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Abstract: The objective of this work is to analyze the importance of the product λ′(0)ρ′(1) in
determining low density parity check (LDPC) code performance, as far as its influence on the weight
distribution function and on the decoding thresholds. This analysis is based on the 2006 paper by
Di et al., as far as the weight distribution function is concerned, and on the 2018 paper by Vatta et al.,
regarding the LDPC decoding thresholds. In particular, the first paper Di et al. analyzed the relation
between the above mentioned product and the minimum weight of an ensemble of random LDPC
codewords, whereas in the second some analytical upper bounds to the LDPC decoding thresholds
were determined. In the present work, besides analyzing the performance of an ensemble of LDPC
codes through the outcomes of Di et al.’s 2006 paper, we give the relation between one of the upper
bounds found in Vatta et al.’s 2018 paper and the above mentioned product λ′(0)ρ′(1), thus showing
its role in also determining an upper bound to LDPC decoding thresholds.

Keywords: LDPC codes; threshold; gaussian approximation; density evolution; sum-product
algorithm; capacity approximation; upper bound; minimum distance; growth rate

1. Introduction

Low Density Parity Check (LDPC) codes, belonging to the class of block channel codes,
were introduced for the first time in the 1960s in Robert Gallager’s doctoral thesis [1]. Now they
are counted among the most promising and cutting-edge coding techniques in contemporary channel
coding. Due to the technological impediments of the time in which they were introduced and of the
decoder complexity, these codes were hardly contemplated for about 30 years, with the exception of
Tanner’s graphical description, introduced in [2], and successively designated as the Tanner graph.
Appearing independently of Gallager’s work, the authors of [3,4] were the re-inventors of LDPC
codes in the mid 1990s. Afterwards, because of their astonishing performance approaching the
Shannon limit along with Turbo codes [5], they were rapidly comprehended in current communication
standards [6–8].

The asymptotic performance of a block channel code, such as an LDPC code, is determined by its
minimum distance, i.e., by its minimum weight codewords and by their multiplicities. These determine
its correction capability and its asymptotic performance expressed in terms of bit error rate (BER) and
frame error rate (FER) vs. the signal-to-noise ratio (SNR) Eb/N0 from moderate to high SNRs, i.e., away
from capacity. Moreover, as far as LDPC codes are concerned, as first observed in [1], it presents the
well-known “threshold phenomenon”. In other words, the noise threshold defines a channel noise
upper bound under which the lost information probability can be maintained as low as needed.
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Since it is extremely difficult to study the performance of a LDPC codes ensemble analytically
as the determination of its weight enumerating function is a complicated task, in this work we try to
give an insight into this problem analyzing the importance of the product λ′(0)ρ′(1) in influencing
not only this function, that, as said above, determines the asymptotic BER and FER performance,
away from capacity, but also the decoding thresholds, i.e., the performance next to the Shannon limit.
Namely, on the basis of the results of [9,10], respectively, we are interested in determining, on one side,
the relationship between the above mentioned product and the minimum distance of a LDPC codes
ensemble, and, on the other side, the relationship between this product and the noise threshold of
a LDPC codes ensemble. The first, namely the minimum distance, is related to LDPC’s codewords
weight distribution, i.e., to their distance spectrum. The second, namely the noise threshold, is related
to the convergence behavior of their iterative decoding algorithm, which is particularly important
because LDPC codes, as well as turbo-like codes, are “capacity-achieving” codes.

As far as the first of the above cited papers, namely [9], is concerned, its main result asserts that
the minimum distance growth rate of irregular LDPC codes ensembles is only determined by the value
of the product λ′(0)ρ′(1), a number that is related to the degree distribution polynomial couple λ(x)
and ρ(x). In particular, if λ′(0)ρ′(1) > 1, the minimum distance growth with the block length being
sublinear, if not, the minimum distance growth with the block length is linear.

As far as the second of the above cited papers, namely Vatta et al.’s 2018 paper [10], is concerned,
in this work we derived three computationally light upper bounds to LDPC belief-propagation
decoding thresholds, usually determined “exactly” through density evolution, assuming, as in [11],
the validity of the Gaussian Approximation (GA) (the employment of which is very convenient when
an effective and computationally light method is required. See [10,12–15]), and by using the derivation
of [16] (the clarifying vision and interpretation of [11] allows to determine the threshold as the ultimate
value guaranteeing the convergence of the recurrent sequence, therein defined, but the authors of [11]
did not provide any mathematical method to calculate it. Thus, in [16] we presented a mathematical
method, based on the quadratic degeneracy theory, allowing the evaluation of noise thresholds
by means of converting a convergence problem into a mathematical analysis problem. Using the
algorithm shown in [16], a computationally light approximation of LDPC belief-propagation decoding
thresholds, usually determined “exactly” through density evolution, can be obtained, assuming,
as in [11], the validity of the GA) to determine the asymptotic analytical performance of ∆(s, t) defined,
e.g., in [6].

In Section 2 we recall LDPC codes graphical representation and, in Section 3, the Gaussian
Approximation approach. In Section 4 we review the mathematical method deduced in [16] to explain
how the upper bounds of [10] were obtained. Furthermore, to analyze the relationship between the
product λ′(0)ρ′(1) and the minimum distance of a LDPC codes ensemble, in Section 6 the results of [9]
are recalled, and, to analyze the relationship between this product and the noise threshold of a LDPC
codes ensemble, in Section 7 we present a Lemma specifying the relationship between the third noise
threshold upper bound found in [10] and the product λ′(0)ρ′(1). In Section 8, the numeric results of
these two analyses are reported. These results are discussed in Section 9 which also will report some
simulation results to support the discussion. Finally, Section 10 summarizes the conclusions.

2. Graphical Representation of LDPC Codes

LDPC codes can be represented in a graphical way through a commonly named bipartite
graph, commonly known as the Tanner graph [2]. As the trellis diagram gives an efficient graphical
representation of a convolutional code behavior, so does the Tanner graph in providing an efficient
graphical representation of how a LDPC encoder and decoder work.

The nodes in a Tanner graph are classified in variable nodes and check nodes. In the drawing
of the Tanner graph, the following rule must be respected: An edge connects a variable node i to
a check node j when the corresponding element hij in the parity-check matrix H is a 1. From this it
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may be deduced that there is a check node for each of the m = n− k check equations, and that there is
a variable node for each of the n code bits ci.

As far as irregular LDPC codes are concerned [4], the parameters dl and dr specify the maximum
degrees of the nodes distributions in their Tanner graphs, defined, e.g., in [17]. In particular,
the polynomial λ(x) (ρ(x)) defines the variable (check) nodes edge-perspective degree distribution:

λ(x) =
dl

∑
i=2

λixi−1 (1)

ρ(x) =
dr

∑
j=2

ρjxj−1 (2)

A LDPC code rate can be expressed as [18]:

r(λ, ρ) = 1−
∫ 1

0 ρ(x)dx∫ 1
0 λ(x)dx

= 1−
∑dr

j=2 ρj/j

∑dl
j=2 λj/j

(3)

The edge-perspective degree distributions λ(x) and ρ(x) are related to the node perspective
degree distributions L(x) and R(x) as follows [9]:

L(x) =
dl

∑
i=2

Lixi (4)

R(x) =
dr

∑
j=2

Rjxj (5)

being,

Lj =
λj

j
∫ 1

0 λ(x)
=

λj/j

∑dl
i=2 λi/i

(6)

Rj =
ρj

j
∫ 1

0 ρ(x)
=

ρj/j

∑dr
i=2 ρi/i

. (7)

3. Gaussian Approximation

Following the assumptions made in [11], the distributions of the messages involved in the LDPC
iterative decoding process under appropriate hypotheses may be approximated as Gaussians. Since it
may be observed that to totally specify a Gaussian only its mean and variance are needed, and during
the iterative decoding process it is necessary to specify only the means and variances of a generic
check node output message, u, and of a generic variable node output message, v. Furthermore,
since in [11], assuming the validity of the symmetry condition, the variance σ2 was shown to be
connected to the mean m by the relation σ2 = 2m, the means only can be kept in the computation
process. The means of u and v have been denoted by m(l)

u and m(l)
v at the l-th iteration, respectively.

Furthermore, the log-likelihood ratio (LLR) message u0 from the channel can be taken as Gaussian
with a mean of mu0 = 2/σ2

n and a variance of 4/σ2
n , being σ2

n = N0/2 the variance of the channel noise.
The mean of the output of a degree-i variable node at the lth iteration is:

m(l)
v,i = mu0 + (i− 1)m(l−1)

u (8)

where mu0 is the mean of u0 and m(l−1)
u is the mean of u at the (l − 1)-th iteration.

Defining φ(x) as in Definition 1 in [11], the update rule for an irregular code becomes:
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m(l)
u,j = φ−1

(
1−

[
1−

dl

∑
i=2

λiφ(m
(l)
v,i )

]j−1)
. (9)

The output of a variable node is specified by its mean m(l)
u , that can be calculated as the linear

combination of the means m(l)
u,j :

m(l)
u =

dr

∑
j=2

ρjφ
−1
(

1−
[
1−

dl

∑
i=2

λiφ
(
mu0 + (i− 1)m(l−1)

u
)]j−1)

. (10)

Defining s = mu0 and tl = m(l)
u , Equation (10) may be rewritten as:

tl = f (s, tl−1) (11)

where the function f (s, t) is expressed as:

f j(s, t) := φ−1
(

1−
[
1−

dl

∑
i=2

λiφ(s + (i− 1)t)
]j−1)

(12)

f (s, t) :=
dr

∑
j=2

ρj f j(s, t). (13)

4. Mathematical Method of [16]

As noted in [16], the problem of the determination of the convergence of Equation (10) may be
solved by converting it to a problem of quadratic degeneracy, the solution of which can be given in
charge to a commercial software. If the second partial derivative of f (s, t) with respect to t, ftt(s, t),
is 6= 0, the problem of the determination of the convergence of Equation (10) becomes the search for
the solution of the following system: {

f (s, t) = t
ft(s, t) = 1

(14)

where ft(s, t) is the first partial derivative of f (s, t) with respect to t. Its solution is the value s∗ = m∗u0
,

which is the minimum s = mu0 guaranteeing the convergence of Equation (10).
Defining, as in [6],

∆(s, t) := f (s, t)− t (15)

and
∆t(s, t) = ft(s, t)− 1 (16)

Equation (14) is given by: {
∆(s, t) = 0
∆t(s, t) = 0

(17)

Its solution (s∗, t∗) gives an estimate of the belief-propagation decoding threshold σ∗ :=
√

2
s∗ that

may be determined exactly using density evolution. To solve Equation (17), an invertible approximation
of the function φ(x) is needed (see, e.g., [11,19,20]).

5. Upper Bounds on LDPC Codes Decoding Thresholds

The upper bounds on thresholds have been determined in [10] from the asymptotic performance
of Equation (17). The first bound, called s∗bound in [10], was obtained determining an approximation
of the function φ(x) valid for when x ≥ 10. To obtain the second upper bound, called s∗approx in [10],
we have used the approximation Equation (16) of [10] (that was implicitly used in [11]). Finally,
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involving the Jensen’s inequality to manipulate the second upper bound, the third bound, called s∗Jensen
in [10], was determined.

5.1. Upper Bound on LDPC Codes Decoding Thresholds Holding for i1 ≥ 2

As far as the above mentioned first upper bound on LDPC codes thresholds (called s∗bound in [10])
is concerned, in [20] the following lemma was proved.

Lemma: Given λ(x) of minimum degree i1 ≥ 2, and defining z(s, t) as z(s, t) := s+(i1−1)t
2 and Aj

as Aj := 1
(j−1)2λ2

i1

, being W(·) the Lambert-W function, the following asymptotic approximation holds:

f (s, t) = 2
dr

∑
j=2

ρjW(Ajz(s, t) ez(s,t)) + O(t−1). (18)

Recalling that dW(x)
dx = 1

x+eW(x) :

ft(s, t) = 2
dr

∑
j=2

ρj
zt(s, t)ez(s,t)(1 + z(s, t))

z(s, t)ez(s,t) + eW(Ajz(s,t)ez(s,t))−logAj
. (19)

Applying Equation (14) to Equations (18) and (19) we get:
2 ∑dr

j=2 ρjW(Ajz(s, t)ez(s,t)) = t

2 ∑dr
j=2 ρj

zt(s,t)ez(s,t)(1+z(s,t))

z(s,t)ez(s,t)+e
W(Ajz(s,t)ez(s,t))−logAj

= 1 . (20)

and Equation (17) can be rewritten as:
2 ∑dr

j=2 ρjW(Ajz(s, t)ez(s,t))− t = 0

2 ∑dr
j=2 ρj

zt(s,t)ez(s,t)(1+z(s,t))

z(s,t)ez(s,t)+e
W(Ajz(s,t)ez(s,t))−logAj

− 1 = 0 . (21)

Its solution (s∗bound, t∗bound) determines the bound σ∗bound =
√

2
s∗bound

, which is valid ∀i1, unlike the

other two (s∗approx and s∗Jensen) reported in [10], which hold both for i1 = 2 only.

5.2. Further Upper Bounds on LDPC Codes Decoding Thresholds Holding for i1 = 2

With aj := logAj = −2log((j− 1)λi1), Equation (18) can be rewritten as:

f (s, t) = 2
dr

∑
j=2

ρjW
(

z(s, t)ez(s,t)+aj
)
+ O(t−1). (22)

Assuming that the following simplified approximation holds:

W
(

z(s, t)ez(s,t)+aj
)
'W

(
(z(s, t) + aj)e

z(s,t)+aj
)

, (23)

calling x := zs(t) + aj, and being W(xex) ≡ x for x > 0, we find a much simpler asymptotic expression
for f (s, t) (simpler than the one of Equation (18)):

f (s, t) ' 2
dr

∑
j=2

ρjW
(
(z(s, t) + aj)ez(s,t)+aj

)
= 2

dr

∑
j=2

ρj(z(s, t) + aj) =
dr

∑
j=2

ρj(s + (i1 − 1)t− 4log((j− 1)λi1 )). (24)
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Thus, the asymptotic performance of f (s, t) is given by:

f (s, t) = s + (i1 − 1)t− 4logλi1 − 4
dr

∑
j=2

ρjlog(j− 1) + O(t−1). (25)

This is the same asymptotic expression obtained, following a different derivation, in [11],
where the approximation in Equation (23) was implicitly used in the proof of Lemma 3.

Thus, ignoring the O(t−1), for large t Equation (17) can be rewritten as:{
s + (i1 − 2)t− 4logλi1 − 4 ∑dr

j=2 ρjlog(j− 1) = 0
i1 − 2 = 0

. (26)

The solution of Equation (26) is:

s∗approx = 4logλi1 + 4
dr

∑
j=2

ρjlog(j− 1) (27)

and σ∗approx =
√

2
s∗approx

gives the second upper bound of [10].

Applying the Jensen’s inequality:

dr

∏
j=2

(j− 1)ρj ≤
dr

∑
j=2

ρj(j− 1) (28)

and ignoring the O(t−1), for large t Equation (17) can be rewritten as:{
s + (i1 − 2)t− 4logλi1 − 4log

(
∑dr

j=2(j− 1)ρj

)
= 0

i1 − 2 = 0
(29)

The solution of Equation (29) is:

s∗Jensen = 4logλi1 + 4log
( dr

∑
j=2

(j− 1)ρj

)
(30)

Taking σ∗Jensen =
√

2
s∗Jensen

we obtain the third upper bound of [10]. Since, for the Jensen’s inequality for

Equation (28):
dr

∑
j=2

ρjlog(j− 1) ≤ log
( dr

∑
j=2

(j− 1)ρj

)
(31)

it results s∗approx ≤ s∗Jensen and thus σ∗Jensen ≤ σ∗approx, i.e., σ∗Jensen gives a tighter upper bound.

6. Role of the Product λ′(0)ρ′(1) in Determining the Weight Distribution of LDPC Codes

In Reference [9] it was demonstrated that λ′(0) = λ2 occupies a key position in determining
LDPC codes performance, both theoretically and in practice. In particular, the minimum distance
growth rate, namely, whether it is linear or not, was shown to depend only on the product λ′(0)ρ′(1).
Namely, if λ′(0)ρ′(1) > 1, the minimum distance growth rate is sublinear with the block length,
otherwise, i.e., if λ′(0)ρ′(1) < 1, it is linear with the block length.

Moreover, in Reference [9] it was demonstrated that, when λ′(0)ρ′(1) > 1 (condition examined in
this paper), for any integer l such that:

l ≤ min{L2n, (1− r)n} (32)
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being n the codeword length, the probability that a randomly chosen code G ∈ C(n, λ, ρ) has any
weight-l codeword is:

1− Pr(Xl = 0) = 1− e−
(λ′(0)ρ′(1))l

2l + O(n−1/3) (33)

From Equations (32) and (33), it may be concluded that both the parameter L2 and the product
λ′(0)ρ′(1) have an effect on the weight distribution of a LDPC code.

7. Role of the Product λ′(0)ρ′(1) in Determining the Decoding Threshold of LDPC Codes

The bound of Equation (30) is strictly related to the product λ′(0)ρ′(1) investigated in this paper,
but this relationship was not explicitly put in evidence in [10]. In particular, extending the result of [10],
the following Lemma can be easily proven.

Lemma 1. The above mentioned third bound on threshold in Equation (30) may be rewritten as:

s∗Jensen = 4log(λ′(0)ρ′(1)) (34)

Proof of Lemma 1. Remembering the expression of λ(x) and ρ(x) in (1) and (2), respectively, λ′(0)
may be alternatively expressed as

λ′(0) =
dl

∑
i=2

(i− 1)λixi−2
x=0 = λ2 (35)

and ρ′(1) as,

ρ′(1) =
dr

∑
j=2

(j− 1)ρjx
j−2
x=1 =

dr

∑
j=2

(j− 1)ρj (36)

Thus, remembering the expression of s∗Jensen found in Equation (30), which holds for i1 = 2 only,
this can be rewritten as:

s∗Jensen = 4logλ2 + 4log
( dr

∑
j=2

(j− 1)ρj

)
(37)

and thus, given the above mentioned expressions found for λ′(0) and ρ′(1), also as:

s∗Jensen = 4logλ′(0) + 4logρ′(1) (38)

from which we get the result.

Taking σ∗Jensen =
√

2
s∗Jensen

, the third upper bound of [10] may be rewritten as:

σ∗Jensen =
1√

2log(λ′(0)ρ′(1))
(39)

8. Numeric Results

Being λ′(0) and ρ′(1) given in Equations (35) and (36), respectively, we obtain:

λ′(0)ρ′(1) = λ2

dr

∑
j=2

(j− 1)ρj (40)

In Tables 1–3 we report λ(x) and ρ(x) for the irregular LDPC codes of Table I and II in [18].
For each pair of degree distributions, we also report the values of the product λ′(0)ρ′(1) and of the
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parameter L2. Moreover, we give the σ∗ values obtained in [18] by applying the density evolution
analysis, jointly with the upper bound σ∗Jensen =

√
2/s∗Jensen defined in Equation (30).

Table 1. Computed parameters and decoding threshold bound regarding rate-1/2 codes deduced from
Table I of [18], with dl = 4, 6, 7, and 8.

dl 4 6 7 8

λ2 0.38354 0.33241 0.31570 0.30013
λ3 0.04237 0.24632 0.41672 0.28395
λ4 0.57409 0.11014
λ5
λ6 0.31112
λ7 0.43810
λ8 0.41592
ρ5 0.24123
ρ6 0.75877 0.76611 0.43810 0.22919
ρ7 0.23389 0.56190 0.77081

λ′(0) 0.38354 0.33241 0.31570 0.30013
ρ′(1) 4.75877 5.23389 5.56190 5.77081

λ′(0)ρ′(1) 1.82518 1.73980 1.75589 1.73199∫ 1
0 λ(x) 0.34942 0.32770 0.35934 0.29671

L2 0.54883 0.50719 0.43927 0.50577
σ∗ 0.9114 0.9304 0.9424 0.9497

σ∗Jensen 0.91160 0.95021 0.94241 0.95409
SNRgap 0.60903 0.24872 0.32032 0.21333

SNRgap−spline 0.61687 0.25656 0.32815 0.22117

Table 2. Computed parameters and decoding threshold bound regarding rate-1/2 codes deduced from
Table I of [18], with dl = 9, 10, 11, and 12.

dl 9 10 11 12

λ2 0.27684 0.25105 0.23882 0.24426
λ3 0.28342 0.30938 0.29515 0.25907
λ4 0.00104 0.03261 0.01054
λ5 0.05510
λ6
λ7
λ8 0.01455
λ9 0.43974
λ10 0.43853 0.01275
λ11 0.43342
λ12 0.40373
ρ6 0.01568
ρ7 0.85244 0.63676 0.43011 0.25475
ρ8 0.13188 0.36324 0.56989 0.73438
ρ9 0.01087

λ′(0) 0.27684 0.25105 0.23882 0.24426
ρ′(1) 6.11620 6.36324 6.56989 6.75612

λ′(0)ρ′(1) 1.69321 1.59749 1.56902 1.65025∫ 1
0 λ(x) 0.28175 0.27276 0.26535 0.25888

L2 0.49128 0.46020 0.45001 0.47176
σ∗ 0.9540 0.9558 0.9572 0.9580

σ∗Jensen 0.97439 1.03314 1.05356 0.99908
SNRgap 0.03046 0.47807 0.64807 0.18689

SNRgap−spline 0.03830 0.47023 0.64023 0.17905
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Table 3. Computed parameters and decoding threshold bound regarding rate-1/2 codes deduced from
Table II of [18] with dl = 15, 20, 30, and 50.

dl 15 20 30 50

λ2 0.23802 0.21991 0.19606 0.17120
λ3 0.20997 0.23328 0.24039 0.21053
λ4 0.03492 0.02058 0.00273
λ5 0.12015
λ6 0.08543 0.00228
λ7 0.01587 0.06540 0.05516 0.00009
λ8 0.04767 0.16602 0.15269
λ9 0.01912 0.04088 0.09227
λ10 0.01064 0.02802
λ14 0.00480
λ15 0.37627 0.01206
λ19 0.08064
λ20 0.22798
λ28 0.00221
λ30 0.28636 0.07212
λ50 0.25830
ρ8 0.98013 0.64854 0.00749
ρ9 0.01987 0.34747 0.99101 0.33620
ρ10 0.00399 0.00150 0.08883
ρ11 0.57497

λ′(0) 0.23802 0.21991 0.19606 0.17120
ρ′(1) 7.01987 7.35545 7.99401 9.23877

λ′(0)ρ′(1) 1.67087 1.61754 1.56731 1.58168∫ 1
0 λ(x) 0.24945 0.24017 0.22240 0.19699

L2 0.47708 0.45783 0.44078 0.43454
σ∗ 0.9622 0.9649 0.9690 0.9718

σ∗Jensen 0.98692 1.01966 1.05485 1.04429
SNRgap 0.08052 0.36399 0.65870 0.57131

SNRgap−spline 0.07268 0.35615 0.65086 0.56347

Besides these results, we also reported the SNRgap and SNRgap−spline values in dB, given by:

SNRgap(dl) :=

1
2(σ∗Jensen(dl))2

C−1
1 (1/2)

(41)

SNRgap−spline(dl) :=

1
2(σ∗Jensen(dl))2

C−1
spline(1/2)

(42)

defining the gap from the Shannon limit of the bounds σJensen. In Equations (41) and (42), C−1(1/2) was
evaluated using an approximation or a spline interpolation of C−1(r), respectively, both recalled in the
Appendix A. Applying the approximation C−1

1 (1/2), we get the Shannon limit as σShannon1 = 0.977813,
which in good agreement with [21]. Applying the spline interpolation we find σShannon−spline =

0.978696 is in good agreement with [18]. In regards to the noise power, the Shannon limit is given by
C−1

1 (1/2) = (2σ2
Shannon1)

−1 = 0.522948 and C−1
spline(1/2) = (2σ2

Shannon−spline)
−1 = 0.522005.

9. Discussion and Simulation Results

Given the pairs λ(x) and ρ(x) of Tables 1–3, for each of them, an ensemble with a random rate-1/2
LDPC codes has been generated, and their performance simulated using a customized software built
on the basis of [22], assuming a memoryless binary input with an additive white Gaussian noise
(BI-AWGN) channel.



Electronics 2019, 8, 1515 10 of 14

Since l in Equation (33) is upper bounded by Equation (32), the discussion of the results may be
conducted separately for the following two conditions:

1. L2n > (1− r)n and
2. L2n < (1− r)n.

9.1. Case 1: L2n > (1− r)n

The rate r of the codes whose pairs λ(x) and ρ(x) were listed in Tables 1–3, is 1/2. It follows
that, for the examples considered in the paper, 1− r = 1/2. Thus, the degree distributions fulfilling
the condition L2n > (1− r)n are those with L2n > n/2, i.e., L2 > 1/2. This condition is fulfilled by
the distributions having dl = 4, 6, and 8 of Table 1. This implicates that l ≤ n/2 for all these codes,
i.e., that l is fixed. Given this fixed l value, the performance of the random selected LDPC codes
having degree distributions given in the 2-nd, 3-rd, and last column of Table 1, are characterized by
an asymptotic BER performance that depends on the probability of Equation (33) only, i.e., only on the
value of the product λ′(0)ρ′(1). Taken these three degree distributions, the random selected LDPC
code having a pair λ(x) and ρ(x) that minimizes Equation (33), and thus is characterized by the best
asymptotic BER performance, is the one for which the product λ′(0)ρ′(1) is minimum. This is the
case of the code ensemble with dl = 8 in Table 1. On the other hand, the random selected LDPC code
having a pair λ(x) and ρ(x) that maximize Equation (33) is the one for which the product λ′(0)ρ′(1) is
the maximum. This is the case of the code ensemble with dl = 4 in Table 1. Moreover, the minimization
of the product λ′(0)ρ′(1) implies, as expected from Equation (39), the maximization of σ∗Jensen and,
thus, a minimization of SNRgap and of SNRgap−spline.

Figure 1 illustrates the BER performances of two randomly generated codes with pairs λ(x)
and ρ(x) having dl = 4 and 8, respectively, minimizing and, respectively, maximizing the
product λ′(0)ρ′(1).
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Figure 1. BER with respect to Eb/N0 in dB with dl = 4 and dl = 8, n = 1000, and iterations number
I = 50.

As shown in the figure above, the simulated performance achieved by the codes having dl = 8 is
better than that achieved by the codes having dl = 4. For instance, at Eb/N0 = 5 dB, the BER obtained
with dl = 4 is ∼3 × 10−7, whereas the BER obtained with dl = 8 is ∼5 × 10−8.

9.2. Case 2: L2n < (1− r)n

Since, as said above, for the examples considered in the paper, 1− r = 1/2, it follows that the
degree distributions fulfilling the condition L2n < (1− r)n are those with L2n < n/2, i.e., L2 < 1/2.
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This condition is fulfilled by the codes with dl = 7 of Table 1, and by all the other codes of Table 2
and 3. This implies that l ≤ L2n for all these codes, i.e., that, given the block length n, l varies with
L2. In this case, we expect that a higher upper bound of Equation (32) on the codeword weight l
will provide in general a better BER performance. Thus, the dependence of this performance from
the product λ′(0)ρ′(1) must be evaluated case by case. For instance, considering Figures 2–4, where
the performances of three randomly generated codes with pairs λ(x) and ρ(x) having dl = 7, 9 and
10 are shown respectively, the BER curve obtained with dl = 7 (Figure 2) is the worse of the three
(at Eb/N0 = 5 dB the BER is ∼2 × 10−7) and the one obtained with dl = 9 (Figure 3) is the best of the
three (at Eb/N0 = 5 dB the BER is ∼2 × 10−8), whereas the one obtained with dl = 10 (Figure 4) is
intermediate between the above mentioned two (at Eb/N0 = 5 dB the BER is ∼4 × 10−8) since the
code with dl = 7 presents the lowest L2 value (L2 = 0.43927), that with dl = 9 presents the highest L2

value (L2 = 0.49128), whereas the one with dl = 10 presents an intermediate L2 value (L2 = 0.46020)
in respect to the other two. As far as the role of the product λ′(0)ρ′(1) is concerned, in this case it
may be seen that, even if the code with dl = 9 presents a higher value of this product with respect
to the code with dl = 10 (1.69321 vs. 1.59749), its performance is better (at Eb/N0 = 5 dB the BER
is ∼2 × 10−8) than that of the code with dl = 10 (presenting at Eb/N0 = 5 dB a BER of ∼4 × 10−8)
because it presents a higher value of L2.
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Figure 2. BER with respect to Eb/N0 in dB with dl = 7, n = 1000, and iterations number I = 30.
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Figure 3. BER with respect to Eb/N0 in dB with dl = 9, n = 1000, and iterations number I = 30.
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Figure 4. BER with respect to Eb/N0 in dB with dl = 10, n = 1000, and iterations number I = 30.

Thus, in conclusion, the randomly generated code having a degree distribution with dl = 9
(Figure 3) is the best since as it has the highest value of L2 (0.49128) even if it presents an intermediate
value of the product λ′(0)ρ′(1) (1.69321). Moreover, the code with the lowest value of the product
λ′(0)ρ′(1) (1.59749), i.e., the one with dl = 10 also presents, as expected from (39), the highest value of
σ∗Jensen (1.03314).

10. Conclusions

The objective of this work was the analysis of the importance of the product λ′(0)ρ′(1) in
determining LDPC codes performance, as far as both the weight distribution function and the decoding
thresholds are concerned. This analysis was based on [9], as far as the weight distribution function
was concerned, and on [10], regarding the LDPC decoding thresholds. The analysis was conducted
on two main conditions, i.e., the one for which L2 > (1− r) (being r the code rate) and the one for
which L2 < (1− r). In the first case, the role of the product alone was fundamental in determining the
performance. In the second, parameter L2 was also important with the product. The best case was
that presenting the highest value of L2 together with the lowest value of the product λ′(0)ρ′(1) > 1.
Moreover, a lower value of the product λ′(0)ρ′(1) implied, as expected from (39), a higher value of the
upper bound on the decoding threshold σ∗Jensen and thus, in terms of noise power, a smaller gap from
the Shannon limit.
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Appendix A. Approximation of the Functions C(γ) and C−1(r)

We approximated the function C(γ), reported in Equation (8) of [16], with Mathematica R©, using
a numeric integration therein specified.
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Here we report 66 (approximate) values (×104) of C(γ), corresponding to γ = 0.1, ..., 3.35 with
steps of 0.05. (The first value is 0.1314, the second is 0.1889, and so on.)

1314 5738 7804 8841 9379 9664
1889 5993 7929 8905 9413 9682
2417 6231 8047 8966 9445 9699
2905 6454 8158 9023 9475 9715
3356 6663 8263 9077 9504 9730
3774 6859 8361 9128 9530 9745
4162 7042 8453 9176 9556 9759
4523 7215 8540 9222 9580 9771
4859 7376 8622 9264 9603 9784
5173 7528 8699 9305 9624 9795
5465 7670 8772 9343 9645 9806

Figure A1 reports a graph of C(γ) obtained with the same software.

1 2 3 4 5
Γ

0.2

0.4

0.6

0.8

1.0

Ρ

Figure A1. Graph of the function C(γ).

To implement an approximation of the inverse C−1(r) we used a spline interpolation of the above
approximatively reported values (γi, C(γi)) = (C−1(ri), ri), with 0.1314 < ri < 0.9806:

s[y_] = Interpolation[v, y];

where v is the array of the 66 pairs of values (C−1(ri), ri).
Moreover, in [16] we also reported a couple of functions, one inverse of the other, approximating

C(γ) and its inverse C−1(r), with forms, respectively,

C1(γ) = 1− eu γw+v C−1
1 (r) =

( log(1− r) + v
u

) 1
w

with
u = −1.286 v = 0.01022 w = 0.9308.
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