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Abstract. The aim of this paper is analyzing the positive solutions of the quasilinear problem

−(u′/
√

1 + (u′)2)′ = λa(x)f(u) in (0, 1), u′(0) = 0, u′(1) = 0,

where λ ∈ R is a parameter, a ∈ L∞(0, 1) changes sign once in (0, 1) and satisfies
∫ 1

0 a(x) dx < 0, and
f ∈ C1(R) is positive and increasing in (0,+∞) with a potential, F (s) =

∫ s
0 f(t) dt, quadratic at zero and

linear at +∞. The main result of this paper establishes that this problem possesses a component of positive
bounded variation solutions, C +

λ0
, bifurcating from (λ, 0) at some λ0 > 0 and from (λ,∞) at some λ∞ > 0.

It also establishes that C +
λ0

consists of regular solutions, if, and only if,∫ z
0

(∫ z
x
a(t) dt

)− 1
2 dx = +∞, or

∫ 1
z

(∫ z
x
a(t) dt

)− 1
2 dx = +∞.

Equivalently, the small positive regular solutions of C +
λ0

become singular as they are sufficiently large if, and
only if, (∫ z

x
a(t) dt

)− 1
2 ∈ L1(0, z) and

(∫ z
x
a(t) dt

)− 1
2 ∈ L1(z, 1).

This is achieved by providing a very sharp description of the asymptotic profile, as λ→ λ∞, of the solutions.
According to the mutual positions of λ0 and λ∞, as well as the bifurcation direction, the occurrence of
multiple solutions can also be detected.

1. Introduction

This paper analyzes the quasilinear indefinite Neumann problem −
(

u′√
1 + (u′)2

)′
= λa(x)f(u) in (0, 1),

u′(0) = u′(1) = 0,
(1.1)

which is a one-dimensional prototype of
−div

(
∇u√

1 + |∇u|2

)
= g(x, u) in Ω,

− ∇u · ν√
1 + |∇u|2

= σ on ∂Ω,

where Ω is a bounded regular domain of RN with outward pointing normal ν, and g : Ω × R → R and
σ : ∂Ω→ R are given functions. Problems involving the mean curvature operator play a pivotal role in the
mathematical analysis of a number of geometrical and physical issues, such as prescribed mean curvature
problems for cartesian surfaces in the Euclidean space [29, 3, 22, 30, 9, 17, 15, 18, 16], capillarity phenomena
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for compressible or incompressible fluids [5, 11, 10, 19, 20, 12, 13, 14, 7, 6], and reaction-diffusion processes
where the flux features saturation at high regimes [28, 21, 4].

When dealing with problem (1.1), λ ∈ R is viewed as a parameter and the following assumptions will be
considered eventually:

(a1) a ∈ L∞(0, 1) satisfies ∫ 1

0
a(x) dx < 0

and there exists a point z ∈ (0, 1) such that a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e. in (z, 1);

(a2)
∫ z

0

(∫ z

x

a(t) dt
)− 1

2

dx = +∞, or
∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx = +∞;

(f1) f ∈ C1(R) is strictly increasing and, for some constant h > 0, satisfies

lim
s→0+

f(s)
s

= 1 and lim
s→+∞

f(s) = h.

As the function
(∫ z
x
a(t) dt

)− 1
2 is continuous and positive in x ∈ [0, 1] \ {z}, the integrals∫ z

0

(∫ z

x

a(t) dt
)− 1

2

dx and
∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx

are well-defined and each of them is either finite, or it equals +∞. Condition (a2) requires some of them, or
both, to be divergent.

Condition (f1) entails that f(0) = 0 and f(s) > 0 for all s > 0. Moreover, the associated potential,

F (s) =
∫ s

0
f(t) dt,

is quadratic at 0 and linear at +∞. Some paradigmatic examples of f satisfying (f1), for a given h > 0, are
provided by

f(s) = hs√
h2 + s2

and f(s) = h tanh
( s
h

)
. (1.2)

Throughout this paper, we are going to use the next notions of solution.
• A couple (λ, u) is said to be a regular solution of (1.1) if u ∈W 2,1(0, 1) and it satisfies the differential
equation a.e. in (0, 1), as well as the boundary conditions.

• A couple (λ, u) is said to be a bounded variation solution, or shortly BV-solution, of (1.1) if
u ∈ BV (0, 1) and it satisfies∫ 1

0

DauDaφ√
1 + |Dau|2

dx+
∫ 1

0

Dsu

|Dsu|
Dsφ =

∫ 1

0
λaf(u)φdx

for all φ ∈ BV (0, 1) such that |Dsφ| is absolutely continuous with respect to |Dsu| (cf. [2]).
• A couple (λ, u) is said to be a singular solution of (1.1) if it is a bounded variation solution of (1.1)
such that u ∈ BV (0, 1) \W 2,1(0, 1).

• Once the pair (λ, u) solves (1.1) in any of the previous senses, it is said that (λ, u) is a positive
solution if, in addition,

λ ≥ 0 and ess inf u > 0.
As usual, for any function v ∈ BV (0, 1),

Dv = Dav dx+Dsv

stands for the Lebesgue decomposition of the Radon measure Dv and Dsv
|Dsv| denotes the density function of

the measure Dsv with respect to its total variation |Dsv| (cf. [1]).
By (a1), any regular solution, (λ, u), of (1.1), with λ > 0, satisfies u′(x) < 0 for every x ∈ (0, 1),

u′(0) = u′(1) = 0, and, since u is concave on [0, z) and convex on (z, 1],
−u′(z) = ‖u′‖L∞(0,1). (1.3)
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Moreover, by [24, Prop. 3.6], any positive singular solution, (λ, u), of (1.1), with λ > 0, satisfies

u|[0,z) ∈W 2,1
loc [0, z) ∩W 1,1(0, z) and is concave,

u|(z,1] ∈W 2,1
loc (z, 1] ∩W 1,1(z, 1) and is convex,

u′(x) < 0 for every x ∈ (0, 1) \ {z}, u′(0) = u′(1) = 0 and
u′(z−) = u′(z+) = −∞, (1.4)

where u′(z−) and u′(z+) are the left and the right Dini derivatives of u at z. The left and the right limits of
u at z will be respectively denoted by u(z−) and u(z+). According to (1.4), throughout this paper we set

−u′(z)√
1 + (u′(z))2

= 1.

Any solution, (λ, u), of (1.1) with λ ≥ 0 and u(x) ≥ 0 for a.e. x ∈ (0, 1) satisfies either u = 0, or
ess inf u > 0. Indeed, if λ = 0, then u is necessarily constant (see, e.g., [24, Sect. 3]), whereas in case
λ > 0 the conclusion easily follows combining (1.3) with the uniqueness of solution to the Cauchy problem
associated with the differential equation of (1.1). Moreover, it follows from [26, Prop. 1.1] that λ ≥ 0 is
necessary for the existence of a bounded variation solution, either regular or singular, satisfying ess inf u > 0.
In particular, λ > 0 is necessary for the existence of non-constant positive solutions.

Under the assumption (a1), the linear eigenvalue problem{
−ϕ′′ = λa(x)ϕ x ∈ (0, 1),
ϕ′(0) = ϕ′(1) = 0. (1.5)

possesses two principal eigenvalues: λ = 0 and λ = λ0 > 0. By a principal eigenvalue, it is meant a value of
λ for which (1.5) admits a positive eigenfunction, ϕ. Moreover, these eigenvalues are algebraically simple
and the associated eigenfunctions, 1 and ϕ0, are positive and separated away from zero; a recent synthesis of
the available results on this topic is contained in [23, Ch. 9].

Throughout this paper, we will denote by S + the set of the positive bounded variation solutions of (1.1)
closed by adding (0, 0) and (λ0, 0), which are the unique possible bifurcation points to positive solutions
from the trivial solution branch (λ, u) = (λ, 0), i.e.,

S + = {(λ, u) | (λ, u) is a positive BV-solution of (1.1)} ∪ {(0, 0), (λ0, 0)} ⊂ R×BV (0, 1).

The set S + is endowed with the topology of the strict convergence of R×BV (0, 1). Namely, if ((λn, un))n≥1
is a sequence in S + and (λ, u) ∈ S +, it is said that

lim
n→+∞

(λn, un) = (λ, u)

whenever
lim

n→+∞

(
|λn − λ|+ ‖un − u‖L1 +

∣∣∣ ∫ 1

0
|Dun| −

∫ 1

0
|Du|

∣∣∣) = 0.

The model (1.1) has been recently analyzed by the authors in [26], [27], [24] and [25]. In [26] the existence
of bounded variation solutions was investigated by means of the methods of the calculus of variations and
in [27] the existence of regular solutions was dealt with by means of phase plane analysis and bifurcation
techniques. The main result of [24] established the existence of a component of bounded variation solutions
bifurcating from the trivial solution (λ, 0) when the associated potential of f , F , is quadratic at 0. Finally,
assuming that F is super-quadratic at 0 and superlinear at +∞, the main result of [25] characterized
whether the solutions of (1.1) for sufficiently small λ > 0 are regular, or singular, in terms of the integrability
properties of the weight function a.

Here, our attention focuses on the case where F is quadratic at 0 and linear at +∞; our main aim being
to discuss the fine structure of the set S + of positive solutions of (1.1), in particular, establishing the
existence of a component bifurcating from (λ, 0) at some λ0 > 0 and from (λ,∞) at some λ∞ > 0, as well as
characterizing the formation of singularities and describing the precise asymptotic profile of the solutions
with large norm: Figure 1 provides us with a picture of such profiles. Precisely, the main findings of this
paper can be summarized as follows.
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Theorem 1.1. Assume (a1) and (f1). Then, the set S + contains, at least, two connected components, C +
0

and C +
λ0
, which satisfy the following conditions:

(Bifurcation from 0 and from ∞)

(a) C +
0 = {0} × [0,+∞);

(b) C +
λ0
∩ (R× {0}) = (λ0, 0);

(c) there exist λ∗, λ∗ ∈ (0,+∞) such that λ∗ < λ0 < λ∗ and
projR(S + \ C +

0 ) ⊆ [λ∗, λ∗];
thus, in particular, the component C +

λ0
is bounded in the parameter λ ∈ R;

(d) projL∞(0,1)C
+
λ0

is unbounded;
(e) for every sequence in S + \ C +

0 , ((λn, un))n≥1, such that
lim

n→+∞
‖un‖L∞ = +∞,

necessarily

lim
n→+∞

λn = λ∞ =
(
h

∫ z

0
a(x) dx

)−1
;

thus, λ = 0 and λ = λ∞ are the unique values of λ for which bifurcation from infinity of positive
bounded variation solutions occurs;

(Asymptotic profile)

(f) for every sequence in S + \ C +
0 , ((λn, un))n≥1, such that

lim
n→+∞

‖un‖L∞ = +∞,

necessarily,
lim

n→+∞
un(x) = +∞

and

lim
n→+∞

u′n(x) =
−
∫ x

0 a(t) dt√(∫ z
0 a(t) dt

)2 −
(∫ x

0 a(t) dt
)2
,

for all x ∈ [0, z), while, for every x ∈ (z, 1],
lim

n→+∞
un(x) = u∞(x),

where u∞ ∈W 2,∞
loc (z, 1] solves the problem

−

(
u′√

1 + (u′)2

)′
= λ∞a(x)f(u) in (z, 1),

u′(z+) = −∞, u′(1) = 0,
with u∞(x) > 0 for all x ∈ (z, 1] and either

u∞(z+) < +∞ if
∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx < +∞,

or

u∞(z+) = +∞ if
∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx = +∞;

(Regularity versus development of singularities)

(g) there exists a neighborhood, U , of (λ0, 0) in R × L∞(0, 1) such that C +
λ0
∩ U consists of regular

solutions;
(h) the set S + and, in particular, the component C +

λ0
consist only of regular solutions if, and only if,

(a2) holds;
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(i) if (a2) fails, then all solutions (λ, u) in S + and, in particular, in C +
λ0
, with λ > 0 and sufficiently

large ‖u‖L∞ , are singular.
In particular, under conditions (a1) and (f1), the failure of (a2) characterizes the development of singularities

by the positive solutions of (1.1) along the component C +
λ0
. A simple example for which (a2) fails occurs

when a is assumed to be a positive constant, A > 0, in [z − η, z), and a negative constant, −B < 0, in
(z, z+ η], for some small η > 0. In such case, owing to Theorem 1.1, all solutions in C +

λ0
develop a singularity

when they become sufficiently large. On the contrary, all solutions are regular if, for instance, the weight a is
differentiable at the nodal point z.

u

z 1
• •

x0

u

z 1
• •

x0

Figure 1. Profiles of the solutions within S + having sufficiently large norms: on the left the
case where (a2) fails, on the right the case where (a2) holds.

According to [27, Th. 1.4], if in addition to (f1) we assume that f ∈ C2(R), then, thanks to the
local bifurcation theorem of [8], in a neighborhood of (λ0, 0) the component C +

λ0
consists of a C1-curve,

(λ(s), s(ϕ0 + v(s))), for s close to 0, such that v(0) = 0, λ(0) = λ0, and

λ′(0) = −λ0
f ′′(0)

2

∫ 1
0 a(x)ϕ3

0(x) dx∫ 1
0 a(x)ϕ2

0(x) dx
with ∫ 1

0
a(x)ϕ2

0(x) dx > 0 and
∫ 1

0
a(x)ϕ3

0(x) dx > 0.

Therefore, C +
λ0

bifurcates transcritically from (λ0, 0) if f ′′(0) 6= 0. Precisely, this bifurcation is supercritical
if f ′′(0) < 0, while it is subcritical if f ′′(0) > 0. Should it occurs that f ′′(0) = 0 and f ∈ C3(R), like for the
special choices made in (1.2), then, by [27, Eq. (4.2)], λ′′(0) < 0. Therefore, the bifurcation of C +

λ0
in this

case also is subcritical.
By modulating the constant h in (f1), the value of λ where C +

λ0
bifurcates from infinity, λ∞, can be at

any side of λ0; hence, any of the components C +
λ0

plotted in Figure 1 are admissible. Indeed, the bifurcation
value from infinity

λ∞ = λ∞(h) = 1
h
∫ z

0 a(x) dx
satisfies

lim
h→+∞

λ∞(h) = 0, lim
h→0+

λ∞(h) = +∞.

This clearly produces the existence of multiple solutions for λ > λ0, if λ∞ ≤ λ0 and the bifurcation from λ0
is supercritical, as it is displayed by the first two plots of Figure 1, as well as for λ < λ0, if λ∞ ≥ λ0 and the
bifurcation from λ0 is subcritical. Figure 2 illustrates the special case when C +

λ0
bifurcates supercritically

from λ0. Similar bifurcation diagrams occur if the bifurcation from zero is subcritical.
The structure of this paper is the following. Section 2 contains the main non-existence result, Section 3

analyzes the bifurcation of the large solutions from infinity, Section 4 ascertains the exact limiting profiles of
the large positive solutions of (1.1) and, finally, Section 5 delivers the proof of Theorem 1.1.
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‖u‖∞

λ∞ λ0
• •

λ

‖u‖∞

λ0 = λ∞
•

λ

‖u‖∞

λ0 λ∞
• •

λ

‖u‖∞

λ0 λ∞
• •

λ

Figure 2. The global components C +
λ0

bifurcating from zero at λ0 and from infinity at λ∞. The
case where supercritical bifurcation occurs at λ0 is displayed.

2. Non-existence of positive solutions for small and large λ > 0

The main result of this section can be stated as follows.

Theorem 2.1. Assume (a1) and (f1). Then, the problem (1.1) has no positive solutions both for sufficiently
small and for sufficiently large λ > 0.

Proof. In order to prove that (1.1) has no positive solutions for all small λ > 0, we will argue by contradiction
assuming that (1.1) admits a sequence of positive solutions, ((λn, un))n≥1, such that λn > 0 for all n ≥ 1 and

lim
n→+∞

λn = 0. (2.1)

Integrating the differential equation of (1.1) in (0, z), we get for all n ≥ 1
−u′n(z)√

1 + (u′n(z))2
= λn

∫ z

0
a(x)f(un(x)) dx. (2.2)

Thus, since a and f are bounded, letting n→ +∞ in (2.2) it follows from (2.1) that

lim
n→+∞

−u′n(z)√
1 + (u′n(z))2

= 0.

Hence, by (1.3), we find that
0 = lim

n→+∞
u′n(z) = lim

n→+∞
‖u′‖L∞(0,1) (2.3)

and, consequently, (λn, un) is a regular solution of (1.1) for sufficiently large n. Further, possibly passing to
a subsequence, relabeled by n, there exists L ∈ [0,+∞] such that

lim
n→+∞

un(0) = L.
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According to (2.3), from the identity

un(x) = un(0) +
∫ x

0
u′n(t) dt for x ∈ [0, 1],

it is easily seen that
lim

n→+∞
un = L uniformly on [0, 1].

Next, we will distinguish between three different cases according to the value of L.
Suppose that L = 0. Then, setting

vn = un
‖un‖L∞(0,1)

and An = a
f(un)
un

[
1 + (u′n)2] 3

2 ,

we find that {
−v′′n = λnAn(x)vn in (0, 1),
v′n(0) = v′n(0) = 0. (2.4)

Since
‖vn‖L∞(0,1) = 1 for all n ≥ 1,

and, due to (a1), (f1) and (2.3), we have that
lim

n→+∞
‖An − a‖L∞(0,1) = 0,

letting n→ +∞ in (2.4), it follows from (2.1) that
lim

n→+∞
‖v′′n‖L∞(0,1) = 0.

Thus, since

v′n(x) = v′n(0) +
∫ x

0
v′′n(t) dt =

∫ x

0
v′′n(t) dt for x ∈ [0, 1],

we also have that
lim

n→+∞
‖v′n‖L∞(0,1) = 0.

Therefore, possibly passing to a further subsequence, still labeled by n, we find that
lim

n→+∞
vn(x) = 1 uniformly in x ∈ [0, 1].

Finally, dividing (2.4) by λn and integrating on [0, 1] yields

0 =
∫ 1

0
An(x)vn(x) dx for all n ≥ 1.

Thus, we conclude that

0 = lim
n→+∞

∫ 1

0
An(x)vn(x) dx =

∫ 1

0
a(x) dx < 0,

which is a contradiction.
Now, suppose that L ∈ (0,+∞). Then, integrating (1.1) on [0,1], we see that

0 = −λ−1
n

∫ 1

0

(
u′n(x)√

1 + (u′n(x))2

)′
dx =

∫ 1

0
a(x)f(un(x)) dx

for all n ≥ 1. Thus, letting n→ +∞, we find that

0 = f(L)
∫ 1

0
a(x) dx < 0,

which is a contradiction, because f(L) > 0 and
∫ 1

0 a(x) dx < 0.
Finally, suppose that L = +∞. Then, the same argument yields

0 = h

∫ 1

0
a(x) dx < 0,
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which is as well impossible. This concludes the proof of the non-existence of positive solutions for sufficiently
small λ > 0.

To prove the non-existence for sufficiently large λ > 0, we will also argue by contradiction. So, assume
that there is a sequence of positive solutions of (1.1), ((λn, un))n≥1, with

lim
n→+∞

λn = +∞. (2.5)

Then, it follows from (2.2) and (2.5) that

lim
n→+∞

∫ z

0
a(x)f(un(x)) dx = lim

n→+∞

(
1
λn

−u′n(z)√
1 + (u′n(z))2

)
= 0

and hence, along some subsequence, relabeled by n, it becomes apparent that
lim

n→+∞
(a(x)f(un(x))) = 0 for a.e. x ∈ [0, z].

Thus, owing to (a1) and (f1), we deduce that
lim

n→+∞
un(x) = 0 for a.e. x ∈ [0, z].

Therefore, since un is decreasing,
lim

n→+∞
un(x) = 0 for all x ∈ (0, 1]. (2.6)

Moreover, possibly passing to a further subsequence, there exists L ∈ [0,+∞] such that
lim

n→+∞
un(0) = L. (2.7)

Subsequently we will distinguish between two different cases. First, suppose that L ∈ (0,+∞]. Then, the
concavity of un on [0, z) implies that, for any given y ∈ (0, z),

u′n(y) ≤ un(y)− un(0)
y

< 0

and hence, (2.6) and (2.7) provide us with

lim
n→+∞

u′n(y) ≤ lim
n→+∞

un(y)− un(0)
y

=
{
−Ly if L ∈ (0,+∞),
−∞ if L = +∞.

(2.8)

By the concavity, we also have that
un(x) ≤ un(y) + u′n(y)(x− y) for all x ∈ (y, z). (2.9)

Note that the right hand side of (2.9) vanishes at

xn = y − un(y)
u′n(y) .

Moreover, thanks to (2.6) and (2.8), it becomes apparent that
lim

n→+∞
xn = y < z.

Thus, for sufficiently large n, we find that xn < z. As this forces un to vanish in (0, z), which is impossible.
The proof is completed in this case.

Lastly, suppose that L = 0. Then, since un(0) = ‖u‖L∞(0,1),
lim

n→+∞
un(x) = 0 uniformly in x ∈ [0, 1].

Thus, by (f1), we can infer that, for sufficiently large n,
f(un(x)) ≥ 1

2un(x) for all x ∈ [0, 1].
Hence, it follows from the differential equation of (1.1) that

−u′′n(x) = λna(x)f(un(x))
(
1 + (u′n(x))2) 3

2 ≥ 1
2λna(x)un(x) for a.e. x ∈ [0, z]. (2.10)
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Subsequently, we denote by µ1 > 0 the unique principal eigenvalue of the weighted eigenvalue problem{
−ϕ′′ = µa(x)ϕ in (0, z),
ϕ(0) = ϕ(z) = 0, (2.11)

and consider any positive eigenfunction, ϕ1 > 0, associated to µ1. We have that µ1 > 0, because a(x) > 0 for
all x ∈ (0, z) (cf. [23, Ch. 9]), and, moreover, ϕ1(x) > 0 for all x ∈ (0, z), ϕ′1(0) > 0 and ϕ′1(z) < 0. Thus,
multiplying (2.10) by ϕ1 and integrating by parts twice in (0, z) yield

1
2λn

∫ z

0
a(x)un(x)ϕ1(x) dx ≤ −

∫ z

0
u′′n(x)ϕ1(x) dx

= u′n(0)ϕ1(0)− u′n(z)ϕ1(z) +
∫ z

0
u′n(x)ϕ′1(x) dx =

∫ z

0
u′n(x)ϕ′1(x) dx

= un(z)ϕ′1(z)− un(0)ϕ′1(0)−
∫ z

0
un(x)ϕ′′1(x) dx < −

∫ z

0
ϕ′′1(x)un(x) dx.

Therefore, according to (2.11), we see that

1
2λn

∫ z

0
a(x)un(x)ϕ1(x) dx < µ1

∫ z

0
a(x)ϕ1(x)un(x) dx (2.12)

for all n ≥ 1. Since ∫ z

0
a(x)ϕ1(x)un(x) dx > 0,

it follows from (2.12) that λn < 2µ1, which contradicts (2.5) and ends the proof. �

According to Theorem 2.1, the values of the parameter λ defined by
λ∗ = inf{λ > 0 | (λ, u) ∈ S +}, λ∗ = sup{λ > 0 | (λ, u) ∈ S +},

satisfy
0 < λ∗ ≤ λ∗ < +∞.

Therefore, by Theorem 2.1,
λ ∈ [λ∗, λ∗] ⊂ (0,+∞) if (λ, u) ∈ S + \ ({0} × [0,+∞)). (2.13)

3. Bifurcation of positive solutions from zero and from infinity

According to [24, Th. 5.13], the component of S + bifurcating from (λ, u) = (λ0, 0), denoted in this paper
by C +

λ0
, is unbounded in R × L∞(0, 1). Moreover, Theorem 2.1 implies that λ ∈ [λ∗, λ∗] if (λ, u) ∈ C +

λ0
.

Therefore, we conclude that projL∞(0,1)C
+
λ0

and, hence, projL∞(0,1)(S +\({0}×[0,+∞))) must be unbounded.
Accordingly, from any unbounded sequence of positive solutions in S + \ ({0} × [0,+∞)) one can extract a
subsequence ((λn, un))n≥1 and find a number λ∞ such that

lim
n→+∞

λn = λ∞ ∈ [λ∗, λ∗] and lim
n→∞

‖un‖L∞(0,1) = +∞. (3.1)

In particular, since un(0) = ‖un‖L∞(0,1), we have that
lim

n→+∞
un(0) = +∞. (3.2)

Throughout this section we will assume that (3.2) holds and the precise value of λ∞ will be ascertained by
showing that

λ∞ =
(
h

∫ z

0
a(x) dx

)−1
.

The independence of λ∞ from the particular sequence ((λn, un))n≥1, satisfying (3.1), proves that λ∞ is the
only bifurcation point from infinity of S + \ ({0} × [0,+∞)). In particular, C +

λ0
is a connected component of

S + bifurcating from zero and from infinity.
In the sequel ((λn, un))n≥1 stands for any sequence satisfying (3.1), for some number λ∞. We begin with

the next result of technical nature.
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Lemma 3.1. Assume (a1), (f1) and (3.2). Then, the following hold:
lim sup
n→+∞

un(1) < +∞ and lim
n→+∞

u′n(z) = −∞. (3.3)

Proof. To prove the first conclusion, we will argue by contradiction assuming that, along some subsequence,
also labeled by n, one has that

lim
n→+∞

un(1) = +∞

and hence
lim

n→+∞
un(x) = +∞ uniformly in x ∈ [0, 1].

Thus, taking φ = 1 as the test function in the definition of bounded variation solution and letting n→ +∞,
assumption (f1) yields

h

∫ z

0
a(x) dx = lim

n→+∞

∫ z

0
a(x)f(un(x))) dx

= − lim
n→+∞

∫ 1

z

a(x)f(un(x)) dx = −h
∫ z

1
a(x) dx.

and hence,
∫ 1

0 a(x) dx = 0, contradicting (a1). Therefore, the first assertion holds. The second assertion,
which requires to be proven only for regular solutions, follows readily from (3.2) and the first assertion of
(3.3) taking into account that

−u′n(z) = ‖u′n‖L∞(0,1).

This ends the proof. �

The next result provides us with uniform a priori bounds for the first and second derivatives of the
solutions un on any interval of the form [0, z − η], η > 0.

Proposition 3.1. Assume (a1), (f1) and (3.2). Then, for every η ∈ (0, z), there exists a constant C > 0
such that

max
{
‖u′n‖L∞(0,z−η), ‖u′′n‖L∞(0,z−η)

}
≤ C (3.4)

Proof. Fix η ∈ (0, z) and, arguing by contradiction, suppose that there is a subsequence of ((λn, un))n≥1,
still labeled by n, such that

lim
n→+∞

u′n(z − η) = −∞.

The monotonicity of u′n on [0, z) implies that
lim

n→+∞
u′n(x) = −∞ for all x ∈ [z − η, z].

Thus, integrating the differential equation on (z − η, z) and letting n→ +∞ yield

0 = lim
n→+∞

(
− u′n(z)√

1 + (u′n(z))2
+ u′n(z − η)√

1 + (u′n(z − η))2

)

= lim
n→+∞

(
λn

∫ z

z−η
a(x)f(un(x)) dx

)
.

Hence, thanks to (2.13), we infer that

lim
n→+∞

∫ z

z−η
a(x)f(un(x)) dx = 0.

Since a(x) > 0 for a.e. x ∈ (0, z), this implies that, for a subsequence relabeled by n,
lim

n→+∞
f(un(x)) = 0 for a.e. x ∈ (z − η, z).

Then, using (f1) and taking into account that un is decreasing, we find that
lim

n→+∞
un(x) = 0 for all x ∈ (z − η, 1].
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Fix y ∈ (z − η, z). Then, since

lim
n→+∞

un(y) = 0 and lim
n→+∞

u′n(y) = −∞,

the concavity of un on [0, z) entails that

lim
n→+∞

un(z−) ≤ lim
n→+∞

(un(y) + u′n(y)(z − y)) = −∞,

which is impossible, because un(x) ≥ 0 for all x ∈ [0, 1]. Therefore, there exists a constant C > 0 such that

‖u′n‖L∞(0,z−η) ≤ C

for all n ≥ 1. By (f1), the estimate for the second derivatives follows readily by rewriting the differential
equation in the form

−u′′n = λnaf(un)
(
1 + (u′n)2) 3

2 in [0, z)
and taking into account that λn ∈ [λ∗, λ∗] for all n ≥ 1, because of Theorem 2.1. This ends the proof. �

The next results provides us with the pointwise behavior of the solutions un, as n→ +∞, on the interval
[0, z).

Theorem 3.1. Assume (a1), (f1) and (3.2). Then, for every η ∈ (0, z), one has

lim
n→+∞

un(x) = +∞ uniformly in x ∈ [0, z − η], (3.5)

and, in particular,
lim

n→+∞
un(x) = +∞ for all x ∈ [0, z). (3.6)

Proof. Taking into account that, for every n ≥ 1 and x ∈ [0, z),

un(x) = un(0) +
∫ x

0
u′n(t) dt,

it is easily seen that (3.5) follows from (3.2) and (3.4). As (3.4) holds for arbitrarily small η > 0, (3.6) holds
too. This ends the proof. �

The next result establishes the exact value of λ∞ in (3.1).

Theorem 3.2. Assume (a1), (f1) and (3.2). Then, one has

lim
n→+∞

λn = λ∞ =
(
h

∫ z

0
a(x) dx

)−1
. (3.7)

Proof. By (2.2), we have that

λn = −u′n(z)√
1 + (u′n(z))2

(∫ z

0
a(x)f(un(x)) dx

)−1

for all n ≥ 1. Thus, letting n→ +∞ in the previous identity, (3.7) follows from (3.3) and (3.6) through the
dominated convergence theorem, because f is bounded. �

4. Sharp limiting behavior of the large positive solutions

Thanks to the analysis done in Section 3, we already know that, for any sequence ((λn, un))n≥1 in S + \
({0} × [0,+∞)), satisfying (3.2), the condition (3.7) holds, and, moreover,

lim
n→+∞

un(x) = +∞ for all x ∈ [0, z).

This section aims to establish the precise asymptotic behavior of the solutions un, for large n.
The next result provides us with the exact profile of the derivatives, u′n, of the solutions on the interval

[0, z).
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Theorem 4.1. Assume (a1), (f1) and (3.2). Then, for every η ∈ (0, z), one has

lim
n→+∞

u′n(x) =
−
∫ x

0 a(t) dt√(∫ z
0 a(t) dt

)2 −
(∫ x

0 a(t) dt
)2

uniformly in x ∈ [0, z − η],

and, in particular,

lim
n→+∞

u′n(x) =
−
∫ x

0 a(t) dt√(∫ z
0 a(t) dt

)2 −
(∫ x

0 a(t) dt
)2

for all x ∈ [0, z).

Proof. Let denote by ψ : R→ (−1, 1) the map defined by

ψ(s) = s√
1 + s2

. (4.1)

The function ψ is invertible with inverse ψ−1 : (−1, 1)→ R defined by

ψ−1(t) = t√
1− t2

.

Fix η ∈ (0, z) and pick any x ∈ [0, z − η]. Then, integrating the differential equation on (0, x) yields, for all
n ≥ 1,

ψ(−u′n(x)) = λn

∫ x

0
a(t)f(un(t)) dt,

or, equivalently,

u′n(x) = ψ−1
(
−λn

∫ x

0
a(t)f(un(t)) dt

)
.

Therefore, letting n→ +∞ in this identity and taking into account Theorems 3.1 and 3.2, the dominated
convergence theorem and the continuity of ψ−1 implies that, for every x ∈ [0, z − η],

lim
n→+∞

u′n(x) = ψ−1
(
−λ∞h

∫ x

0
a(t) dt

)
=

−
∫ x

0 a(t) dt√(∫ z
0 a(t) dt

)2 −
(∫ x

0 a(t) dt
)2
.

The uniform convergence on [0, z − η] is a direct consequence of Proposition 3.1 and the Ascoli–Arzelà
theorem. The proof is complete. �

The next result complements Proposition 3.1 on the interval [z + η, 1].

Proposition 4.1. Assume (a1), (f1) and (3.2). Then, for every η ∈ (0, 1− z), there exists a constant C > 0
such that

max
{
‖u′n‖L∞(z+η,1), ‖u′′n‖L∞(z+η,1)

}
≤ C.

Proof. The proof basically follows the same patterns as the one of Proposition 3.1. Fix η ∈ (0, 1− z) and,
arguing by contradiction, suppose that there is some subsequence of ((λn, un))n≥1, relabeled by n, such that

lim
n→+∞

u′n(z + η) = −∞.

Then, by the monotonicity of un on [z, 1], this actually implies that
lim

n→+∞
u′n(x) = −∞ for all x ∈ [z, z + η].

Thus, integrating the differential equation in (1.1) on (z, z + η) and letting n→ +∞, we find that

lim
n→+∞

(
λn

∫ z+η

z

a(x)f(un(x)) dx
)

= 0.

Consequently, since, by (2.13), we already know that λn ∈ [λ∗, λ∗], it follows that

lim
n→+∞

∫ z+η

z

a(x)f(un(x)) dx = 0.
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Hence, by (a1), along some subsequence, still labeled by n, we find that
lim

n→+∞
f(un(x)) = 0 for a.e. x ∈ [z, z + η].

Therefore, by the monotonicity of f(un), this implies that
lim

n→+∞
f(un(x)) = 0 for all x ∈ (z, 1].

Lastly, using φ = 1 as a test function in the definition of bounded variation solution, it follows from Theorem
3.1 and the dominated convergence theorem that

0 = − lim
n→+∞

∫ 1

z

a(x)f(un(x)) dx = lim
n→+∞

∫ z

0
a(x)f(un(x)) dx = h

∫ z

0
a(x) dx > 0,

which is impossible. This contradiction provides us with the uniform a priori bounds for u′n on [z + η, 1].
The uniform bounds on u′′n can be obtained as in the proof of Proposition 3.1; therefore, the technical details
are omitted here. �

The next result complements Theorem 3.1 by providing us with the limiting behavior of the solutions un,
as n→ +∞, on the interval (z, 1].

Proposition 4.2. Assume (a1), (f1) and (3.2). Then, there exists a subsequence, ((λnk
, unk

))k≥1 of
((λn, un))n≥1 for which the pointwise limit

u∞(x) = lim
k→+∞

unk
(x), for all x ∈ (z, 1],

is well-defined, satisfies u∞ ∈W 2,∞
loc (z, 1] and solves the problem
−

(
u′√

1 + (u′)2

)′
= λ∞a(x)f(u) in (z, 1),

u′(z) = −∞, u′(1) = 0.

(4.2)

Moreover, the following hold:
u∞(x) > 0 for all x ∈ (z, 1],
lim

k→+∞
unk

= u∞ in W 2,∞
loc (z, 1],

and either

u∞(z+) < +∞ if
∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx < +∞,

or

u∞(z+) = +∞ if
∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx = +∞.

Proof. Fix any η ∈ (0, 1−z). By Proposition 4.1, there exists a subsequence, ((λnk
, unk

))k≥1, of ((λn, un))n≥1
and a function u∞,η ∈ C1[z + η, 1] such that

lim
k→+∞

unk
= u∞,η in C1[z + η, 1]. (4.3)

Thus, letting n→ +∞ in the differential equations

−u′′nk
(x) = λnk

a(x)f(unk
(x))

(
1 + (u′nk

(x))2) 3
2 for a.e. in x ∈ (z + η, 1),

it becomes apparent, by Theorem 3.2, that actually u∞,η ∈W 2,∞(z + η, 1) and it satisfies

−u′′∞,η(x) = λ∞a(x)f(u∞,η(x))
(
1 + (u′∞,η(x))2) 3

2 for a.e. in x ∈ (z + η, 1).

Now, consider any sequence (ηj)j≥1 such that ηj ∈ (0, 1− z), for all j ≥ 1, and
lim

j→+∞
ηj = 0
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and consider, for every j ≥ 1, the associated u∞,ηj
. By a diagonal argument, we can extract a further

subsequence of ((λnk
, unk

))k≥1, still labeled by k, and a function u∞ ∈W 2,∞
loc (z, 1] such that

lim
k→+∞

unk
= u∞ in W 2,∞

loc (z, 1]

and
−u′′∞(x) = λ∞a(x)f(u∞(x))

(
1 + (u′∞(x))2) 3

2 for a.e. in x ∈ (z, 1),
or, in other words,

−

(
u′∞(x)√

1 + (u′∞(x))2

)′
= λ∞a(x)f(u∞(x)) for a.e. x ∈ (z, 1).

By the construction, it follows easily from (4.3) that
u∞(x) ≥ 0 for all x ∈ (z, 1] and u′∞(1) = 0.

Thus, u∞ is convex and decreasing in (z, 1]. Moreover, since f(0) = 0, the uniqueness of the solution of the
associated Cauchy problem entails that u∞(1) > 0 and hence

u∞(x) > 0 for all x ∈ (z, 1].
Let us show that

u′∞(z+) = −∞, if u∞(z+) < +∞.
Indeed, if u′∞(z+) ∈ R, then, by continuous dependence of the solutions of the associated Cauchy problems
on the initial conditions and on the parameters, would imply that

lim
k→+∞

unk
(z) = u′∞(z) ∈ R,

which contradicts Lemma 3.1.
Moreover, by the convexity of u∞, we also must have that

u′∞(z+) = −∞, if u∞(z+) = +∞.
Consequently, in any case we can conclude that

u′∞(z+) = −∞. (4.4)
To complete the proof, it remains to characterize the finiteness of u∞(z+) in terms of the integrability
properties of the weight function a. Integrating (4.2) in (z, x), with x ∈ (z, 1), and using (4.4) yields

0 < −u′∞(x)√
1 + (u′∞(x))2

= 1 + λ∞

∫ x

z

a(t)f(u∞(t)) dt < 1

and hence

−u′∞(x) =
1 + λ∞

∫ x
z
a(t)f(u∞(t)) dt√

2 + λ∞
∫ x
z
a(t)f(u∞(t)) dt

· 1√
λ∞

∫ z
x
a(t)f(u∞(t)) dt

.

Therefore, for sufficiently small η > 0, the following estimates hold

1
2

1√
λ∞h

(∫ z

x

a(t) dt
)− 1

2

≤ −u′∞(x) ≤ 1√
λ∞f(u∞(1))

(∫ z

x

a(t) dt
)− 1

2

(4.5)

for every x ∈ (z, z + η). Pick x ∈ (z, z + η). Then, integrating (4.5) on (x, z + η) yields

1
2

1√
λ∞h

∫ z+η

x

(∫ z

t

a(s) ds
)− 1

2

dt ≤ u∞(x)− u∞(z + η)

≤ 1√
λ∞f(u∞(1))

∫ z+η

x

(∫ z

t

a(s) ds
)− 1

2

dt.

Suppose ∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx < +∞.
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Then, letting x→ z+ in the previous inequalities provides us with

u∞(z+) ≤ u∞(z + η) + 1√
λ∞f(u∞(1))

∫ z+η

z

(∫ z

t

a(s) ds
)− 1

2

dt < +∞.

Similarly, in case ∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx = +∞,

we find that

u∞(z+) ≥ u∞(z + η) + 1
2

1√
λ∞h

∫ z+η

z

(∫ z

t

a(s) ds
)− 1

2

dt = +∞.

The proof is complete. �

The next result describes the ultimate behavior of the solutions un at the endpoints of the interval [z, 1].

Proposition 4.3. Assume (a1), (f1) and (3.2). Then, one has

lim inf
n→+∞

un(1) > 0 (4.6)

and

lim sup
n→+∞

un(z+) < +∞, if
∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx < +∞, (4.7)

whereas

lim sup
n→+∞

un(z+) = +∞, if
∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx = +∞. (4.8)

Proof. To prove (4.6), we proceed by contradiction assuming that there exists a subsequence, ((λnk
, unk

))k≥1,
of ((λn, un))n≥1 such that

lim
k→+∞

unk
(1) = 0. (4.9)

Applying Proposition 4.2 to this subsequence yields

lim sup
k→+∞

unk
(1) > 0,

which contradicts (4.9) and ends the proof of (4.6).
Next, we will prove (4.7). Integrating the differential equation of (1.1), we obtain, for every n ≥ 1 and

x ∈ (z, 1),

0 < −u′n(x)√
1 + (u′n(x))2

= −u′n(z)√
1 + (u′n(z))2

− λn
∫ z

x

a(t)f(un(t)) dt < 1; (4.10)

thus, setting

ϕn(x, z) = −u′n(z)√
1 + (u′n(z))2

− λn
∫ z

x

a(t)f(un(t)) dt,

we have that
−u′n(x) = ϕn(x, z)√

1 + ϕn(x, z)
· 1√

1− ϕn(x, z)
. (4.11)

Thanks to Proposition 4.3, Lemma 3.1 and Theorem 3.2, respectively, we can find M > 0 and n0 ∈ N such
that, for every n ≥ n0,

M

2 ≤ un(1) ≤M and λ∞
2 ≤ λn. (4.12)

By (4.10), for every n ≥ 1 and x ∈ (z, 1), we have that
ϕn(x, z)√

1 + ϕn(x, z)
< ϕn(x, z) < 1.
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Thus, due to (4.11) and (4.10), we find that

−u′n(x) ≤ 1√
1− ϕn(x, z)

= 1√
1 + u′

n(z)√
1+(u′

n(z))2
+ λn

∫ z
x
a(t)f(un(t)) dt

≤ 1√
λn
∫ z
x
a(t)f(un(t)) dt

≤ 1√
λnf(un(1))

(∫ z

x

a(t) dt
)− 1

2

.

So, by (4.12), we get

−u′n(x) ≤

√
2

λ∞f(M/2)

(∫ z

x

a(t) dt
)− 1

2

(4.13)

and therefore

un(z+) = un(1)−
∫ 1

z

u′n(x) dx ≤M +

√
2

λ∞f(M/2)

∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx,

which implies (4.7).
To prove (4.8), we argue by contradiction assuming that there is a subsequence, ((λnk

, unk
))k≥1, of

((λn, un))n≥1 such that
lim sup
k→+∞

unk
(z+) < +∞.

This implies the existence of a constant C > 0 such that

sup
(z,1)

unk
= unk

(z+) ≤ C

for all k ≥ 1. Applying Proposition 4.2 to this subsequence yields

sup
(z,1)

u∞ ≤ C, (4.14)

as u∞ is the pointwise limit in (z, 1) of (unk
)k≥1. Since we are assuming∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx = +∞,

(4.14) contradicts the last assertion of Proposition 4.2, because u∞(z+) = +∞ in such case. The proof is
complete. �

The next result establishes the uniqueness of the positive solution of the problem (4.2).

Proposition 4.4. For every λ > 0, the problem (4.2) has at most one solution u ∈W 2,∞
loc (z, 1] with u(x) > 0

for all x ∈ (z, 1].

Proof. First, suppose that u and v are two solutions of (4.2) satisfying u(x) > 0, v(x) > 0 for all x ∈ (z, 1]
and

u(z+) < +∞, v(z+) < +∞.

Set w = u− v. As
u′(z+) = v′(z+) = −∞ (4.15)

and hence
u′(z+)√

1 + (u′(z+))2
= −1 = v′(z+)√

1 + (v′(z+))2
,
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we easily get from (4.2)

λ

∫ 1

z

a(x)f(u(x))w(x) dx = −
∫ 1

z

(
u′(x)√

1 + (u′(x))2

)′
w(x) dx

= u′(z+)√
1 + (u′(z+))2

w(z+) +
∫ 1

z

u′(x)w′(x)√
1 + (u′(x))2

dx

= −w(z+) +
∫ 1

z

u′(x)w′(x)√
1 + (u′(x))2

dx

and

λ

∫ 1

z

a(x)f(v(x))w(x) dx = −
∫ 1

z

(
v′(x)√

1 + (v′(x))2

)′
w(x) dx

= v′(z+)√
1 + (v′(z+))2

w(z+) +
∫ 1

z

v′(x)w′(x)√
1 + (v′(x))2

dx

= −w(z+) +
∫ 1

z

v′(x)w′(x)√
1 + (v′)(x)2

dx.

Subtracting the above identities yields∫ 1

z

(
u′(x)√

1 + (u′(x))2
− v′(x)√

1 + (v′(x))2

)
(u′(x)− v′(x)) dx

= λ

∫ 1

z

a(x) (f(u(x))− f(v(x))) (u(x)− v(x)) dx.

By using the monotonicity of the functions f and ψ, with ψ defined by (4.1), and taking also into account
that λ > 0 and a(x) < 0 for a.e. x ∈ (z, 1), we find hat∫ 1

z

a(x) (f(u(x))− f(v(x))) (u(x)− v(x)) dx = 0

and, therefore, u = v.
Now, suppose that u and v are two solutions of (4.2) satisfying u(x) > 0, v(x) > 0 for all x ∈ (z, 1] and

u(z+) = v(z+) = +∞.

The proof that u = v in this case is divided into two steps.

Step 1. The solutions u and v are ordered, i.e., either u(x) ≤ v(x) for all x ∈ (z, 1), or v(x) ≤ u(x) for all
x ∈ (z, 1). Since u′(1) = v′(1) = 0, if u(1) = v(1), by the uniqueness of solution for the associated Cauchy
problem, we conclude that u = v. So, suppose that, e.g., u(1) < v(1) and that there exists y ∈ (z, 1) such
that

u(y) = v(y) and u(x) < v(x) for all x ∈ (y, 1].

Set w = u− v. As w(y) = 0, we get

λ

∫ 1

y

a(x)f(u(x))w(x) dx = −
∫ 1

y

(
u′(x)√

1 + (u′(x))2

)′
w(x) dx =

∫ 1

y

u′(x)w′(x)√
1 + (u′(x))2

dx,

λ

∫ 1

y

a(x)f(v(x))w(x) dx = −
∫ 1

y

(
v′(x)√

1 + (v′(x))2

)′
w(x) dx =

∫ 1

y

v′(x)w′(x)√
1 + (v′(x))2

dx.
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Therefore, subtracting these identities and arguing as above shows that∫ 1

y

(
u′(x)√

1 + (u′(x))2
− v′(x)√

1 + (v′(x))2

)
(u′(x)− v′(x)) dx

= λ

∫ 1

y

a(x) (f(u(x))− f(v(x))) (u(x)− v(x)) dx = 0.

Consequently, we have that u(x) = v(x) for all x ∈ (y, 1], which is impossible. This ends the proof of Step 1.

Step 2. The solutions u and v satisfy v = u. Assume that, e.g., v(x) ≥ u(x) for all x ∈ (z, 1] and define, for
every k > 0, the function

wk = min{v − u, k}.
Then we get, for a.e. x ∈ (z, 1),(

u′(x)√
1 + (u′(x))2

− v′(x)√
1 + (v′(x))2

)
w′k(x)

=


( u′(x)√

1 + (u′(x))2
− v′(x)√

1 + (v′(x))2

)
(v′(x)− u′(x)) ≤ 0 if v(x)− u(x) ≤ k,

0 if v(x)− u(x) > k,

and thus (
u′(x)√

1 + (u′(x))2
− v′(x)√

1 + (v′(x))2

)
w′k(x) ≤ 0. (4.16)

On the other hand, for every y ∈ (z, 1), we have that

λ

∫ 1

y

a(x)(f(u(x))− f(v(x)))wk(x) dx =−
∫ 1

y

(
u′(x)√

1 + (u′(x))2
− v′√

1 + (v′(x))2

)′
wk(x) dx

=
(

u′(y)√
1 + (u′(y))2

− v′(y)√
1 + (v′(y))2

)
wk(y)

+
∫ 1

y

(
u′(x)√

1 + (u′(x))2
− v′(x)√

1 + (v′(x))2

)
w′k(x) dx.

Thus, by (4.16), we find that

λ

∫ 1

y

a(x)(f(u(x))− f(v(x)))wk(x) dx ≤
(

u′(y)√
1 + (u′(y))2

− v′(y)√
1 + (v′(y))2

)
wk(y)

for all y ∈ (z, 1). So, letting y → z+ in this inequality, condition (4.15) and the boundedness of wk imply
that

λ

∫ 1

z

a(x)(f(u(x))− f(v(x)))wk(x) dx ≤ 0.

But, since λ > 0 and, for a.e. x ∈ (z, 1), a(x) < 0, f(u(x)) ≤ f(v(x)), wk(x) ≥ 0, we conclude that∫ 1

z

a(x)(f(u(x))− f(v(x)))wk(x) dx = 0.

Hence, we infer that, for a.e. x ∈ (z, 1),
a(x)(f(u(x))− f(v(x)))wk(x) = 0 for a.e. x ∈ (z, 1).

and then
(f(v(x))− f(u(x)))wk(x) = 0 for all x ∈ (z, 1].

Letting k → +∞ yields
(f(v(x))− f(u(x)))(v(x)− u(x)) = 0 for all x ∈ (z, 1]..
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The monotonicity of f entails u = v. The proof is complete. �

Finally, thanks to Propositions 4.2, 4.3 , 4.4, we can describe the exact asymptotic behavior of the
solutions un in the interval (z, 1].
Theorem 4.2. Assume (a1), (f1) and (3.2). Then, the whole sequence, ((λn, un))n≥1 converges to (λ∞, u∞)
in R×W 2,∞

loc (z, 1] as n→ +∞, where λ∞ is given by (3.7) and u∞ is the unique solution of (4.2) satisfying
u∞(x) > 0 for all x ∈ (z, 1].

5. Proof of Theorem 2.1

From [24, Th. 5.1.3] it is easily inferred the existence of two connected components, C +
0 and C +

λ0
, satisfying

the following conditions:
(1) C +

0 and C +
λ0

are unbounded in R× L∞(0, 1);
(2) C +

0 and C +
λ0

are closed and connected subsets of R × BV (0, 1) with BV (0, 1) endowed with the
topology of the strict convergence;

(3) (0, 0) ∈ C +
0 and (λ0, 0) ∈ C +

λ0
;

(4) {(0, r) : r ≥ 0} ⊆ C +
0 ;

(5) ess inf u > 0 if (λ, u) ∈ C +
0 ∪ C +

λ0
with u 6= 0;

(6) λ = λ0 if (λ, 0) ∈ C +
0 ∪ C +

λ0
with λ > 0;

(7) either C +
0 ∩ C +

λ0
= ∅, or (0, 0) ∈ C +

λ0
and (λ0, 0) ∈ C +

0 , and, in such case, C +
0 = C +

λ0
;

(8) there is a neighborhood, V, of (0, 0) in R× L∞(0, 1) such that C +
0 ∩ V consists of regular solutions;

(9) there is a neighborhood, U , of (λ0, 0) in R×L∞(0, 1) such that C +
λ0
∩ U consists of regular solutions.

Combining these properties with the theory developed in the previous sections allows us to verify all the
conclusions of Theorem 1.1.

Indeed, from conditions (3), (4), (6), (7) and Theorem 2.1 it readily follows that
C +

0 = {(0, r) : r ≥ 0} and C +
0 ∩ C +

λ0
= ∅.

Thus, (a) and (b) hold. The conclusions (c) and (d) are consequences of (1) and Theorem 2.1. Theorem 3.2
yields (e). The conclusion (f) follows from Theorems 3.1 and 4.1, for what concerns the behavior on the
interval [0, z), and from Theorem 4.2 and Proposition 4.2, for what concerns the behavior on the interval
(z, 1]. While assertion (g) is precisely (9).

In order to prove (h), we proceed by contradiction. So, assume that (a2) holds and that (λ, u) ∈ S +,
with λ > 0, is a singular solution. Then, thanks to (1.4), for any x ∈ (0, 1) \ {z}, integrating the differential
equation in (x, z) yields

0 < −u′(x)√
1 + (u′(x))2

= 1− λ
∫ z

x

a(t)f(u(t)) dt < 1

and hence
−u′(x) =

1− λ
∫ z
x
a(t)f(u(t)) dt√

2− λ
∫ z
x
a(t)f(u(t)) dt

· 1√
λ
∫ z
x
a(t)f(u(t)) dt

.

So, for sufficiently small η > 0 and every x ∈ [z − η, z + η] \ {z}, we have that

−u′(x) ≥ 1
2
√
λh

(∫ z

x

a(t) dt
)− 1

2

.

Under condition (a2), this estimate entails that either u′ /∈ L1(0, z), or u′ /∈ L1(z, 1), which contradicts the
fact that

u ∈W 1,1(0, z) ∩W 1,1(z, 1).
Therefore, assuming (a2), the set S + consists of regular solutions, as claimed by assertion (h).

Lastly, we will prove the conclusion (h). More generally, we will show that all the solutions of S + with
sufficiently large L∞-norm must develop singularities if (a2) fails. We will argue by contradiction assuming
the existence of a sequence of regular solutions, ((λn, un))n≥1, in S + such that

lim
n→+∞

‖un‖L∞ = +∞. (5.1)



20 JULIAN LÓPEZ-GÓMEZ AND PIERPAOLO OMARI

Then, by Theorem 3.2, we also have that

lim
n→+∞

λn = λ∞.

As we are assuming that ∫ 1

z

(∫ z

x

a(t) dt
)− 1

2

dx < +∞,

it follows from Proposition 4.3 that

0 < lim inf
n→∞

un(z) ≤ lim sup
n→+∞

un(z) < +∞.

Thus, there exist n0 ∈ N and M > 0 such that, for every n ≥ n0,
M

2 ≤ un(z) ≤M and λn ≥
λ∞
2 .

Since these estimates coincide with (4.12), reasoning as in the proof of Proposition 4.3 it becomes apparent
that (4.13) holds, i.e.,

−u′n(x) ≤

√
2

λ∞f(M/2)

(∫ z

x

a(t) dt
)− 1

2

,

and hence

un(0) = un(z)−
∫ z

0
u′n(x) dx

≤M +

√
2

λ∞f(M/2)

∫ z

0

(∫ z

x

a(t) dt
)− 1

2

dx = C < +∞,

as we are assuming that (a2) fails. This implies that, for all n ≥ n0,

‖un‖L∞ = un(0) ≤ C,

which contradicts (5.1) and ends the proof of Theorem 1.1.
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