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Abstract A continuous multi-utility fully represents a not necessarily total preorder
on a topological space by means of a family of continuous increasing functions.
While it is very attractive for obvious reasons, and therefore it has been applied in
different contexts, such as expected utility for example, it is nevertheless very re-
strictive.

In this paper we first present some general characterizations of the existence of
a continuous order-preserving function, and respectively a continuous multi-utility
representation, for a preorder on a topological space. We then illustrate the restric-
tiveness associated to the existence of a continuous multi-utility representation, by
referring both to appropriate continuity conditions which must be satisfied by a pre-
order admitting this kind of representation, and to the Hausdorff property of the
quotient order topology corresponding to the equivalence relation induced by the
preorder.

We prove a very restrictive result, which may concisely described as follows: the
continuous multi-utility representability of all closed (or equivalently weakly con-
tinuous) preorders on a topological space is equivalent to the requirement according
to which the quotient topology with respect to the equivalence corresponding to the
coincidence of all continuous functions is discrete.

Gianni Bosi,
DEAMS, University of Trieste,
via Universita 1, 34123 Trieste, Italy, e-mail: gianni.bosi@deams.units.it

Magali Zuanon,
DEM, University of Brescia,
Contrada Santa Chiara 50, 25122, Brescia, Italy, e-mail: magali.zuanon @unibs.it



2 Gianni Bosi and Magali Zuanon

1 Introduction

The necessity of considering nontotal (incomplete) preferences in order to deal with
a more realistic framework dates back to the seminal paper of Aumann [3] pub-
lished in 1962. Aumann pointed out that it is more appropriate not to assume that an
individual may compare any two objects according with its own preferences, since
“incomparability” may take place in some cases (see also Dubra et al. [26], Evren
and Ok [29] and Ok [57)).

Clearly, when we deal with a nontotal binary relation, it is not possible to fully
represent it by using only one function, as in the case of a total preorder. On the
other hand, when the preference relation is defined on a topological space, continuity
requirements of the representing functions naturally come into consideration. This
is, needless to say, the spirit of the seminal famous papers by Debreu [24, 25] and
Eilenberg [27], where general results about the existence of a continuous utility
function for a total preorder on a topological space were presented.

Given a preorder 3 on a topological space (X,t), and the natural topology f,
on the real line R, we recall that a function f : (X, =,f) — (R, <,t,4) is said to be
a continuous order-preserving function for 3 if f is continuous on the topological
space (X,t) and, for all points x,y € X, x 3y implies that f(x) < f(y), and x <y
implies that f(x) < f(y). Clearly, < is the strict part of the preorder 3.

Although an order-preserving function does not characterize a nontotal preorder,
it is enough for many purposes, since it contains all the information concerning that
preorder, which can be provided by a single real-valued function. So, for example,
the maximization of an order-preserving function (when it is possible) for a preorder
2 on aset X leads to a maximal element xo of (X,3) (i.e., to a point xo € X such
that xy < z for no point z € X).

It is worthwhile noticing that the mere existence of an order-preserving function
for a binary relation < does not even imply transitivity of =, but a weaker condition
called Suzumura consistency (see Suzumura [61], Cato [22] and Bevilacqua et al.
(8D.

Herden [33, 34, 35] introduced the concept of a (decreasing) separable system
in order to derive very general conditions for the existence of a continuous order-
preserving function for a nontotal preorder on a topological space. Actually, the
notion of a decreasing separable system generalizes that of a decreasing scale in
a preordered topological space (see Burgess and Fitzpatrick [20] and Johnson and
Mandelker [39]).

Herden’s efforts were addressed to the aim of unifying sparse but very significant
results in the literature, concerning the existence of continuous order-preserving
functions (utility functions) for total preorders. Classical examples of such results
are the Debreu’s Theorem (see Debreu [24, 25]), and respectively the Eilenberg’s
Theorem (see Eilenberg [27]), according to which every continuous total preorder
on a second countable, and respectively on a connected and separable topological
space admits a continuous utility representation.

An approach of this kind were actually initiated by Mehta [46, 47, 48, 49, 50, 51],
who explored the possibility of recovering deep results by following the general
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framework of Nachbin [56]. Indeed, Nachbin first investigated in a systematic way
the connection between Order and Topology. Mehta was able to establish very gen-
eral conditions for the existence of a continuous order-preserving function for a pre-
order that may fail to be total on a topological space. The reader may also consult
the book by Bridges and Mehta [19] for a miscellanea of theorems concerning the
existence of continuous order isomorphisms. Other general results were presented,
for example, by Beardon and Mehta [6, 7], and Herden and Mehta [36].

Incidentally, the concept of a complete separable system on a topological space
has been recently used in order to present a characterization of useful topologies
on a set X (i.e., topologies on X with respect to which all the continuous total pre-
orders are representable by a continuous utility function). Indeed, Bosi and Herden
[16, Theorem 3.1] showed that a topology ¢ on a set X is useful if and only if the
topology ts induced (generated) by every complete separable system & on (X,t) is
second countable. Other authors prefer the terminology continuously representable
topology instead of useful topology (see e.g., Campion et al. [21]).

We recall that, from Herden [33, 34]], a family & of open subsets of a topological
space (X,¢) is said to be a separable system on (X ,t) if there exist sets £} € & and
E, € & such that E| C E», and for all sets E; € & and E, € & such that E|; C E,
there exists some set E3 € & such that E; C E3 C E3 C E,. If, for all sets E € &
and E' € &, at least one of the following conditions E = E’ or E C E' or E' C E
holds, then & is said to be complete (see Bosi and Herden [16, Definition 2.2]). If
X is endowed with a preorder =%, then we get the concept of a complete decreasing
separable system on a preordered topological space (X,3,t) by simply requiring
every set E € & in the previous definition to be decreasing.

We recall that a preorder = on a topological space (X,¢) is said to admit a con-
tinuous multi-utility representation if there exists a family .% of (continuous) in-
creasing real functions on the preordered topological space (X, =3,¢) such that, for
all x,y € X, x 3y is equivalent to f(x) < f(y) for all functions f € .%. This kind
of representation, whose main feature is to fully characterize the preorder, was first
introduced by Levin [42], who called functionally closed a preorder admitting a
continuous multi-utility representation on a topological space. Levin’s fundamental
theorem [42, 43], that using the notation of Evren and Ok [29, Theorem 1] states
that every closed preorder (i.e., every preorder which is a closed subset of X x X
with respect to the product topology ¢ x t on X x X that is induced by #) on a lo-
cally and o-compact Hausdorff space has a continuous multi-utility representation,
still belongs to the most quoted theorems in Mathematical Utility Theory (cf. the
literature that has been quoted in Bosi and Herden [14]).

In the framework of our approach, the particular relevance of closed preorders 3
on (X,t) is based, on the one hand, on the observation that a preorder =< on (X,¢)
that has a continuous multi-utility representation must be closed (cf. Bosi and Her-
den [15, Proposition 2.1]). On the other hand, it is beyond any doubt that closed
preorders are of particular interest in Mathematical Economics (cf., for instance, the
literature that has been quoted by Evren and Ok [29], Bosi and Herden [14, 15],
Minguzzi [53, 54] and many others). Indeed, in some standard textbooks on mi-
croeconomics (such as Mas-Colell, Whinston and Green [44, page 46]), the defini-
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tions of continuity of an (incomplete) preference relation and of a closed preference
relation coincide. In combination with Proposition 2.1 in Bosi and Herden [15],
these remarks on closed preorders suggest that the most fundamental problem in
the theory of continuous multi-utility representations of preorders in some sense is
the problem of precisely characterizing (determining) all topological spaces (Haus-
dorff spaces) (X,t) for which every closed preorder has a continuous multi-utility
representation. A complete solution to this problem seems to be difficult. Indeed,
since Levin’s fundamental theorem [43], which we recalled above, no real progress
towards a complete solution of the mentioned characterization problem has been
made.

Levin’s theorem only presents sufficient conditions for the existence of a con-
tinuous multi-utility representation. Therefore, in Bosi and Herden [15, Theorem
3.5] an effort has been made in order to also clarify up to which degree Levin’s
assumptions on the underlying topological space are really necessary.

Continuous multi-utility representations were first deeply studied in the frame-
work of Expected Utility with incomplete preferences (see the seminal paper by
Dubra et al. [26], followed by other papers like Evren [28], Galaabaatar and Karni
[30] and Gorno [32]), and later they also appear in other branches of Applied Math-
ematics like Game Theory and Welfare Economics (see e.g., Baucells and L. S.
Shapley [5], and Banerjee and Dubey [4]).

However, the first systematic study of multi-utility representations in the gen-
eral case is due to Evren and Ok [29], who presented different conditions for the
existence of semicontinuous and continuous multi-utility representations.

A sufficient condition for the existence of a continuous multi-utility representa-
tion is presented in Bosi and Zuanon [18], based on the concept of an extremely
continuous preorder introduced by Mashburn [45]. Typical topologies with respect
to which an upper (lower) semicontinuous multi-utility representation exists have
been recently presented in Bosi et al. [10].

Ok [57] studied finite (continuous) multi-utility representation, as well as Kamin-
ski [41] and Yilmaz [63].

Minguzzi [53, 54] introduced the concept of a continuous Richter-Peleg multi-
utility representation % of a preorder =, which is a particular kind of continuous
multi-utility representation where every function f € % is a Richter-Peleg utility
function for X (i.e., every function f € % is order-preserving). Richter-Peleg multi-
utilities have been recently studied by Alcantud et al. [2], who in particular were
concerned with the case of a countable representation (see also Bevilacqua et al.
[9]). Although very restrictive, the case of a countable (upper semi) continuous
multi-utility is particularly favorable, since it automatically implies the existence of
a countable continuous Richter-Peleg multi-utility. Indeed, from Alcantud et al. [2],
if there exists a countable continuous multi-utility, then there also exists a countable
continuous Richter-Peleg multi-utility.

Conditions for the existence of countable multi-utilities are also found in Ka-
banov and Lépinette [40], and in Bevilacqua et al. [9].

Nishimura and Ok [55] generalized multi-utility, which necessarily implies tran-
sitivity, to the nontransitive case. Indeed, for a not necessarily transitive binary re-
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lation < on a set X, the following representation of < can be considered to hold
for all points x,y € X: [x Sy < sup zcpinfrez (f(y) — f(x)) > 0,], where F is a
set of sets & of real-valued functions f on X. While it is extremely nice, this kind
of representation appears rather difficult to be modeled, at least according to our
opinion.

Bosi et al. [11] generalized multi-utility by allowing partial functions, in order to
also deal with nontransitive preferences. The idea of using partial functions is that
of avoiding any unnecessary information, and to handle both incompleteness and
intransitivity in a relatively easy way. Since transitivity is removed, typical nontran-
sitive preference relations, like interval orders and semiorders, can be represented
by using families of functions.

Let (X,t) be a topological space. In order for a preorder X on (X,7) to be
representable by a continuous order-preserving real-valued function or else to ad-
mit a continuous multi-utility representation %, it is necessary that for every pair
(x,y) €< there exists a continuous increasing function fy, : (X, 3,1) = (R, <,tha)
such that fyy,(x) < fi,(y). Therefore, in this paper 3 is considered to be weakly con-
tinuous if it satisfies the just defined monotony behavior, that is obviously equivalent
to requiring for every pair (x,y) €< to exist a complete decreasing separable system
& on X such that for every pair (x,y) €< there exist sets E C E C E' in & such that
xeEandy ¢ E'.

We recall that weak continuity of a preorder on a topological space was intro-
duced by Bosi and Herden [12, 13] in order to discuss the continuous analogue of
the Szpilrain Theorem, i.e., the identification of conditions under which a weakly
continuous preorder 3 on a topological space (X,¢) admits a refinement < by a total
and continuous preorder (in the sense that 3C< and <C<).

In this paper, we focus our attention on the Hausdorff property of the quotient
order topology t‘i , which is implied by the existence of a continuous multi-utility
representation for the preorder < on the topological space (X,7). The quotient is
considered with respect to the equivalence relation ~.

Here, the order topology ¢~ induced by a preorder =< on X is the coarsest topol-
ogy on X with respect to which the strict lower section and respectively upper sec-
tion I5(x) ;= {z € X |z < x} and r<(x) := {z € X | x < z} are open subsets of X for
every point x € X. We prove (see Proposition 2.3 below) that, when the quotient set
X|~ consists of at least two points, in order for té to be a Hausdorff topology on
X\, it is necessary that the sets /<(x) and r<(x), where x runs through X, constitute

a subbasis of <. In practice, this means that there is no point x € X which is at the
same time a minimal and a maximal element for 3 on X.

Theorem 2.23 presents the equivalence of different concepts of continuity con-
cerning a total preorder = on a topological space (X,7), also by using the concept of
a complete decreasing separable system. The important role of weak continuity of a
preorder on a topological space is illustrated. In particular, Theorem 2.27 shows that
the existence of a continuous order-preserving function f: (X, 3,7) = (R, <,fnq) is
equivalent to the existence of a second countable topology ¢’ on X, which is coarser
than ¢ and with respect to which = is weakly continuous.
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Section 3 is devoted to the characterization of the existence of a continuous order-
preserving function (see Theorem 3.1), and respectively the existence of a contin-
uous multi-utility representation (see Theorem 3.2). The existence of a continuous
Richter-Peleg multi-utility representation is considered in Theorem 3.3.

In Section 4 we present restrictive conditions, implied by the existence of a con-
tinuous multi-utility representation, which pose objective limitations to its applica-
bility. Corollary 4.3 shows that if a preorder 3 on a topological space (X,7) admits
a finite continuous Richter-Peleg multi-utility representation &% = {fi,..., f }, then
the restriction of X to the components of (X,¢) is total. This is a version of Proposi-
tion 5.2 in Alcantud et al. [2], who, based on a famous theorem by Schmeidler [60],
showed that a nontrivial preorder on a connected topological space is total provided
that it admits a finite continuous Richter-Peleg multi-utility representation.

Finally, Theorem 4.8 proves that the continuous multi-utility representability of
all closed preorders on a topological space is equivalent to the continuous multi-
utility representability of all weakly continuous preorders, and in turn to the require-
ment according to which the quotient topology with respect to the coincidence of
all continuous functions is discrete. This very restrictive result is based on the fact
that, given a topological space (X,t), the coarsest topology with respect to which
every weakly continuous preorder 3 on (X,f) remains being continuous is actu-
ally the weak topology 6(X,C(X,t,R)) of the real-valued continuous functions on
(X,1), i.e. the coarsest topology with respect to which every real-valued continuous
function f € C(X,#,R) remains being weakly continuous (see Lemma 4.7).

2 Notation and preliminary results

2.1 Basic definitions concerning preorders and their continuous
representability

Definition 2.1 A preorder = on a nonempty set X is a reflexive and transitive binary
relation on X. Denote by < and ~ the strict part and respectively the symmetric part
of a preorder S on X (i.e., forall x,y € X, x <y if and only if (x 3 y) and not (y 3 x),
and respectively x ~ y if and only if (x 3 y) and (y 3 x)).

From time to time, we shall write “(x,y) €< " instead of “x < y”. A preorder 3
on X is said to be nontrivial if there exist x,y € X such that x < y.

Denote by > the incomparability relation associated with a preorder = on a set
X (i.e., forall x,y € X, x>y if and only if not(x 2 y) and not(y 3 x)).

A preorder =X is said to be foral if, for all x,y € X, either x Sy ory = x (i.e.,
<= 0).

Clearly, the symmetric part ~ associated to any preorder = on X is an equiva-
lence relation on X (i.e,, ~ is reflexive, symmetric and transitive).
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We denote by 3. the quotient order on the quotient set X|.. (i.e., for all x,y € X,
[x] 3|~ [] if and only if x 3y, where [x] = {z € X : z ~ x} is the indifference class
associated to x € X).

Let (X,33) be an arbitrarily chosen preordered set. We define, for every point

x € X, the following subsets of X:
di(x) ={zeX|z3x}, ij(x) ={zeX|xZz},

I<(x) :={zeX|z=x}, rz(x):={zeX |x<z}.

For any pair (x,y) € X x X such that (x,y) €<, we shall denote by |x,y| the
(maybe empty) open interval defined as |x,y[:= r<(x) Ni5(y).

A pair (x,y) €< is said to be a jump in (X, 3) if |x,y[= 0.

Let us now present the basic definition of the order topology corresponding to a
preorder =< on a set X.

Definition 2.2 The order topology t= on X associated with a preorder < on X is
defined to be the coarsest topology on X for which the sets /<(x) and r<(x) are
open.

In order to avoid artificial and superfluous considerations, we can assume for the

=<

moment that the quotient order topology t‘NN‘N (which in the sequel will be denoted by
ti for the sake of convenience) to be a Hausdorff topology on X|.... For underlining
the importance of this assumption and for later use we still notice that in case that

<
™~ to be

|~

X~ contains at least two elements the following necessary condition for ¢
Hausdortf holds.
Indeed, the following proposition holds (see also Ward [62, Lemma 2]).

Proposition 2.3 Let = be a preorder on X. Then the following assertion holds.

SB: In order for ZIE 1o be a Hausdorff topology on X|.., it is necessary that the

sets 1< (x) and r(x), where x runs through X, constitute a subbasis of t=.

Proof. In order to prove the above condition SB, it suffices to show that

Uz urs(z)) =x.

zeX

Consider any point x € X. Since we assume that X| _ contains at least two elements,

there exists some point y € X such that not(y ~ x). The fact that t‘i is a Hausdorff

topology on X| implies the existence of two points y;,x; € X such that either [y] €
Ly (Dn))s B € g (), Iz (n]) Nirg (Bal) = 0, orelse [x] € 15 ([a]), V] €

~|~ ~|~ ~|~ ~|~

r= (1)), I=,_ ([x1]) Nr=<, ([y1]) = 0. Hence, either x € r<(x1) or x € Ix(x1), and

S~ N S~

the thesis follows. t

Definition 2.4 A point xp € X is said to be a maximal (minimal) element for a pre-
order < on a set X if r<(xo) = 0 (I3(x0) = 0).
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Remark 2.5 It is immediate to check that the above condition SB is equivalent to
the condition requiring that, for every point x € X, either /< (x) or r<(x) is nonempty
(i.e., no point x € X is at the same time a minimal and a maximal element for X on
X).

Definition 2.6 A preorder X on a topological space (X,t) is said to be continuous
if I5(x) ={z€ X |z <x} and r5(x) = {z € X | x < z} are both open subsets of X
for every x € X.

Definition 2.7 A real-valued function u on a preordered set (X, 3) is said to be
(i) isotonic or increasing if, for all x,y € X,
x 3y = ulx) <uly);
(i1) a weak utility for < if, for all x,y € X,
x<y=u(x) <u(y);

(iii) strictly isotonic or order-preserving if it is both increasing and a weak utility for
<.

Strictly isotonic functions on (X, 3) are also called Richter-Peleg representations
of = in the economic literature (see e.g. Peleg [58] and Richter [59]).

Definition 2.8 A preorder 3 on a topological space (X,7) is said to be

(i) closed if it is a closed subset of X x X with respect to the product topology # x ¢
on X x X that is induced by ¢;

(ii) semi-closedif d<(x) ={z€ X |z Zx}andix(x) = {z€ X | x T z} are both closed
subsets of X for every x € X;

(iii) weakly continuous if for every pair (x,y) €< there exists a continuous and in-
creasing real-valued function fy on X such that fy(x) < fiy ().

It is immediate to check that every closed preorder is also semi-closed, while the
converse is not true.

Remark 2.9 We notice that for other authors, actually, a preorder is continuous if
it is semi-closed (see e.g. Bridges and Mehta [19, Definition 1.6.1]). Our choice
is presently suggested by our definition of the order topology (see Definition 2.2
above).

Definition 2.10 A real-valued function u on a totally preordered set (X, 3) is said
to be a utility function for 3 if, for all x,y € X,

x 3y ulx) <uly).
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An order-preserving function for a total preorder is necessarily a utility func-
tion. Clearly, a utility function characterizes a total preorder, while this is not the
case of an order-preserving function for a nontotal preorder. On the other hand, in
the general case of a nontotal preorder, an order-preserving function provides the
greatest amount of information concerning the preorder which can be furnished by
a real-valued function.

Definition 2.11 A preorder X on a topological space (X,7) is said to have a contin-
uous multi-utility representation if there exists a family .# of increasing and contin-
uous functions f: (X, 3,¢) — (R, <,tye) such that

Y~

S={l,y) eXxX|VfeF(flx) <f)}

or, equivalently, if there exists for every pair (x,y) € X x X such that not(y = x)
some continuous and increasing function fy, : (X, 3,7) — (R, <,t4e) such that

fxy(x) < fxy()’)'

The above fundamental Definition 2.8, (iii), of a weakly continuous preorder on
a topological space is justified by the following proposition, whose immediate proof
is left to the reader.

Proposition 2.12 Let 3 be a preorder on a topological space (X ,t). If either there
exists a continuous order-preserving function f : (X,3,t) — (R, <,ty4) or 3 ad-

Y~

mits a continuous multi-utility representation %, then 3 is weakly continuous.
The following proposition appears as Proposition 2.1 in Bosi and Herden [15].

Proposition 2.13 Let = be a preorder on (X,t) that admits a continuous multi-
utility representation. Then 3 is a closed preorder on (X,t).

The consideration of the Hausdorff property referred to the quotient order topol-
ogy is justified by the following simple proposition. Needless to say, we assume that
the quotient space X|.. has at least two elements.

Proposition 2.14 Let X be a preorder on a topological space (X ,t) and assume that

= admits a continuous multi-utility representation. Then (X‘N,t‘z ) is a Hausdorff
space.

Proof. Let = have a continuous multi-utility representation and let x € X and y € X
be arbitrarily chosen points such that not(y X x). Then there exists a continuous
and increasing function fy, : (X, 3,15) — (R, <,fy4) such that foy(x) < fiy(y).
Therefore, for every real number a €] fyy(x), foo(¥)[, fxgl] — oo, ¢ and fxgl}oc ,Foof
are disjoint t‘z -open sets containing [x] and [y], respectively. Hence, the desired
conclusion follows. O

By putting together Proposition 2.3 and Proposition 2.14, we obviously get the
following result.
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Proposition 2.15 If a preorder 3 on a topological space (X, t) admits a continuous
multi-utility representation .7, then the sets 1< (x) and r<(x), where x runs through

X, constitute a subbasis of =

Definition 2.16 A preorder = on a topological space (X,¢) is said to have a con-
tinuous Richter-Peleg multi-utility representation if there exists a continuous multi-
utility representation .% for 3 such that every function f € .# is order-preserving
for 3.

Remark 2.17 It has been already observed (see Alcantud et al. [2, Remark 2.3])
that a (continuous) Richter-Peleg multi-utility representation for a preorder = char-
acterizes the strict part < of 3, i.e., for all x,y € X,

x=<yeVfeF (flx)<f)-

The proof of the following proposition is contained in the proof of Proposition
5.2 in Alcantud et al. [2]. We include it separately for reader’s convenience and for
further use.

Proposition 2.18 If a preorder 3 on a topological space (X ,t) admits a finite con-
tinuous Richter-Peleg multi-utility representation % = {f1,..., fu}, then 3 is con-
tinuous.

Proof. Just consider that, due to Remark 2.17, the sets

I<(x) ={zeX|z=x} ={z€X| fi(z) < filx), foralli € {1,...,n}} =
= ﬂfiil(]_oo’fi(x)[)’
i=1
r<x) ={zeX|x<zt={zeX | filx) < fi(z), foralli € {1,...,n}} =

= N7 1filx), +2]),
i=1

are open for every x € X as a consequence of the continuity of every function f;
i=1,..,n). ]

2.2 Decreasing separable systems and continuity of preorders

Definition 2.19 If = is a preorder on X, then a subset D of X is said to be decreas-
ing, resp. increasing, if d~ (x) C D, resp. i< (x) C D, for all x € D.

Definition 2.20 (Herden [33, 34]) A family & of open decreasing subsets of X is
said to be a decreasing separable system on (X,3,t) if it satisfies the following
conditions:
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DS1: There exist sets E; € & and E; € & such that E| C E,.

DS2: For all sets E; € & and E, € & such that E; C E, there exists some set E3 € &
such that E| C Ez C E3 C E,.

If, for all sets E € & and E' € &, at least one of the following conditions E = E’
or E C E' or E' C E holds, then & is said to be complete.

The concept of a complete separable system generalizes that of a decreasing
scale in a preordered topological space (see Burgess and Fitzpatrick [20] and John-
son and Mandelker [39]). Decreasing scales, which have been widely used for pro-
viding characterizations of the existence of continuous real-valued order-preserving
functions (see , e.g., Alcantud et al. [1] and Bosi and Mehta [17]) have the disad-
vantage to be countable.

The reader may notice that, given a complete decreasing separable system & on
X, the inclusion E G E’ for any two sets E € & and E’ € & implies that E C E'. In
the remainder of this paper we shall always use this observation without extra hints.

Nevertheless, we must mention that in the arbitrary case, however, it cannot be
concluded that the inclusion £ ; E' implies that E C E’. In the arbitrary case (that
will not be considered here) we, therefore, replace & by

& =E\{E' € IFE € £(ESE'NENX\E #0)}.

Because of the above considerations, the authors would like to take this opportu-
nity of pointing out that it does not mean any loss of generality just to consider in
the remainder of this paper complete decreasing separable systems.

Remark 2.21 The particular relevance of (complete) decreasing separable systems
on (X, 3,t) is given by the following two fundamental relations between continuous

Y~

increasing real-valued functions on (X, 3,7) and decreasing separable systems on

'~

(X, 3,t) (cf. Herden [33] and Herden and Pallack [37, Lemma 3.6]).

)~

1. Let f be a continuous increasing real-valued function on (X, =,7). Then

¢={f"(| -4 |q€Q}

is a complete decreasing separable system on (X, X,1).

T~

2. Let & be a (complete) decreasing separable system on (X, <,7). Then & induces

)~

a continuous increasing real-valued function on (X, X,¢) by at first defining in-
ductively a function ¢ — E, from [0,1] NQ — & in such a way that E, C E,
whenever p < g, in order to then define a continuous increasing real-valued func-
tion f on (X, 3,t) by setting
inf{g € [0,1]NQ|x€Ey}, ifxe ] E,
flx) = q€[0,1]NQ
1, otherwise,

forall x € X.
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Remark 2.22 In case that 3 is the identity relation on X we merely speak of a
separable system on X. Then the conditions DS1 and DS2 are abbreviated by S1
and S2.

The following theorem holds, presenting different conditions all equivalent to the
continuity of a total preorder on a topological space.

Theorem 2.23 Let (X, 3,1) be a totally preordered topological space. Then the fol-

r~

lowing conditions are equivalent:

1. X is continuous;

2. The order topology t= is coarser than t;
3. 3 is semi-closed;

4. =is closed;

5. For all x,y € X such that not(y 3 x) there exist an open decreasing subset Uy
of X containing x and an open increasing subset U, of X containing y such that
UnU, =0;

6. < is an open subset of X X X considered with the product topology t X t;

7. d<(x) ={y € X|y Z x} is a closed subset of X and I5(x) = {y € X|y < x} is an
open subset of X for every point x € X;

8. ix(x) ={z € X|x Z z} is a closed subset of X and r<(x) = {z € X|x < z} is an
open subset of X for every point x € X;

9. 3 is weakly continuous;

10. For every pair (x,y) €= a decreasing separable system &, on X can be chosen
in such a way that there exist sets E C E C E' in &y such thatx € E and y ¢ E';

11. For every pair(x,y) €< a complete decreasing separable system &, on X can be
chosen in such a way that there exist sets E C E C E' in & such that x € E and

yEZE.

Proof. The equivalence of conditions 1, 2,3, 4, 6 was proved by Bridges and Mehta
[19, Proposition 1.6.2]. The equivalence of conditions 4 and 5 appears in Ward [62,
Lemma 1]. The equivalence of conditions 3, 7 and 8 is obvious. The equivalence of
conditions 3 and 9 was proved by Herden and Pallack [38, Lemma 2.2]. Finally, the
equivalence of conditions 9, 10 and 11 comes from Remark 2.21. O

Let Sc(X) be the set of all complete separable systems & on X that contain X
(the reader may verify that the assumption X to be contained in & does not mean
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any loss of generality). In Bosi and Herden [16], Sc(X) has been endowed with
the preorder =g that is defined by considering for every complete separable system
& € Sc(X) the topology ts on X that is generated by & (i.e., & is a subbasis of #4),
in order to then set

& ;jg L Ete Cty

for all complete separable systems & € S¢(X) and .Z € S¢(X).

Let Sc(X )NS be the set of indifference (equivalence) classes of =g and let, in
addition, P<(X) be the set of all total continuous preorders on (X, ).

Then the following fundamental proposition holds (cf. Bosi and Herden [16,
Proposition 3.2]).

Proposition 2.24 There exists a one-to-one correspondence between P4(X) and
Se(X )|~s'

Proposition 2.24 leads us immediately to a first solution of the problem of char-
acterizing in a simple way all useful (continuously representable) topologies on X,
i. e. all topologies on X having the property according to which all their total con-
tinuous preorders are continuously representable by a utility function (cf. Bosi and
Herden [16, Theorem 3.1] and Herden [35, Corollary 2.1]).

Proposition 2.25 The following assertions are equivalent:

(i) t is useful.

(ii) For every complete separable system & € Sc(X), the topology ts generated by &
is second countable.

One immediately verifies that Proposition 2.25 is a common generalization of ET
(Eilenberg utility representation Theorem (Eilenberg [27])) and DT (Debreu utility
representation Theorem (Debreu [24, 25])), which read as follows.

ET: Every connected and separable topology t on X is useful.
DT: Every second countable topology t on X is useful.

Herden and Pallack [38, Theorem 2.15] proved the following generalization of
the Debreu utility representation Theorem.

Theorem 2.26 Let = be a weakly continuous preorder on a second countable
topological space (X,t). Then there exists a continuous order-preserving function
X210 —= R, < tyar).

)’ ~

Based on Theorem 2.26, we can present a characterization of the existence of a
continuous order-preserving function, which utilizes weak continuity.

Theorem 2.27 Let 3 be a preorder on a topological space (X ,t). Then the follow-
ing conditions are equivalent:
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(1) There exists a continuous order-preserving function f: (X,3,t) = (R, <,tnar)-
(ii) There exists a second countable topology t' on X, which is coarser than t and
with respect to which 3 is weakly continuous.
Proof. (i) = (ii). Let f: (X,3,7) = (R,<,t,4) be a continuous order-preserving
function, and consider the topology ' on X which is generated by the families
{f71(J — ,q]) }4eq and {f~'(Jg,+[)}4cq. in order to immediately verify that
¢’ is second countable, coarser than ¢ and such that =< is weakly continuous with
respect to t'.

(ii) = (i). Apply Theorem 2.26 to 3 on (X,#'), and just observe that a continuous
order-preserving function f: (X, =,¢') — (R, <,fu) is continuous on (X,7). O
Definition 2.28 A preorder 3 on a set X is said to be Cantor-separable if there
exists a countable subset Z of X such that for all (x,y) €< there exists z € Z such
thatx <z < y.

The following theorem, which is closely related to the utility representation the-
orem of Peleg [58], illustrates the adequateness of the definition of weak continuity
of a preorder (see the above Definition 2.8, (iii)), which was introduced by Bosi and
Herden [12, 13]).

By the way, the reader may recall that Peleg [58], who was one of the first con-
cerned with continuous representability of arbitrary preorders (actually, irreflexive
and transitive binary relations) on (X,#) instead of only total preorders, when prov-
ing his continuous utility theorem, has taken advantage of the fact that a Cantor-
separable preorder 3 on (X,7) is weakly continuous, provided that it satisfies the
following properties:

P1: /<(x) is open for every x € X;

P2: I<(x) C I<(y) for every pair (x,y) €<.
The reader may also consult Herden [33, Remark 4.1].

Proposition 2.29 The following assertions hold:

(i) A Cantor-separable preorder = on (X ,t) or, equivalently, a preorder = on (X 1)
that has no jumps and which satisfies one of the conditions 7 or 8 of Theorem
2.23 is weakly continuous.

(ii) A preorder =X on (X,t) is weakly continuous provided that it is both continuous
and semi-closed.

Proof. A proof of assertion (i) is implicit in our proof of assertion (ii). In addition,
the original proof of Peleg also can be applied in order to prove assertion (i). Hence,
it suffices to concentrate on the proof of assertion (ii). Let, therefore, some pair
(x,y) €< be arbitrarily chosen. Then the continuity of 3 will follow if we are able
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to prove the existence of a decreasing separable system &, on X such that x € E
and y ¢ E for every set E € &,,. We, thus, set &, := {I<(z)|x <z 3y} in order to
then show that &, is the desired decreasing separable system on X satisfying the
property that x € E and y ¢ E for every set E € &,. The definition of &, implies
that we only must show &, to be a decreasing separable system on X. Hence, we
distinguish between the following two cases.

Case 1: There exists some z € X such that x < z < y. Then we may conclude that
I<(z) Clx(z) C d<(z) C Ix(y) and the validity of condition DS1 is guaranteed.

Case 2: There exists no z € X such that x < z <'y. In this case r<(x) Ul<(y) =
i<(x)Udx(y) is an open and closed subset of X (of course, the equation r<(x) U
I<(y) = i< (x)Ud<(y) holds whenever x < y; the emptiness of the interval |x,y[ is not
needed). But since ]x, y[= 0 we may conclude that [<(y) = (i5(x) Ud<(y)) \ r=(x)
is open and closed, which also implies the validity of condition DS1.

In order to now finish the proof of the proposition take sets /<(u) € &y and

I5(v) € &y such that I5(u) C I<(v) be arbitrarily chosen. Our arguments that have
been used in order to do the second case allow us to assume without loss of gener-
ality that there exists some w € X such that u < w < v. Hence, our arguments that
just have been used above apply. This statement already completes the proof of the
proposition. (|

We must still mention that the concept of a continuous preorder on (X,¢) up
to now, however, has not completely been clarified in the literature. Indeed, some
authors, in particular, Mas-Colell et al. [44] or Gerasimou [31] identify continuity
of a preorder X on (X,t) with its closedness.

One immediately verifies (see the equivalence ”4 < 9” of Theorem 2.23), that
in case that = is total, 3 is closed if and only if 3 is weakly continuous. But weak
continuity of < and the property 3 to be a closed subset of the product space (X X
X,t x t) are not equivalent, in general, as the following example shows.

The following example of a closed and not weakly continuous preorder was pre-
sented by Herden and Pallack [38].

Example 2.30 Let X := R. Then we consider the topology ¢ on X that contains the
empty set and the sets X \ F where F runs through the empty set and all finite subsets
of X. In addition, we choose the preorder
Si={(x,x)|lx e R}U{1,2}.

Then 3 is obviously a closed subset of the product space (X x X,¢ X t). Since the
intersection of any two open set in nonempty, we have that every continuous real-
valued function f on (X,¢) is constant. Therefore, there cannot exist any continuous
function fi2 : (X,3,7)) = (R, <,t44) such that fi2(1) < f12(2), and this implies

Y~

that = is not weakly continuous.

Remark 2.31 A slight extension of Schmeidler’s proof in his well-known paper
published in 1971 (see Schmeidler [60]) implies a variant of his theorem, which
guarantees that a preorder = which is both continuous and semi-closed on a topo-
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logical space (X, ) and which satisfies the additional property of the quotient topol-
ogy ti being Hausdorf is such that the restriction of 3 to the components of (X,7) is
total. The proof of this version of Schmeidler theorem will be completely presented

in the last section of this paper, In opinion of the authors, this theorem underlines
the relative strength of requiring both continuity and semi-closedness.

Despite Remark 2.31, we have that assertion (ii) of Proposition 2.29 cannot be
improved. Indeed, we now present an example of a preorder 3 on (X,#) which
satisfies, except for the assumption r< (x) to be open for every point x € X, any of the
assumptions the validity of which is postulated by continuity and semi-closedness,
but, nevertheless, fails to be continuous.

Example 2.32 Let (X,¢) := (R,#,4) as underlying topological space. The preorder
= to be considered on (X,7) is defined by setting

S ={0)xreXIU{(x,y) eX xXx<y<O0V1I<x<yVx<O0Al<y}
U {(z,y) eXxX|0<z<yAl<y}.

A direct verification implies that for every x € X both sets d<(x) and i<(x) are
closed. In addition, it follows that /<(x) is open for every x € X. Let us now assume
that there exists some complete decreasing separable system &y; on X that could be
chosen in such a way that O € E and 1 ¢ E for every set E € &p;. Then the assumption
every set E € &p) to be the union of sets /5(z) (0 < z < 1) does not mean any loss of
generality. Since the interval ]0, 1] is empty our arguments that have been applied in
the second case of the proof of Proposition 2.29 imply that in order for &p; to satisfy
condition DS1 it is necessary /(1) to be closed. But [<(1) G I<(1) = d<(1) and we
are done.

3 Characterization of continuous representations

Based on the concept of a complete decreasing separable system, the observations
following Definition 2.20, and the above Remark 2.21, we can easily deduce the fol-
lowing variant of Theorem 3.2 in Herden and Pallack [38], providing a characteriza-
tion of the existence of a continuous order-preserving function for a not necessarily
total preorder on a topological space.

Theorem 3.1 let 3 be a preorder on a topological space (X ,t). Then the following
conditions are equivalent:

’~I?

(i) There exists a continuous order-preserving function f : (X, 3,1) = (R, <, fyar)-

(ii) There exists a countable complete decreasing separable system & on (X,3,t)
such that for every pair (x,y) €< there exist sets E,E' € & such that E C E',
x€EEandye X \E'.
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(iii) There exists a countable family {8, },en of complete decreasing separable sys-
tems on (X, 3,t) such that for every pair (x,y) €< there exists some n € N such

I~

that x € E andy € X\ E for every E € &,.

We are now interested in continuous multi-utility representation. For every x € X
we denote by & (x) the family of all (complete) decreasing separable systems & on
(X,3,1) such thatx € () E for all & € &(x).

Ec&
We are fully prepared for solving the problem of characterizing all preorders

= on (X,t) that have a continuous multi-utility representation (cf. also Evren and
Ok [29, Theorem 0 and Theorem 4], where the equivalence “(i) < (ii)” has been
proved).

Theorem 3.2 Let X be a preorder on a topological space (X ,t). Then the following
assertions are equivalent:

(1) = has a continuous multi-utility representation.
(i) x 3y whenever for all & € &(y) and all E € & the inclusion x € E holds.

(iil) For every pair (x,y) € X x X such that not(y 3 x) there exists some & € & (x)
such that x € E andy € X\ E forallE € &.

(iv) d<(x)= [ [()EforallxeX.

Eeb(x)EES

Proof. (i) = (ii): Assertion (ii) means that x 3y, whenever f(x) < f(y) for all
continuous increasing real-valued functions f on (X, 3,#). This observation already
guarantees the validity of the implication “(i) = (ii)”.

(ii) = (iii): Since not(y 3 x), assertion (ii) implies the existence of some decreas-
ing separable system & € & (x) for which there exists some E € & such that x € E
and y € X \ E. Therefore, we distinguish between the following two cases.

Case1: E= () E'.Inthis case the equation (| E'= (] E’ implies that E =E.

E'e& E'c& E'e&
Then {E} is a separable system on (X, X,¢) that belongs to &(x) and has the desired
property that x € E and y € X \ E for all E € {E}.

Case 2: There exists some E' € & such that E' C E. Now
&' ={E" € & | E" C E'} is a separable system on (X, 3,7) that belongs to &(x)
and has the desired property that x € E” and y € X \ E” for all E” € &".

(iii) = (iv): It is clear that, regardless the validity of condition (iii), we have that
dx(x) C ﬂ ﬂ E for all x € X. Conversely, if for some x € X and z € X it happens

e (X)EEE
that z & d<(x) < not(z < x), then from condition (iii) there exists some & € &'(x)
such thatx € E and z € X \ E for all E € &, so that z ¢ ﬂ ﬂE
Eeb(x)Ees

(iv) = (1): In order to prove that X admits a continuous multi-utility represen-

tation, we may concentrate on the situation that points x € X and y € X such that
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not(y 3 x) or, equivalently, y ¢ d<(x) have been chosen. Then similar arguments as
the ones that have been applied in the proof of the implication “(i1) = (iii)” guaran-
tee the existence of some separable system & = {E, }4¢(0,1jng on (X, 3,t) such that

x€ () EgandyeX\ |J E,=X\ |J E,. Withthehelp of these equa-
¢<[0,1)NQ ¢<€(0,1NQ ¢€[0,1]nQ

tions we may define a continuous decreasing function f: (X, 3,7) — ([0, 1], <,fnar)

by setting

inf{g € [0,1]NQ|z€E},ifze ] E,
f(z) = g€[0,1]nQ
1, otherwise,

for all z € X. The definition of f implies that f(x) =0 < 1 = f(y). This consideration
finishes the proof of the theorem. (]

Alcantud et al. [2, Proposition 3.2] proved that there exists a continuous Richter-
Peleg multi-utility representation for a preorder on a topological space if and only
if there exist both a continuous multi-utility representation and a continuous order-
preserving function for the preorder. Therefore, from Theorem 3.1 and Theorem 3.2,
we immediately get the following characterization of the existence of a continuous
Richter-Peleg multi-utility representation.

Theorem 3.3 Let 3 be a preorder on a topological space (X ,t). Then the following
assertions are equivalent:

(1) = has a continuous Richter-Peleg multi-utility representation.

(ii) The following conditions hold:

a. For every pair (x,y) € X x X such that not(y 3 x) there exists some & € & (x)
such that x € E andy € X\ E forall E € &;

b. There exists a countable complete decreasing separable system & on (X, 3,t)
such that for every pair (x,y) €< there exists sets E,E' € & such that E C E',
x€EandyeX\E'

4 Restrictive results concerning continuous multi-utility
representations

Schmeidler [60] proved the following famous theorem.

Theorem 4.1 (Schmeidler [60]) Ler = be a nontrivial preorder on a connected
topological space (X,t). If, for every x € X, the sets d<(x) and i<(x) are closed
and the sets <(x) and r<(x) are open, then the preorder 3 is total.
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In combination with the results of the preceding section, in this section we first
want to present the following more general version of Schmeidler’s Theorem.

Theorem 4.2 Let (X, 3,t) be a preordered topological space that satisfies the prop-
=<
|~

restriction of 3 to the components of (X ,t) is total.

erties t7° to be Hausdorff, and = to be both continuous and semi-closed. Then the

Proof. Let C C X be a component of (X,#) and let the point x € C be arbitrarily cho-
sen. Since tli is Hausdorff it follows, with help of condition SB of Proposition 2.3,
that at least one of the sets /< (x) or r<(x) is not empty. We, thus, must distinguish be-
tween the cases /< (x) # @ and r<(x) =0, [5(x) = 0 and r<(x) # 0 and /< (x) # @ and
r<(x) # 0. Since all these cases can be handled by analogous arguments it suffices to
discuss the case that /5(x) as well as r<(x) is not empty. Let, therefore, &'(x) be the

collection of all open intervals ]y, z[ that contain x. Then we set Oy := U 7]
lyzl€0(x)

in order to distinguish between the cases CN Oy = 0 and CN O, # 0. In the first case

we may conclude that C = [x] and we are done. In the second case it follows that

there exists some point y € C or some point z € C such that y < x or x < z. Since 3 is

assumed to be semi-closed these inequalities guarantee, however, that the sub-space

(C, Zjestic) of (X, Z,t) satisfies the assumptions of Schmeidler’s Theorem. Hence,

r A~

the restriction 3¢ of 3 to C is total. O

From Proposition 2.18 and Theorem 4.2, we immediately obtain the following
restrictive result concerning the existence of finite continuous Richter-Peleg multi-
utility representations.

Corollary 4.3 Let 3 be a preorder on a topological space (X,t), which admits a
finite continuous Richter-Peleg multi-utility representation F = {fi,..., fu}. Then
the restriction of 3 to the components of (X ,t) is total.

A preorder 3 on (X,#) which has a continuous multi-utility representation must
be both closed and continuous. The following three problems are therefore particu-
larly important.

Problem 1: Determine all topological spaces (X,¢) having the property that all
their closed preorders are weakly continuous.

Problem 2: Determine all topological spaces (X,¢) having the property that all
their weakly continuous preorders are closed.

Problem 3: Determine all topological spaces (X,¢) having the property that all
their weakly continuous preorders admit a continuous multi-utility representation.

The first problem has been analyzed, at least partially, in Bosi and Herden [15].
The following definition is found in Nachbin [56].
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Definition 4.4 A preorder < on a topological space (X,7) is said to be normal if
for any two disjoint closed decreasing, respectively increasing subsets A and B of X
there exist disjoint open decreasing, respectively increasing subsets U and V of X
suchthat ACU and BC V.

For example, the following results hold (see Bosi and Herden [15, Corollary 3.5
and Theorem 3.4]).

Theorem 4.5 Let (X,t) be a connected metrizable space. Then the following asser-
tions are equivalent:

(1) Every closed preorder = on (X,t) admits a continuous multi-utility representa-
tion.

(ii) (X,t) is locally compact and second countable.

Theorem 4.6 Ler (X,t) be a Hausdorff space. Then the following assertions are
equivalent:

(1) Every closed preorder = on (X,t) admits a continuous multi-utility representa-
tion.

(ii) Every closed preorder = on (X,t) is normal.

As regards problems 2 and 3 above, surprisingly, the common solution of both
problems is possible in a very satisfactory and restrictive way.

Before stating the corresponding theorem, the reader may recall that, when we
consider the space C(X,#,R) of all continuous real-valued function on the topolog-
ical space (X,1), the weak topology on X, 6(X,C(X,t,R)), is the coarsest topology
on X satisfying the property that every continuous real-valued function on (X,¢) re-
mains being continuous. Two points x,y € X are considered as being equivalent if
f(x) = f(y) for all functions f € C(X,#,R). For two equivalent points x,y € X, we
write X ~c(xr) Y (x ~c y for the sake of brevity).

It is well known that (X‘NC ,o(X,C(X,t, R))|~c ) is a completely regular Hausdorff-
space (cf., for instance, Cigler and Reichel [23, Satz 10, page 101]). It is clear that
(X‘NC , G(X,C(X,t,R))|NC) is the quotient space of o(X,C(X,7,R)) that is induced
by the equivalence relation ~¢.

The following lemma holds true.

Lemma 4.7 The coarsest topology on X satisfying the property that all weakly con-
tinuous preorders on (X ,t) remain being continuous is 6(X,C(X,t,R)). (Of course,
this assertion is equivalent to the statement that a preorder = on (X,t) is weakly
continuous if and only if it is weakly continuous with respect to o(X,C(X,t,R))).

Proof. Although the validity of this assertion appears somewhat surprisingly, its
trueness is trivial. Indeed, since weak continuity of a preorder < on (X,¢) is de-
scribed by continuous (increasing) real-valued functions, its validity is immediate
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(the reader may notice that this phenomenon underlines once more the appropriate-
ness of the concept of a weakly continuous preorder on (X,¢) ). O

We are now ready to prove the very restrictive result according to which the con-
tinuous multi-utility representability of all closed preorders on a topological space is
equivalent to the continuous multi-utility representability of all weakly continuous
preorders, and in turn to the requirement according to which the quotient topology
with respect to the coincidence of all continuous functions is discrete

Theorem 4.8 Let (X,t) be a topological space. The following assertions are equiv-
alent:

(1) Every weakly continuous preorder = on (X ,t) has a continuous multi-utility rep-
resentation.

(ii) Every weakly continuous preorder = on (X ,t) is closed.

(iii) 7). is the discrete topology on X|.....

Proof. (i) = (ii): We already know that a preorder < on (X,¢) that has a continuous
multi-utility representation must be closed. Hence, nothing remains to be shown.

(ii) = (iii): Let (X,7) be a topological space for which every weakly contin-
uous preorder = is closed. Then the properties of the defined equivalence relation
“~c” on X imply that every weakly continuous preorder 3 on X|.... is closed. There-
fore, we may identify the topological spaces (X,¢) and (X|~..,#~,.). This means that
we may assume, in the remainder of the proof of the implication “(ii) = (iii)”,
(X,t) to be a Hausdorff-space. In order to now prove the validity of the implica-
tion it, thus, suffices to show that there exists no point y € X such that the sin-
gleton {y} is not an open subset of X. This will be done by contraposition. We,
therefore, assume, in contrast, that there exists at least one point y € X such that
{y} is not an open subset of X and proceed by arbitrarily choosing some point
z€ X\ {y}. Since (X,t) is a Hausdorff-space, it follows that {y} as well as {z} are
closed subsets of X, which implies that D := {y,z} is a closed subset of X. The
inclusion (X,o0(X,C(X,7,R)) C (X,t) allows to conclude, in addition, that every
continuous function f : (X, 0(X,C(X,#,R)) — ([0, 1],%) is a continuous function
F:(X,t) = ([0,1],fn4). Since (X,0(X,C(X,t,R)) is completely regular, there ex-
ists for every point x € X \ D a continuous function f; : (X,#) — ([0, 1],#4a) such
that fy(x) = 0 and fy(D) = {1}. Hence, the preorder 3 on (X,¢) that is defined by
setting

<= {(nv)lvy € X}U{(xy)lr € X\D}U{(x, 7)€ X\ D}

is continuous. Assertion (ii), thus, implies that = is a closed subset of X x X. Hence,
it follows that there exist open subsets U and V of X such that y € U and z € V and,
moreover, U x VN 3= 0. Since y is assumed to be not an open subset of X, we may
conclude that U contains at least one point u that is different from y. Because of
the definition of 3, this means, however, that (u,z) € U x VN 3. This contradiction
proves assertion (iii).
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(iii) = (i): Assertion (iii) implies that o(X,C(X,t,R))|.. = ... Hence, the
space (X..,0(X,C(X,t,R))|...) is discrete, which allows us to conclude that every
weakly continuous preorder 3 on (X..,0(X,C(X,,R))|..) admits a continuous
multi-utility representation. It, thus, follows that every weakly continuous preorder
Zon (X,0(X,C(X,t,R)) has a continuous multi-utility representation. This means
that we may apply Lemma 4.7 in order to conclude that also every weakly contin-
uous preorder = on (X,#) admits a continuous multi-utility representation, which

finishes the proof of the implication. (|

Remark 4.9 Clearly, the equivalent assertions (i), (ii) and (iii) of Theorem 4.8 are
also equivalent to any of the following (equivalent) assertions:

(iv) Every weakly continuous preorder 3 on (X,0(X,C(X,7,R)) has a continuous
multi-utility representation;

(v) Every weakly continuous preorder 3 on (X, o(X,C(X,z,R)) is closed;

(vi) o(X,C(X,t,R))~,. is the discrete topology on X......

5 Conclusions

In this paper we have presented some general results concerning the existence of
continuous representations of nontotal preorders on a topological space. The corre-
sponding characterizations are mainly based on the concept of a complete decreas-
ing separable system in a preordered topological space, which was introduced and
widely studied by Herden [33, 34, 35].

We have focused our attention on continuity-like conditions which are neces-
sary for the existence of a continuous order-preserving function and respectively a
continuous multi-utility representation.

In particular, we have taken into consideration the property of weak continuity.
Following the terminology introduced by Bosi and Herden [12, 13], a preorder on a
topological space (X,t) is weakly continuous if for every pair (x,y) €< there exists
a continuous and increasing real-valued function fy, on X such that fi,(x) < fiy(y)-

We have presented some results which illustrate the restrictiveness of the contin-
uous multi-utility representation, which nevertheless has been presented in the past
as the best kind of continuous representation under incompleteness of the preference
relation. To be precise, by using considerations according to which the quotient or-
der topology is a Hausdorff topology, we have proven a variant of a famous theorem
by Schmeidler [60]. Indeed, we have shown that if a continuous multi-utility rep-
resentation exists for a preorder whose strict lower and upper sections are all open,
then the preorder is total on each component. Further, we have proven that if a fi-
nite continuous Richter-Peleg multi-utility representation exists, then the preorder
is total on every component.
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Finally, using classical considerations concerning the weak topology, we have
shown that the continuous multi-utility representability of all closed preorders (or
equivalently weakly continuous preorders) on a topological space is equivalent to
the requirement according to which the quotient topology with respect to the equiv-
alence corresponding to the coincidence of all continuous functions is discrete.
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