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1 Introduction

M-theory on certain singular spaces gives rise to non-Abelian gauge symmetries. More

specifically, in Calabi-Yau (CY) geometries with non-isolated singularities that admit

crepant resolutions (i.e. those that do not alter the CY condition), Dynkin diagrams show

up naturally as a pattern traced out by families of small intersecting two-spheres in the
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resolved geometry (for non-isolated holomorphic two-spheres that come in a complex one-

dimensional family). When this occurs, postulating the presence of light M2-branes wrap-

ping such so-called vanishing spheres gives rise to light degrees of freedom that fill out the

root system corresponding to the Dynkin diagram. This leads one to expect the effective

field theory to contain a non-Abelian gauge multiplet in the limit where areas of the two-

spheres approach zero and the geometry becomes singular [1, 2]. (For rigid two-spheres, we

get light matter multiplets instead, typically charged under the non-Abelian group.) This

picture has been exploited for two decades in the field of geometric engineering in string

theory and M-theory [3–8], as well as in some closely related F-theory constructions [9–11].

In the latter, a direct interpretation of the singular space is not available in all but the sim-

plest cases. However, two strategies connect F-theory to this phenomenon of non-Abelian

degrees of freedom: either one can take a particular limit of M-theory, such that the duality

to type IIB compactified on a circle is manifest, and verify the correspondence. Alterna-

tively, one can analyze the F-theory phenomena directly by considering which (p, q)-strings

in the type IIB seven-brane background become light. (An important feature of F-theory

is in fact the existence of seven-branes of “exotic” types, i.e. beyond the D7-branes and

O7-planes of perturbative type IIB.)

Much less clear is what to make of possible Abelian gauge symmetries.1 These can

also be related to singularities, but not as directly as in the case of simple Lie algebras.

Since the inception of F-theory, it has been known that one way to understand U(1) gauge

groups is by seeking sections (or in some cases, multi-sections) of the elliptic fibration

of F-theory [11–13]. In M-theory, it suffices to think of divisors in the compactification

space. One aspect is clear, though. A U(1) gauge symmetry — represented by a divisor in

the total space of the compactification — shows its face in the geometry by means of the

(massive or massless) matter charged under it,2 be that in the form of hypermultiplets or

chiral multiplets, depending on the amount of supersymmetry in the effective theory.

A massless charged multiplet can be modeled by a light M2-brane wrapping an alge-

braic curve in the resolution which shrinks to zero area in the non-resolved fibration. (If

the algebraic curve has no embedded deformations, such a shrinking typically contracts the

curve to an isolated singular point, i.e., one of codimension at least three.) On the other

hand, a U(1) subgroup of the gauge group is understood as the ‘dimensional reduction’

of the supergravity three-form field along a two-form that is Poincaré dual to the divisor

that intersects the resolution sphere. The intersection number measures the charge, as is

easily seen by considering the flux through a sphere surrounding the intersection point.

We can also work at the non-compact level, and consider the non-gravitational sector of

the theory. The primordial example can be seen by looking at M-theory on a conifold.

Now the five-dimensional effective theory still has a hypermultiplet from the M2-brane

1A second, dual, explanation of the Cartan subgroup for the non-Abelian gauge symmetry is also avail-

able [2], via M5-branes wrapping the surfaces swept out by irreducible deformable two-spheres. This idea

can also be applied to surfaces responsible for an Abelian gauge group.
2By Poincaré duality, in the compact case for each divisor in the (resolved) total space there is an

algebraic curve in the total space meeting it precisely once. Such an algebraic curve represents a matter

multiplet of charge one under the corresponding U(1).
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wrapping the vanishing sphere. The U(1) vector multiplet, however, is no longer localized

to five dimensions, but is seven-dimensional.3 So it shows up as a flavor symmetry under

which the hyper is charged. Throughout this paper, we will work in this non-compact

setting. However, it should always be borne in mind that our models can be embedded

into full-fledged compact geometries, where the U(1) will be gauged again. Hence, we will

refer to our U(1)’s as gauge symmetries, and consider the hypers as electrically charged,

albeit as subsectors of the full theory.

As we stated above, U(1)’s are visible in the geometry through the matter which is

charged under them. One could now ask: given a U(1) gauge symmetry and an electric

charge quantization condition, what are the possible charges available? In perturbative

intersecting D-brane models, one can easily find charge-one spectra. By introducing orien-

tifolds, one can also find charges higher than one (see e.g. [15] for recent constructions with

charges up to six). However, no explicit F-theory geometries have been constructed that go

beyond charge four. (The first charge-three and four models have appeared in [16] and [17]

respectively.4 The conditions satisfied by an elliptic fibration realizing a global SU(N)

model with matter multiplets of high U(1) charge were earlier determined in [20, 21]. For

global models with SU(5) matter of high U(1) charge see e.g. [22, 23].)

This subject has recently been investigated in the F-theory framework in [24, 25],5

where the primary method for constructing higher-charge matter is an indirect one: one

starts out with a setup that gives rise to a non-Abelian gauge symmetry with matter in

either the adjoint or more “exotic” representations (such as the three-index antisymmetric

of an SU group [29, 30]). Higgsing in particular ways one shows that these representations

must decompose into matter of higher U(1) charge.

In this paper, we explore a completely different method that can readily generate a

large class of examples of CY threefolds with matter of electric charge up to q = 6. Here,

the 6 is the highest possible Dynkin label of any adjoint representation for a simple Lie

algebra. In this case, it is an E8 label. We will explain the method in what follows.

The rough idea is to look at families of local surfaces. Exactly how to “localize” surfaces

leads to some technical questions, which traditionally have been given different answers in

algebraic geometry, complex analytic geometry, and hyper-Kähler geometry. To fix ideas,

our basic building blocks will be asymptotically locally Euclidean (ALE) spaces, which

3To see this, put M-theory on an A1 surface singularity, seen as a limit of a two-center Taub-NUT

space. There are two homologically nontrivial two-cycles, call them Ni, which are Poincaré dual to two

harmonic, normalizable two-forms ωi (i.e.
∫
Ni
ωj = δji ). We can decompose the supergravity C3-form along

them as follows: C3 ∼ ωi ∧ Ai. The Ai’s are U(1) gauge potentials supported on the seven-dimensional

external space, and localized on the i-th center of the Taub-NUT (that is, the kinetic term G4 ∧G4 peaks

around the centers) [14]. Now take M-theory on the conifold uv = zw, regarded as C∗-fibration over

C2
(z,w). The reduction to type IIA gives rise to two intersecting D6-branes, localized at z = 0 and w = 0.

The two worldvolume U(1)’s live in seven dimensions (and one of them is decoupled [14]), while at their

five-dimensional intersection lives a charged hyper.
4The most general F-theory geometry admitting charge-two matter was constructed in [18, 19], where

the above question was also raised.
5For pedagogical reviews on F-theory and its recent developments, see [26, 27]. We follow the perspective

advocated in [28], in which F-theory is regarded as a variant of type IIB string theory in which the data of

the varying elliptic curve is used to specify the variable axio-dilaton of IIB.
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come equipped with hyper-Kähler metrics and which can easily be related to the so-called

“rational double point” singularities in algebraic geometry [31]. Moreover, the deformation

theory can be described in terms of period integrals, which would also be the case if the

ALE spaces were embedded as local surfaces within global (possibly singular) K3 surfaces.

We will thus consider families of ALE spaces, often modeled by algebraic families of ra-

tional double point singularities. Within these families, one can impose that the ALE spaces

degenerate in particular ways, so as to generate point-like singularities that admit small

resolutions, akin to the conifold. However, unlike the conifold, the non-compact divisor will

intersect the exceptional P1 ` times, where 0 ≤ ` ≤ 6, depending on the situation. In order

to construct these families, we will be guided by the principles of Brieskorn-Grothendieck

simultaneous resolution [32–34] (made explicit in [35]), as well as Kollár’s notion of higher-

length flops [36, pp. 95-96], further developed in [35] and [37]. Concretely, we will use some

technology that has recently been developed in [38], whereby one describes not the geometry

directly, but a quiver that encompasses all relevant information. Such a quiver, known as

the universal flopping algebra, has the property that its space of representations is literally

a model for the geometry of interest (up to taking completions of local rings), with deforma-

tions and resolutions being regarded as Fayet-Iliopoulos terms. The advantage of using such

a language is that it gives us a very compact way to package entire families of ALE spaces.

The representation spaces of these quivers actually give us CY n-folds, where n ≥ 3.

However, an arbitrary three-dimensional slice (or an appropriate covering of such a slice)

will give us a CY threefold that admits a small resolution. By analyzing which homology

spheres get contracted along various loci of the CY, we will write down the criteria that

such a threefold must satisfy in order for it to admit higher-charged matter.

Summary and outline. We will now summarize the main point of our analysis, and give

an outline of the sections. However, we would first like to clarify our setup, as names will

often get used interchangeably. We will always be considering a non-compact Calabi-Yau

threefold X3 that admits a simple small resolution, and we will sometimes assume that X3

can be regarded as a local patch of an elliptic fibration over a base B2 which is an open

subset of C2.6 The various possible effective theories obtained via “compactification” on

X3 are the following:

• Type IIA on X3, giving four-dimensional N = 2 supersymmetry.

• M-theory on X3, giving five-dimensional N = 1 supersymmetry.

• F-theory on X3 with type IIB axio-dilaton specified by the fibration X3 → B2 (when

that fibration exists). This gives a six-dimensional theory with N = (1, 0) supersym-

metry.

In the compact setting, all three theories have a single U(1) vector multiplet (and no

non-Abelian ones) plus charged hypers, whereby the charges will vary according to our

constructions. The interconnections are displayed in figure 1.

6Our basic assumption is that X3 can be fibered by ALE spaces, but sometimes we want an elliptic

fibration as well so in that case X3 should be fibered by ALG spaces.
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M-theory

Type IIA

F-theory

d = 6

d = 5

d = 4

X3

X3

S1

S1

X3

Figure 1. The various theories under consideration and their interconnections. (In the case of

F-theory, the data of the fibration X3 → B2 — when it exists — is used to specify the type IIB

axio-dilaton.) Each lower-dimensional effective theory has eight Poincaré supercharges.

Let us now summarize our findings. The construction by Karmazyn [38] of the so-

called universal flopping algebra of length ` provides us a CY n-fold,7 from which we can

take any three-dimensional slice (or appropriate covering of such a slice). Any such slice

or cover will contain a U(1) vector multiplet, and matter with charge `. We will show how

this works explicitly for charge two, and relate the construction of length two directly to

the well-known Morrison-Park geometry [18].8 We will then explain how to obtain higher

charges from higher-length flopping algebras. The recipe to obtain charge q is summarized

in figure 2, whereas the necessary terminology will be explained in later sections.

This paper is organized as follows. In section 2, we first present the concept of building

threefolds as families of surfaces, by demanding that these admit simultaneous resolutions.

We first whet the reader’s appetite with a familiar example, the conifold [39, 40], seen as a

family of A1 surfaces. We then explain the general picture. In section 3, we specialize to the

case of the universal flop of length two (a CY sixfold). This is the case that will ultimately

produce threefolds with matter of charge two, starting from the D4 surface. Here, we

expose the technology recently developed in [38], where one constructs these families in

terms of quivers. In section 4, we actually proceed to the construction of threefolds with

charge-two matter.9 Here, we discover that these threefolds exhibit a rich matter structure.

Depending on how we cut the sixfold down to a CY threefold, we may get:

7At times, following [37], we will refer to this CY as the universal flop of length `.
8Note that in the length 2 case, the elliptic fibration and presumably the ALG spaces are a natural

feature of the solution.
9Our presentation gives a new derivation of results originally obtained in [37], which also formulated a

conjectural extension to higher-length cases.
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Build the Dynkin-McKay quiver containing q as a Dynkin label

Contract the quiver keeping track of deformation parameters

Implement base change on deformation parameters

Use homology of K3 surfaces (or ALE spaces) to identify

two-spheres acquiring non-zero volume → charge q matter

Figure 2. The main idea.

• Charge-one matter loci, along which the exceptional locus of the (simple small) res-

olution is a P1.

• We may get loci with length-two flops, corresponding to charge-two matter made from

a bound state of membranes on the exceptional P1. (We give an explicit example of

this in section 5.4.)

• We may get an exceptional locus consisting in a union of two P1’s.

• Finally, we may get a quadratically embedded P1, such that the standard U(1) divisor

cuts it at two points. This produces charge-two matter.

The various possibilities are summarized in figure 11. In section 5, we establish the cor-

respondence of this construction with the Morrison-Park one. This is the classic example

of F-theory with a single U(1), and matter hypermultiplets of charge one and two. In

section 6, we open up the investigation for higher charge, and we list the universal quivers

of [38]. We briefly present our conclusions in section 7. Finally, in appendix A we ex-

plain how to construct general threefolds admitting high-charge matter loci with the aid of

simple computer algebra. The outputs of this calculation are written in the Mathematica

notebook included with the arXiv submission and the supplementary material attached to

this paper,10 where we present the most general n-folds in elliptic form admitting charge

three, four, five, and six.

1.1 Local surfaces

Before ending this introduction, we wish to make our conventions about local surfaces

completely explicit, as well as to introduce the important notions of local and global Picard

groups.

10Which can also be found at this page.

– 6 –

http://web.math.ucsb.edu/~drm/mathematica/


J
H
E
P
1
1
(
2
0
1
9
)
1
1
1

In algebraic geometry, the key object is the ring of algebraic functions. The natural

domains of definition of algebraic functions are the so-called Zariski open sets, and passing

to a smaller Zariski open set will allow algebraic functions with poles along the algebraic

subset which was removed, i.e. the ring of algebraic functions will increase. The natural way

to “shrink” a surface in that case would be to pass to a Zariski open subset. Unfortunately,

such subsets tend to be rather large. The “solution” to the problem of defining functions

which are appropriate for even smaller neighborhoods, is to use functions expressed as

formal power series (i.e., we should complete the local ring at its maximal ideal).

In complex analytic geometry, the key object is the ring of holomorphic functions. The

natural domains of definition are much smaller than in the algebraic case, and various rings

of functions can be related by the “germ” construction: two functions are in the same germ

at a point P if they agree in a small neighborhood of P . The ring of germs of functions at

P tends to be a bit smaller than the formal power series ring, even if the space on which

the functions are defined is an algebraic variety, because the power series corresponding to

holomorphic functions are necessarily convergent.

If we have a singular algebraic variety or a singular complex analytic space, there is

a well-developed local deformation theory which relies on the rings of functions described

above. The results either describe a deformation up to (formal) completion, or up to

passing to germs of functions.

The simplest singularities in complex codimension two, which have many equivalent

descriptions [41], are the so-called rational double points. A convenient description of these

is as quotients: they all take the form C2/Γ for Γ a finite subgroup of SU(2). There are

many other descriptions.

Kronheimer gave a quotient construction for such singularities and their deformations,

which incidentally puts a metric on the underlying complex space (even when that space

is singular — in which case the metric is well-defined on the smooth locus and has con-

trolled asymptotic behavior). Kronheimer’s construction [31] puts a hyper-Kähler metric

on each fiber. The singular spaces and their resolutions are all described as spaces which

asymptote (metrically) to S3/Γ at infinite distance — such spaces (whose metric satisfies

an appropriate equation) are known as asymptotically locally Euclidean, or ALE, spaces.

Kronheimer also describes the deformation theory in terms of the period integrals

of two-forms from the hyper-Kähler structure with respect to compact two-cycles in the

space [42]. Many such deformations can be seen as arising from degenerations of (hyper-

Kähler) K3 surfaces. The addition of orbifold metrics to complete the moduli space of

K3 surfaces (the need for which had been pointed out in [43]) was demonstrated in [44]

as an extension of Yau’s proof of the Calabi conjecture [45]. Subsequently, Anderson [46]

showed that all degenerations of K3 surfaces which are at finite distance from the bulk

of the moduli space can be realized in this form. In particular, K3 surfaces may develop

orbifold singularities in the way predicted by Kronheimer’s analysis. Thus, most of the

singularities we are studying could also be modeled on open subsets of singular K3 surfaces.

(Note however that such a model has a bounded rank — giving a bound on the number of

independent rational curves which can shrink — which is why not all of the singularities

of interest can be modeled on open subsets of K3 surfaces).
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In addition to the ALE spaces, geometers and physicists have studied other types

of ‘gravitational instantons’, namely ALF (asymptotically locally flat), ALG, and ALH

spaces [47–51], which are all asymptotic to fibrations over a Euclidean base and contain

tori (the fibers) of various dimensions at infinity (and in fact throughout the interior of the

space). Relevant to F-theory are the ALG spaces which have a T 2 fibration;11 in many

instances, the deformation theory of the ADE singularities can be reproduced by ALG

spaces as well as by ALE spaces.

1.2 Local and global Picard groups

In this paper, we measure the charge of various matter fields (represented by compact

curves in the space) with respect to various gauge fields (represented by possibly non-

compact divisors in the space) in terms of the intersection number between divisors and

curves. In order to compare charges (and therefore assert that we have matter with high

U(1) charge), we need a way to compare divisors at different points of the space. This is

provided by the theory of the Picard group.

On any algebraic variety or complex analytic space, one can define the Picard group

as the free Abelian group of subvarieties of complex codimension one modulo the relations

obtained by considering the divisors of zeros and poles of arbitrary meromorphic functions

on the space. If D and D′ are equivalent under such a relation, i.e. if D−D′ represents the

divisor of zeros and poles of some meromorphic function f , then for any compact curve in

the space D ·C = D′ ·C. Thus, for computing gauge charges, one can pass naturally to the

Picard group. Similarly, the existence of the meromorphic function f shows that the gauge

field obtained by reducing the M-theory three-form on the divisor D is gauge equivalent to

the gauge field obtained by reducing the three-form on D′. The Picard group thus captures

an Abelian subgroup of the full gauge group, in which the (Abelian) gauge fields come by

reduction of the M-theory three-form on divisors. The computations we will make of gauge

charges in this paper will typically be local ones: we will find a small resolution of a local

neighborhood of some singular point P , and then consider a compact curve CP in that

small resolution. The gauge charge of CP is then an integer-valued function on the local

Picard group, i.e. the Picard group of divisors defined in an appropriate neighborhood of

P . In principle, the gauge charge might depend on the choice of small resolution, but such

dependencies can be made very explicit.

A bit more challenging is the problem of relating the gauge charges of a curve CP lying

over one singular point P , with those of a curve CP ′ lying over a different singular point P ′.

In fact, this problem goes back to the earliest examples of conifold transitions [40, 53, 54]

and their mathematical explanations [55, 56]. In the case of a quintic threefold specializing

to a quintic X containing a P2, sixteen singular points are created but there is only one new

divisor class (the proper transform of the P2) after performing a small resolution Y 99K X.

However, there are maps Pic(Y ) → Pic(YP ) where YP is the inverse image of a small

neighborhood UP of the singular point P . In fact, YP is just a neighborhood of a single

11For ALF spaces the fibers are circles, whereas for ALH spaces they are compact orientable flat three-

manifolds. See e.g. [52].
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CP

CP ′

CP ′

Figure 3. A globally defined generator of Pic(Y ) can intersect the resolution curve CP once, and

CP ′ N times (top frame). However, in a local patch around the curve CP ′ , this looks like N times

the generator of Pic(YP ′) (bottom frame).

compact curve CP ∼= P1, and one shows that the new divisor class maps to a generator of

Pic(YP ) ∼= Z for each P . In fact, each curve CP has charge 1 under the new divisor class (or

perhaps each curve CP has charge −1, which happens if the small resolution is changed).

The basic principle that calculations can be done in local Picard groups Pic(YP ) and

then related to each other in the global Picard group Pic(Y ) is something we will encounter

frequently in this paper. Suppose our threefold Y contains two singular points P and P ′

supporting charged matter. After resolving both singularities and creating exceptional

curves CP and CP ′ , we can define the local Picard groups Pic(YP ) and Pic(YP ′). Each

local Picard group will contain a divisor that intersects the local exceptional curve once.

However, for the full ‘global’ model,12 a generator of Pic(Y ) might intersect, say CP once,

and CP ′ N times, where N could be arbitrarily high. See figure 3 for a cartoon.

This is how higher-charge models are possible. In our paper, we will study a class of

models that automatically generate charges up to six. However, even higher charges could

be possible if one glues several such models appropriately. This is an interesting direction

for future research.

12By global we do not necessarily mean compact.
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A1 surface

Build family of versal deformations

Perform base change on parameter space

Figure 4. The main idea exemplified in the A1 case.

2 Threefolds as families of ADE surfaces

2.1 Elementary example: the conifold as a family of A1 surfaces

In this section, we will rediscover the simplest of flops, based on the conifold, as a one-

parameter family of surfaces.13 This gives us a prototype local model for a theory with

a U(1) symmetry and one charged hyper. The basic idea is summarized by the work-

flow 4. In equations, we start with the standard Du Val A1 surface given by the following

hypersurface:

P := x2 + y2 + z2 = 0 . (2.1)

Its family of versal deformations is parametrized by the Jacobian ring

C[x, y, z]/(∇P ) = C[x, y, z]/(x, y, z) ∼= C . (2.2)

In other words, we have the following one-parameter family:

x2 + y2 + z2 = α . (2.3)

The total space of this family is a threefold X3, and its central fiber over α = 0 admits

a resolution. However, there is no ‘simultaneous resolution’ for the whole family.14 In

other words, we can only perform the birational transformation on the central fiber. A

simultaneous resolution would correspond to an operation we would perform on this whole

threefold, such that its restriction to the central fiber would be the standard resolution, as

schematically presented in figure 5. Instead, Atiyah observed [59] that if we perform a

base change, meaning, if we pull back this family onto a particular covering space of the

parameter space of α, then we will have a new threefold Y3 that does admit a simultaneous

resolution. In this case, the base change is (see figure 6)

φ : B̃ −→ B : t 7→ α = t2 . (2.4)

13The idea of building threefolds by starting with surfaces is not new to physics, as exemplified in [57, 58].

It is also not new to geometry [59, 60]. We will take a purely geometric stance here.
14The question of which deformations of surface singularities admit ‘simultaneous resolutions’ was inves-

tigated thoroughly by Grothendieck and Brieskorn [32]; see [33] for a detailed exposition.
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deformed

Figure 5. A simultaneous resolution of singularities (D4 in the picture). In the ‘resolved’ fiber

over the red base locus, a black line represents an exceptional P1 that has been blown up, with

three marked points (the red crosses) representing residual A1 singularities. Over the generic grey

locus, the fiber is completely smooth, and corresponds to a versally deformed surface singularity.
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Figure 6. The new threefold family Y3 (given as a fibration φ∗π : ALE→ B̃) after base change.

Now, the end result after pulling back the family of surfaces onto B̃ is the conifold:

x2 + y2 + z2 = t2 . (2.5)

As is well known [40], the conifold admits two ‘small resolutions’, and each one restricts to

the usual resolution for the A1 singularity, when we set t = 0.

2.2 General ALE surfaces

This innocent trick of replacing the deformation parameter α with the square of a new

parameter t has underpinnings in the Weyl invariant theory of A1. For the case of the

conifold, this machinery constitutes overkill. However, it is crucial in the construction of

other threefolds that admit simultaneous resolutions [35].

Here is a preview. The Lie group A1 has a one-dimensional Cartan torus T that we

can parametrize with the coordinate t. There is a Weyl symmetry group W = S2 which

acts as t 7→ −t. The standard versal deformation of an ALE hypersurface is a family of
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Figure 7. The ‘colored’ Dynkin diagrams A1, D4, E6, E7, E8 corresponding to the chosen subgroup

of the full Weyl group. (We consider two different colorings for E8.) We will be quotienting the

Cartan torus T by the Weyl group of the white sub-diagram only.

surfaces parametrized by coordinates of the quotient space T/W [33, 34]. In this case, this

coordinate is α, and the family is

x2 + y2 + z2 = α , (2.6)

which does not admit a simultaneous resolution. However, if we pull this family back onto

T , and express it in terms of the Weyl-covariant coordinate t =
√
α, then we get the

conifold, which admits a simultaneous resolution.

The story for more general ALE groups is similar: there is a finite base change to the

Weyl-covariant coordinates which allows for a complete simultaneous resolution. There are,

however, also intermediate cases in which one wishes to simultaneously resolve only along

a subgraph of the Dynkin diagram (which can be colored black to aid in visualization).

There is then a subgroup W ′ of the full Weyl group corresponding to the complement of

the subgraph (which would be colored white), and a partial quotient T /W ′; pulling back

the deformation to that partial quotient allows a partial simultaneous resolution. The

intermediate quotient lies between the Cartan torus T and the full quotient T /W:

T → T /W ′ → T /W . (2.7)

In the work of [35, 37], one is studying partial resolutions of surfaces which involve a single

P1 only, so one chooses a particular node, such that only its corresponding sphere admits

a simultaneous resolution, and keeps the rest shrunk at the origin. In other words, one has

a single node colored in black, and Weyl subgroup in question is that of the subgraph in

white in figure 7.15

In order to construct the special family admitting the partial simultaneous resolution,

one takes the standard versal deformation, and writes the various coefficients as functions

of the Cartan torus, such that these are invariant under the Weyl group of the (white)

complementary Dynkin subgraph.

15The same idea was subsequently exploited in [61, section 6] to construct four-dimensional N = 1

gauge theories with adjoint matter by having a bunch of D5-branes wrap the blown-up sphere (the one

corresponding to the black node), while the others are shrunk to zero size.
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Figure 8. The Dynkin-McKay quiver with relations reproducing the D4 surface singularity x2 =

yz(y + z). The vertex labeled by a subscript 0 corresponds to the affine node in the D̂4 Dynkin.

3 Families of ALE surfaces from quivers

In the previous section, we schematically explained that, in order to construct a family of

ALE spaces admitting a simultaneous resolution, one writes the versally deformed ALE, but

writes the deformation parameters as functions of the Cartan torus, partially quotiented

under a suitably chosen subgroup of the full Weyl group. While this approach is completely

correct (and is the primary approach of [35]), it appears to be impractical for Lie algebras

beyond D4.

Instead of directly generalizing (2.3) at the level of hypersurface equations, we will use

the approach put forth in [38]. The idea is to reconstruct the geometry from a quiver with

relations. The family of deformed ALE surfaces admitting a simultaneous resolution is

indeed recovered as the relation satisfied by the gauge invariants of the former. This quiver

is directly obtained starting from the Kronheimer quiver, i.e., the affine quiver of the ALE

singularity. Below we summarize the results of [38] that we will need in the following, and

refer the reader to that paper for the detailed derivation.

We will exemplify the construction with the simplest nontrivial case, i.e. the D4 sin-

gularity. Consider the (affine) D4 McKay quiver in figure 8. The figure actually depicts

a representation of the quiver, whereby each node corresponds to a vector space, and the

arrows to linear maps among them. Notice that the dimension of each vector space is spec-

ified by the label in the colored D4 Dynkin diagram of figure 7 (with the affine node always

corresponding to a one-dimensional space). We collect these dimensions in a dimension

vector ~d = (d0, . . . , d4) = (1, 1, 1, 1, 2). The arrows correspond to linear maps, i.e. matrices,

which are required to satisfy the following relations (akin to the F-terms one would obtain

by taking derivatives of a superpotential):

aA = bB = cC = dD = 0 , Aa+Bb+ Cc+Dd = 0 . (3.1)

We are using conventions such that the composition of maps runs from left to right; to

accomplish that we take transposes, so that e.g. a : C→ C2 is a row two-vector, A : C2 → C
a column two-vector, and so on. Thus by e.g. Aa we mean the 2 × 2 matrix obtained via

Kronecker product.

– 13 –



J
H
E
P
1
1
(
2
0
1
9
)
1
1
1

To describe the versal deformation at the quiver level, we first need to modify the

above relations as follows:

aA = t0 , bB = t1 , cC = t2 , dD = t3 , (3.2a)

Aa+Bb+ Cc+Dd = −t412 . (3.2b)

The ti’s in (3.2) are complex numbers,16 and correspond to coordinates on the Cartan torus

TD̂4
of D̂4. Since we are using the affine D̂4 Dynkin diagram, rather than the non-affine

one (as previously done for A1), the ti’s must satisfy the additional constraint17

t0 + . . .+ t3 + 2t4 = 0 . (3.3)

The quiver representation is supplemented by stability parameters, which can be thought

of as real Fayet-Iliopoulos (FI) constants ~ξ = (ξ0, . . . , ξ4), subject to the relation

~d · ~ξ = 0 . (3.4)

The space of possible representations subject to certain stability criteria forms a continuous

moduli space. These criteria essentially ensure that ‘bad’ points are excluded (much like one

excludes the origin of a vector space when making a projective space). See our companion

paper [62] for more detailed explanations. The moduli space turns out to be the ALE

surface itself. (This is essentially Kronheimer’s construction [31].) The ξi correspond to

the Kähler modulus of the i-th exceptional P1 of a resolution, and the ti corresponds to

the volume of the i-th deformed (i.e. non-holomorphic) sphere w.r.t. the complex structure

(2, 0)-form Ω.

If we now define the following three gauge-invariant loops (which are just complex

numbers),

x := aBbCcA , y := aCcA , z := aBbA , (3.5)

it is straightforward to show (by repeatedly applying (3.2)) that these satisfy the following

hypersurface relation:

x2 +
1

4
t0(4y + 4z − t23 + t22 + t21 + t20)x =

= yz(y + z) +
1

4
yz(−t23 + t22 + t21 + t20)−

1

16
t20t

2
1t

2
2 +

1

4
t21y

2 +
1

4
t22z

2 . (3.6)

This is a deformation of the D4 singularity

x2 = yz(y + z) . (3.7)

After a suitable coordinate redefinition, it can be brought to the well-known versal form

x̃2 + ỹ2z̃ − z̃3 + α2(ti)z̃
2 + α1(ti)z̃ + α0(ti) + β(ti)y = 0 , (3.8)

16They can be thought of as complex Fayet-Iliopoulos parameters in 4d N = 2 language.
17More generally, for any affine ADE quiver we have∑

i

ωiti = 0 ,

where the ωi are the labels on the nodes in figure 7, and for the affine node we always put ω0 = 1.
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Figure 9. The quiver with relations reproducing the threefold family of deformed D4 surface

singularities admitting a simultaneous resolution.

where the αi and β are Weyl-invariant functions of the Cartan torus coordinates ti.

We have now recovered a versal deformation of the D4 surface that admits a full simul-

taneous resolution. In terms of figure 7, we have colored all nodes black, so that the com-

plementary Weyl group is trivial. Although the functions that appear in the hypersurface

are Weyl-invariant, they are written in terms of coordinates that are fully Weyl-covariant.

Now, we will study the situation with only the central node colored in black. This is

the essence of the work in [38]. The Weyl group of the white D4 subdiagram in figure 7 is

S2×S2×S2 (that is, the product of three copies of the Weyl group of A1), and the correct

base change is given by:

(t0, . . . , t3) 7→ (T0, . . . , T3) =

(
t0
2
,
t21
4
,
t22
4
,
t23
4

)
, (3.9)

where we have eliminated t4 in favor of (t0, . . . , t3) upon using (3.3). The procedure ex-

plained in [38] entails considering a new quiver obtained by ‘contracting’ the external paths

in figure 8 onto the central vertex, as depicted in figure 9. Notice that the new loops b, c, d

are represented by 2 × 2 matrices (rather than row vectors, as the notation in use would

suggest).18 We also have the following new relations, inherited from (3.2):

aA = 2T0 , b2 = T112 , c2 = T212 , d2 = T312 , (3.10a)

Aa+ b+ c+ d = T012 . (3.10b)

It is straightforward to show (upon repeatedly applying relations (3.10)) that the gauge

invariants

x := abcA , y := acA , z := abA (3.11)

satisfy the following relation:

x2 + 2T0(y + z − T3 + T2 + T1 + T 2
0 )x =

= yz(y + z) + yz(−T3 + T2 + T1 + T 2
0 )− 4T 2

0 T1T2 + T1y
2 + T2z

2 , (3.12)

which is again a deformation of the D4 singularity (3.7). So how is this different from the

hypersurface in (3.6)? Both are fully deforming the singularity in the sense that, at a generic

point on the Cartan torus, the ALE fiber is fully desingularized. However, whereas the

18The loops in figure 9 are not given by the same-name paths of figure 8.
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Figure 10. Partial resolution of the sixfold family of versally deformed ALE spaces of type C2/D4 =

SpecR, with R = C[x, y, z]/(x2 − yz(y + z)). The base of the fibration is the deformation space

parametrized by (T0, . . . , T3), whereas the fiber is parametrized by (x, y, z). Over the red locus

(which may be a nontrivial subvariety of the base) the fiber degenerates: we only resolve the black

node in the colored D4 Dynkin (see figure 7), corresponding to the two-dimensional vertex in figure 9.

The resolution produces a single P1 (the black line) with three singular A1 points (the red crosses).

hypersurface (3.6) admits a full simultaneous resolution, the one in (3.12) only admits the

simultaneous partial resolution that blows up the central node of the D4 Dynkin diagram.

We have produced a non-compact CY sixfold, if we take the whole family with the Ti’s

promoted to coordinates. This family is known to be the so-called universal flop of length

two first constructed explicitly in [37] (albeit using a different method). Now we can build

CY threefolds that admit a small resolution by simply taking a three-dimensional subspace

of this sixfold (or an appropriate cover thereof).

For all other ALE cases, the prescription is exactly the same. The quivers producing

the versal deformations of a Du Val surface singularity can be found in [38, section 4].

They will make their appearance in section 6.

4 D4 singularity in ALE and universal flop of length two

In the previous section we have constructed a family of D4 singularities, that is an ALE

fibration over a four-dimensional base space, namely a sixfold. The ALE fiber is smooth

over generic points of the base, and degenerates over codimension-one loci. In this section

we want to describe this family from a different perspective, in order to understand why this

model should generate charge-two matter in an M-theory compactification on a threefold

slice (or appropriate cover of a slice) of the sixfold. We will first describe the ALE fibration

over a cover of the base, using the Weyl-covariant coordinates. At the end we will quotient

them by the proper Weyl subgroup, in order to have a fibration of the reduced D4 quiver.

See figure 10.

Let us summarize this section. First, in section 4.1, we briefly introduce the hyper-

Kähler structure of ALE spaces in a notation that will serve us. We explain in terms

of the complex structure form and the Kähler form what it means to have a ‘vanishing
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deformed  
ALE space: 
eq. (3.12).

base of the sixfold: 
(T0,T1,T2,T3)

singular ALE fiber: 
case 1 (quadratic ℙ1)

(“conifold”) charge-2 locus of MP: eq. (5.6) 
MF has rank (2-2)=0

[P1 ⇢ P2] = [↵0]
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singular ALE fiber: 
case 3 (regular ℙ1)

or

generic 
locus

charge-1 locus of MP: eq. (5.7) 
MF has rank (2-1)=1

locus (4.14): 
T0=0 ⇔ t0=0

locus (4.16) ⇔ 
t1+t2+t3±t0=0

intersection (4.15): 
T0=0 ∩ Δ=0 ⇔ 
t0=t1+t2+t3=0
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Figure 11. Possible matter loci for charge-two examples. The cases referred to in the figure

are 1, 2, and 3. (2)ξ is the real volume of the exceptional P1 locus, [αi] its homology class. The

sixfold family is given by (3.12).

sphere’. In section 4.2, we discuss the deformations of ALE spaces. We single out three

special subspaces in the parameter space of deformations that will be of interest: two of

them will display residual A1 singularities; the third one is given by the intersection of the

first two and it will display an A2 singularity. In section 4.3, we show how these residual

singularities are resolved. Here, we will realize that the two A1 loci show us the various

types of charged matter that can appear. For one of the A1 singularities, the exceptional

P1 is intersected once by the U(1) divisor and gives rise to a charge-one hypermultiplet.

The other type of A1 singularity has a different structure, it corresponds to a P1 that is

quadratically embedded into the geometry, and therefore twice intersected by the U(1)

divisor. This gives rise to a charge-two hyper. See figure 11.

4.1 D4 singularity on an ALE space

An ALE space develops an ADE singularity when a bunch of two-spheres in its homology

collapse to zero size. If the intersection form of the surface restricted to these spheres is

(minus) the Cartan matrix of an ADE algebra ΓADE, then the surface has a singularity of

type ΓADE.
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The volume of the homologically non-trivial cycles is measured by the metric. The

metric of any ALE space is determined by three harmonic two-forms, that span a three-

plane Σ inside H2(surface). The latter is a vector space equipped with a natural scalar

product defined as

v · w :=

∫
surface

v ∧ w , v, w ∈ H2(surface) . (4.1)

This product must be positive definite when restricted to Σ. In terms of Poincaré dual

two-cycles, the product is simply given by the intersection number.

The ALE surface is a local Calabi-Yau (i.e., it is Ricci flat), whose metric is determined

by the Kähler form and the holomorphic (2, 0)-form Ω, which satisfy

Ω · Ω = 0 , J · Ω = 0 , Ω · Ω̄ > 0 , J · J > 0 . (4.2)

These two forms can be constructed by choosing three orthogonal vectors ω1, ω2 and ω3

spanning Σ:

Ω = ω1 + iω2 and J = ω3 . (4.3)

The metric is invariant under SO(3) rotations of the ωi’s. By such a rotation, one can

change the choice of Ω and then of a complex structure. In fact, any hyper-Kähler manifold

has a whole S2 worth of complex structures.

The position of Σ in H2(surface,Z) determines what cycles have zero size: if a two-

cycle is orthogonal to Σ, its volume is zero.19 By adjunction, one can verify that the

classes of two-spheres have self-intersection −2. Hence an ADE singularity of type ΓADE

is present when Σ is orthogonal to a set of two-cycles with intersection matrix equal to

minus the Cartan matrix of the ADE group ΓADE (in particular this means that they have

self-intersection −2).

In this section, we are interested in a hyper-Kähler surface with a D4 singularity.

Following the general rule, this happens when Σ is orthogonal to four independent spheres

α1, α2, α3, α4 in H2(surface,Z) that have the following intersection pattern:

αi · αj = Cij with C =


−2 1

−2 1

−2 1

1 1 1 −2

 . (4.4)

We will call

V D4 = 〈α1, α2, α3, α4〉 (4.5)

the four-dimensional subspace spanned by the spheres αi, that we will also call simple roots.

All vectors in V D4 that square to −2 represent homology classes of two-spheres inside the

19By this we actually mean
∫
α

Ω =
∫
α
J = 0. Since two-forms are Poincaré dual to two-cycles, we often

write these conditions as an orthogonality condition with Σ, i.e. α · Ω = α · J = 0.
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surface corresponding to the roots of D4.
20 The simple roots αi (and consequently all the

roots) have zero size when they are orthogonal to Σ, i.e. when

αi · ΩD4 = αi · JD4 = 0 , ∀i = 1, . . . , 4 . (4.6)

4.2 Deformation of the D4 singularity

To smooth out the D4 singularity one needs to move the plane Σ inside H2(surface) such

that Ω or J are no longer orthogonal to the αi. We say that we deform the singularity if

we keep J orthogonal to V D4 , while letting Ω have components along V D4 :

J = JD4 , Ω = Ω′D4 + t1α
∗
1 + t2α

∗
2 + t3α

∗
3 + t4α

∗
4 . (4.7)

Here Ω′D4 is a (2, 0)-form that is still orthogonal to V D4 and is chosen such that (4.2) are

satisfied by J and the new Ω.21 ti (i = 1, . . . , 4) are complex numbers. {α∗i } is a dual basis

of {αi} in V D4 , i.e. they are such that α∗i · αj = δij . For convenience, we write down the

expression of α∗i in terms of αj :

α∗1 = −α1 − α4 −
1

2
(α2 + α3) , (4.8a)

α∗2 = −1

2
(α1 + 2α2 + α3 + 2α4) , (4.8b)

α∗3 = −1

2
(α1 + α2 + 2α3 + 2α4) , (4.8c)

α∗4 = −α1 − α2 − α3 − 2α4 . (4.8d)

The ALE fibration over the space with coordinates ti is the sixfold family that we want to

construct up to an appropriate quotient by a subgroup of the Weyl group of D4.

With a generic choice of ti’s, one obtains a non-zero volume for all the (integral) spheres

in V D4 ⊂ H2(surface) and the resulting ALE space is smooth. There are however choices

of these parameters that leave some sphere in V D4 orthogonal to Σ. This means that the

ALE space is still singular. Let us consider the following relevant examples (where we use

relation (3.3)):

1. −t0 = t1 + t2 + t3 + 2t4 = 0. The vector

α0 := α1 + α2 + α3 + 2α4 (4.9)

has self-intersection −2 and is orthogonal to Ω. If the values of the ti’s are the most

generic ones satisfying this condition, all the other spheres in V D4 have finite size

(i.e. are not orthogonal to Ω). We then have an A1 singularity.

2. −t0 = t1 + t2 + t3 + 2t4 = 0, ±t1 ± t2 ± t3 = 0. We have three vectors in V D4 that

have zero size. In the case + + + they are

α4 , α0 − α4 , α0 . (4.10)

20Let us list all twelve positive roots of D4: α1, α2, α3, α4, α1 + α4, α2 + α4, α3 + α4, α1 + α2 + α4, α1 +

α3 + α4, α2 + α3 + α4, α1 + α2 + α3 + α4, α1 + α2 + α3 + 2α4.
21Take ω0

m such that ω0
m · ω0

k = δmk and ωm · αi = 0 ∀m, i. Then one can write JD4 = νω0
3 and

ΩD4 = ω0
1 + iω0

2 . One can take Ω′D4 = ΩD4 + bω0
1 , with b = −

∑
ij titj(α

∗
i · α∗j ).
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They span a two-dimensional subspace of V D4 : take α4 and α0 − α4 as a basis,

they intersect at one point and give a choice of simple roots for A2. The ALE space

develops an A2 singularity. Different choices of sign in ±t1± t2± t3 select a different

set of three roots that shrink; they always have the right intersection pattern to give

an A2 singularity.

3. ±t1 ± t2 ± t3 ± t0 = 0, t0 6= 0. There is only one sphere that has zero volume. In

the case + + ++ it is

α4 . (4.11)

We have an A1 singularity. For the choice + + +− the zero-size sphere is α0 − α4.

4. t1 = t2 = t3 = t4 = 0. All the spheres in V D4 have zero size. We have the D4

singularity.

Notice that the second case is the intersection of the first and third.

4.3 Resolutions of remaining singularities

Over some loci of the ti space, the ALE space is still singular. Over these loci one can

resolve the singularities by moving J in such a way that the spheres orthogonal to Ω are

not orthogonal to J anymore. This means that J now takes the form

J = J ′D4 +

4∑
i=1

ξiα
∗
i , (4.12)

where J ′D4 is a two-form that is still orthogonal to V D4 and is chosen such that (4.2) are

still satisfied. The ξi’s are real numbers.

The procedure for constructing partial simultaneous resolutions has led us to replace

the original D4 quiver by a contracted quiver with only two nodes. See figure 9. In quiver

representation language, this means that we really only have two stability parameters (i.e.

Kähler moduli) at our disposal, namely ξ0 and ξ4. Moreover, these must satisfy 2ξ0+ξ4 = 0.

In the language of D3-probes at singularities, we only have one overall U(1) in the quiver,

so only one real FI parameter.

Therefore, we are interested in resolutions consistent with the contracted D4 quiver,

where we allow simultaneous resolution only along the central root of the D4 Dynkin

diagram. This corresponds to fiberwise resolutions of the following form for J :

J = J ′D4 + ξ α∗4 , (4.13)

i.e. we allow only ξ := ξ4 to be non-zero (while ξ1,2,3 = 0).

Let us consider the previous examples and see which spheres acquire a non-zero volume

when J is given by (4.13):

1. −t0 := t1 + t2 + t3 + 2t4 = 0. The root α0 gets volume

J · α0 = 2ξ . (4.14)
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2. −t0 := t1 + t2 + t3 + 2t4 = 0, ±t1 ± t2 ± t3 = 0. Let us concentrate on the case

+ + +: the simple roots α4 and α0 − α4 have volume

J · α4 = J · (α0 − α4) = ξ . (4.15)

Notice that the third root is α0 = α4+(α0−α4) that has volume 2ξ and is homologous

to the sphere discussed at point 1.

3. ±t1 ± t2 ± t3 ± t0 = 0, t0 6= 0. Let us consider the case with + + ++: the root α4

gets a volume

J · α4 = ξ . (4.16)

In the case + + +−, we have J · (α0 − α4) = ξ .

4. t1 = t2 = t3 = t4 = 0. Only the spheres that are linear combinations of α4 with

some other sphere get non-zero size.

Consider the ALE fibration over the space with coordinates t1, t2, t3, t4. Over generic points

of the base, the ALE fiber is smooth. Over the locus t0 = 0 there is an A1 singularity whose

resolution gives an exceptional P1 in the class α0 (case 1). On top of t1 + t2 + t3 + t0 = 0

the resolved P1 is in the class α4, while on top of t1 + t2 + t3 − t0 = 0 it is in the class

α0 − α4 (case 3). All these three loci intersect at t0 = t1 + t2 + t3 = 0, where we have two

P1’s intersecting at one point (case 2). Case 4 is special, and will be treated separately in

sections 5.3 and 5.4.

Notice that the fact that the class [α0] has volume 2ξ is compatible with the fact that

this is a quadratically embedded P1. We can think of it as follows: take case 2, which has a

union of two P1’s, one of class α4, and one of class α0−α4. If we deform this locus, the two

spheres will coalesce into a single sphere of class α0 − α4 + α4 = α0. Hence, α0 is a sphere

that is the homological sum of two projective lines. From this picture, we understand that

it gets intersected twice by the Weil divisor corresponding to the small resolution, and

hence gives matter of charge two.

All of the homology and volume relations we have discovered can be phrased in terms

of the global Picard group and the local Picard groups of the singularities. For example,

the fact that the volume of the root α0 is twice the volume of the roots α4 and α0 − α4

is the statement that the class of α0 is twice the generator of the Picard group, while the

classes of α4 and α0 − α4 correspond to generators.

4.4 Algebraic description

We now relate the above description of the ALE-fibered sixfold with the algebraic descrip-

tion given in section 3. The coordinates Ti of the four-dimensional base are expressed in

terms of the covering coordinates ti according to (3.9). Remember that t0 = −(t1 + t2 +

t3 + 2t4). Let us repeat the equation describing the generic (deformed) ALE fiber:22

x2 = T 2
0 (y + z − T3 + T2 + T1 + T 2

0 )2 +

+ (y + z − T3 + T2 + T1 + T 2
0 )yz − 4T 2

0 T1T2 + T1y
2 + T2z

2 , (4.17)

22This is nothing but (3.12) with xhere = xthere + v, where v (introduced below) is (half) the coefficient

of the linear term in xthere.
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where x, y, z are coordinates along the ALE fiber. The sixfold (4.17) is singular at the

vanishing loci of the following two ideals:

(x, y, z, T0) (4.18)

and

(x, v y + 2T2z, 2T1y + v z, y2 − 4T2T
2
0 , z

2 − 4T1T
2
0 , zy + 2T 2

0 v, 4T1T2 − v2) , (4.19)

with v := (z + y + T1 + T2 − T3 + T 2
0 ).23

The quiver in figure 9 provides a (simultaneous) resolution of these singularities. As we

are now going to show, over the two loci the exceptional locus is a P1. At the intersection

of the two loci, the exceptional locus is the union of two intersecting P1’s. In the next

section we will show that these P1’s correspond to the blown-up spheres of the ALE fiber

found above.

4.4.1 Exceptional locus

We start by restricting ourselves over the locus T0 = 0 (i.e. t0 = 0) (4.18), where we know

the ALE fiber should have an A1 singularity. In the resolution given by the quiver, we

should see an exceptional P1 over this locus.

Over T0 = 0 the relations (3.10) become:

aA = 0 , b2 = T112 , c2 = T212 , d2 = T312 , Aa+ b+ c+ d = 0 . (4.20)

First of all notice that the stability conditions imply that, at x = y = z = 0, one has

A = 0.24 Moreover, we can use the last relation to eliminate d. We are then left with:

b2 = T112 , (4.21a)

c2 = T212 , (4.21b)

{b, c} = (T3 − T1 − T2)12 . (4.21c)

The matrices b, c can be expanded as

b = β012 + βiσ
i , c = γ012 + γiσ

i . (4.22)

Let us consider the relation (4.21a). It says that b2 must be proportional to the identity

matrix, i.e.

b2 = (β012 + βiσ
i)2 = (β20 + β2i )12 + 2β0βiσ

i ∝ 12 . (4.23)

This happens if and only if β0 = 0 or βi = 0 ∀i = 1, 2, 3. The second option is not

possible: if the βi’s vanish, b ∝ 12 and this would also imply c ∝ 12 (see (4.21c)); however

23We notice that v = −2v, where v is the variable appearing in the universal flop of length two of [37],

that we reproduce in (5.10).
24Remember that a, ab, ac, abc must generate the whole C2 vector space at the right vertex (this is

equivalent to insuring that ‘destabilizing’ quiver representations are excluded [62]). Hence, the condition

x = y = z = 0, with x, y, z given in (3.11), force A = 0: in fact, A is implied to be orthogonal to a complete

set of vectors of C2.
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this is forbidden by the stability condition (i.e. Span〈a, ab, ac, abc〉 ∼= C2 must be two-

dimensional). Therefore we must take β0 = γ0 = 0, i.e.

b = βiσ
i , c = γiσ

i . (4.24)

Plugging this into (4.21a), (4.21b), and (4.21c) one obtains:∑
i

βiβi = T1 ,
∑
i

γiγi = T2 ,
∑
i

βiγi =
1

2
(T3 − T1 − T2) . (4.25)

It is now possible to construct three SL(2,C)-invariant object (where SL(2,C) is acting on

the right node of the quiver):

s1 := a ∧ ab s2 := a ∧ ac , s3 := a ∧ abc . (4.26)

Because of the stability condition, these cannot vanish simultaneously. Moreover, they are

charged under the relative C∗ between the two nodes. Hence they are coordinates on a P2.

There is a homogeneous quadratic relation among the si, which selects a P1 inside P2. It

is given by

s23 = T2s
2
1 − (T3 − T1 − T2)s1s2 + T1s

2
2 . (4.27)

Proof. First, notice that

bc = βiγjσ
iσj = βiγj(δ

ij12 + iεijkσk) . (4.28)

Hence

s3 = βiγj(δ
ija ∧ a+ iεijka ∧ aσk) = i βiγjε

ijka ∧ aσk (4.29)

For convenience, let us call Xk := a ∧ aσk. Then

s1 = βiX
i , s2 = γiX

i , s3 = i βiγjε
ijkXk . (4.30)

Using the relation

εijkεh`p = δih(δj`δkp − δjpδk`)− δi`(δjhδkp − δjpδkh) + δip(δjhδk` − δj`δkh) , (4.31)

we can finally write

s23 = −βiγjβhγ` εijkεh`pXkXp

=
(

((~β · ~γ)2 − ~β 2~γ 2)δkp + ~γ2βkβp − (~β · ~γ)(βkγp + βpγk) + ~β2γkγp

)
XkXp

= ~γ2(βkX
k)2 − 2(~β · ~γ)(βkX

k)(γpX
p) + ~β2(γpX

p)2 (4.32)

= ~γ2s21 − 2(~β · ~γ)s1s2 + ~β2s22

= T2s
2
1 − (T3 − T1 − T2)s1s2 + T1s

2
2 ,

where we used
∑

kX
kXk = 0 and the relations (4.25). �

We have thus shown that the exceptional P1 over the locus T0 = 0 is given by the

quadratic equation (4.27) inside P2[s1 : s2 : s3].
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We are now interested in following the fate of this P1 when the locus T0 = 0 intersects

the second singular locus in the sixfold, namely (4.19). This happens when

∆ := (T3 − T1 − T2)2 − 4T1T2 = 0 . (4.33)

Looking at equation (4.27), one sees that at this locus the exceptional P1 splits into two P1’s.

By a gauge fixing, we now show that the exceptional locus at T0 = 0 is exactly parametrized

by a P1. We started from coordinates βi, γi, a1, a2 modulo the relations (4.25) and modulo

(complexified) gauge transformations (C∗ ×GL(2,C))/C∗. We first break SL(2,C) to the

C∗ generated by the Cartan, by choosing

b = T
1/2
1 σ3 , c =

(
r q

p −r

)
, (4.34)

and putting γ1 = 1
2(q + p), γ2 = i

2(q − p), γ3 = r. The relations (4.21c) and (4.21b) now

impose

p q = − ∆

4T1
, r2 =

(T3 − T1 − T2)2
4T1

, (4.35)

with ∆ as in (4.33).

When ∆ 6= 0, we can use the C∗ generated by the Cartan to fix q = p, leaving

behind only the relative C∗ (between the two nodes of the quiver); the relations (4.35)

then determine c completely. The exceptional locus is parametrized by the components of

the row two-vector a, i.e. (a1, a2), modulo the relative C∗ action. These actually span a

P1[a1 : a2], since the stability condition excludes the point (a1, a2) = (0, 0).

When ∆ = 0, the first equation in (4.35) factorizes, giving two loci, one at p = 0 and

one at q = 0. Let us consider the former: the C∗ generated by the Cartan can be fixed by

choosing q = T3. Again, we are left with a P1 parametrized by [a1 : a2]. We can do the

same with the locus q = 0, obtaining a second P1. We have then explicitly shown that at

∆ = 0 the exceptional P1 splits into two P1’s, intersecting at p = q = 0. (At this point we

still need to fix the Cartan C∗; we do this by choosing a1 ∝ a2, i.e. we get a point.)

4.5 Correspondence with sections 4.2 and 4.3

We now show that the exceptional P1’s found in section 4.4.1 are exactly the spheres over

the loci called 1 and 3 in sections 4.2 and 4.3.

Let us begin with the locus (4.18). In terms of the parameters ti’s this means that

t0 = −(t1 + t2 + t3 + 2t4) = 0, i.e. it corresponds to locus 1, where the resolved sphere was

α0 with volume 2ξ. In section 4.4.1 we found that the exceptional P1 is a quadric in P2

that splits when (T3 − T1 − T2)2 = 4T1T2. In terms of the ti’s (using the relations (3.9))

the latter condition becomes

0 = T3 − T1 − T2 ∓ 2T
1/2
1 T

1/2
2 =

1

4
(t22 − t21 − t22 ∓ 2t1t2) =

1

4
t23 −

1

4
(t1 ± t2)2 . (4.36)

Hence we have

± t1 ± t2 ± t3 = 0 . (4.37)

– 24 –



J
H
E
P
1
1
(
2
0
1
9
)
1
1
1

We recognize the case 2, where the exceptional fiber was made up of two spheres (in the

classes α4 and α0 − α4 when we choose + + +), both with volume ξ. The choice of ±
sign is only available on the covering space parametrized by the ti: once we quotient by

the appropriate Weyl subgroup (i.e. we pass to the Weyl-invariant coordinates Ti) the

loci (4.37) become branches of the same locus.

We now analyze the singular locus (4.19). We first see that the singularity occurs at

non-zero y and z:

y = ±2T
1/2
2 T0 = ±1

2
t2t0 , z = ±2T

1/2
1 T0 = ±1

2
t1t0 . (4.38)

The other independent relation in the ideal (4.19) is v2 − 4T1T2 = 0, that in terms of the

ti’s reads

0 = v ± 2T
1/2
1 T

1/2
2

= (±2T
1/2
1 T0 ± 2T

1/2
2 T0 + T1 + T2 − T3 + T 2

0 )± 2T
1/2
1 T

1/2
2

=
1

4
(±2t1t0 ± 2t2t0 + t21 + t22 − t23 + t20 ± 2t1t2) (4.39)

=
1

4
(t1 ± t2 ± t0)2 −

1

4
t23 .

Hence, we have

± t1 ± t2 ± t3 ± t0 = 0 , (4.40)

with t0 generically different from zero. We obtain all the branches of the locus 3 in the base:

choosing + + +±, the exceptional P1 is either in the class α4 (+ sign) or α0−α4 (− sign).

5 The Morrison-Park threefold

We are finally ready to explain how the construction of families of versally deformed,

partially resolved ALE surfaces of type D4 relates to the Morrison-Park threefold [18],

engineering a generic F-theory model with matter of charge one and two.

5.1 U(1) gauge symmetry from geometry

In M-theory, some of the U(1) gauge symmetries come from the reduction of the three-form

C3 along harmonic two-forms of the compactification threefold X3:

C3 =
∑
I

AIµdx
µ ∧DI , (5.1)

where DI are (the Poincaré duals of) divisors of X3. Let us consider an elliptic fibration

X3. In the F-theory limit of M-theory, to have a massless U(1) gauge boson the elliptic

fibration must have an extra section, or better a divisor that intersects the fiber at one

point. We call this divisor D. By combining the divisor D with the zero section Z of the

elliptic fibration and a proper vertical divisor Drest, one finds the U(1) generator [63], i.e.

the divisor that appears in C3 ∼ Aµdxµ ∧ ωD:

ωD = D − Z +Drest . (5.2)
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The requirement that the elliptic fibration has an extra (rational or irrational) section

leads to a specific form of the Weierstrass model, known as the Morrison-Park (MP)

threefold [18]:

WMP : y2 = x3 + c2x
2 +

(
c1c3 − b2c0

)
x + c0c

2
3 − b2c0c2 +

1

4
b2c21 , (5.3)

where we have set z = 1 (in the z 6= 0 patch of the P231 fiber). To obtain the standard

Weierstrass form Y 2 = X3 + f X + g, one simply takes y = Y and x = X − c2
3 .

As already mentioned, the geometry has been constructed so to have (at least) rank-one

Mordell-Weil group; its generator is given by:

QMP : [x : y : z] =

[
c23 − b2c2 : −c33 + b2c2c3 −

1

2
b4c1 : b

]
∈ P231 . (5.4)

The zero section sits at Z : [x : y : z] = [1 : 1 : 0]. The non-Cartier divisor associated with

the extra rational point is given by the equations

DMP :

{
x =

(
c23
b2
− c2

)
, y =

(
−c

3
3

b3
+
c2c3
b
− 1

2
bc1

)}
⊂WMP , (5.5)

at least locally in the patch z = b 6= 0. The MP geometry admits a small, Kähler resolution,

and we expect that the U(1) gauge boson remains massless at strong coupling [64].

The MP threefold has two loci of point-like singularities, given by the following ideals:

( y, x, b, c3 ) , (5.6)

and  y, minors2×2


b2 −c3 x

−c3 x + c2
c1
2

x c1
2 c0


 . (5.7)

The last one is not a complete intersection in the ambient space. The extra divisor DMP

passes through both singular loci.

In M-theory geometric engineering, these singularities correspond to massless states,

given by M2-branes wrapping the shrunk P1, that are charged under the U(1) symmetry

generated by the new divisor DMP. The actual charge is given by the intersection number

of DMP with the exceptional P1. This is due to the coupling of the M2-branes to the

M-theory three-form C3 ∼ Aµdxµ ∧ ωD:∫
M2

C3 =

∫
Aµdx

µ

∫
P1

ωD = (P1 · DMP)

∫
Aµdx

µ . (5.8)

In the MP geometry, we have P1 · DMP = 2 for the locus (5.6) and P1 · DMP = 1 for the

locus (5.7). Therefore there are states with charge two and states with charge one.
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5.2 Morrison-Park is the universal flop of length two

We will now show that the MP threefold (5.3) is a particular threefold slice of the universal

flop of length two (a sixfold). Indeed it can be obtained from (4.17), after identifying x = y

and y = x, by imposing the following equations:

z = c3(ζ) , T0 =
1

2
b(ζ) , T1 = x + c2(ζ) T2 = c0(ζ) , T3 = c1(ζ) . (5.9)

The ζi are local coordinates on the twofold F-theory base (whereas x and y are coordi-

nates along the fiber). In the patch where z and T0 can be taken as local coordinates,25

the last three equations give a cut of the universal flop sixfold. We also notice that the

singular locus (5.6), where charge-two states live, corresponds to the singular locus (4.18)

of the universal flop sixfold, where the exceptional P1 is quadratically embedded in a P2.

Analogously, the charge-one locus (5.7) corresponds to (4.19) in the sixfold, where the

exceptional P1 is an ordinary one.

The universal flop of length two can be written in the simpler form [37]

Wuniv := x2 + uy2 + 2vyz + wz2 + (uw − v2)t2 = 0 ⊂ C7
(x,y,z,t,u,v,w) (5.10)

by applying to (3.12) the following change of variables:

(T0, T1, T2, T3) =

(
t

2
,−u,−w, 2v + y + z − u− w +

t2

4

)
. (5.11)

In this new form, the MP threefold is given, after identifying x = y and y = x, by

t = b(ζ) , z = c3(ζ) , u = −y − c2(ζ) , v = −c1(ζ)

2
, w = −c0(ζ) , (5.12)

again with ζi coordinates on the F-theory twofold base.

5.3 Matrix factorizations and U(1) divisor

Call R := C[x, y, z, t, u, v, w]/(Wuniv) the coordinate ring of Wuniv. In [37] a 4 × 4 matrix

factorization (Φuniv,Ψuniv) of (5.10) was presented, such that M := coker Ψuniv is a so-called

Cohen-Macaulay (CM) R-module (see [62] for the relevant terminology.) Thanks to (5.12),

the MP threefold (5.3) will also admit a 4 × 4 matrix factorization (MF) (ΦMP,ΨMP),

see (5.14). By construction, these two matrices satisfy

ΦMP ·ΨMP = ΨMP · ΦMP = WMP 14×4 . (5.13)

The MP threefold is a determinantal variety, since WMP = Pfaff ΦMP. Over the hyper-

surface WMP = 0, the 4 × 4 matrix ΦMP has rank two. The singularities occur over the

subloci where the rank of ΦMP is lower than two. There are two types of codimension-two

loci where this happens; not surprisingly these correspond to (5.6) and (5.7), upon using

25This is the relevant patch to study the singularities of MP.
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the equations (5.12). The rank drops to zero at the charge-two locus (5.6), while it drops

to one at the charge-one locus (5.7).

ΨMP =


y− 1

2bc1 −x −c3 −b
−c1c3 − x(c2 + x) y + 1

2bc1 −b(c2 + x) −c3
−c0c3 bc0 y− 1

2bc1 x

bc0(c2 + x) −c0c3 c1c3 + x(c2 + x) y + 1
2bc1

 , (5.14a)

ΦMP =


y + 1

2bc1 x c3 b

c1c3 + x(c2 + x) y− 1
2bc1 b(c2 + x) c3

c0c3 −bc0 y + 1
2bc1 −x

−bc0(c2 + x) c0c3 −c1c3 − x(c2 + x) y− 1
2bc1

 . (5.14b)

(The MF (5.14) can be straightforwardly completed to a globally-defined one in P231[x :

y : z].)

In [62] it was shown how a 4 × 4 MF of a threefold can be associated with a family

of non-Cartier divisors intersecting the exceptional locus: as we have said, the MF defines

the CM module M := coker Ψuniv. The rank-two module M becomes a locally-free sheaf

in the resolved threefold, i.e. a rank-two vector bundle V generated by its sections. The

Poincaré dual of the first Chern class of the vector bundle is a divisor D. It is related

to the U(1) gauge boson in the M-theory compactification. The divisor is given by the

locus where two generic sections of the rank-two vector bundle become parallel. This locus

can be identified already in the singular space, by requiring that two sections of M be

proportional to each other. To do this we use the isomorphism between coker ΨMP and

im ΦMP explained in [62]: when the domain of the map ΦMP is restricted to be coker ΨMP,

the map is bijective (this is valid on generic points of the MP threefold). Hence, the locus

where two sections of coker ΨMP are parallel is the same as the locus where two sections of

im ΦMP are parallel. Since the image im ΦMP is generated by the columns of ΦMP, we can

choose two columns of ΦMP and find the locus where these become parallel.

Take e.g. the last two columns of ΦMP. The locus we are looking for is given by the

condition

rank


c3 b

b(c2 + x) c3

y + 1
2bc1 −x

−c1c3 − x(c2 + x) y− 1
2bc1

 ≤ 1 . (5.15)

When all the 2× 2 minors vanish, we obtain the vanishing locus of the following ideal:(
b2(c2 + x)− c23, yb+ c3x +

1

2
b2c1, c3y + b

(
1

2
c1c3 + x(x + c2)

)
, (5.3)

)
. (5.16)

We can make independent choices by taking e.g. the second and last columns or the first

and last. Taking generic combinations of columns and requiring them to be parallel gives
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a whole family of Weil divisors [62], of the form

MD ·


k1

k2

k3

 = 0 , (5.17)

with

MD =


b2(c2 + x)− c23 1

2c1b
2 + yb+ c3x −b(12c1c3 + x(c2 + x))− c3y

1
2c1b

2 − yb+ c3x b2c0 − x2 xy− 1
2b(2c0c3 + c1x)

b
(
x(c2 + x)− 1

2c1c3
)
− c3y bc0c3 + x

(
1
2bc1 + y

)
−(12bc1 + y)2 − b2c0(c2 + x)

 .
(5.18)

Taking e.g. ~k = (1, 0, 0)t gives the ideal (5.16), corresponding to the non-Cartier divi-

sor DMP found in [18] and defined in (5.5). However notice that the former is just one

representative in a whole family the MF is capable of providing us.

The generic choice in the family can also be constructed in the universal flop sixfold

directly, and upon using (5.5) it matches with (5.17). By using the techniques discussed

in [62], one can show that it intersects once the exceptional fiber at the origin of the sixfold.

In the language of section 4, this locus corresponds to t1 = . . . = t4 = 0 (i.e. to case 4).

The exceptional P1 is the sphere α4 in the ALE fiber. Now consider the exceptional P1 on

top of (5.6); it is in the class α0, and when intersected with (5.7) it splits into two P1’s that

coincide at the origin of the sixfold. Hence the divisor we have constructed will intersect

twice the exceptional P1 at the locus (5.6) where the matrix rank drops to zero, while it

will intersect once the exceptional P1 at the locus (5.7) where the matrix rank drops to one.

5.4 Laufer threefold

In [62], we discussed in full detail the Laufer threefold [65], which is described by the

following equation:26

x2 + y3 − tz2 − yt3 = 0 . (5.19)

This is also a threefold cut of the universal flop of length two (and also a specialization of

MP). It is obtained from (4.17) by imposing

T0 =
t

2
, T1 = −y , T2 = t , T3 = z + t+

t2

4
. (5.20)

The resulting threefold is singular at x = y = z = t = 0. Notice that at this point all the

Ti’s vanish. In terms of the covering variables ti, this means t1 = t2 = t3 = t4 = 0, i.e. we

are in the case 4 of sections 4.2 and 4.3. The ALE space develops a D4 singularity, and we

resolve its central node (the black one in figure 7) by a simultaneous resolution.

This singular threefold with its two resolutions is the simplest example of length-two

flop (with the conifold flop being instead length-one). The exceptional P1 in this case

is ‘length-two’, i.e. is an example of non-reduced scheme (roughly, an algebraic variety

26This is Laufer’s threefold for n = 1; see [65, eq. (69)].
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defined by w2 = 0, for some local coordinate w).27 The P1 is intersected once by the U(1)

divisor. However, this two-cycle supports a bound state of two superposed membranes,

which means that charge-two matter is also possible by this mechanism [62, section 6].28

6 The general picture for other ALE spaces

We have seen the connection between the universal flop of length two and M-theory models

with one massless U(1) and matter with charge one and two. The universal flop sixfold

has two loci of singularities that the threefold cut inherits. After resolution, the volume of

the exceptional P1 over one locus is twice the volume of the exceptional P1 over the second

locus. If the two loci intersect, the quadratically-embedded P1 splits into two P1. We have

seen this both algebraically and by studying the ALE fiber.

The same analysis can be performed for models with length higher than two, which

will produce matter with charge higher than two. As we have seen in section 3, also these

n-folds are ALE fibrations over the space of deformation parameters.

6.1 ALE fibrations with higher-charge states

One can straightforwardly repeat the analysis of section 4 to cases corresponding to higher

length. In order to get charge-three states one starts from the family of deformations of an

ALE space with one E6 singularity (i.e. the universal flop of length three), for charge four

(length four) one studies the deformations of an E7 singularity, whereas for charge five and

six (length five and six) those of an E8 singularity.

To illustrate how the technique works in higher charge, we will consider the model

with maximal possible length. As we said, the starting point is an ALE space with an

E8 singularity. The E8 root lattice is eight-dimensional, hence the holomorphic two-form

has eight deformation parameters t1, . . . , t8, corresponding to the (complex) volume of the

simple roots. The highest root is (see the Dynkin diagram in figure 7)

α0 = 2α1 + 3α2 + 4α3 + 5α4 + 3α5 + 2α6 + 4α7 + 6α8 , (6.1)

with complex parameter 2t1 + 3t2 + 4t3 + 5t4 + 3t5 + 2t6 + 4t7 + 6t8.

In the length-two case, the crucial point to construct matter of charge two (in the

M-theory threefold) was the simultaneous resolution of the simple root that appears with

the highest weight in the highest root (i.e. the black node of the Dynkin, labeled by a

2). Hence, in order to have charge six, we need to take the simultaneous resolution of the

central root in the E8 Dynkin diagram, i.e.

J = J ′
E8 + ξα∗8 . (6.2)

27More precisely, the coordinate ring R of the singular variety X := SpecR (i.e. the scheme) contains

a nilpotent element. The length is simply the dimension of the (complex) vector space OX(X). For a

brief account on the subject see e.g. this page or, for a more complete treatment, section 4.2 of Vakil’s

lectures [66].
28The original Laufer example [67] was later generalized in [68, 69]: these too are specializations [65,

section 4.2] of the universal flop by [37, Thm. 3], and their singular geometries host charge-two matter.

– 30 –

http://math.mit.edu/~mckernan/Teaching/09-10/Spring/18.726/l_6.pdf


J
H
E
P
1
1
(
2
0
1
9
)
1
1
1

C C

a

b

A

B

Figure 12. The quiver with relations reproducing the threefold family of deformed A1 surface

singularities admitting a simultaneous resolution.

Now, consider the spheres that are integral linear combinations of simple roots with non-

zero coefficient along α8, i.e. α =
∑8

i=1 niαi with n8 6= 0 (and α2 = −2). Looking at

the Dynkin diagram, one can see that all values of n8 are possible from 1 to 6. Take the

family of ALE spaces with an E8 singularity. The locus where one of these spheres shrinks

is codimension-one in the parameter space spanned by t1, . . . , t8. Over such loci the ALE

fiber develops an A1 singularity. After resolution, the exceptional P1 has real volume n8ξ.

For instance, along the locus t0 = 0, the sphere in the class α0 shrinks, generating an A1

singularity. After resolution, the exceptional P1 in the class α0 has real volume

J · α0 = 6ξ . (6.3)

Since n8 = 1, 2, . . . , 6, all charges in {1, 2, . . . , 6} are present.

Notice that making the simultaneous resolution of the root corresponding to the node

with label 5 in the E8 Dynkin diagram corresponds to J = J ′E8 + ξα∗4. The highest root

has now real volume J · α0 = 5ξ (i.e. we have matter with charge up to five).

6.2 Quivers for higher charge

The algebraic description of the models with high charge can be approached by using the

quiver techniques. In this section we will present the quivers constructed in [38, section 4]

whose gauge invariants satisfy a single relation that is equivalent to the versally deformed

ADE singularity (admitting a simultaneous resolution of the black node, as per figure 7).

The case of D4 was already presented in section 3, so we will neglect it in what follows.

We start with A1. The quiver is depicted in figure 12, and the relations are

A1 : aA− bB = T0 , Bb−Aa = −T0 . (6.4)

The gauge invariants are the paths x = aA, y = bA, z = aB, satisfying x2 = yz in the

undeformed case (as can be checked by applying (6.4) with T0 = 0), and x2 = yz + T0x in

the deformed one.

We now move to the cases E6, E7, E
(5)
8 , E

(6)
8 . Remember that E8 has two possible

colorings (see figure 7), corresponding to which P1 we want to give a real volume in the

homology of the partially resolved, versally deformed ALE spaces. The first (second)

coloring corresponds to a P1 associated with the node of multiplicity five (six), hence to

(the presence of) a matter locus in the threefold with charge five (six). For all these cases

the quiver is the one in figure 13. However each case requires different relations among the

– 31 –



J
H
E
P
1
1
(
2
0
1
9
)
1
1
1

C C`
a

A

b

c

d

Figure 13. The quiver with relations reproducing the threefold family of deformed

E6, E7, E
(5)
8 , E

(6)
8 surface singularities admitting a simultaneous resolution, with ` = 3, 4, 5, 6 re-

spectively (equal to the label of the black node in the corresponding non-affine Dynkin of figure 7).

arrows, as follows.

E6 (`=3) : x := ac2bcA, y := ac2A, z := acA, x2−z2x+y3 = 0;

aA=T 2
0 −T5 , Aa= d2−T513 , dA=AT0 , ad=T0a,

b3−T2b−T113 = 0 , c3−T4c−T313 = 0 , b+c+d− T0
3

13 = 0 .

(6.5a)

E7 (`=4) : x := ac3bc2A, y := ac3A, z := acA, x2−y3+yz3 = 0;

aA=T 3
0 −T2T0−T1 , Aa= d3−T2d−T114 ,

dA=AT0 , ad=T0a, b2−T314 = 0 ,

c4−T4c2−T5c−T614 = 0 , b+c+d− T0
4

14 = 0 .

(6.5b)

E
(5)
8 (`=5) : x := ac3bc2A, y := ac3A, z := acA, x2−y3−z5 = 0;

aA=T 4
0 −T3T 2

0 −T2T0−T1 , Aa= d4−T3d2−T2d−T115 ,

dA=AT0 , ad=T0a, b−c+
T0
5

15 = 0

cbc+c2b+cb3+T7cb+T6c+T415 = 0 ,

(c+b2)2+bcb+T7(c+b2)+T6b+T515 = 0 .

(6.5c)

E
(6)
8 (`=6) : x:=ac2bc2bcbc2A, y :=ac2bc2A, z :=acA, x2−y3+z5=0;

aA=T 5
0 −T4T 3

0 −T3T 2
0 −T2T0−T1 ,

Aa= d5−T4d3−T3d2−T2d−T116 ,

dA=AT0 , ad=T0a, b+c+d− T0
6

16 = 0

b2−T716 = 0 , c3−T6c−T516 = 0 .

(6.5d)

In general (i.e. with generic choices of parameters Ti), concrete examples will be extremely

lengthy, as we discuss in the next subsections. However one should bear in mind that,

ultimately, all cases can be brought to the following forms through coordinate redefinitions:
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E6 : Y 2 − Y Z2 = X3 + ε2(Ti)XZ
2 + ε5(Ti)XZ + ε6(Ti)Z

2 +

+ ε8(Ti)X + ε9(Ti)Z + ε12(Ti) ; (6.6a)

E7 : Y 2 = X3 + 16XZ3 + ε2(Ti)X
2Z + ε6(Ti)X

2 + ε8(Ti)XZ +

+ ε10(Ti)Z
2 + ε12(Ti)X + ε14(Ti)Z + ε18(Ti) ; (6.6b)

E
(5)
8 , E

(6)
8 : Y 2 = X3 − Z5 + ε2(Ti)XZ

3 + ε8(Ti)XZ
2 + ε12(Ti)Z

3 +

+ ε14(Ti)XZ + ε18(Ti)Z
2 + ε20(Ti)X + ε24(Ti)Z + ε30(Ti) . (6.6c)

As the reader can appreciate, all these cases can be regarded as patches of elliptic fibrations,

and it is reasonable to suppose that there is a model fibered by ALG spaces as well. Here,

the Ti’s will be appropriately covariant with respect to the complementary subgroup of the

full Weyl group of En (as per figure 7), with the εj ’s being functions of the elementary

symmetric polynomials of degree j in the Ti’s [35]. In order to make a CY threefold, one

shall regard the Ti’s as sections of an appropriate power of the canonical bundle of the base

of the fibration.

7 Conclusions

Building threefolds. In this paper, we introduced a ‘natural’ class of models for M-

theory (F-theory) compactifications to five (six) dimensions, that contain an Abelian vector

multiplet, and hypers of charges ranging from one to six. The attribute ‘natural’ is left

deliberately vague here. There are other proposals that can realize charges in F-theory

higher than six [24, 25] that clearly do not fall into this class.

The models we present here become inhumanely lengthy, when written in full gener-

ality. It would be desirable to specialize to a few interesting, but more succinct examples.

This should be achievable by means of the algorithm we presented in appendix A.

The models of charge 3, 4, 5 and 6 are all derived as families of En-type ALE spaces,

which are naturally elliptic and in ‘Tate form’. However, other possible slicings of these

families might be possible. For instance, for the charge-two case, we were able to reproduce

the Morrison-Park model [18] by taking a slice that is not vertical with respect to the family

of ALE fibers, but cuts through the family mixing fiber and Ti directions.

Finally, we remark that all these high-charge models can easily be used to construct

CY fourfolds (or even fivefolds and sixfolds).

Geometric transitions. It would be interesting to see whether ‘geometric transitions’29

— akin to the well-known one for the conifold [72–74] — can be established for (threefold

slices of) the higher-length flops. These are topology-changing transitions, whereby one

passes from the resolution of the singularity (containing a single P1, i.e. a holomorphic

two-sphere, in the case of the conifold) to its complex deformation (with a single three-

sphere for the conifold). In general, the Milnor number of a singularity gives the number of

29For a review from both the mathematics and the physics perspectives see [70, 71].
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three-spheres in the deformation. This number can easily be computed for threefold slices

of the universal flops which contain an ADE singularity.

It would be interesting to furnish a gauge theory interpretation of the transition in

terms of its low-energy dynamics.

U(1) divisors. The second main result of this paper is the application of the theory of

Eisenbud’s matrix factorizations to single out the family of U(1) divisors in the compacti-

fication. Usually, in an F-theory situation, one seeks out the extra sections of the elliptic

fibration to construct a homology class upon which to reduce the supergravity three-form

potential. By using matrix factorizations, we can actually find the whole linear system

of divisors with which to construct it. The method does not require any map to some

birational non-Weierstrass model, but is naturally derived from the inherent ALE-fibration

structure of the family.

The matter charges can essentially be read off of the size of the matrix factorization

of the singularity, which in our examples can be explicitly constructed with the method

explained in appendix A. The maximum allowed charge is then ` for a 2`× 2` matrix pair,

with the corresponding charged hypers sitting at the locus where the matrix rank drops

to zero. Generically, there will be other `− 1 special singular loci where the rank drops to

r, with r ranging from 1 to ` − 1. In analogy with the charge-two case of section 5.3, we

claim that these loci correspond to the lower-charge states. Hence, our models typically

realize all the charges from 1 (where the rank drops to ` − 1) to ` (where the rank drops

to zero). This gives a rather practical method to single out the various charged states.

Elliptic fibrations and ALG fibrations. Most of the analysis of this paper was done

in algebraic terms, with the results cast in terms of ALE-fibrations (using Kronheimer’s

identification of the algebraic and differentio-geometric descriptions of such spaces [31]).

However, we noticed in a few places that the algebraic description contained the structure

of an elliptic fibration; it would be interesting to know if we could replace that with an

ALG fibration (perhaps using recent results of Hein, Chen, and Chen [48–51]). If so, we

would have even greater confidence in the applicability of these results to F-theory, since

an appropriate metric on the space would have been given.
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A Producing explicit examples with higher charge

In each ADE case the versal deformation can be calculated with the aid of a simple com-

puter algebra code, that we reproduce below.30 E.g. for the versal deformation of D4 one

types in Magma [75]:31

K := RationalField();

Kt<T0, T1, T2, T3, z, y> := RationalFunctionField(K,6);

F<a, A, x, d, c, b> := FreeAlgebra(Kt, 6);

B := [

z-a*b*A,

y-a*c*A,

x-a*b*c*A,

a*A-2*T0, b*b-T1, c*c-T2, d*d-T3,

A*a+b+c+d-T0

];

G:=GroebnerBasis(B,6);

P:=0;

f:=a*b*c*(T0-b-c-d) - (1/2)*P*a;

g1:=NormalForm(f,G);

g2:=NormalForm(g1*b,G);

g3:=NormalForm(g2*c,G);

g4:=NormalForm(g3*A-(1/2)*P*x+(1/4)*P*P,G);

30We would like to thank J. Karmazyn for help with the code. A slightly different version of the code is

also provided in [38].
31For short calculations (of at most 120 seconds) one can use the online Magma calculator available at

this page.
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printf"Charge-2 example with T0, T1, T2, T3 generic deformation

parameters (i.e.\ universal flopping algebra of length 2)

after base change ";

printf"\n \n";

printf"Hypersurface equation is 0 = - x^2 + "; g4; printf"\n \n";

printf"The polynomial P is "; P; printf"\n \n";

Notice that in the definition of f, which is simply xa − 1
2Pa, we are using the relation

Aa = −b− c− d+ T0. This should be modified in the appropriate way for all other cases,

as explained below.

The relations and gauge invariants x, y, z in the definition of B are taken from (3.10)

and (3.11) respectively. (It is important to input the various factors in each monomial of

the relations in the order specified in (6.5). This is because the code treats the relations as a

non-Abelian algebra.) The output is precisely (3.12), which maps to the form (3.6) (useful

for directly selecting which homology two-sphere should have non-zero volume) under base

change (3.9).

The above output contains a linear term in x, which is not present in the form (3.8).

We can easily cancel it by completing the square.

− x2 − P (y, z, T0, . . . , T3)x+Q(y, z, T0, . . . , T3) = 0
x→x−P

2−−−−−→ −x2 +
1

4
P 2 +Q = 0 . (A.1)

To achieve this, one steps the same code, but now replaces the right-hand side of P := 0;

with the coefficient of the term in x.32 Explicitly:

K := RationalField();

Kt<T0, T1, T2, T3, z, y>:=RationalFunctionField(K,6);

F<a, A, x, d, c, b> := FreeAlgebra(Kt, 6);

B := [

z-a*b*A,

y-a*c*A,

x-a*b*c*A,

a*A-2*T0, b*b-T1, c*c-T2, d*d-T3,

A*a+b+c+d-T0

];

G:=GroebnerBasis(B,6);

P:=(-2*T0^3 - 2*T0*T1 - 2*T0*T2 + 2*T0*T3 - 2*T0*z - 2*T0*y);

f:=a*b*c*(T0-b-c-d) - (1/2)*P*a;

32This coefficient can be calculated with the command P := MonomialCoefficient(NormalForm(x ∗ x, G), x);

upon removing x from the definition of F (and decreasing the order of the FreeAlgebra by one) and the

relation x− a . . . A from B.
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g1:=NormalForm(f,G);

g2:=NormalForm(g1*b,G);

g3:=NormalForm(g2*c,G);

g4:=NormalForm(g3*A-(1/2)*P*x+(1/4)*P*P,G);

printf"Charge-2 example with T0, T1, T2, T3 generic deformation

parameters (i.e.\ universal flopping algebra of length 2)

after base change ";

printf"\n \n";

printf"Hypersurface equation is 0 = - x^2 + "; g4; printf"\n \n";

printf"The polynomial P is "; P; printf"\n \n";

Finally, with little effort we can bring the versally deformed D4 surface into elliptic form

(and presumably describe it in terms of an ALG-fibration), which is particularly useful

for F-theory applications. The output of the second code (neglecting the −x2 term) is a

polynomial of the form,

αz2 + βz + (γ + y + z)yz + δy + εy2 + κ , (A.2)

with α, . . . , κ depending only on the Ti’s. (This could now be brought into form (3.8) via a

simple coordinate redefinition.) We can bring the above into the standard form z3 +fz+g

via a (linear) change of variables.33 Indeed, shifting y → y + φz makes a cubic term

in z appear, with coefficient φ(1 + φ). The coefficient of the quadratic term is instead

b2 := α+ φ(γ + εφ) + y(1 + 2φ). Now shift z → z− 1
3φ(1+φ)b2. This produces a polynomial

φ(1 + φ) z3 +
1

3φ(1 + φ)
f(y, Ti) z +

1

(3φ(1 + φ))3
g(y, Ti) , (A.3)

with f and g depending on y, T0, . . . , T3. By appropriately rescaling y and z, we can cancel

the unpleasant factors in φ, and we are done.34

The simplest case of A1. In the simplest of all cases, namely A1, corresponding to the

conifold threefold with a charge-one matter locus only, one inputs the simplified code:

K := RationalField();

Kt<T0, z, y>:=RationalFunctionField(K,3);

F<a, A, b, B, x> := FreeAlgebra(Kt, 5);

33The same arguments would apply to y verbatim, given the symmetry between the latter and z in the

above polynomial.
34Alternatively, a different Ansatz y → ψy + φz, with a judicious choice of ψ, φ, can directly produce

the sought form z3 + f(y, Ti)z + g(y, Ti). Notice that in (A.3) the roles of the “fiber coordinates” x, y in

standard F-theory notation are played by our z and x respectively.
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D := [

x-a*A,

y-b*A,

z-a*B,

a*A-b*B-T0,

B*b-A*a+T0

];

G:=GroebnerBasis(D,6);

P:=0;

f:=a*A*a - (1/2)*P*a;

g:=NormalForm(f*A-(1/2)*P*x+(1/4)*P*P,G);

printf"Hypersurface equation is 0 = - x^2 +"; g; printf"\n \n";

printf"The polynomial P is "; P; printf"\n \n";

Doing so, one discovers that the coefficient of the linear term in x is precisely T0. Stepping

the modified code obtained by replacing P := 0; with P := T0; one obtains

− x2 + zy +
1

4
T 2
0 = 0 , (A.4)

which is precisely (2.5) after base change α 7→ T 2
0
4 to a Weyl-invariant coordinate.35

Tuning a non-generic matter locus. The above procedure for D4 produces an explicit

albeit generic example with a locus of charge two, and a locus of charge one. One can also

greatly simplify the polynomials f, g by selecting nongeneric values for the deformation pa-

rameters. The choice should be dictated by the logic explained in section 4. If one wants to

tune a specific matter locus on the fourfold base of the sixfold, corresponding to having only

a certain two-sphere (or linear combination of spheres) acquire non-zero volume in the ho-

mology of the ALE space, one should impose those conditions at the level of the deformation

parameters inside the above code. One should simply remember to lower the dimension of

Kt<T0, T1, T2, T3, z, y>:=RationalFunctionField(K,6)

(6 in the generic case), if one fixes a relation among some of the Ti’s.

Examples with higher charge. The above code can easily be adapted to all universal

flopping algebras of length ` = 3, . . . , 6 (with ` = 2 corresponding to the D4 case). First

off, one should modify the line

Kt<T0, T1, T2, T3, z, y>:=RationalFunctionField(K,6)

35An obvious coordinate redefinition is also needed.
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to include up to T7 (thereby appropriately modifying the dimension of Kt). Then one should

input in B the correct relations and gauge invariants, taken from (6.5a), (6.5b), (6.5c), (6.5d)

for E6, E7, E
(5)
8 , E

(6)
8 (i.e. charge three, four, five, six) respectively. Moreover, for high

charge examples it might be necessary to increase the number of parameters in the calcu-

lation of a Gröbner basis for B, by simply replacing the 6 in the line below by some higher

number (starting from 8, and gradually increasing it as needed):

G:=GroebnerBasis(B,6);

Finally, one should input one polynomial g per arrow in the definition of the gauge invariant

x = a · · ·A : C→ C as quiver path, with g1 and glast corresponding to a and A respectively.

E.g. for E6 we have x = ac2bcA, hence we should input the correct f and

g1:=NormalForm(f,G);

g2:=NormalForm(g1*c,G);

g3:=NormalForm(g2*c,G);

g4:=NormalForm(g3*b,G);

g5:=NormalForm(g4*c,G);

g6:=NormalForm(g5*A-(1/2)*P*x+(1/4)*P*P,G);

and modify the last call of the printf function accordingly:

printf"Hypersurface equation is 0 = - x^2 + "; g6; printf"\n \n";

Finally, one can always bring the generic high-charge case into elliptic form, by duly re-

peating the steps explained for D4. The case of E6 is particularly tractable, and a simple

specialization of the length-three universal flop produces e.g. the following (local) Weier-

strass model [38, Ex. 5.3]:

x2 = −y3− 3

4
y2T 2 +

(
3

2
Tz2 + 4T 3

)
y−
(

3T 5 + (T 2 + T 3)z2 +
1

4
z4
)
⊂ C4

(y,x,T,z) . (A.5)

The explicit U(1) generator can be found via the method we explain in the next subsection.

It would be interesting to see whether the charge-three (and four) models of [16, 17] fit

into this analysis.36

Producing matrix factorizations. Once the deformation algebra has been input as

explained in the previous section, one can also compute a matrix factorization of the

universal flop of length `. To do that, one simply needs to know a set of 2` paths from the

left C vertex to the right C` one, which generate the algebra. They are given in table 1 for

each `.37 Then one simply modifies the code as follows:

1. remove x from the definition of F and decrease number of generators of the latter by

one;

36Notice that other examples of flops of length three have already appeared in the mathematics litera-

ture [76–78]. They should all be specializations of the universal length-three flop.
37The table is taken from [38, appendix A.3].
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length ` −x2 + f(z, t, Ti) 2` generators

1 (A.4) a , b

2 (3.12) a , ab , ac , abc

3 −x2 + z2x+ y3 + . . . a , ac , ac2 , acb , ac2b , ac2bc

4 −x2 + y3 − yz3 + . . . a , ac , ac2 , ac3 , ac2b , ac3b , ac3bc , ac3bc2

5 −x2 + y3 + z5 + . . . a , ac , ac2 , acb , ac3 , ac2b ,

ac3b , ac3bc , ac3b2 , ac3bc2

6 −x2 + y3 − z5 + . . . a , ac , ac2 , ac2b , ac2bc ,

ac2bc2 , ac2bcb , ac2bc2b , ac2bc2bc ,

ac2bc2bcb , ac2bc2bcbc , ac2bc2bcbc2

Table 1. The set of 2` paths C→ C` generating the deformation algebra. The ellipsis in the cases

` = 3, 4, 5, 6 denotes the versal deformation in terms of the Ti.

2. remove the relation x− a · · · A from the definition of B;

3. remove (or comment out) the calculation of the polynomials gi (by adding // in front

of them); alternatively, replace x inside glast with a · · · A;

4. redefine the shifted x (i.e. x− 1
2P ) by adding the line

newx:=(a*...*A-(1/2)*P);

5. finally, add the following piece of code:

L:=[a, a*b, a*c, a*b*c];

printf"The matrix factorization is C:= \n {\n "; for M in L do

printf"{ ";

for N in L do

m:=NormalForm(newx*M,G);

printf"end if;

end for; printf"}";

if M ne L[#L] then printf", ";

end if; printf" \n ";

end for; printf"} \n \n";

The output is a 2`× 2` matrix C such that (C,C) is an MF of the hypersurface with the

−x2 term removed, i.e. (C+x12`)(C−x12`) is an MF of −x2 +f(z, t, Ti), where f depends

on the choice of ADE surface, and is given in table 1. (In the above example we give the

basis L of 2` = 4 paths for the D4 case.)

Once an MF of the versally deformed ADE surface (i.e. universal flop of length `) is

produced, one can apply the argument explained in section 5.3 to construct a family of

non-Cartier divisors.
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The most general threefold models with charges three through six. In the an-

cillary Mathematica notebook included with the arXiv submission and the supplementary

material attached to this paper,38 we have written the output of the outlined calculation,

for the cases E6, E7, E
(5)
8 , E

(6)
8 (charges three, four, five, six respectively) with all deforma-

tion parameters turned on. The outputs are in the form of a (rather lengthy) hypersurface

equation directly provided in elliptic form; upon taking z and the Ti’s to be sections of ap-

propriate line bundles over a twofold base (satisfying relations), these should be regarded

as the first examples of F-theory threefold compactifications realizing matter of charges

three through six explicitly (except for the models which already appeared in [16, 17]).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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