of Proposition 2.2 holds and we have A−1 < γ0

4 ,
where γ0 > 0 is the constant given in Proposition 1.2. We next take ε1 > 0 sufficiently small so that
Cε1 < a0, where C is the constant given in (1.17). Recall that (1.17) is an easy consequence of the
energy and mass conservation.
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We set
‖w‖2X := ‖w′‖2L2 + ‖ 〈x〉−2

w‖2L2 . (2.32)

By (1.14) and (2.3), we have∣∣∣∣〈iDQ[z](ż + iEz),

(
ψ′
A

2
+ ψA∂x

)
ξ

〉∣∣∣∣ ≤ C(1)|ż + iEz| ‖e−
γ0
2 |x|

(
ψ′
A

2
+ ψA∂x

)
ξ‖L2 ,

with C(1) a fixed constant s.t. C
(1)
γ0 ≥ 2‖ϕ‖H1

γ0
+ Ca2p0 .

By ψ′
A = ζ2A, w = ζAξ and 0 < ζA ≤ 1 and for C(2) ≥ ‖e−

γ0
2 |x| 〈x〉2 ‖L∞(R), we have for all x ∈ R∣∣∣e− γ0

2 |x|ψ′
Aξ
∣∣∣ = ∣∣∣e− γ0

2 |x|ζAw
∣∣∣ ≤ ∣∣∣e− γ0

2 |x|w
∣∣∣ ≤ C(2) 〈x〉−2 |w|.

Using |ψA(x)| ≤ |x| and A ≥ 4
γ0
, for a similar constant C(3) we have for all x ∈ R

|e−
γ0
2 |x|ψA∂xξ| ≤ |x|e−

γ0
2 |x|

∣∣∣∣∂x( w

ζA

)∣∣∣∣ ≤ |x|e−(
γ0
2 −A−1)|x||∂xw|+ |x|e−

γ0
2 |x|ζ−2

A |ζ ′A||w|

≤ |x|e−(
γ0
2 −A−1)|x|

(
|∂xw|+

1

A

(
χ′(x)|x|+ (χ(x)− 1)

x

|x|

)
|w|
)

≤ C(3)
(
|w′|+ 〈x〉−2 |w|

)
.

In view of (2.18)–(2.19), for any T > 0 and for C(4) = C(1)
(
C(2) + C(3)

)
we have

1

12

∫ T

0

‖w(t)‖2X dt ≤ J (ξ(T ))− J (ξ(0)) +

∫ T

0

∣∣∣∣〈iDQ[z](ż + iEz),

(
ψ′
A

2
+ ψA∂x

)
ξ

〉∣∣∣∣ dt (2.33)

≤ 4Aε2 + C(4)

(∫ T

0

‖w‖2X dt

)1/2

‖ż + iEz‖L2(0,T ).

From (1.14), (2.5), f(ξ) = g(|ξ|2)ξ and (1.4) and Lemma 2.8 and for constants appearing in these
formulas, we have(

1− Ca2p0

)
|ż + iEz| ≤ C‖ξ‖2pL∞‖w‖X + C0|z|min(2p,1)‖w‖X for all t.

Thus, using (1.17), which we already know to be true, and Sobolev Embedding, we obtain

‖ż + iEz‖L2(0,T ) ≤ C1ε
min(2p,1)

(∫ T

0

‖w(t)‖2X dt

)1/2

for all T,

for a fixed constant C1 = C(C, p, a0). Entering this in (2.33), for some C5 = C(C1, A, γ0) we obtain

‖w‖2L2([0,T ],X) ≤
1

2
C2

5

(
ε2 + εmin(2p,1)‖w‖2L2([0,T ],X)

)
for all T.

Now, take ε0 < ε1 so that C2
5ε

min(2p,1)
0 < 1. Then, if ε < ε0 we have ‖w‖L2([0,T ],X) ≤ C5ε for any T ,

and so we get the following, which implies the estimate (1.18) and ends the proof of Theorem 1.4,

‖w‖L2(R+,X) ≤ C5ε. (2.34)

12



3 Proof of Theorem 1.6

We have the following ansatz.

Lemma 3.1. There exists c0 > 0 such that there exists a C > 0 such that for all u ∈ H1 with
‖u‖H1 < c0, there exists a unique pair (z, η) ∈ C× (H1 ∩Hc[z]) such that

u = Q[z] + η with |z|+ ‖η‖H1 ≤ C‖u‖H1 . (3.1)

The map u→ (z, η) is in C1(DH1(0, c0),C×H1).

Remark 3.2. We note that the assumption p > 1/2 is needed for this lemma which requires that the
map z 7→ Q[z] is C2. See Proposition 1.2.

Proof. Set

F (z, u) :=

(
〈u−Q[z], iD1Q[z]〉
〈u−Q[z], iD2Q[z]〉

)
.

Then, since here p > 1/2, we have F (z, u) ∈ C1 with formula (2.2) true for this function. We
conclude by Implicit Function Theorem.

In terms of decomposition (1.20), equation (1.1) can be expressed as follows:

〈iDQ[z](ż + iEz), DjQ[z]〉 − 〈iη,DjDQ[z](ż + iEz)〉 = 〈h(z, η), DjQ[z]〉 for j = 1, 2 (3.2)

iη̇ = H1η + f(η) + f̃(z, η)− iDQ[z](ż + iEz), (3.3)

where

h(z, η) := f(Q[z] + η)− f(Q[z])− d

dε

∣∣∣∣
ε=0

f(Q[z] + εη). (3.4)

Here, (3.3) is same as (2.6) since it can be obtained by substituting u = Q[z]+η into (1.1). However,
(3.2) differs from (2.5) because we have changed the orthogonality condition. For the derivation of
(3.2), see (3.17) of [15].

Like in Sect. 2.2, we consider

J (η) = 2−1

〈
i

(
ψ′
A

2
+ ψA∂x

)
η, η

〉
. (3.5)

Proceeding like in Sect. 2.2 we obtain

d

dt
J (η)−

〈(
ψ′
A

2
+ ψA∂x

)
η, iDQ(ż + iEz)

〉
(3.6)

=

〈(
ψ′
A

2
+ ψA∂x

)
η,H1η

〉
+

〈(
ψ′
A

2
+ ψA∂x

)
η, f̃(z, η)

〉
+

〈(
ψ′
A

2
+ ψA∂x

)
η, f(η)

〉
.

Then, like in Sect. 2.2, we have the following result.

Proposition 3.3. There exist values 1 � a0 > 0 and A � 1 such that for ξ ∈ PcH
1 and |z| +

‖η‖H1 < a0 we have

r.h.s. of (3.6) ≥ 1

12

(
‖w′‖L2 + ‖ 〈x〉−2

w‖2L2

)
for w = ζAη. (3.7)
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Proof. The proof of Proposition 3.3 is exactly like the proof of Proposition 2.2, except that the
analogue Lemma 2.24 continues to be true with an η ∈ H[z] instead of ξ ∈ H[0]. We skip the
elementary proof of the last point.

End of the proof of Theorem 1.6. We only sketch the proof, which is similar to that in Sect. 2.3.
From (3.7) we have like in (2.33),

‖w‖2L2((0,t),X) . 2ε2 + ‖w‖L2((0,t),X) ‖ż + iEz‖L2((0,t)). (3.8)

Exploiting the fact that the function f(w) in (2.4) is in C2(C,C) when 2p > 1 , we have

|h(z, η)| .
(
|Q[z]|2p−1 + |η|2p−1

)
|η|2 (3.9)

Indeed setting F (s) = f(Q[z] + sη), we have by (3.4)

h(z, η) = F (1)− F (0)− F ′(0) =

∫ 1

0

(1− s)F ′′(s) ds.

Further, since

F ′′(s) =2g′(|Q[z] + sη|2)
(
Re
(
(Q[z] + sη)η

)
η + |η|2Q[z]

)
+ 4g′′(|Q[z] + η|2)

(
Re (Q[z] + sη)η

)2
Q[z],

by (1.4) we have

|F ′′(s)| . (|Q[z]|+ |η|)2p−1 |η|2, s ∈ [0, 1].

From (3.2) and (3.9) when p > 1/2, we have

‖ż + iEz‖L2((0,t)) . ‖ż + iEz‖L2((0,t))‖ 〈x〉
−2
w‖L∞((0,t),L2)

+
(
‖z‖2p−1

L∞((0,t)) + ‖ 〈x〉−2
w‖2p−1

L∞((0,t),L2)

)
‖w‖2L2((0,t),X)

. ε‖ż + iEz‖L2((0,t)) + ε2p‖w‖L2((0,t),X),

and hence

‖ż + iEz‖L2((0,t)) . ε2p‖w‖L2((0,t),X).

Entering this in (3.8) we conclude, for a fixed C5 > 0,

‖w‖L2((0,t),X) ≤ C5ε.

We set now ρ(t) := z(t)ei
∫ t
0
E[z(s)]ds. Then, since |ρ̇| = |ż + iEz|, we have

‖ρ̇‖L1((0,t)) = ‖ż + iEz‖L1((0,t))

. ‖ρ̇‖L1((0,t))‖ 〈x〉
−2
w‖L∞((0,t),L2) +

(
‖z‖2p−1

L∞((0,t)) + ‖ 〈x〉−2
w‖2p−1

L∞((0,t),L2)

)
‖w‖2L2((0,t),X).

From this we derive

‖ρ̇‖L1(R+) . ε2p−1‖w‖2L2(R+,X) . ε2p+1.

The existence of ρ+ and of the limit (1.23) follow. This ends the the proof of (1.22)–(1.23).
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4 Proof of Theorem 1.7

We know that there exists a unique global strong solution u ∈ C0(R,H1(R,C)), and furthermore
that energy and mass are constant

E(u(t)) =
1

2
‖∂xu(t)‖2L2(R) +

|q|
2
|u(t, 0)|2 + 1

2

∫
R
G(|u(t)|2)dx = E(u0),

Q(u(t)) =
1

2
‖u(t)‖2L2(R) = Q(u0).

By well posedness and a density argument, it is enough to focus on the case u0 ∈ D(Hq), so that

u ∈ C0(R, D(H1)) ∩ C1(R, L2(R,C)).

Then we consider J (u), defined like in (2.15), and by the same argument of Sect. 2.2 we have

d

dt
J (u) =

〈
iu̇,

(
ψ′
A

2
+ ψA∂x

)
u

〉
=

〈
iu̇,

(
ψ′
A

2
+ ψA∂x

)
u

〉
=

〈
(−∂2x + |q|δ(x))u+ g(|u|2)u,

(
ψ′
A

2
+ ψA∂x

)
u

〉
.

By computations similar to Lemma 2.3, for w = ζAξ and for the V (x) in (2.20), we have〈
(−∂2x + |q|δ(x))u,

(
ψ′
A

2
+ ψA∂x

)
u

〉
=

〈(
−∂2x +

|q|
2
δ(x)

)
w,w

〉
+

1

2A
〈V w,w〉

≥ 1

2

〈(
−∂2x +

|q|
2
δ(x)

)
w,w

〉
,

for A ≥ A0 with A0 a fixed sufficiently large constant.
On the other hand, by ψ′

A > 0 and the argument in the first few lines of Lemma 2.7,〈
g(|u|2)u, ψ

′
A

2
u

〉
+
〈
g(|u|2)u, ψA∂xu

〉
=

1

2

〈
g(|u|2)|u|2 −G(|u|2), ψ′

A

〉
≥ 0.

Hence, for fixed constants∫ T

0

‖w(t)‖2X dt . J (u(T ))− J (u0) .
√
E(u0)Q(u0) +Q(u0),

which yields Theorem 1.7.

A Appendix.

We prove Proposition 1.2.

Lemma A.1. Set R :=
((
H1 +

1
4

)∣∣
PcL2

)−1

. Then, for sufficiently small γ > 0, R is a bounded

operator from L2
γ to H1

γ .
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Proof. For case γ = 0 see Lemma 2.12 of [33]. For the case γ > 0, set χA(x) := χ(x/A) where χ is

given in (2.8). Set µγ,A(x) := eγ
√

1+|x|2χA(x). Then, multiplying H1Ru = u by µA, we obtain

H1µγ,ARu = [H1, µγ,A]Ru+ µγ,Au.

Notice that there exists a C > 0 such that

‖[H1, µγ,A]u‖ ≤ C γ ‖µγ,Au‖H1 for all γ ∈ [0, 1] and A ∈ [1,∞).

This implies that for sufficiently small γ > 0,

‖µγ,ARu‖H1 . ‖µγ,Au‖L2 . ‖u‖L2
γ
.

Thus, taking A→ ∞, we have ‖Ru‖H1
γ
. ‖u‖L2

γ
.

We consider h̃ : [0, 1]× R → R defined by

h̃(ρ, µ) := g(ρµ2)µ. (A.1)

For γ < 1
2 , we set h : [0, 1]×H1

γ(R,R) → L2
γ(R,R) by

h(ρ, q)(x) := h̃(ρ, q(x)) = g(ρq(x)2)q(x). (A.2)

Notice that q in (A.1) is a number but q in (A.2) is a function.

Lemma A.2. We have h̃ ∈ C([0, 1]× R,R) ∩ C1((0, 1]× R,R) and the estimates

|h̃(ρ, µ)| . ρp|µ|2p+1 (A.3)

and

|∂ρh̃(ρ, µ)| . ρp−1|µ|2p+1, |∂µh̃(ρ, µ)| . ρp|µ|2p. (A.4)

Furthermore, for ρµ 6= 0, h is three times differentiable and we have

|∂2ρ h̃(ρ, µ)| . ρp−2|µ|2p+1, |∂ρ∂µh̃(ρ, µ)| . ρp−1|µ|2p, |∂2µh̃(ρ, µ)| . ρp|µ|2p−1 (A.5)

and
|∂3ρ h̃(ρ, µ)| . ρp−3|µ|2p+1, |∂µ∂3ρh(ρ, µ)| . ρp−1µ2p. (A.6)

If p > 1
2 , we have h̃ ∈ C2((0, 1]× R,R).

Proof. By the definition of h̃, we have C([0, 1] × R,R) ∩ C3((0, 1] × (R \ {0}),R). Also, (A.3) is
immediate from (1.4) and (A.1). At (ρ, q) = (ρ, 0) with ρ > 0, h̃ is differentiable w.r.t. ρ and µ
having ∂ρh̃ = ∂qh̃ = 0. One can see this easily from h̃(ρ, 0) = 0 and

h̃(ρ+ ε, 0) = 0, |h̃(ρ, ε)| . ε2p+1.

Further, since for µ 6= 0,

∂ρh̃(ρ, q) = g′(ρµ2)µ3, ∂µh̃(ρ, µ) = g(ρµ2) + 2ρg′(ρµ2)µ2, (A.7)

we have (A.4) from (1.4), which imply that ∂ρh̃ and ∂µh̃ are continuous at (ρ, 0).
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Differentiating (A.7) for ρ, µ 6= 0, we have

∂2ρ h̃(ρ, q) = g′′(ρµ2)µ5, ∂ρ∂µh̃(ρ, µ) = 3g′(ρµ2)µ2 + 2ρg′′(ρµ2)µ4,

∂2µh̃(ρ, µ) = 6ρg′(ρµ2)µ+ 4ρ2g′′(ρµ2)µ3.

and

∂3ρ h̃(ρ, q) = g′′′(ρµ2)µ7, ∂µ∂
2
ρ h̃(ρ, q) = 2ρg′′′(ρµ2)µ6.

This implies that ρ, µ 6= 0, we have (A.5) and (A.6). By (A.5), for the case p > 1/2, we see that h
is twice continuously differentiable at (ρ, 0) (ρ 6= 0) with

∂2ρ h̃(ρ, 0) = ∂ρ∂µh̃(ρ, 0) = ∂2µh̃(ρ, 0) = 0.

Therefore, we have the conclusion.

Lemma A.3. Let γ ≥ 0. Let h̃, h be the functions given in (A.1) and (A.2). Then,

h ∈ C([0, 1]×H1
γ , L

2
γ) ∩ C1((0, 1]×H1

γ , L
2
γ) (A.8)

and

∂ρh(ρ, q)(x) = ∂ρh̃(ρ, q(x)), (∂qh(ρ, q)v) (x) = ∂µh̃(ρ, q(x))v(x). (A.9)

Proof. First of all, for q ∈ H1
γ , we have h(ρ, q) ∈ L2

γ . Indeed, from (A.3),

‖h(ρ, q)‖L2
γ
= ‖h̃(ρ, q(·))‖L2

γ
. ρp‖q‖2pL∞‖q‖L2

γ
. ρp‖q‖2p+1

H1
γ
, (A.10)

which implies also that h is continuous at {0} ×H1.
Next, we show (A.9). For (ρ, q) ∈ (0, 1]×H1

γ , and |ε| < ρ,

|ε|−1‖h(ρ+ ε, q)− h(ρ, q)− ε∂ρh̃(ρ, q)‖L2
γ
= |ε|−1‖h̃(ρ+ ε, q)− h̃(ρ, q)− ε∂ρh̃(ρ, q)‖L2

γ

=

∫ 1

0

‖∂ρh̃(ρ+ τ1ε, q) dτ − ∂ρh̃(ρ, q)‖L2
γ
dτ1

.
∫ 1

0

∫ 1

0

τ1|ε|‖∂2ρ h̃(ρ+ τ1τ2ε, q)‖L2
γ({x∈R|q(x)̸=0}) dτ1dτ2

. |ε|
∫ 1

0

∫ 1

0

τ1(ρ+ τ1τ2ε)
p−2 dτ1dτ2‖q‖2p+1

H1
γ

→ 0 as ε→ 0.

Similarly,

‖v‖−1
H1

γ
‖h(ρ, q + v)− h(ρ, q)− ∂µh̃(ρ, q)v‖L2

γ
= ‖v‖−1

H1
γ
‖
∫ 1

0

(
∂µh̃(ρ, q + τv)− ∂µh̃(ρ, q)

)
v‖L2

γ

≤ sup
τ∈[0,1]

‖∂µh̃(ρ, q + τv)− ∂µh̃(ρ, q)‖L∞ → 0 as ‖v‖H1
γ
→ 0. (A.11)

Here we have used the fact that ∂µh̃ is uniformly continuous in [ρ2 , 1] × [−‖q‖L∞ − 1, ‖q‖L∞ + 1]
and ‖v‖L∞ → 0 if ‖v‖H1

γ
→ 0. By similar estimate, we see that ∂ρh and ∂qh are continuous in

(0, 1]×H1
γ . From this, we have (A.8).

17



Lemma A.4. Let p > 1/2. Let h̃, h be the functions given in (A.1) and (A.2). Then,

h ∈ C([0, 1]×H1
γ , L

2
γ) ∩ C2((0, 1]×H1

γ , L
2
γ), (A.12)

and
∂2ρh(ρ, q)(x) = ∂2ρ h̃(ρ, q(x)), (∂ρ∂qh(ρ, q)v) (x) = ∂ρ∂µh̃(ρ, q(x))v(x),

∂2qh(ρ, q)(v, w)(x) = ∂2µh̃(ρ, q(x))v(x)w(x).
(A.13)

Proof. Since the argument is similar to the proof of Lemma A.3 we omit it.

Lemma A.5. Let γ ∈ [0, 12 ) and set

e(ρ, q) := 〈h(ρ, ϕ+ q), ϕ〉 .

Then, e ∈ C1((0, 1)×H1
γ(R,R),R). Moreover, if p > 1/2, we have e ∈ C2((0, 1)×H1

γ(R,R),R).

Proof. Set F ∈ C∞(L2
γ ,R) by F (h) := 〈h, ϕ〉. Since e(ρ, q) = F ◦ h(ρ+ ϕ, q), we immediately have

the conclusion from Lemmas A.3 and A.4.

Lemma A.6. Let γ ∈ [0, 12 ). Set

Φ(ρ, q) := e(ρ, q)(ϕ+ q)− h(ρ, ϕ+ q). (A.14)

Then, Φ ∈ C1((0, 1] × PcH
1
γ(R,R), PcL

2
γ(R,R)). Moreover, if p > 1/2, we have Φ ∈ C2((0, 1] ×

PcH
1
γ(R,R), PcL

2
γ(R,R))

Proof. From Lemmas A.3, A.4 and A.5, it suffices to show Φ(ρ, q) ∈ PcL
2
γ . However, from the

definition of e we obtain the following, which yields the conclusion:

〈Φ(ρ, q), ϕ〉 = e(ρ, q)− 〈h(ρ, ϕ+ q), ϕ〉 = 0.

Lemma A.7. Take γ0 ∈ (0, 1/2) such that the conclusion of Lemma A.1 holds. Then there exists
ρ0 > 0 such that there exists a unique q ∈ Ck((0, ρ0),H

1
γ) with k = 1 and k = 2 if p > 1

2 satisfying

q(ρ) = RΦ(ρ, q(ρ)), (A.15)

and

‖q(ρ)‖H1
γ
. ρp, ‖∂ρq(ρ)‖H1

γ
. ρp−1 and |e(ρ, q(ρ))| . ρp. (A.16)

Moreover, if p > 1/2 we have

‖∂2ρq(ρ)‖H1
γ
. ρp−2. (A.17)

Proof. By Lemma A.1 and Lemma A.3, we have

‖RΦ(ρ, q1)−RΦ(ρ, q2)‖H1
γ
. ‖Φ(ρ, q1)− Φ(ρ, q2)‖L2

γ
. ‖h(ρ, ϕ+ q1)− h(ρ, ϕ+ q2)‖L2

γ

≤
∫ 1

0

‖∂qh(ρ, ϕ+ q2 + τ(q1 − q2))‖L∞ dτ‖q1 − q2‖L2
γ
. ρp‖q1 − q2‖H1

γ
,

18



for q1, q2 ∈ DH1
γ
(0, 1). Therefore, there exists ρ0 > 0 such that

‖RΦ(ρ, q1)−RΦ(ρ, q2)‖H1
γ(R,R) ≤

1

2
‖q1 − q2‖H1

γ
,

for all ρ ∈ (0, ρ0) and q1, q2 ∈ DH1
γ(R,R)(0, 1). Thus, by contraction mapping principle, there exists

a unique q ∈ DH1
γ(R,R)(0, 1) satisfying (A.15). We call q(ρ) the fixed point of RΦ(ρ, ·) and set

F (ρ, q) := q −RΦ(ρ, q).

Since one can show ∂qF |(ρ,q)=(ρ,q(q)) is invertible by using the estimate we have prepared, by the

Implicit Function Theorem and by Lemma A.6 we have q ∈ Ck((0, ρ0),H
1
γ) with k = 1 and k = 2 if

p > 1
2 .
We now prove (A.16). First, by the fact that q(ρ) is the fixed point of RΦ(ρ, ·), Lemma (A.1)

and (A.3) with the definition of h, Φ, we have

‖q(ρ)‖H1
γ
= ‖RΦ(ρ)‖H1

γ
. ‖Φ(ρ)‖L2

γ
. ‖h(ρ, ϕ+ q(ρ))‖L2

γ
. ρp.

Next, by the definition of e, we have

|e(ρ, q(ρ))| ≤ ‖h(ρ, ϕ+ q(ρ))‖L2 . ρp.

Finally, since

∂ρq = R∂qΦ∂ρq +R∂ρΦ,

and by the above argument, for sufficietly small ρ > 0, we have ‖(Id − R∂qΦ)
−1‖H1

γ→H1
γ
≤ 2, we

have the 2nd estimate of (A.16) by

‖∂ρq‖H1
γ
= ‖(Id−R∂qΦ)

−1R∂qΦ‖H1
γ
. ‖∂qΦ‖L2

γ
. ‖∂qh‖L2

γ
. ρp−1.

The estimate (A.17) can be proved similarly.

Proof of Proposition 1.2. Set a0 = ρ
1
2
0 where ρ0 > 0 is given in Lemma A.7. Set

Q[z] := z(ϕ+ q(|z|2)) and E(|z|2) := −1

4
+ e(|z|2, q(|z|2)),

where q ∈ C1((0, a20),H
1
γ(R,R)) is given in Lemma A.7. Then, (1.12) and (1.13) are immediate from

the definition of Q, q and e. The first and third inequality of (1.14) follow from (A.16).
By Lemma A.7, we have Q ∈ C(DC(0, a0),H

1
γ) ∩ Ck(DC(0, a0) \ {0},H1

γ) for k = 1 and k = 2

for p > 1
2 . However, since

‖DjQ[z]− ij−1ϕ‖H1
γ
= ‖ij−1q(|z|2) + 2q′(|z|2)zzj‖H1

γ
. |z|2p, j = 1, 2,

we see that Q[z] is also continuously differentiable at z = 0. Here, we have set z = z1 + iz2 for
z1, z2 ∈ R. Similarly, if p > 1/2, we see that Q[z] is twice continuously differentiable at the origin
and satisfying the estimate (1.15). This finishes the proof.
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[28] M. Kowalczyk, Y. Martel and C. Muñoz, Nonexistence of small, odd breathers for a class of
nonlinear wave equations, Lett. Math. Phys. 107 (2017), 921–931.
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