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Abstract— This paper investigates the performance of irregular
low-density parity-check (LDPC) codes on memoryless BI-AWGN
(Binary Input - Additive White Gaussian Noise) channels, with
sum-product decoding. Objective of this work is to study the
relationship between an LDPC code performance and some
parameters specifying the code itself, such as the coefficients of
its degree distributions. In fact, these coefficients where shown
in Di et al.’s 2006 paper to determine the growth rate of the
minimum distance of an LDPC code, which can be only sublinear
in the block length in some well defined conditions of the degree
distribution pair.

I. INTRODUCTION

Low Density Parity Check (LDPC) codes are a class of

channel block codes, first introduced in 1960 by Robert

Gallager in his doctoral dissertation [1], representing the

leading edge in modern channel coding. Due to the technical

limitations of that age and the quadratic complexity in the

block length making the efficient encoder design not trivial,

LDPC codes were scarcely considered for almost 30 years,

apart from Tanner’s generalized LDPC definition and graph-

ical representation, presented in his 1981 paper [2], which

was later called Tanner graph. Apparently independent of

Gallager’s work, LDPC codes were re-invented in the mid

1990s by MacKay [3] and Luby et al. [4]. Since it was shown

that LDPC performance can approach the Shannon limit as

well as Turbo codes, these codes were quickly included in

modern communication standards such as IEEE802.11n [5]-

[7], 802.16e (Wi-MAX), 10G-BaseT Ethernet, and Digital

Video Broadcasting. Recently, they were also proposed as

component codes of product code structures [8] for the next

generation digital terrestrial broadcasting transmission system

[9] and were adopted, together with polar codes, by the fifth-

generation (5G) new radio (NR) standard [10]-[12].

One of the most important classical assumptions in coding

theory is the idea of maximizing a code minimum distance to

achieve better performances. This idea is based on the fact that

the weight distribution of a code determines quite accurately

its bit error rate (BER) or frame error rate (FER) performance

bounds (at least away from the Shannon capacity) and that
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these bounds are dominated by small Hamming codeword

weights.

Since LDPC codes are well known “capacity-approaching

codes”, when iteratively decoded applying low complexity

algorithms, it is objective of this work to study the role played

by their codewords weight distribution in determining this

very good performance, on the basis of the results of Di et

al.’s 2006 paper [13]. In particular, the main result of [13]

states that, for irregular LDPC codes ensembles, the growth

rate of the minimum distance, i.e., whether this growth rate

is linear or simply sublinear, depends only on λ′(0)ρ′(1),
a quantity which is related to the degree distributions (1)

and (2). As stated more precisely in Theorem 1 of [13], if

λ′(0)ρ′(1) > 1, which is the one examined in this paper, the

minimum distance grows sublinearly with the block length,

otherwise, i.e., if λ′(0)ρ′(1) < 1, it grows linearly with the

block length, with probability at least 1 − ln 1√
1−λ′(0)ρ′(1)

,

sharpened to
√

1− λ′(0)ρ′(1) in [14].

Being the parameter λ′(0) given by the fraction of edges

connecting to degree-two v-nodes, i.e., λ2 (see Section V), this

parameter is fundamental in the design of LDPC codes that can

reach capacity under iterative decoding, since the achievement

of capacity requires λ2 6= 0 [13]. However, in this latter case,

the average number of weight 2 codewords in the ensemble is

bounded away from zero, and thus the block error probability

might converge to a constant [13].

The paper is organized as follows. In the next section, we

recall the fundamental properties of LDPC codes as far as their

matrix representation is concerned, whereas in Section III their

graphical representation is recalled. In Section IV are recalled

the fundamental results of [13] on the weight distribution of

LDPC codes and in Section V are reported the results of

the weight distribution analysis. Finally, in Section VI are

reported some simulation results and Section VII summarizes

the results of the paper.

II. MATRIX REPRESENTATION OF LDPC CODES

Although LDPC codes can be generalized to non-binary

alphabets, we shall consider, for simplicity, only binary LDPC

codes. Since LDPC codes form a class of linear block codes,

they may be described as a certain k-dimensional subspace



C of the vector space F
n
2 of binary n-tuples over the binary

field F2. Each codeword c ∈ C may be written as a linear

combination of the vectors of a basis B = {g0,g1, · · · ,gk−1}
spanning C, c = u0g0 + u1g1 + . . . + uk−1gk−1 for some

{ui}. In other words, c = u · G where u = [u0 u1 · · ·uk−1]
and G is the so-called k×n generator matrix whose rows are

the vectors {gi}. The (n − k)-dimensional null space C⊥ of

G comprises all vectors x ∈ F
n
2 for which x · GT = 0 and

is spanned by the basis B⊥ = {h0,h1, · · · ,hn−k−1}. Thus,

for each c ∈ C, c · hT
i = 0 for all i or, more compactly,

c ·HT = 0, where H is the so-called (n−k)×n parity-check

matrix, whose rows are the vectors {hi}, and is the generator

matrix for the null space C⊥. The parity-check matrix H is so

called because it performs m = n− k separate parity checks

on a received word.

An LDPC code is a linear block code for which the parity-

check matrix H has a low density of 1’s. A regular LDPC code

is a linear block code whose parity-check matrix H contains

exactly wc 1’s in each column and exactly wr = wc(n/m)
1’s in each row, where wc << m (equivalently, wr << n).

The code rate R = k/n is related to these parameters via

R = 1 − wc/wr (this assumes H is full rank). If H is low

density, but the number of 1’s in each column or row is not

constant, then the code is an irregular LDPC code. It is easier

to see the sense in which an LDPC code is regular or irregular

through its graphical representation.

III. GRAPHICAL REPRESENTATION OF LDPC CODES

Tanner considered LDPC codes and showed how they may

be represented effectively by a so-called bipartite graph, now

called Tanner graph [2]. The Tanner graph of an LDPC code

is analogous to the trellis of a convolutional code in that it

provides a complete representation of the code and it aids in

the description of the decoding algorithm. A bipartite graph

is a graph (nodes connected by edges) whose nodes may be

separated into two types, and edges may only connect two

nodes of different types. The two types of nodes in a Tanner

graph are the variable nodes and the check nodes (which we

shall call v-nodes and c-nodes, respectively). The Tanner graph

of a code is drawn according to the following rule: check node

j is connected to variable node i whenever element hij in H is

a 1. One may deduce from this that there are m = n−k check

nodes, one for each check equation, and n variable nodes, one

for each code bit ci. Moreover, the m rows of H specify the

m c-node connections and the n columns of H specify the n
v-node connections.

For irregular LDPC codes [4], the parameters wc and wr

are functions of the column and row numbers and so such

notation is not generally adopted in this case. Instead, they

are defined by specifying the distribution of the node degrees

in their Tanner graphs. In particular, in the edge-perspective

degree distribution, λi is the fraction of edges in the Tanner

graph connecting to a degree-i variable node, and ρj is the

fraction of edges connecting to a degree-j check node. To

specify the degree distribution, the following polynomials are

defined:

λ(x) =

dl
∑

i=2

λix
i−1 (1)

ρ(x) =

dr
∑

j=2

ρjx
j−1 (2)

being dl (respectively dr) the maximum variable (respectively

check) node degree.

The dl-tuple {λi} and dr-tuple {ρj} both add up to 1. Given

the polynomials λ(x) and ρ(x), a (λ, ρ)-LDPC code of block

length n is defined as a linear code with a Tanner graph in

n variable nodes such that the edge-perspective variable-node

degree distribution is given by λ(x) and the edge-perspective

check-node degree distribution is given by ρ(x).
The rate of LDPC codes specified by a degree distribution

pair (λ, ρ) is computed as [18]

r(λ, ρ) = 1−
∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

= 1−
∑dr

j=2 ρj/j
∑dl

j=2 λj/j
(3)

The degree distribution (λ, ρ) from an edge perspective can

be converted to a node perspective degree distribution (L,R)
defined by the following polynomials [13]

L(x) =

dl
∑

i=2

Lix
i (4)

R(x) =

dr
∑

j=2

Rjx
j (5)

with the following relations

Lj =
λj

j
∫ 1

0
λ(x)

=
λj/j

∑dl

i=2 λi/i
(6)

Rj =
ρj

j
∫ 1

0
ρ(x)

=
ρj/j

∑dr

i=2 ρi/i
(7)

IV. WEIGHT DISTRIBUTION OF LDPC CODES

In his doctoral dissertation [1], Gallager showed that, for

a given regular LDPC code ensemble C(n, xj−1, xk−1), with

block length n, degree j v-nodes, and degree k c-nodes,

there exists a positive number δ such that at most a fraction

O(n−j+2) of all codes have codewords of weight ⌊δn⌋ or

less, provided that j is larger than 2. If j = 2, all codes

in the ensemble have codewords of weight not exceeding

2 + 2 ln(n/2)
ln(k−1) .

It was also demonstrated in [13] that the fraction of degree-

two v-nodes plays a crucial role in the theory and practice

of LDPC codes. In particular, the main result of [13] states

that, for irregular LDPC codes ensembles, the growth rate of

the minimum distance, i.e., whether this growth rate is linear

or simply sublinear, depends only on λ′(0)ρ′(1), a quantity

which is related to the degree distributions (1) and (2). In

particular, as shown in Section V, λ′(0) is the fraction of edges

connecting to degree-two v-nodes. As stated more precisely in



Theorem 1 of [13], if λ′(0)ρ′(1) > 1, the minimum distance

grows sublinearly with the block length, otherwise, i.e., if

λ′(0)ρ′(1) < 1, it grows linearly with the block length,

with probability at least 1 − ln 1√
1−λ′(0)ρ′(1)

, sharpened to
√

1− λ′(0)ρ′(1) in [14].

Moreover, the quantity λ′(0)ρ′(1) also plays a fundamental

role in the stability analysis of LDPC codes under iterative

decoding, as well as in determining whether such codes

are linear-time encodable. The stability condition of iterative

decoders for LDPC codes, which was derived in [15], [16]

through a density evolution analysis, states that the funda-

mental condition for a successful iterative decoding is given

by the error probability, that needs to reach a sufficiently small

value. For the binary erasure channel (BEC), it requires the

condition λ′(0)ρ′(1) < 1
ǫ , being ǫ the channel parameter.

The “encoding” complexity of LDPC ensembles was inves-

tigated in [17] where it was shown that “optimized” LDPC

ensembles admit linear time encoding and that λ′(0)ρ′(1) > 1
is a sufficient condition for linear time encodable LDPC codes.

Thus, it was pointed out in [13] that “the quantity λ′(0)ρ′(1)
connects three important code characteristics of LDPC codes:

1) performance,

2) encoding complexity,

3) and minimum distance.”

The connections between all these features were well depicted

in Figs. 1 and 2 of [13]. More precisely, Fig. 1 in [13]

illustrates that capacity-achieving LDPC sequences over the

BEC under certain technical conditions fulfill the inequality

λ′(0)ρ′(1) > 1, which is the case of interest of our paper. It is

shown later in [13] that precisely this inequality also implies

minimum distance sublinear growth. Moreover, as remarked

earlier, it was shown in [17] that a standard LDPC ensemble

needs to satisfy the condition λ′(0)ρ′(1) > 1 to be linear time

encodable.

A very interesting and general result connecting encoder

complexity and minimum distance was given also in [19].

He proved that linear codes cannot have minimum distance

growing linearly with the block length when the rate is

nonvanishing if the encoder uses linear time and sublinear

memory in the general binary branching program mode (par-

allel concatenated turbo codes [20]-[22] fall in this category).

However, this result does not apply to standard LDPC codes

since the memory of the encoder is not logarithmic.

Finally, in [13] it was shown that, for the case λ′(0)ρ′(1) >
1, which is the one examined in this paper (see the results

reported in the next section), the expected number of code-

words of weight l “can be lower-bounded by the expected

number of zigzag structures of size 2l since every structure

gives rise to a codeword of weight l”. Thus, for any constant

l ≤ min{L2n, (1− r)n}, where n is the codeword length, the

probability of having no weight-l codewords is given by

Pr(Xl = 0) = e−
(λ′(0)ρ′(1))l

2l +O(n−1/3) (8)

Thus, the probability that a randomly chosen code G ∈
C(n, λ, ρ) has at least one codeword of weight l is given by

TABLE I

PARAMETERS OF GOOD RATE-1/2 CODES LISTED IN TABLE I OF [18]

WITH MAXIMUM VARIABLE NODE DEGREES dl = 4, 5, 6, 7, AND 8.

dl 4 5 6 7 8

λ2 0.38354 0.32660 0.33241 0.31570 0.30013

λ3 0.04237 0.11960 0.24632 0.41672 0.28395

λ4 0.57409 0.18393 0.11014

λ5 0.36988

λ6 0.31112

λ7 0.43810

λ8 0.41592

ρ5 0.24123

ρ6 0.75877 0.78555 0.76611 0.43810 0.22919

ρ7 0.21445 0.23389 0.56190 0.77081

λ′(0) 0.38354 0.32660 0.33241 0.31570 0.30013

ρ′(1) 4.75877 5.21445 5.23389 5.56190 5.77081

λ′(0)ρ′(1) 1.82518 1.70304 1.73980 1.75589 1.73199
∫

1

0
λ(x) 0.34942 0.32313 0.32770 0.35934 0.29671

L2 0.54883 0.50538 0.50719 0.43927 0.50577

1− Pr(Xl = 0) = 1− e−
(λ′(0)ρ′(1))l

2l +O(n−1/3) (9)

In conclusion, both the parameter L2, given by (6) with

j = 2, and the product λ′(0)ρ′(1) are important in determining

an LDPC code weight distribution and thus its performance.

V. RESULTS ON WEIGHT DISTRIBUTIONS

Being

λ′(0) =

dl
∑

i=2

(i− 1)λix
i−2|x=0 = λ2 (10)

and

ρ′(1) =

dr
∑

j=2

(j − 1)ρjx
j−2|x=1 =

dr
∑

j=2

(j − 1)ρj (11)

we obtain

λ′(0)ρ′(1) = λ2

dr
∑

j=2

(j − 1)ρj (12)

The products λ′(0)ρ′(1) have been computed for the rate-

1/2 irregular LDPC codes found in [18] (see Tables I and II

of [18]) together with the parameters L2. Both are reported in

Tables I and II. As may be seen from these tables, the values

of the products λ′(0)ρ′(1) are all greater than 1 and there is

a general decreasing of these values while increasing dl, even

if this decreasing presents some irregularities. On the other

hand, there is a general decreasing of the L2 values while

increasing dl, even if also in this case this decreasing presents

some irregularities.



TABLE II

PARAMETERS OF GOOD RATE-1/2 CODES LISTED IN TABLE I OF [18]

WITH MAXIMUM VARIABLE NODE DEGREES dl = 9, 10, 11, AND 12.

dl 9 10 11 12

λ2 0.27684 0.25105 0.23882 0.24426

λ3 0.28342 0.30938 0.29515 0.25907

λ4 0.00104 0.03261 0.01054

λ5 0.05510

λ6

λ7

λ8 0.01455

λ9 0.43974

λ10 0.43853 0.01275

λ11 0.43342

λ12 0.40373

ρ6 0.01568

ρ7 0.85244 0.63676 0.43011 0.25475

ρ8 0.13188 0.36324 0.56989 0.73438

ρ9 0.01087

λ′(0) 0.27684 0.25105 0.23882 0.24426

ρ′(1) 6.11620 6.36324 6.56989 6.75612

λ′(0)ρ′(1) 1.69321 1.59749 1.56902 1.65025
∫

1

0
λ(x) 0.28175 0.27276 0.26535 0.25888

L2 0.49128 0.46020 0.45001 0.47176

VI. SIMULATION RESULTS

Consider an ensemble of random codes with edge-

perspective degree distributions λ(x) and ρ(x) given in Tables

I and II. A custom software based on [23] (also used in [24]

and [25] to design well performing rate compatible puncturing

patterns for LDPC codes1 on the basis of the results of [28]

and [29]) was employed to simulate their performance over

an AWGN channel, assuming a BPSK (Binary Phase Shift

Keying) modulator. The belief propagation algorithm, also

called message passing or sum-product algorithm, commonly

employed for LDPC decoding, has been adopted, employing

soft decision.

From (9), giving the probability that a randomly chosen

code G ∈ C(n, λ, ρ) has at least one codeword of weight

l, and being l ≤ min{L2n, (1 − r)n}, two cases should be

distinguished:

1) L2 > (1− r) implying l ≤ (1− r)n
2) L2 < (1− r) implying l ≤ L2n

A. Case 1: L2 > (1− r)

Being, for the codes shown in Tables I and II, the rate

r = 1/2, and thus 1−r = 1/2, the first case, i.e., L2 > 0.5, is

encountered, e.g., by the codes with dl = 4, 6, and 8 of Table

I. This implies that l ≤ (1− r)n = 0.5n, i.e., that l is upper

bounded by the constant 0.5n. Being this upper bound on l
the same for all the 3 above mentioned codes (i.e., those with

1Useful in Automatic Repeat-reQuest / Forward Error Correction (ARQ /
FEC) schemes [26] and for Unequal Error Protection (UEP) applications [27].

Fig. 1. BER vs. Eb/N0 in dB of rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) with dl = 4 (given in the 2-nd column of Table I)
and n = 1000. The performance curves have been obtained with an iteration
number I = 10, 20, 30, 40, and 50 of the decoding algorithm.

Fig. 2. BER vs. Eb/N0 in dB of rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) with dl = 6 (given in the 4-th column of Table I)
and n = 1000. The performance curves have been obtained with an iteration
number I = 10, 20, 30, 40, and 50 of the decoding algorithm.

dl = 4, 6, and 8 of Table I), the value of the product λ′(0)ρ′(1)
alone makes the difference in this case. In particular, looking at

(9), the lower is the value of the product λ′(0)ρ′(1), the higher

the value assumed by the probability (8), and thus the lower

the value assumed by the probability (9), i.e., the lower is the

probability that a randomly chosen code G ∈ C(n, λ, ρ) has

at least one codeword of weight l ≤ 0.5n. Thus, a randomly

chosen code with distribution pairs (λ, ρ) given in the 6-th

column of Table I (with dl = 8), since it presents a value of the

product λ′(0)ρ′(1) = 1.73199, will have a lower probability

of presenting at least one codeword of weight l ≤ 0.5n
than a randomly chosen code with distribution pairs (λ, ρ)



Fig. 3. BER vs. Eb/N0 in dB of rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) with dl = 8 (given in the 6-th column of Table I)
and n = 1000. The performance curves have been obtained with an iteration
number I = 10, 20, 30, 40, and 50 of the decoding algorithm.

Fig. 4. BER vs. Eb/N0 in dB of rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) with dl = 9 (given in the 1-st column of Table II)
and n = 1000. The performance curves have been obtained with an iteration
number I = 10, 20, 30, 40, and 50 of the decoding algorithm.

given in the 4-th column of Table I (with dl = 6), since

the latter presents a higher value of the product λ′(0)ρ′(1)
(i.e., λ′(0)ρ′(1) = 1.73980). The same may be said when

comparing, e.g., a randomly chosen code with distribution

pairs (λ, ρ) with dl = 6 (given in the 4-th column of Table

I), and a randomly chosen code with distribution pairs (λ, ρ)
with dl = 4 (given in the 2-nd column of Table I).

In Figs. 1, 2, and 3 are shown the BER performance curves

of some randomly chosen codes with distribution pairs (λ, ρ)
shown in the 2-nd, 4-th and 6-th column of Table I, i.e., with

dl = 4, 6, and 8, respectively.

As expected from the above described analysis, the BER

Fig. 5. BER vs. Eb/N0 in dB of rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) with dl = 10 (given in the 2-nd column of Table II)
and n = 1000. The performance curves have been obtained with an iteration
number I = 10, 20, 30, 40, and 50 of the decoding algorithm.

Fig. 6. BER vs. Eb/N0 in dB of rate-1/2 randomly chosen codes with
distribution pairs (λ, ρ) with dl = 11 (given in the 3-rd column of Table II)
and n = 1000. The performance curves have been obtained with an iteration
number I = 10, 20, 30, 40, and 50 of the decoding algorithm.

performance obtained with dl = 6 (Fig. 2) is better than that

obtained with dl = 4 (Fig. 1), and the BER performance

obtained with dl = 8 (Fig. 3) is the best of the three.

B. Case 2: L2 < (1− r)

Being, for the codes shown in Tables I and II, the rate r =
1/2, and thus 1 − r = 1/2, the second case, i.e., L2 < 0.5,

is encountered, e.g., by the codes with dl = 9, 10, and 11

of Table II. This implies that l ≤ L2n, i.e., that l is upper

bounded by a constant depending on the L2 value. Being this

upper bound on l different for the 3 above mentioned codes

(i.e., those with dl = 9, 10, and 11 of Table II), the value of the



product λ′(0)ρ′(1) alone should not make the difference, in

this case, since a lower upper bound on the codeword weight

l could lead to a worse BER performance. But, looking at

Figs. 4, 5, and 6 where are presented the BER performance

curves of some randomly chosen codes with distribution pairs

(λ, ρ) shown in the 1-st, 2-nd and 3-rd column of Table II, i.e.,

with dl = 9, 10, and 11, respectively, the BER performance

obtained with dl = 10 (Fig. 5) is better than that obtained

with dl = 9 (Fig. 4), since the codes with dl = 10 present a

lower L2 value (L2 = 0.46020) than those with dl = 9 (L2 =
0.49128), thus a lower upper bound on l, but also present a

lower value of the product λ′(0)ρ′(1) (1.59749 vs. 1.69321)

which, however, leads to a better performance, as already said

in the previous subsection, even if the upper bound on the

codeword weight l is worse. The BER performance obtained

with dl = 11 (Fig. 6) is the best of the three since it presents

the lowest value of L2 (0.45001) but also the lowest value of

the product λ′(0)ρ′(1) (1.56902).

VII. CONCLUSIONS

This paper was focused on the role played by the product

λ′(0)ρ′(1), quantity related to the degree distributions (1) and

(2), in determining the performance of an LDPC code. As

stated in Theorem 1 of [13], if λ′(0)ρ′(1) > 1, the minimum

distance grows sublinearly with the block length, otherwise,

i.e., if λ′(0)ρ′(1) < 1, it grows linearly with the block length,

with probability at least 1 − ln 1√
1−λ′(0)ρ′(1)

, sharpened to
√

1− λ′(0)ρ′(1) in [14]. This paper was focused on the codes

for which λ′(0)ρ′(1) > 1, showing that the lower is the value

of this product, the better is the BER code performance. In

particular, the analysis was performed for two principal cases,

i.e., the one for which the L2 value (given by (6) with j = 2)

is higher than (1− r) (being r the code rate) and the one for

which L2 is lower than (1− r).
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